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Abstract

We construct polynomial norming meshes with optimal cardinality
growth, on planar compact starlike domains that satisfy a Uniform
Interior Ball Condition (UIBC).
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1 Introduction

In the recent literature on multivariate polynomial approximation, the con-
cept of polynomial mesh (also called admissible mesh) has begun to play an
important role; cf., e.g., the seminal paper [8] and [6, 13] and the references
therein. Polynomial meshes are sequences {A4,} of finite norming sets (in
the uniform norm) on a multidimensional polynomial determining compact
K c R%or K C C? (i.e., a polynomial vanishing there vanishes everywhere),
such that the following polynomial inequality holds

Ipllx < Clplla, . ¥pePL, (1)

with a cardinality increasing at most like O(n®), s > d (here and below,
| fl|x denotes the sup-norm of a function f bounded on the set X). Among
their properties, we recall that admissible meshes are preserved by affine
transformations, and can be easily extended by finite union and product
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[8]. In the present note, we restrict our attention to the real case, i.e., real
polynomials and K C R,

Polynomial meshes provide a “good discrete model” of a compact set for
many practical purposes. For example, they are nearly optimal for uniform
least squares approximation [8], and contain Fekete-like interpolation subsets
with the same asymptotic behavior as the continuous Fekete points of K,
that can be computed by numerical linear algebra techniques (cf., e.g., [4,
5, 18]). Such approximate Fekete points have been used within spectral
element and collocation methods for PDEs (cf. [14, 20]). For a recent
and deep survey on polynomial approximation and interpolation in several
variables, we refer the reader to [2].

In [8, Thm.5], it has been shown that any (real) compact set which
satisfies a Markov polynomial inequality with exponent r

IVp(x)ll2 < Mn"||pllx , Yz € K, pePy, (2)

has an admissible mesh with O(n"?) cardinality (for example, » = 2 for
compact sets which satisfy a Uniform Interior Cone Condition).

On the other hand, in applications it is important to control the cardinal-
ity of such discrete models. Indeed, some attention has been devoted to the
construction of optimal and near optimal polynomial meshes, which have car-
dinality O(n) and O((nlogn)?), respectively, in compact sets with special
geometries (observe that in (1) necessarily card(A,) > dim(P%) ~ n/d!);
cf., e.g., [7, 13, 15, 16, 17]. Moreover, the polynomial inequality (1) can be
relaxed, asking that it holds with C' = C),, a sequence of constants increasing
at most polynomially with n: in such a case, we speak of weakly admissible
meshes. Weakly admissible meshes with O(n?) cardinality and constants
Cp, = O((logn)?) are known in several instances, cf., e.g., [4, 11].

In the present note we prove constructively the existence of optimal
polynomial meshes, i.e., with cardinality O(n?), on a planar compact starlike
domain (that is not restrictive to consider to be centered in the origin)
assuming that it satisfies a classical Uniform Interior Ball Condition (UIBC,
cf., e.g., [1] and references therein). Special instances are C1'! planar starlike
domains, thus generalizing in the planar case a recent result by A. Kro6 on
C? starlike domains [13].

2 Optimal polynomial meshes by a UIBC

In the sequel, the notion of tangential Markov inequality on a rectifiable
curve I with respect to a compact K will play a key role. Given a rectifiable
curve I' € K C R? (ie., it has a continuous parametrization and finite
length), this curve has a canonical Lipschitz continuous parametrization
with respect to the arclength, which is almost everywhere differentiable.
Given the tangent unit vector 7 at a regular point € I' (a point where



the canonical parametrization is differentiable with nonzero derivative), a
tangential Markov inequality with exponent r for I' w.r.t. K has the form

[(Vp(x), )] < Mn|pllx , ¥pePy, (3)

where (-,-) denotes the euclidean scalar product and M, r are independent
of the (regular) point z.

The fulfillement of a tangential Markov inequality like (3) allows us to
construct a suitable polynomial inequality on the curve.

Lemma 1 Let K C R? be a compact set, and let T C K be a rectifiable
curve that satisfies (3) at its reqular points. Then, for any « € (0,1), there

exists a mesh of equally spaced points (with respect to the arclength) on T,
say X, = X, (a), such that

Pl < llpllx, +ellpllx (4)

and card(X,) = O(n").

Proof. Let us term w(s), s € [0,L] the canonical parametrization of T
with respect to the arclength (which is Lipschitz continuous and thus almost
everywhere differentiable in [a, b]), where L denotes the total length of I'. For
any pair ¢,y € I' = w([0, L]), take two values of the parameter, say s1, s2 €
[0, L], such that € = w(s1), y = w(s2) (the curve being not necessarily
simple). Then, for every polynomial p € P2, we can write

p(2) — p(y)| = [p(w(s2)) — plw(s1))] =

| ptetsn s

1

5= [ (Tplets )] ds < M Il o, 9)

S1

[ aptets
< —-plw(s
s, |ds
where ¢(x,y) = s2 — s1 denotes the length of the corresponding arc of T’
connecting  and y. Observe that the integral representation above holds
since p(w(+)) is absolutely continuous, as p is a polynomial and w is Lipschitz
continuous.

Fix a € (0,1). Taking N + 1 equally spaced points on I" with respect to
the arclength

()

Mn'L
X, = {y, = w(kL/N), k=0,...,N}, N:{ n 1

2cy

and observing that for every @ € T' there is a point y;(,) € Xp such that
Ux, Yi(z)) < $L/N, we can write the inequality

Ip(2)| < [P(Yi())| + [P(@) = P(Yr@)| < [PYrE)] + allplx
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that implies (4). O

Observe that if the curve is open, then the cardinality of X, is N + 1,
whereas it is N if the curve is closed, w(0) = w(L).
We can now state and prove the following:

Theorem 1 Let K C R? be a planar compact starlike domain. Assume that
K satisfies a Uniform Interior Ball Condition (UIBC), i.e., every point of
OK belongs to the boundary of a disk with radius p > 0, contained in K (ge-
ometrically, there is a fized disk that can roll along the boundary remaining
inside K; cf., e.g., [1]).

Then, for every fived o € (0,1/+/2), K possesses a sequence of finite
norming sets {A,} such that

V2
Ipllsc < 7= lplla, » <L, ()

with
nlength(0K)

card(Ay) < 2n [ 20p

w +1=0(n?, (7)

i.e., an optimal admissible mesh.

Proof. We recall that a compact set K C R? is termed starlike if there exists
xo € K (the “star center”) such that for every & € K the segment [z, x|
is contained in K. Without loss of generality, by making a translation if
necessary, we can assume that the star center is the origin.

First, we show that K has a norming set formed by n+1 curves, that are
suitable scalings of the boundary. Being compact and starlike with respect
to the origin, K is the union of the rays [0,z], € K. On each ray, a
polynomial p € P2 becomes a univariate polynomial of degree not greater
than n, and thus by a well-known result of Ehlich and Zeller (cf. [9] and
[7, 19]), there is an admissible mesh for the ray with constant v/2, given by
2n 4+ 1 Chebyshev-Lobatto points of [0, ], namely

_1tg

4, )

uj(z) =ajx, aj

where &; = cos(jm/(2n)), j = 0,...,2n, are the Chebyshev-Lobatto points
n [—1,1]. Then, the 2n + 1 curves

F]’ = {uj(ac), S (9K} = aj(?K
form a norming set for K, i.e.,

Ipllx < V2plyr, < V2 max [pllr, , Vp € P2 . 9)
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Notice that I'g, degenerates into a singleton, I'y, = {0}.

Second, we show that on each curve I'; an inequality like (4) is satisfied,
with 7 = 1. Now, observe that the UIBC condition implies the (weaker)
Uniform Interior Cone Condition, which in turn ensures that the boundary
is a rectifiable curve (cf. [10, Thm. 4.5.11]). Moreover, the UIBC condition
implies that a tangential Markov inequality w.r.t. K such as (3) holds
with exponent r = 1, at the regular points of the boundary. Indeed, for
any @ € 0K there is * € int(K) such & € 9D, D C K being the disk
centered at x* with radius p. If we take the parametrization of 0D in polar
coordinates centered at x*, say z(¢) = x* + (pcos(¢), psin(¢)), ¢ € [0, 27],
then every p € P2 restricted to D becomes a univariate trigonometric
polynomial ¢(¢) = p(z(¢)) € T,,.

Consider a regular point * € 0K, i.e., a point where the canonical
parametrization with respect to the arclength is differentiable with nonzero
derivative: then, the disk D is tangent to 0K at x. By the classical Markov
inequality for trigonometric polynomials (cf., e.g., [3])

(&) < nlltllo2n »

and the fact that |/(9)] = |(Vp(z(9)), 2/ ()], |2/(6))] = p, and @ = 2(¢")

for a certain ¢*, we get immediately
. n n
[(Vp(x), 7)| = [(Vp(2(¢7)), T)| < ’ Ipllop < , Pl (10)

where 7 = +2'(¢*)/p are the common unit tangent vectors to K and 9D
at @. This shows that (3) holds with M =1/p.
By (10) and Lemma 1 with I' = 0K

lpllox < llplix., +allplx . Vp Py, (11)

from which it follows that, setting ¢(x) = p(a;x),
Iplir; = llallox < llallx, + allallx

= Iplla,x. + allplla;x < plla,x, +ellpllx , ¥pe Py, (12)

since each curve I'; = a;0K is an affine transformation (scaling) of the
boundary.
Fix a such that 0 < a < 1/v/2. By (12) and (9) we can write for every
pEP;
Ipllx < V2 max {{|plla, x, y + av2|pllx

2n—1

2n
= V2|plla, + aV2|pllx s An=JaXn={0}u |J X0, (13)
7=0 7=0



from which we finally get

V2
Ipllc < 7= lplla  ¥p € B}, (14)

< 2ncard(X,) +1=2nN + 1 = O(n?). Observe, in

where by (5) card(Ay)
=2n(N-1)+1if 0 € X,,, otherwise card(A,,) = 2nN+1.

fact, that card(A,,)
U

The theorem above generalizes, in the planar case, a recent result proved
by A. Kroé in arbitrary dimension for C? starlike domains; cf. [13]. Indeed,

Corollary 1 Let K C R? be the closure of an open, bounded, starlike, and
CYl subset. Then, K has an optimal admissible mesh.

Proof. We recall that a closed domain K C R? (the closure of an open
connected subset) is termed CU! if there are a fixed radius, say R > 0,
and a constant L > 0 such that for each point & € K there exists a C1!
function f: I — R (I compact interval) such that after a suitable rotation,
KNB(R) = {x = (x1,22) € K : 290 < f(x1)}, where ||f’||; and the
Lipschitz constant of f’ are uniformly bounded by L.

Now, it is known that a closed domain is C'b! if and only if it satis-
fies a uniform two-sided (interior and exterior) ball condition; cf., e.g., [1,
Cor. 3.14]. Then, all the assumptions of Theorem 1 are satisfied, and the
conclusion follows. [

Remark 1 The assumptions of Theorem 1 are much weaker than those of
Corollary 1. In fact, the boundary of a C%! domain is a regular curve,
whereas Theorem 1 allows singular points, for example inward (but not
outward) corners and cusps (the domain does not even need to be Lipschitz).

Remark 2 In the special case of C? convexr domains, the maximal p in
Theorem 1 is equal to the minimal ray of curvature, in view of the so called
Blaschke’s rolling ball theorem, cf., e.g., [12]. This fact could be used as the
basis of an algorithm for the computation of optimal polynomial meshes on
C? convex domains.
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