
Gauss-Green cubature and moment

computation over arbitrary geometries ⋆

Alvise Sommariva a, Marco Vianello a,∗

aDepartment of Pure and Applied Mathematics, University of Padua (Italy)

Abstract

We have implemented in Matlab a Gauss-like cubature formula over arbitrary bi-
variate domains with a piecewise regular boundary, which is tracked by splines of
maximum degree p (spline curvilinear polygons). The formula is exact for polyno-
mials of degree at most 2n− 1 using N ∼ cmn2 nodes, 1 ≤ c ≤ p, m being the total
number of points given on the boundary. It does not need any decomposition of the
domain, but relies directly on univariate Gauss-Legendre quadrature via Green’s
integral formula. Several numerical tests are presented, including computation of
standard as well as orthogonal moments over a nonstandard planar region.

Key words: Gauss-like cubature, splines, curvilinear polygons, Green’s formula,
moment computation

1 Introduction.

We consider the problem of constructing a cubature formula over bivariate
domains with piecewise regular boundary (curvilinear polygons)

∑

λ∈Λ2n−1

ωλ f(xλ, yλ) ≈ IΩ(f) =
∫∫

Ω
f(x, y) dxdy , Ω ⊂ R

2 (1)

which is exact for all bivariate polynomials of degree at most 2n − 1, stable
(i.e. such that

∑

λ∈Λ2n−1
|ωλ| is bounded with n), and simple to implement

⋆ Work supported by the ex-60% funds of the University of Padova and by the
GNCS-INdAM.
∗ Corresponding author. Address: via Trieste 63, 35121 Padova (Italy). Fax: +39
049 8271444. Telephone: +39 049 8271370.

Email address: marcov@math.unipd.it (Marco Vianello).

Preprint submitted to Journal of Computational and Applied Mathematics25 March 2009

by one of the most popular computing tools, Matlab (cf. [16]). We make the
further assumption that the boundary is discretized by a suitable sequence
of points, split into subsequences (one for each regular boundary piece), and
that it is tracked by a spline interpolating curve of suitable degree ≤ p on each
subsequence (spline curvilinear polygon); cf. [2]. Thus the only information we
have on the domain are the split discrete boundary and the spline type on each
subsequence.

Our work starts from the observation that numerical cubature codes for such
general domains do not seem to be available (in particular, Matlab codes).
Typically, the domain has to be split by the user into “simpler” parts (trian-
gles, generalized rectangles, generalized sectors) where then suitable adaptive
methods are used; see, e.g., the popular CubPack package [4]. Alternatively, a
brute-force approach is suggested to manage nonstandard domains (like e.g.
by the Matlab dblquad automatic integrator, cf. [16]) that is integrating the
product of the given integrand by the characteristic function of the domain
on some enclosing rectangle. Such a technique can work but is often unreli-
able and clearly inefficient since an artificial discontinuity at the boundary is
introduced.

In a recent paper [25], we have introduced a completely different approach,
in the special case of cubature over polygons, obtaining a product-like Gauss
formula. The key idea is that of resorting to Green’s integral formula (the
divergence theorem in dimension 2, cf. [1])

IΩ(f) =
∮

∂Ω
F(x, y) dy , F(x, y) =

∫

f(x, y) dx , (2)

(f being continuous on a domain Ω with piecewise regular boundary described
counterclockwise), via Gauss-Legendre discretization (cf. e.g. [9]) of the x-
primitive F(x, y). Such a discretized primitive is then integrated along the
sides still by Gauss-Legendre quadrature (we have recently used Green’s for-
mula also in the context of cubature from scattered data by radial basis func-
tions, cf. [25,26]). When the integrand is a bivariate polynomial of degree at
most 2n−1, the first quadrature is exact with n nodes and gives a polynomial
of degree at most 2n, which restricted to a side is a polynomial of degree at
most 2n in the side parametrization. This can be integrated exactly by n+ 1
Gauss-Legendre nodes on the side. No triangulation is required, since Green’s
formula needs only the boundary as a counterclockwise sequence of vertices.

Here we extend the method to spline curvilinear polygons, which allow to ap-
proximate very general domains. When the integrand is a bivariate polynomial
of degree at most 2n−1, integration of the discretized x-primitive between any
couple of consecutive points on the boundary entails integration of a polyno-
mial of degree at most 2np+p−1 in the underlying parametrization (recall that
we use splines of degree q ≤ p on each subsequence of points on the boundary).

2

This can be accomplished by at most nq+(q+1)/2 Gauss-Legendre nodes (q
odd). Hence, we get algebraic degree of exactness 2n−1 using a total number
of cubature nodes N , with mn(n + 1) ≤ N ≤ mn(np + (p + 1)/2), where m
is the total number of points on the boundary. Again, no decomposition of
the bivariate domain is needed, since Green’s formula via spline tracking of
the boundary needs only a counterclockwise sequence of points (organized in
suitable subsequences).

It is worth recalling that an approach based on tracking boundaries by spline
curves and on Green’s formula, has been recently adopted to compute exact
moments of planar figures; cf., e.g., [13,21] and references therein. Indeed,
Green’s formula (also in its discrete version) is widely used in pattern recogni-
tion and image analysis (cf., e.g., [18,6,22,23] and references therein), whereas
it seems much less popular in the framework of numerical cubature.

The paper is organized as follows. The cubature formula with stability and
error estimates and a discussion on some of its features are given in section
2. In section 3, we show the behavior of the formula by integrating some test
functions over a nonconvex domain (a lune), where for comparison the bound-
ary is tracked by splines of different degree. Moreover, we give an application
which exploits polynomial exactness of the cubature formula over general pla-
nar regions, namely the computation of standard as well as orthogonal area
moments over a nonstandard hand-shape region.

We like to conclude this introduction recalling that Carl Friedrich Gauss
(1777-1855) was the father of two of the three key tools used in the cuba-
ture formula: the divergence theorem (known also as Gauss-Green theorem,
cf. [7,12]), and interpolatory quadrature at the zeros of Legendre polynomials
(cf. [8]). Since the third key tool is spline interpolation, we have decided to
term “SplineGauss” the Matlab cubature code, cf. [27].

2 Gauss-Green cubature via spline boundaries.

We begin by stating the main result of the paper (construction of Gauss-like
cubature formulas over spline curvilinear polygons) as a theorem.

Theorem 2.1 Let Ω ⊂ R
2 be the closure of a bounded and simply connected

domain with piecewise regular boundary, which is described counterclockwise

by a sequence of “vertices”

Vi = (αi, βi) , i = 1, . . . , ν ,

∂Ω = (V1 ⌢ V2) ∪ (V2 ⌢ V3) ∪ · · · ∪ (Vν ⌢ Vν+1) , Vν+1 = V1 , (3)

3

where each curvilinear side (Vi ⌢ Vi+1) is tracked by a spline curve Si(t) of

degree pi, interpolating an ordered subsequence of mi boundary control points

Pi1 = Vi, Pi2, . . . , Pimi
= Vi+1, with a suitable parametrization

Si(t) = (Si1(t), Si2(t)) , t ∈ [αi, βi] , Si(tij) = Pij , j = 1, . . . , mi . (4)

Let f ∈ C(R) and let ξ be a fixed abscissa, where

Ω ⊆ R = [a, b] × [c, d] , ξ ∈ [a, b] . (5)

Let {τ s
k} and {ws

k}, 1 ≤ k ≤ s, be the nodes and weights of the Gauss-Legendre

quadrature formula of degree of exactness 2s− 1 on [−1, 1], cf. [10].

Then, the following cubature formula is exact over Ω for all bivariate polyno-

mials of degree at most 2n− 1

I2n−1(f) =
∑

λ∈Λ2n−1

ωλf(xλ, yλ) , (6)

where λ is a 4-index

Λ2n−1 = {λ = (i, j, k, h) : 1 ≤ i ≤ L, 1 ≤ j ≤ mi − 1 , 1 ≤ k ≤ ni, 1 ≤ h ≤ n} ,
(7)

mi is the number of points {Pij} on the side (Vi ⌢ Vi+1), and ni depends on

the type of splines used on such a side

ni =

npi + pi/2 , pi even

npi + (pi + 1)/2 , pi odd
(8)

The nodes and weights in (6) are given by

xλ =
1 + τn

h

2
Si1 (qijk) +

1 − τn
h

2
, yλ = Si2 (qijk) , (9)

ωλ =
∆tij
4

wni

k wn
h (Si1 (qijk) − ξ) S ′

i2 (qijk) , (10)

where we have defined

qijk =
∆tij
2

τni

k +
tij+1 + tij

2
, ∆tij = tij+1 − tij . (11)

The overall number of cubature nodes is

N = n
ν
∑

i=1

(mi − 1)ni , (12)

with

mn(n + 1) ≤ N ≤ mn
(

np+
p+ 1

2

)

, p = max
1≤i≤ν

{pi} , (13)

4

m being the overall number of control points given on the boundary. Moreover,

we have the stability estimate

∑

λ∈Λ2n−1

|ωλ| ≤ (b− a) ℓn , lim
n→∞

ℓn = ℓ(∂Ω) , (14)

and the error estimate

|IΩ(f) − I2n−1(f)| ≤ (µ(Ω) + (b− a) ℓn)E2n−1(f ;R) ,

E2n−1(f ;R) = min
p∈P

2
2n−1

‖f − p‖∞,R , (15)

where ℓ(∂Ω) denotes the length of the boundary and µ(Ω) the Lebesgue measure

of the integration domain.

Proof. By Green’s formula (2) and (3)-(4) we can write

IΩ(f) =
∑

i

∫

(Vi⌢Vi+1)
F(x, y) dy =

∑

i,j

∫

Pij⌢Pij+1

F(x, y) dy , (16)

where we have taken the x-primitive

F(x, y) =
∫ x

ξ
f(v, y) dv . (17)

Notice that it is important to have a fixed abscissa ξ here, in order to fix the
primitive in Green’s formula. Then by using the parametrization

∑

i,j

∫

Pij⌢Pij+1

F(x, y) dy =
∑

i,j

∫ tij+1

tij

F(Si(t))S
′
i2(t) dt

=
∑

i,j

∫ tij+1

tij

(

∫ Si1(t)

ξ
f(v, Si2(t)) dv

)

S ′
i2(t) dt

=
∑

i,j

∆tij
4

∫∫

[−1,1]2
(Si1(qij(u)) − ξ)S ′

i2(qij(u)) f

(

Si1(qij(u)) − ξ

2
τ +

+
Si1(qij(u)) + ξ

2
, Si2(qij(u))

)

dτ du , (18)

where we have used the standard affine change of variables to rewrite the
univariate integrals in [−1, 1], and we have defined

qij(u) =
∆tij
2

u +
tij+1 + tij

2
. (19)

Now observe that, when f(x, y) is a polynomial of degree at most 2n − 1,
then the integrand in (18) is again a bivariate polynomial of degree at most
2n − 1 in τ and 2npi + pi − 1 in u for every j, and thus it is integrated

5

exactly in [−1, 1]2 by the product Gauss-Legendre formula with n× ni nodes
and weights (ni being defined in (8)). The application of such a formula gives
(6)-(11): in particular, the {qijk}k are ni Gauss-Legendre quadrature nodes
in the parameter interval [tij, tij+1], since qijk = qij(τ

ni

k). Moreover, (12)-(13)
are immediately obtained by counting the overall number of values {qijk}k

pertaining the union of spline subarcs Pij ⌢ Pij+1, recalling that for each of
such values there are exactly n cubature nodes as in (9).

As for estimate (14), first recall that the sum of the Gauss-Legendre weights
is 2, and observe that |Si1(t)− ξ| ≤ b− a for every i and t ∈ [αi, βi]. Then, by
(10) we can write

∑

λ

|ωλ| ≤
b− a

2

∑

h

wn
h

∑

i,j,k

∆tij
2

wni

k |S ′
i2(qijk)| ≤ (b− a)ℓn ,

ℓn =
∑

i

ℓin →
∑

i

ℓ(Vi ⌢ Vi+1) = ℓ(∂Ω) , n→ ∞ , (20)

since the bound

ℓin =
∑

j,k

∆tij
2

wni

k

√

(S ′
i1(qijk))

2 + (S ′
i2(qijk))

2 ≥
∑

j,k

∆tij
2

wni

k |S ′
i2(qijk)| (21)

is a Gauss-Legendre quadrature formula applied to the integral defining the
length of the spline arc Vi ⌢ Vi+1.

Finally, (15) is the extension to the cubature framework of the well-known
error estimate for Polya-Steklov-like quadrature formulas (cf. e.g. [14,28]). In
fact, denoting by p∗2n−1 the best uniform polynomial approximation to f on Ω
with degree 2n− 1, by polynomial exactness we have

|IΩ(f) − I2n−1(f)| ≤ |IΩ(f) − IΩ(p∗2n−1)| + |IΩ(p∗2n−1) − I2n−1(p
∗
2n−1)|

+|I2n−1(p
∗
2n−1) − I2n−1(f)| ≤

µ(Ω) +
∑

λ∈Λ2n−1

|ωλ|

 E2n−1(f ;R) . q.e.d.

We make now some remarks, in order to deepen some important features
of Gauss-Green cubature over spline curvilinear polygons: convergence rate,
boundary approximation, location of the cubature nodes, shape of the do-
mains.

Remark 1 (convergence rate)

Concerning the convergence rate of (6) as n→ ∞, by the multivariate exten-
sion of Jackson theorem (cf. e.g. [19]) and (15), we get immediately

IΩ(f) = I2n−1(f) + O
(

(2n− 1)−(p+θ)
)

, f ∈ Cp+θ(R) , (22)

6

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

P

P

P

P

P

P

P

P

1,2

1,3

1,4

1,5

1,6

2,2

2,3

2,4

V

V V 1 3

2

=

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P

P
1,3

1,4

(x λ y) , λ O

Fig. 1. Example of distribution of boundary control points and cubature points on
a lune (top), with a suitable zoom (bottom); the reference abscissa in (5) is ξ = 0.5.

for every function f with Hölder continuous p-th partial derivatives, i.e. p ≥ 0
and θ ∈ (0, 1].

Remark 2 (boundary approximation)

One of the goals of constructing an algebraic cubature formula like (6), is
that of approximating the integral of a given function over some domain Ω0,
whose boundary is approximated by a spline interpolating curve, that is ∂Ω ≈
∂Ω0, where Ω ≈ Ω0 is the corresponding spline curvilinear polygon as in the
statement of Theorem 1.

This approach allows to treat quite general domains, with two distinct prac-
tical situations. One is when the boundary is not known analytically, but is
given by a possibly nonrefineable sample (think e.g. to a geographical region,
a digital image, ...) and then is tracked by spline curves. The other situation
arises when the boundary is known analytically, and the spline interpolating
curve is chosen taking into account the boundary regularity. For example, if
the domain is the union or difference of overlapping domains with piecewise
regular boundaries, it may be convenient to add the relevant boundary inter-
sections among the vertices {Vi} of the spline curvilinear polygon, in order to
avoid a rough approximation in their neighborhood. Moreover, an appropriate
choice of vertices can allow to track possible linear sides by only two points.
See, e.g., Figure 1 where the domain is the difference of two overlapping disks
(a lune), the sides being two circular arcs tracked by cubic splines with 5 and
7 equispaced control points, respectively (thus we have two vertices V1, V2, and
10 overall control points).

Clearly, the effect of the approximation of the boundary of Ω0 has be taken into
account in estimating the overall integration error. The quality of the approx-

7

imation depends on various features of the spline construction, like the spline
degrees (via the boundary regularity), but also the choice of the parametri-
zation at a given degree. We recall two widely adopted parametrizations (the
symbols refer to (4)), that are the “equal increment” one

[αi, βi] = [1, mi] , tij = j , j = 1, . . . , mi , (23)

and the “cumulative chordal” one

[αi, βi] =

0,
mi−1
∑

j=1

|∆tij |

 , ∆tij = |Pij+1 − Pij| , j = 1, . . . , mi − 1 , (24)

cf., e.g., [2,5,29].

Assume for simplicity that the boundary has a global C4 parametrization,
and that it is tracked by a cubic spline curve via the cumulative chordal
parametrization (i.e., i = ν = 1 in (3)-(4) and (24)). Then, setting H =
max ∆t1j , cf. (24), and using Ω0△Ω = (Ω0 \ Ω) ∪ (Ω \ Ω0), by the results in
[20] we can write the following error estimate

|IΩ0
(f) − I2n−1(f)| ≤ IΩ0△Ω(|f |) + |IΩ(f) − I2n−1(f)|

≤ ‖f‖∞,Ω0△Ω µ(Ω0△Ω) + (µ(Ω) + (b− a) ℓn)E2n−1(f ;R)

≈ ‖f‖∞,Ω0△Ω ℓ(∂Ω0)O(H4) + (µ(Ω0) + (b− a) ℓ(∂Ω0))E2n−1(f ;R) , (25)

for H sufficiently small and n sufficiently large.

Remark 3 (location of the cubature nodes)

It is worth stressing that, in general, the cubature nodes fall also outside the
spline curvilinear polygon (in the enclosing rectangle R ⊇ Ω). This is the
reason why f is assumed to be continuous and computable also in R, and the
error estimate (15) involves the best uniform polynomial approximation on R.

With a certain class of geometric figures, however, a change of coordinates
which we describe below, can ensure that the cubature nodes are all inside
the domain (i.e., the spline curvilinear polygon Ω), and in these cases it is
not required that f has an extension outside Ω preserving its regularity. This
class is characterized geometrically by the existence of a “base-line” (say ℓ),
whose intersection with the domain is connected, and such that in addition
each line orthogonal to it (say q) has a connected intersection (if any) with
the domain, containing the point ℓ ∩ q. Such class contains for example all
convex spline curvilinear polygons, by choosing the line connecting a pair of
boundary points with maximal distance (a not easy problem to solve). But it
contains also nonconvex domains, see Fig. 1 and Fig. 2 bottom-left and top-
right. In practice, it could be important to use splines with “shape-preserving”
properties (see, e.g., [15] and references therein).

8

The change of variables in the integration consists then simply in a rotation of
the co-ordinate system such that the base-line becomes parallel to the (new)
y-axis, choosing as ξ the abscissa of its intersection with the (new) x-axis. The
resulting cubature nodes fall then necessarily inside the domain. Moreover, it
is also easy to realize that the resulting cubature weights are all positive (a fact
that is not true in general). This latter property was not noticed in [26], where
we treated the simpler case of ordinary polygons, corresponding here to linear
splines. Indeed, in (10) when the boundary point (Si1(qijk), Si2(qijk)) is on the
right (resp. left) of the base-line, i.e., Si1(qijk)− ξ > 0 (resp. Si1(qijk)− ξ < 0),
then S ′

i2(qijk) is positive (resp. negative). If the spline curvilinear polygon does
not fall in the class above, but approximates a domain Ω0 in the class, then
choosing a corresponding base-line we can expect that the cubature nodes lie
in the neighborhood of Ω0 (see Remark 2).

Our implementation of Gauss-Green cubature over spline curvilinear polygons
(cf. [27]) accepts a pair of points, say A = (xA, yA) and B = (xB, yB), which
define the base-line if the user can provide them, otherwise takes by default
a pair of maximal distance control points. In practice, this entails only that
in the construction of the nodes and weights the boundary control points
Pij = (xij , yij) and ξ have to be substituted by

x̂ij = xij cosφ+ yij sin φ , ŷij = −xij sinφ+ yij cosφ , (26)

ξ̂ = xA cosφ+ yA sinφ , (27)

where φ = arccos (|yB − yA|/‖B −A‖2), 0 ≤ φ ≤ π/2, is the rotation angle.

The effect of the choice of different base-lines can be appreciated in Figure
2, where the cubature nodes on a lune (difference of two disks) are located
correspondingly to the y-axis (top-left), the diagonal (top-right), a suitable
horizontal line (bottom-left) and the antidiagonal (bottom-right). Since we
have chosen 9 equispaced control points on each of the two circular arcs defin-
ing the boundary, we have 16 overall control points, and N = 48n2 + 32n
cubature nodes at a given degree of exactness 2n− 1; in the figure, n = 4 and
thus there are 896 overall cubature nodes. Observe that in the bottom-left and
top-right figures the nodes are all located inside the domain.

Remark 4 (shape of the integration domain)

Observe that the shape of the integration domain Ω can be quite arbitrary, the
only restriction being that its boundary is a piecewise regular and “simple”
curve in a slightly generalized sense, i.e. self-intersections are allowed only at
some vertices, that become the only multiple points of the boundary path.
In particular, it is worth stressing that it is not required that the cartesian
coordinate system can be chosen such that Ω = {(x, y) ∈ R

2 : a ≤ x ≤
b , ϕ(x) ≤ y ≤ ψ(x)} for some functions ϕ ≤ ψ. For example, the domain can
be an entire disk, with the boundary tracked by splines.

9

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Four examples of distribution of cubature points on a lune, generated by
different choices of the “base-line” (algebraic degree of exactness = 7).

Moreover, the cubature formula (6) can be easily extended to multiply con-
nected domains, via the corresponding extension of Green’s formula. Indeed,
assume that the boundary of Ω be the union of an external boundary Γext with
a finite number of internal boundaries Γint

k , k = 1, . . . , s (describing holes).
Then we have

∫∫

Ω
f(x, y) dxdy =

∮

Γext
F(x, y) dy −

s
∑

k=1

∮

Γint
k

F(x, y) dy , (28)

where all line integrals are taken counterclockwise and can be computed by
(6). We stress that in these cases the integrand f has to be continuous and
computable (at least) in the convex hull, i.e. also in the holes.

3 Numerical tests.

In this section we present several numerical tests of cubature by formula (6)
over two nonconvex domains with boundary tracked by spline curves. The ter-
minology below concerning “sides”, “vertices” and “control points” refers to
that adopted in Theorem 1. The cubature formula has been implemented by

10

a Matlab code (termed SplineGauss, cf. [27]), which needs in input the com-
plete sequence of control points (some of them are marked as vertices of the
sides), the spline degree to be used on each side, the integrand function, and
the parameter n (theoretical exactness at degree 2n−1). In particular, Gauss-
Legendre nodes and weights are computed by Gautschi’s Matlab routines for
orthogonal polynomials, see [10]. The user can choose to use the cumulative
chordal spline parametrization as well as the equal increment one (cf. [2,29]).
The interpolation additional conditions are chosen automatically, and are the
classical periodic for a representation of the boundary by a single closed spline
curve (one single side in our notation), or the “not-a-knot” conditions other-
wise. All the tests have been done by an Intel-Centrino Duo T 2400 processor
with 1 Gb RAM.

We have considered the following six bivariate test functions

f1(x, y) =
3

4
e−

1

4
((9x−2)2+(9y−2)2) +

3

4
e−

1

49
(9x+1)2− 1

10
(9y+1)

+
1

2
e−

1

4
((9x−7)2+(9y−3)2) −

1

5
e−((9y−4)2+(9y−7)2) ,

f2(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 , f3(x, y) = (x+ y)19 ,

f4(x, y) = e−((x−0.5)2+(y−0.5)2) , f5(x, y) = e−100((x−0.5)2+(y−0.5)2) ,

f6(x, y) = cos (20(x+ y)) , (29)

which are in order the well-known Franke test function, the distance function
from (0.5, 0.5), a polynomial of degree 19, two Gaussians centered at (0.5, 0.5)
with different variance parameters, and a (moderately) oscillating function.

Tables 1-6 refer to numerical cubature over the nonconvex lune-like domain
Ω0 in Fig. 2, where four different choices of the base line are given.

In Table 1, we report the relative errors in computing the area of the lune,
whose boundary is given by two circular arcs (the sides) and is tracked with
16, 32, 64 and 128 control points (that is 9, 17, 31 and 65 control points
on each side, with two corner points that are the vertices). The exact value
of the area is 1/4 + π/8 ≈ 0.6426990816987241. The errors correspond to
three different choices of the spline degree p (the same for both sides), namely
p = 3 (cubic), p = 5 (quintic), and p = 7, and are practically invariant
with respect to the choice of the base line (for all spline curves we have used
the “cumulative chordal” parametrization). Notice that the approximation
improves by improving the tracking accuracy, either by increasing the number
of control points or the spline degree.

The errors in Table 1 give the benchmarks for the numerical test in Table
2, which concerns integration of the Franke test function over the lune with
the distribution of points in Fig. 2 top-right. Increasing the ADE (Algebraic

11

Degree of Exactness), we observe a stagnation of the error at a size close to the
corresponding error in computing the area, as expected from estimate (25).

Table 3 shows that the stability estimate (14) is an overestimate, since very
few of the weights are negative and these have small size. Indeed, the sum of
the weights absolute values is practically invariant with the ADE, and in any
case of the size of the domain area. When the choice of the base line guarantees
that all the cubature points are inside the domain (top-right and bottom-left
distributions in Fig. 2), the weights are even all positive, see Remark 3.

In Table 4 we compare the cubature errors of the Franke test function on the
four distributions of points as in Fig. 2, for fixed number of control points
(m = 64) and spline degree (p = 7). When the cubature points are all internal
we have smaller errors at the same ADE, and all errors show a stagnation at
the size of the corresponding error on the area (see Table 1). Observe that
stagnation occurs at higher degrees for the choice of the base line in Fig. 2
top-left, where a lot of points fall outside the domain and the distribution is
highly unsymmetric.

In Table 5 we fix again the number of control points (m = 128) and the spline
degree (p = 5), and show the cubature errors of the six test functions in (29)
on the lune Ω0, at increasing ADE. The values of the integrals, with a relative
error around 10−14, are:

IΩ0
(f1) = 0.20307626985342 , IΩ0

(f2) = 0.20646770293563 ,

IΩ0
(f3) = 638.55743274702 , IΩ0

(f4) = 0.57263720432530 ,

IΩ0
(f5) = 0.03137185199242 , IΩ0

(f6) = 0.0062895812195655 ,

which have been obtained representing the lune by unions and differences of
sectors and squares, and using standard cubature formulas on such pieces. Ob-
serve that the absolute errors stagnate at a size compatible with the estimate
(25) and the error on the area (see Table 1), for all the regular integrands f1,
f3, f4, f5 and f6 (more slowly for the peaked Gaussian f5). We recall that in
our notation Ω0 is the lune and Ω its approximation via the spline bound-
ary. The polynomial f4 is integrated accurately already at low ADE, whereas
the oscillating function f6 needs an ADE compatible with the number of os-
cillations to push down the error. The behavior of the cubature formula is
satisfactory even on the less regular function f2, which has a singularity of the
gradient at a point “in the middle” of the domain (where the cubature points
cluster slowly).

In order to have a comparison with the performance of a standard integrator,
in Table 6 we show the number of cubature points used by the Matlab dblquad

automatic integrator (cf. [16]) and by our formula, to obtain an accuracy close
to the best in each column of Table 5. Observe that dblquad is more efficient

12

in treating internal singularities of the integrand at intermediate accuracies,
like for f2 and f5, but at high accuracies suffers from introducing an artificial
discontinuity across the boundary. In these cases the number of function eval-
uations required by dblquad can be from 5 to more than 10 times greater than
that of SplineGauss. Moreover, bedides the considerations about the number
of function evaluations at a given error tolerance, it should be recalled that
dblquad implements adaptivity by recursion, which has a strong effect on the
computing time. Indeed, the total CPU time for the examples of Tables 6
ranges from 1 to 3 seconds with SplineGauss, and from 9 to 360 seconds with
SplineGauss.

Another application of the cubature formula (6) is given in Table 7, where
we exploit one of its main features, that is the polynomial exactness. When
it is applied to a polynomial of degree d, it is sufficient to choose n ≥ (d +
1)/2 to get the integral up to machine precision, irrespectively of the specific
polynomial basis used to represent the polynomial. This flexibility could be
very useful in applications where integrals of arbitrary polynomials have to
be computed with very high accuracy. An important example of this kind
is given by computation of polynomial moments over a planar region with
complex shape, a problem arising typically in the pattern recognition and
image analysis contexts. Recently, the method of tracking boundaries with
spline curves has appeared in the literature on moment computation, see e.g.
[13,21], but the formulas developed there seem to be restricted to monomial
moments. On the other hand, the so-called orthogonal moments, i.e. moments
corresponding to orthogonal polynomials, are important in many applications
of pattern recognition and image analysis (see, e.g., [18,6,22,23] and references
therein).

In Table 7 we report the maximum errors in the computation of the first
153 moments (up to degree 16) of three polynomial bases over an hand-shape
domain Ω, whose boundary is tracked by 38 control points and a cubic spline
together with a linear spline connecting the two points on the wrist. This
example of tracking an hand by splines is taken from [17]. We have computed

IΩ(φp1
(x)φp2

(y)) , 0 ≤ p1 + p2 ≤ 16 , (30)

where φk(·) = (·)k (standard monomial moments), φk(·) = Tk(·) (Chebyshev
moments), and φk(·) = Pk(·) (Legendre moments); observe that Ω ⊂ [−1, 1]2.
The reference values for the moments have been computed by our formula
with ADE = 21. As expected, in all cases the error jumps down abruptly
close to machine precision when the ADE exceeds a threshold. This threshold
turns out to be lower than the theoretical one (that is 16) for the monomial
basis, but this is not surprising since, differently from the other two, the basis
polynomials do not oscillate.

Here, we have restricted the attention to the computation of moments of a

13

constant density over a spline curvilinear polygon. We stress that moment
computation via (6) can be immediately extended to any bivariate continuous
density function.

Table 1
Relative errors in computing the area of the lune in Fig. 2 (integration of f ≡ 1,
any distribution of nodes): ADE is the algebraic degree of exactness, m the number
of control points on the boundary, p the spline degree.

ADE m = 16 m = 32

p = 3 p = 5 p = 7 p = 3 p = 5 p = 7

1 4.2E-04 8.1E-05 1.0E-05 5.8E-06 9.4E-07 3.9E-08

ADE m = 64 m = 128

p = 3 p = 5 p = 7 p = 3 p = 5 p = 7

1 4.1E-07 8.1E-09 9.5E-11 5.0E-08 7.0E-11 1.4E-13

Table 2
Relative cubature errors for the Franke test function, with cubature points dis-
tributed as in Fig. 2 top-right: ADE is the algebraic degree of exactness, m the
number of control points on the boundary, p the spline degree.

ADE m = 16 m = 32

p = 3 p = 5 p = 7 p = 3 p = 5 p = 7

7 1.7E-03 9.8E-04 1.1E-03 1.1E-03 1.1E-03 1.1E-03

15 6.4E-04 9.3E-05 1.2E-05 1.9E-05 8.4E-07 4.1E-07

23 6.4E-04 9.4E-05 1.2E-05 1.9E-05 1.2E-06 5.2E-08

31 6.4E-04 9.4E-05 1.2E-05 1.9E-05 1.2E-06 5.2E-08

39 6.4E-04 1.0E-04 1.2E-05 1.9E-05 1.2E-06 5.2E-08

ADE m = 64 m = 128

p = 3 p = 5 p = 7 p = 3 p = 5 p = 7

7 1.1E-03 1.1E-03 1.1E-03 3.8E-04 1.1E-03 1.1E-03

15 5.9E-07 3.5E-07 3.6E-07 4.9E-07 3.6E-07 3.6E-07

23 2.3E-07 1.1E-08 6.9E-11 1.9E-08 1.5E-10 6.7E-11

31 2.3E-07 1.1E-08 1.3E-10 1.9E-08 9.2E-11 3.5E-13

39 2.3E-07 1.1E-08 1.3E-10 1.9E-08 9.2E-11 3.9E-13

14

Table 3
Invariance with the ADE of the sum of the weights absolute values (rounded to 3
digits), with the four distributions of cubature points as in Fig. 2; the area of the
domain rounded to 3 digits is 0.643.

ADE top-left top-right bot-left bot-right

7 1.14 0.643 0.643 0.785

> 7 1.14 0.643 0.643 0.785

Table 4
Relative cubature errors for the Franke test function, with the four distributions
of cubature points as in Fig. 2: the number of control points is m = 64, the spline
degree is p = 7.

ADE top-left top-right bot-left bot-right

7 3.2E-02 1.4E-03 1.1E-03 3.8E-04

15 7.6E-04 1.2E-06 3.6E-07 4.7E-07

23 5.7E-06 8.2E-11 6.9E-11 9.2E-11

31 1.3E-08 9.2E-11 1.3E-10 9.2E-11

39 2.5E-10 9.2E-11 1.3E-10 9.2E-11

47 9.3E-11 9.2E-11 1.3E-10 9.2E-11

55 9.2E-11 9.2E-11 1.3E-10 9.2E-11

Table 5
Relative cubature errors for the six test functions in (29), with the distribution of
cubature points as in Fig. 2 bottom-left: the number of control points is m = 128,
the spline degree is p = 5.

ADE f1 f2 f3 f4 f5 f6

3 6.7E-03 2.2E-03 5.8E-02 8.0E-05 2.6E-02 4.8E+00

5 4.0E-03 2.6E-04 2.3E-03 3.2E-07 1.1E-01 1.2E+00

7 1.1E-03 5.0E-05 4.2E-05 1.0E-09 8.9E-03 1.3E-01

9 2.0E-04 1.4E-05 3.8E-07 6.1E-11 5.3E-03 8.8E-03

11 3.1E-05 5.1E-06 1.7E-09 6.1E-11 1.1E-03 3.9E-04

13 3.7E-06 2.2E-06 5.1E-11 6.1E-11 2.8E-05 1.2E-05

15 3.6E-07 1.0E-06 4.8E-11 6.1E-11 3.2E-05 2.9E-07

17 2.2E-08 5.2E-07 4.8E-11 6.1E-11 6.3E-06 6.7E-10

19 3.1E-10 2.9E-07 4.8E-11 6.1E-11 4.4E-07 4.7E-09

21 2.3E-10 1.7E-07 4.8E-11 6.1E-11 3.4E-08 4.6E-09

15

Table 6
Number of cubature points used by the Matlab dblquad integrator and by our
formula (SplineGauss), to obtain an accuracy close to the best in each column of
Table 5.

♯ pts. f1 f2 f3 f4 f5 f6

dblquad 324186 32740 282738 225950 20782 1007426

SplineGauss 67840 67840 34048 17920 81664 55296

Table 7
Max errors in the computation of the first 153 moments (up to degree 16) of three
polynomial bases over the hand-shape domain in Fig. 3, with horizontal base line
(left column) and vertical base line (right column).

ADE monomial Chebyshev Legendre

5 2.1E-06 7.4E-10 8.6E-02 1.2E-02 2.1E-02 3.0E-03

9 1.1E-09 1.2E-14 6.5E-02 3.4E-03 1.3E-02 1.1E-03

13 3.1E-14 2.8E-16 3.3E-02 1.0E-04 8.3E-03 2.8E-05

17 2.2E-16 1.7E-16 3.4E-16 1.5E-16 2.2E-16 8.8E-17

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fig. 3. Two examples (bottom) of distribution of cubature points for an hand-shape
domain, generated by different choices of the “base-line” (algebraic degree of exact-
ness = 5). The boundary is tracked by 38 control points and a cubic spline curve
together with a linear spline connecting the two points on the wrist.

References

[1] T.M. Apostol, Calculus, vol. II, 2nd edition, Blaisdell, 1969.

16

[2] C. de Boor, A practical guide to splines, revised edition, Applied Mathematical
Sciences, 27, Springer, New York, 2001.

[3] C. de Boor, Spline Toolbox 3 User’s Guide, in: The Mathworks, MATLAB
documentation set, 2007 version (available online at
http://www.mathworks.com).

[4] R. Cools, D. Laurie & L. Pluym, Cubpack++: A C++ package for automatic
two-dimensional cubature, ACM Trans. Math. Software 23 (1997), 1–15.

[5] M.P. Epstein, On the influence of parameterization in parametric interpolation,
SIAM J. Numer. Anal. (13) 1976, 261–268.

[6] B. Fu, J. Zhou, Y. Li, G. Zhang, C. Wang, Image analysis by modified Legendre
moments, Pattern Recognition 40 (2007), 691–704.

[7] C. F. Gauss, Theoria attractionis corporum sphaeroidicorum ellipticorum
homogeneorum methodo novo tractate, Commentationes Societatis Regiae
Scientiarum Gottingensis Recentiores, Vol. III, 1813.

[8] C.F. Gauss, Methodus nova integralium valores per approximationem
inveniendi, Commentationes Societatis Regiae Scientiarum Gottingensis
Recentiores, Vol. III, 1814.

[9] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser, Boston, 1997.

[10] W. Gautschi, Orthogonal polynomials: computation and
approximation, Oxford University Press, Oxford, 2004 (software available at
http://www.cs.purdue.edu/archives/2002/wxg/codes).

[11] W. Gautschi, Orthogonal polynomials (in Matlab), J. Comput. Appl. Math.
178 (2005), 215–234.

[12] G. Green, An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism, Nottingham, 1828.

[13] M. Jacob, T. Blu & M. Unser, An Exact method for Computing the Area
Moments of Wavelet and Spline Curves, IEEE Trans. on Pattern Analysis and
Machine Intelligence 23 (2001), 633–642.

[14] V.I. Krylov, Approximate Calculation of Integrals, The Macmillan Co., New
York-London, 1962.

[15] B.I. Kvasov, Methods of shape-preserving spline approximation, World
Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[16] The MathWorks, MATLAB documentation set, 2007 version (available online
at http://www.mathworks.com).

[17] C.B. Moler, Numerical computing with Matlab, SIAM, Philadelphia, 2004.

[18] R. Mukundan & K. Ramakrishnan, Moment functions in image analysis. Theory
and applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.

17

[19] W. Pleśniak, Remarks on Jackson’s theorem in R
N , East J. Approx. 2 (1996),

no. 3, 301–308.

[20] M. Sakai & R.A. Usmani, On orders of approximation of plane curves by
parametric cubic splines, BIT Numerical Mathematics 30 (1990), 735–741.

[21] S. Sheynin & A. Tuzikov, Moment Computation for Objects with Spline Curve
Boundary, IEEE Transactions on Pattern Analysis and Machine Intelligence 25
(2003), 1317–1322.

[22] H.Z. Shu, L.M. Luo, W.X. Xu & J.D. Zhou, Fast computation of Legendre
moments of polyhedra, Pattern Recognition 34 (2001), 1119–1126.

[23] H.Z. Shu, J. Zhou, G.N. Han, L.M. Luo & J.L. Coatrieux, Image reconstruction
from limited range projections using orthogonal moments, Pattern Recognition
40 (2007), 670–680.

[24] A. Sommariva & M. Vianello, Meshless cubature by Green’s formula, Appl.
Math. Comput. 183 (2006), 1098–1107.

[25] A. Sommariva & M. Vianello, Meshless cubature over the disk by Thin-Plate
Splines, J. Comput Appl. Math. 221 (2008), 284–292.

[26] A. Sommariva & M. Vianello, Product Gauss cubature over polygons based on
Green’s integration formula, BIT Numerical Mathematics 47 (2007), 441–453.

[27] A. Sommariva & M. Vianello, SplineGauss: a Matlab code for Gauss-
Green cubature over spline curvilinear polygons, software downloadable from:
www.math.unipd.it/∼marcov/software.html.

[28] A.H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall Series
in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971.

[29] B. Su & D. Liu, Computational Geometry: Curve and Surface Modeling,
Academic Press, New York, 1989.

18

