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Abstract

We construct polynomial norming meshes with optimal cardinality
growth, on planar compact starlike domains that satisfy a Uniform
Interior Ball Condition (UIBC).
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1 Introduction

In the recent literature on multivariate polynomial approximation, the con-
cept of polynomial mesh (also called admissible mesh) has begun to play an
important role; cf., e.g., the seminal paper [8] and [6, 13] and the references
therein. Polynomial meshes are sequences {An} of finite norming sets (in
the uniform norm) on a multidimensional polynomial determining compact
K ⊂ R

d or K ⊂ C
d (i.e., a polynomial vanishing there vanishes everywhere),

such that the following polynomial inequality holds

‖p‖K ≤ C ‖p‖An
, ∀p ∈ P

d
n , (1)

with a cardinality increasing at most like O(ns), s ≥ d (here and below,
‖f‖X denotes the sup-norm of a function f bounded on the set X). Among
their properties, we recall that admissible meshes are preserved by affine
transformations, and can be easily extended by finite union and product
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[8]. In the present note, we restrict our attention to the real case, i.e., real
polynomials and K ⊂ R

d.
Polynomial meshes provide a “good discrete model” of a compact set for

many practical purposes. For example, they are nearly optimal for uniform
least squares approximation [8], and contain Fekete-like interpolation subsets
with the same asymptotic behavior as the continuous Fekete points of K,
that can be computed by numerical linear algebra techniques (cf., e.g., [4,
5, 18]). Such approximate Fekete points have been used within spectral
element and collocation methods for PDEs (cf. [14, 20]). For a recent
and deep survey on polynomial approximation and interpolation in several
variables, we refer the reader to [2].

In [8, Thm.5], it has been shown that any (real) compact set which
satisfies a Markov polynomial inequality with exponent r

‖∇p(x)‖2 ≤ Mnr‖p‖K , ∀x ∈ K, p ∈ P
d
n , (2)

has an admissible mesh with O(nrd) cardinality (for example, r = 2 for
compact sets which satisfy a Uniform Interior Cone Condition).

On the other hand, in applications it is important to control the cardinal-
ity of such discrete models. Indeed, some attention has been devoted to the
construction of optimal and near optimal polynomial meshes, which have car-
dinality O(nd) and O((n log n)d), respectively, in compact sets with special
geometries (observe that in (1) necessarily card(An) ≥ dim(Pd

n) ∼ nd/d!);
cf., e.g., [7, 13, 15, 16, 17]. Moreover, the polynomial inequality (1) can be
relaxed, asking that it holds with C = Cn, a sequence of constants increasing
at most polynomially with n: in such a case, we speak of weakly admissible
meshes. Weakly admissible meshes with O(nd) cardinality and constants
Cn = O((log n)d) are known in several instances, cf., e.g., [4, 11].

In the present note we prove constructively the existence of optimal
polynomial meshes, i.e., with cardinality O(n2), on a planar compact starlike
domain (that is not restrictive to consider to be centered in the origin)
assuming that it satisfies a classical Uniform Interior Ball Condition (UIBC,
cf., e.g., [1] and references therein). Special instances are C1,1 planar starlike
domains, thus generalizing in the planar case a recent result by A. Kroó on
C2 starlike domains [13].

2 Optimal polynomial meshes by a UIBC

In the sequel, the notion of tangential Markov inequality on a rectifiable
curve Γ with respect to a compact K will play a key role. Given a rectifiable
curve Γ ⊂ K ⊂ R

2 (i.e., it has a continuous parametrization and finite
length), this curve has a canonical Lipschitz continuous parametrization
with respect to the arclength, which is almost everywhere differentiable.
Given the tangent unit vector τ at a regular point x ∈ Γ (a point where
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the canonical parametrization is differentiable with nonzero derivative), a
tangential Markov inequality with exponent r for Γ w.r.t. K has the form

|〈∇p(x), τ 〉| ≤ Mnr‖p‖K , ∀p ∈ P
d
n , (3)

where 〈·, ·〉 denotes the euclidean scalar product and M, r are independent
of the (regular) point x.

The fulfillement of a tangential Markov inequality like (3) allows us to
construct a suitable polynomial inequality on the curve.

Lemma 1 Let K ⊂ R
2 be a compact set, and let Γ ⊂ K be a rectifiable

curve that satisfies (3) at its regular points. Then, for any α ∈ (0, 1), there
exists a mesh of equally spaced points (with respect to the arclength) on Γ,
say Xn = Xn(α), such that

‖p‖Γ ≤ ‖p‖Xn
+ α‖p‖K , (4)

and card(Xn) = O(nr).

Proof. Let us term ω(s), s ∈ [0, L] the canonical parametrization of Γ
with respect to the arclength (which is Lipschitz continuous and thus almost
everywhere differentiable in [a, b]), where L denotes the total length of Γ. For
any pair x,y ∈ Γ = ω([0, L]), take two values of the parameter, say s1, s2 ∈
[0, L], such that x = ω(s1), y = ω(s2) (the curve being not necessarily
simple). Then, for every polynomial p ∈ P

2
n, we can write

|p(x)− p(y)| = |p(ω(s2))− p(ω(s1))| =
∣

∣

∣

∣

∫ s2

s1

d

ds
p(ω(s)) ds

∣

∣

∣

∣

≤
∫ s2

s1

∣

∣

∣

∣

d

ds
p(ω(s))

∣

∣

∣

∣

ds =

∫ s2

s1

|〈∇p(ω(s)),ω′(s)〉| ds ≤ Mnr ‖p‖K ℓ(x,y) ,

where ℓ(x,y) = s2 − s1 denotes the length of the corresponding arc of Γ
connecting x and y. Observe that the integral representation above holds
since p(ω(·)) is absolutely continuous, as p is a polynomial and ω is Lipschitz
continuous.

Fix α ∈ (0, 1). Taking N +1 equally spaced points on Γ with respect to
the arclength

Xn = {yk = ω(kL/N) , k = 0, . . . , N} , N =

⌈

MnrL

2α

⌉

, (5)

and observing that for every x ∈ Γ there is a point yk(x) ∈ Xn such that

ℓ(x,yk(x)) ≤ 1
2L/N , we can write the inequality

|p(x)| ≤ |p(yk(x))|+ |p(x)− p(yk(x))| ≤ |p(yk(x))|+ α‖p‖K ,
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that implies (4). �

Observe that if the curve is open, then the cardinality of Xn is N + 1,
whereas it is N if the curve is closed, ω(0) = ω(L).

We can now state and prove the following:

Theorem 1 Let K ⊂ R
2 be a planar compact starlike domain. Assume that

K satisfies a Uniform Interior Ball Condition (UIBC), i.e., every point of
∂K belongs to the boundary of a disk with radius ρ > 0, contained in K (ge-
ometrically, there is a fixed disk that can roll along the boundary remaining
inside K; cf., e.g., [1]).

Then, for every fixed α ∈ (0, 1/
√
2), K possesses a sequence of finite

norming sets {An} such that

‖p‖K ≤
√
2

1− α
√
2
‖p‖An

, ∀p ∈ P
2
n , (6)

with

card(An) ≤ 2n

⌈

n length(∂K)

2αρ

⌉

+ 1 = O(n2) , (7)

i.e., an optimal admissible mesh.

Proof. We recall that a compact set K ⊂ R
2 is termed starlike if there exists

x0 ∈ K (the “star center”) such that for every x ∈ K the segment [x0,x]
is contained in K. Without loss of generality, by making a translation if
necessary, we can assume that the star center is the origin.

First, we show that K has a norming set formed by n+1 curves, that are
suitable scalings of the boundary. Being compact and starlike with respect
to the origin, K is the union of the rays [0,x], x ∈ ∂K. On each ray, a
polynomial p ∈ P

2
n becomes a univariate polynomial of degree not greater

than n, and thus by a well-known result of Ehlich and Zeller (cf. [9] and
[7, 19]), there is an admissible mesh for the ray with constant

√
2, given by

2n+ 1 Chebyshev-Lobatto points of [0,x], namely

uj(x) = aj x , aj =
1 + ξj

2
, (8)

where ξj = cos(jπ/(2n)), j = 0, . . . , 2n, are the Chebyshev-Lobatto points
in [−1, 1]. Then, the 2n + 1 curves

Γj = {uj(x) , x ∈ ∂K} = aj∂K

form a norming set for K, i.e.,

‖p‖K ≤
√
2 ‖p‖⋃Γj

≤
√
2 max

j
‖p‖Γj

, ∀p ∈ P
2
n . (9)
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Notice that Γ2n degenerates into a singleton, Γ2n = {0}.
Second, we show that on each curve Γj an inequality like (4) is satisfied,

with r = 1. Now, observe that the UIBC condition implies the (weaker)
Uniform Interior Cone Condition, which in turn ensures that the boundary
is a rectifiable curve (cf. [10, Thm. 4.5.11]). Moreover, the UIBC condition
implies that a tangential Markov inequality w.r.t. K such as (3) holds
with exponent r = 1, at the regular points of the boundary. Indeed, for
any x ∈ ∂K there is x∗ ∈ int(K) such x ∈ ∂D, D ⊂ K being the disk
centered at x∗ with radius ρ. If we take the parametrization of ∂D in polar
coordinates centered at x∗, say z(φ) = x∗ + (ρ cos(φ), ρ sin(φ)), φ ∈ [0, 2π],
then every p ∈ P

2
n restricted to ∂D becomes a univariate trigonometric

polynomial t(φ) = p(z(φ)) ∈ Tn.
Consider a regular point x ∈ ∂K, i.e., a point where the canonical

parametrization with respect to the arclength is differentiable with nonzero
derivative: then, the disk D is tangent to ∂K at x. By the classical Markov
inequality for trigonometric polynomials (cf., e.g., [3])

|t′(φ)| ≤ n‖t‖[0,2π] ,

and the fact that |t′(φ)| = |〈∇p(z(φ)),z′(φ)〉|, |z′(φ))| = ρ, and x = z(φ∗)
for a certain φ∗, we get immediately

|〈∇p(x), τ 〉| = |〈∇p(z(φ∗)), τ 〉| ≤ n

ρ
‖p‖∂D ≤ n

ρ
‖p‖K , (10)

where τ = ±z′(φ∗)/ρ are the common unit tangent vectors to ∂K and ∂D
at x. This shows that (3) holds with M = 1/ρ.

By (10) and Lemma 1 with Γ = ∂K

‖p‖∂K ≤ ‖p‖Xn
+ α‖p‖K , ∀p ∈ P

2
n , (11)

from which it follows that, setting q(x) = p(ajx),

‖p‖Γj
= ‖q‖∂K ≤ ‖q‖Xn

+ α‖q‖K

= ‖p‖ajXn
+ α‖p‖ajK ≤ ‖p‖ajXn

+ α‖p‖K , ∀p ∈ P
2
n , (12)

since each curve Γj = aj∂K is an affine transformation (scaling) of the
boundary.

Fix α such that 0 < α < 1/
√
2. By (12) and (9) we can write for every

p ∈ P
2
n

‖p‖K ≤
√
2 max

j

{

‖p‖ajXn

}

+ α
√
2‖p‖K

=
√
2 ‖p‖An

+ α
√
2‖p‖K , An =

2n
⋃

j=0

ajXn = {0} ∪
2n−1
⋃

j=0

ajXn , (13)
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from which we finally get

‖p‖K ≤
√
2

1− α
√
2
‖p‖An

, ∀p ∈ P
2
n , (14)

where by (5) card(An) ≤ 2n card(Xn) + 1 = 2nN + 1 = O(n2). Observe, in
fact, that card(An) = 2n(N−1)+1 if 0 ∈ Xn, otherwise card(An) = 2nN+1.
�

The theorem above generalizes, in the planar case, a recent result proved
by A. Kroó in arbitrary dimension for C2 starlike domains; cf. [13]. Indeed,

Corollary 1 Let K ⊂ R
2 be the closure of an open, bounded, starlike, and

C1,1 subset. Then, K has an optimal admissible mesh.

Proof. We recall that a closed domain K ⊂ R
d (the closure of an open

connected subset) is termed C1,1 if there are a fixed radius, say R > 0,
and a constant L > 0 such that for each point ξ ∈ ∂K there exists a C1,1

function f : I → R (I compact interval) such that after a suitable rotation,
K ∩ B(ξ, R) = {x = (x1, x2) ∈ K : x2 ≤ f(x1)}, where ‖f ′‖I and the
Lipschitz constant of f ′ are uniformly bounded by L.

Now, it is known that a closed domain is C1,1 if and only if it satis-
fies a uniform two-sided (interior and exterior) ball condition; cf., e.g., [1,
Cor. 3.14]. Then, all the assumptions of Theorem 1 are satisfied, and the
conclusion follows. �

Remark 1 The assumptions of Theorem 1 are much weaker than those of
Corollary 1. In fact, the boundary of a C1,1 domain is a regular curve,
whereas Theorem 1 allows singular points, for example inward (but not
outward) corners and cusps (the domain does not even need to be Lipschitz).

Remark 2 In the special case of C2 convex domains, the maximal ρ in
Theorem 1 is equal to the minimal ray of curvature, in view of the so called
Blaschke’s rolling ball theorem, cf., e.g., [12]. This fact could be used as the
basis of an algorithm for the computation of optimal polynomial meshes on
C2 convex domains.
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[13] A. Kroó, On optimal polynomial meshes, J. Approx. Theory 163 (2011),
1107–1124.

[14] R. Pasquetti and F. Rapetti, Spectral element methods on unstructured
meshes: which interpolation points?, Numer. Algorithms 55 (2010),
349–366.

[15] F. Piazzon and M. Vianello, Analytic transformations of admissible
meshes, East J. Approx. 16 (2010), 389–398.

[16] F. Piazzon and M. Vianello, Small perturbations of polynomial meshes,
Appl. Anal. 92 (2013), 1063–1073.

7



[17] W. Plésniak, Nearly optimal meshes in subanalytic sets, Numer. Algo-
rithms 60 (2012), 545-553.

[18] A. Sommariva and M. Vianello, Computing approximate Fekete points
by QR factorizations of Vandermonde matrices, Comput. Math. Appl.
57 (2009), 1324–1336.

[19] M. Vianello, Norming meshes by Bernstein-like inequalities, Math. In-
equal. Appl. 17 (2014), 929–936.

[20] P. Zitnan, The collocation solution of Poisson problems based on ap-
proximate Fekete points, Eng. Anal. Bound. Elem. 35 (2011), 594–599.

8


