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Abstract

We study theoretically and numerically trigonometric interpolation
on symmetric subintervals of [−π, π], based on a family of Chebyshev-
like angular nodes (subperiodic interpolation). Their Lebesgue con-
stant increases logarithmically in the degree, and the associated Fejér-
like trigonometric quadrature formula has positive weights. Applica-
tions are given to the computation of the equilibrium measure of a
complex circle arc, and to algebraic cubature over circular sectors.

2000 AMS subject classification: 65T40, 65D32.
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1 Introduction

It is well-known that any set of 2n + 1 equally spaced angular nodes in
[−π, π) is optimal for trigonometric interpolation of degree n, with Lebesgue
constant of order O(log(n)); cf. e.g., [3] and [4, Thm. 3]. On the other hand,
explicit near-optimal sets for trigonometric interpolation on subintervals of
[−π, π] do not seem to be known, despite the fact that the problem is relevant
to real polynomial approximation on circular and spherical sections, such as
for example circular arcs, sectors, and lenses, or spherical caps, lunes, and
slices. Indeed, these are cases where the polynomials become trigonometric
or mixed algebraic-trigonometric in polar/spherical coordinates, with the
trigonometric part defined on arcs, or products of arcs.
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In this paper we study interpolation and quadrature by a family of
Chebyshev-like angular nodes in (−ω, ω) ⊆ (−π, π), which are the zeros of
the trigonometric function T2n+1(sin(θ/2)/ sin(ω/2)) (which is not a trigono-
metric polynomial, as opposed to T2n(sin(θ/2)/ sin(ω/2)) which is a trigono-
metric polynomial of degree n). Here and below, Tk(·) = cos(k arccos(·))
denotes the Chebyshev polynomial of the first kind of degree k.

We prove that these angular nodes are unisolvent for trigonometric in-
terpolation of degree n on [−ω, ω], by providing compact interpolation for-
mulas, and that their Lebesgue constant is of order O(log(n)). Indeed, the
Lebesgue constant turns even out to be experimentally independent of ω,
and thus exactly that of trigonometric interpolation at 2n+1 equally spaced
angular nodes in (−π, π), which is the limit case as ω → π.

Moreover, we prove that the associated Fejér-like trigonometric quadra-
ture formula has positive weights, and we provide a Matlab code for the
computation of such weights.

Finally, we give two applications. The first is the computation of the
equilibrium measure (in the sense of complex potential theory) of an arc of
a circle. The second is the construction of product cubature formulas exact
for bivariate algebraic polynomials of degree ≤ n over circular sectors, with
approximately n2 nodes and positive weights.

2 Subperiodic trigonometric interpolation

In the sequel we use the change of variables

x =
sin(θ/2)

α
, θ ∈ [−ω, ω] , 0 < ω ≤ π , 0 < α = sin(ω/2) ≤ 1 , (1)

and we denote by {ξj : 1 ≤ j ≤ 2n+ 1} the zeros of T2n+1(x), namely

ξj := ξj(n) = cos

(

(2j − 1)π

2(2n + 1)

)

∈ (−1, 1) , j = 1, 2, . . . , 2n+ 1 (2)

to which correspond the Chebyshev-like angular nodes

θj := θj(n, ω) = 2 arcsin(αξj) ∈ (−ω, ω) , j = 1, 2, . . . , 2n+ 1 , (3)

i.e., the zeros of T2n+1(sin(θ/2)/α). By definition we have ξj =
1
α sin(θj/2).

Note that ξn+1 = cos(π/2) = 0 and hence θn+1 = 0, and for j 6= n + 1,
ξj = −ξ2n+2−j and hence θj = −θ2n+2−j. Observe that for α = 1 (ω = π),
the {θk} turn out to be 2n+ 1 equally spaced angular nodes in (−π, π).

We show now that {θj} is a unisolvent set for interpolation in

Tn([−ω, ω]) = span{1, cos(kθ), sin(kθ) , 1 ≤ k ≤ n , θ ∈ [−ω, ω]} ,

the 2n + 1-dimensional space of trigonometric polynomials of degree not
greater than n, restricted to [−ω, ω] ⊆ [−π, π].
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Proposition 1 Denote by

ℓj(x) = T2n+1(x)/(T
′
2n+1(ξj)(x− ξj)) (4)

the j-th algebraic Lagrange polynomial for the nodes {ξj}, ℓj(ξk) = δjk; cf.
(2) and [7, Ch.6]. The angular nodes {θj} in (3) are unisolvent for interpo-
lation in Tn([−ω, ω]) and, with x = 1

α sin(θ/2) as in (1), the corresponding
trigonometric Lagrange polynomials can be written as

Ln+1(θ) = ℓn+1(x) (5)

and for j 6= n+ 1

Lj(θ) =
1

2
(ℓj(x) + ℓ2n+2−j(x))

(

1 +
ξ2j

sin(θj)

sin(θ)

x2

)

= aj(θ)ℓj(x) + bj(θ)ℓ2n+2−j(x) (6)

where

aj(θ) =
1

2

(

1 +
cos(θ/2)

cos(θj/2)

)

, bj(θ) =
1

2

(

1− cos(θ/2)

cos(θj/2)

)

= 1− aj(θ). (7)

Moreover, L2n+2−j(θ) = bj(θ)ℓj(x) + aj(θ)ℓ2n+2−j(x).

Proof. First note that although x = 1
α sin(θ/2) is not a trigonometric poly-

nomial, x2 = 1
α2 sin

2(θ/2) = 1
2α2 (1 − cos(θ)) is. Secondly, observe that for

j 6= n+1, ℓj(x)+ ℓ2n+2−j(x) is even in x due to the symmetry of the ξj and
also equal to 0 at x = ξn+1 = 0. Hence ℓj(x)+ ℓ2n+2−j(x) is a polynomial in
x2 and also divisible by x2. Consequently Lj(θ), as defined by (6) is indeed
a trigonometric polynomial.

Further, for j = n + 1, we also have that ℓn+1(x) is even in x by the
symmetry of the ξj and hence a polynomial in x2. It follows that Ln+1, as
defined by (5), is also a trigonometric polynomial.

Clearly, Ln+1(θk) = δn+1,k. Moreover, for j 6= n+1 and k 6= j, 2n+2−j,
we have Lj(θk) = 0 since ℓj(ξk) = ℓ2n+2−j(ξk) = 0. For k = j,

Lj(θj) =
1

2
(ℓj(ξj) + ℓ2n+2−j(ξj))

(

1 +
ξ2j

sin(θj)

sin(θj)

ξ2j

)

=
1

2
(1 + 0)× (1 + 1) = 1

and for k = 2n+ 2− j,

Lj(θ2n+2−j) =
1

2
(ℓj(ξ2n+2−j) + ℓ2n+2−j(ξ2n+2−j))

(

1 +
ξ2j

sin(θj)

sin(−θj)

(−ξj)2

)

=
1

2
(1 + 0)× (1 + (−1)) = 0,
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since ξ2n+2−j = −ξj and θ2n+2−j = −θj.
Concerning the second equality in (6), observe that

Lj(θ) =
1

2
(ℓj(x) + ℓ2n+2−j(x)) +

1

2

(

ξj
x

sin(θ)

sin(θj)

)

ξj
x

(ℓj(x) + ℓ2n+2−j(x))

=
1

2
(ℓj(x) + ℓ2n+2−j(x)) +

1

2

ξj
x

sin(θ)

sin(θj)
(ℓj(x)− ℓ2n+2−j(x))

as can be easily checked by computing the summands at x = ξk (θ = θk),
k = 1, . . . , 2n + 1. But,

ξj
x

sin(θ)

sin(θj)
=

(

sin(θj/2)
α

)

(

sin(θ/2)
α

)

2 sin(θ/2) cos(θ/2)

2 sin(θj/2) cos(θj/2)
=

cos(θ/2)

cos(θj/2)
.

Hence,

Lj(θ) =
1

2

(

1 +
cos(θ/2)

cos(θj/2)

)

ℓj(x) +
1

2

(

1− cos(θ/2)

cos(θj/2)

)

ℓ2n+2−j(x) .

The formula for L2n+2−j(θ) follows similarly. �

Proposition 2 Define the even and odd parts of a function f(θ), θ ∈
[−ω, ω] ⊆ [−π, π], as fe(θ) = (f(θ)+f(−θ))/2 and fo(θ) = (f(θ)−f(−θ))/2.
The trigonometric interpolating polynomial at the angular nodes {θj} can be
written

2n+1
∑

j=1

f(θj)Lj(θ) =

2n+1
∑

j=1

fe(θj) ℓj(x) + cos(θ/2)

2n+1
∑

j=1

fo(θj)

cos(θj/2)
ℓj(x), (8)

where, as before, x = 1
α sin(θ/2).

Proof. First, observe that

2n+1
∑

j=1

f(θj)Lj(θ)

=

n
∑

j=1

{f(θj)Lj(θ) + f(θ2n+2−j)L2n+2−j(θ)}+ f(θn+1)Ln+1(θ)

=
n
∑

j=1

{f(θj)Lj(θ) + f(−θj)L2n+2−j(θ)}+ f(θn+1)Ln+1(θ)

=

n
∑

j=1

{f(θj)(aj(θ)ℓj(x) + bj(θ)ℓ2n+2−j(x)) +f(−θj)(bj(θ)ℓj(x) + aj(θ)ℓ2n+2−j(x))}

+ f(θn+1) ℓn+1(x)

=

n
∑

j=1

{(aj(θ)f(θj) + bj(θ)f(−θj))ℓj(x)

+(bj(θ)f(θj) + aj(θ)f(−θj))ℓ2n+2−j(x)}+ f(θn+1) ℓn+1(x).
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Now, using the facts that aj(θ) = 1/2 + (1/2) cos(θ/2)/ cos(θj/2) and
bj(θ) = 1/2− (1/2) cos(θ/2)/ cos(θj/2), we get

2n+1
∑

j=1

f(θj)Lj(θ)

=

n
∑

j=1

{(

f(θj) + f(−θj)

2
+

cos(θ/2)

cos(θj/2)

f(θj)− f(−θj)

2

)

ℓj(x)

+

(

f(θj) + f(−θj)

2
+

cos(θ/2)

cos(θj/2)

f(−θj)− f(θj)

2

)

ℓ2n+2−j(x)

}

+ f(θn+1) ℓn+1(x)

=

2n+1
∑

j=1

f(θj) + f(−θj)

2
ℓj(x) +

2n+1
∑

j=1

cos(θ/2)

cos(θj/2)

f(θj) + f(−θj)

2
ℓj(x),

i.e., (8). �

Remark 1 The representation (8) allows an efficient and stable computa-
tion of the trigonometric interpolant, by resorting to the well-known barycen-
tric formula for algebraic Lagrange interpolation (cf., e.g., [1])).

We now turn to estimation of the Lebesgue constant of the angular nodes
(3). The first basic step is made by the next Proposition.

Proposition 3 Consider the angular nodes (3). The following identity
holds for |θ| ≥ |θj | (i.e., |x| ≥ |ξj |)

|Lj(θ)|+ |L2n+2−j(θ)| = |ℓj(x)|+ |ℓ2n+2−j(x)| . (9)

Proof. First note that θ/2 ∈ [−ω/2, ω/2] ⊆ [−π/2, π/2], hence cos(θ/2) ≥ 0
and cos(θj/2) ≥ 0; in particular, aj(θ) ≥ 0 ∀θ ∈ [−ω, ω]. In the case
|θ| ≥ |θj| we also have bj(θ) ≥ 0.

Note also that for |θ| ≥ |θj |, i.e. |x| ≥ |ξj| = |ξ2n+2−j |, ℓj(x) and
ℓ2n+2−j(x) have the same sign, by (4) and the fact that ξj = −ξ2n+2−j.
Hence, for |θ| ≥ |θj |,

|Lj(θ)| = aj(θ)|ℓj(x)|+ bj(θ)|ℓ2n+2−j(x)|

and
|L2n+2−j(θ)| = bj(θ)|ℓj(x)|+ aj(θ)|ℓ2n+2−j(x)| .

Thus,

|Lj(θ)|+ |L2n+2−j(θ)| = (aj(θ) + bj(θ))(|ℓj(x)|+ |ℓ2n+2−j(x)|)
= |ℓj(x)|+ |ℓ2n+2−j(x)| . �
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Corollary 1 For |θ| ≥ |θ1|, i.e., |x| ≥ |ξ1|,
2n+1
∑

j=1

|Lj(θ)| =
2n+1
∑

j=1

|ℓj(x)| . (10)

Proposition 4 The Lebesgue function of the angular nodes (3) is bounded
as

2n+1
∑

j=1

|Lj(θ)| ≤
1√

1− α2

2n+1
∑

j=1

|ℓj(x)| ≤
1√

1− α2

(

1 +
2

π
log(2n+ 1)

)

.

(11)

Proof. We will show that

|Lj(θ)|+ |L2n+2−j(θ)| ≤
1√

1− α2
(|ℓj(x)|+ |ℓ2n+2−j(x)|), j = 1, . . . , n + 1,

from which the Proposition follows directly. For j = n + 1 this is trivial as√
1− α2 ≤ 1. Hence suppose that j 6= n + 1. From Proposition 3, we need

only to consider |θ| ≤ |θj |, i.e., |x| ≤ |ξj |. In this case, note that ℓj(x) and
ℓ2n+2−j(x) have opposite signs, by (4).

Consider first the case when ℓj(x) ≥ 0 and ℓ2n+2−j(x) ≤ 0. Note also
that bj(θ) ≤ 0 for |θ| ≤ |θj | (whereas aj(θ) ≥ 0 ∀θ ∈ [−ω, ω]. Hence

Lj(θ) = aj(θ)ℓj(x) + (−bj(θ))(−ℓ2n+2−j(x))

and thus
|Lj(θ)| = aj(θ)|ℓj(x)| − bj(θ)|ℓ2n+2−j(x)| .

Similarly,

L2n+2−j(θ) = −((−bj(θ))ℓj(x) + aj(θ)(−ℓ2n+2−j(x)))

and so
|L2n+2−j(θ)| = (−bj(θ))|ℓj(x)|+ aj(θ)|ℓ2n+2−j(x)| .

Consequently,

|Lj(θ)|+ |L2n+2−j(θ)| = (aj(θ)− bj(θ))(|ℓj(x)|+ |ℓ2n+2−j(x)|)

=
cos(θ/2)

cos(θj/2)
(|ℓj(x)|+ |ℓ2n+2−j(x)|).

Note now that cos(θj/2) =
√

1− sin2(θj/2) =
√

1− α2ξ2j ≥
√
1− α2 and

the results follows.
The case ℓj(x) ≤ 0 and ℓ2n+2−j(x) ≥ 0 is entirely similar. �

Estimate (11) is not useful for ω → π (α → 1). On the other hand, we
have numerical evidence (see, e.g., Figure 1) that:
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Figure 1: Lebesgue functions for degree n = 5 corresponding to the angular
nodes (3) for ω = π/3 (left) and ω = π/2 (right).

Conjecture 1 The maximum of the Lebesgue function of the angular nodes
(3) (i.e., their Lebesgue constant) is attained at θ = ±ω.

In view of the well-known fact that the global maximum of the Lebesgue
function of the Chebyshev nodes (2) is attained at ±1 (cf. [5]), by Conjec-
ture 1, Corollary 1 and Proposition 4 it would follow immediately that the
Lebesgue function of the angular nodes (3) is independent of ω, and hence
(cf. [8, Thm. 1.2]) that

Λn = max
θ∈[−ω,ω]

2n+1
∑

j=1

|Lj(θ)| ≤ 1 +
2

π
log(2n + 1) . (12)

In Figure 2 we compare the numerically evaluated Lebesgue constant of
subperiodic trigonometric interpolation with 1+ 2

π log(2n+1), n = 1, . . . , 50.

3 Subperiodic trigonometric quadrature

Once we have at our disposal a set of unisolvent angular nodes, such as (3),
we can study the corresponding quadrature formula. Our main result is the
following:

Proposition 5 The interpolatory trigonometric quadrature formula based
on the angular nodes (3) has positive weights

0 < wT
j = wT

j (n, ω) = 2α

∫ 1

−1

ℓj(x)√
1− α2x2

dx , j = 1, . . . , 2n+ 1 . (13)

The weights can be computed by the even generalized Chebyshev moments as

wT
j =

2α

2n + 1

(

m0 + 2
n
∑

k=1

m2k T2k(ξj)

)

, j = 1, . . . , 2n+ 1 , (14)
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Figure 2: numerically evaluated Lebesgue constant (◦) compared with the
upper bound (12) (∗).

where

m2k =

∫ 1

−1

T2k(x)√
1− α2x2

dx , k = 0, 1, . . . , n .

Proof. First, observe that by the change of variables θ = 2arcsin(αx)

wT
j =

∫ ω

−ω
Lj(θ) dθ = 2α

∫ 1

−1

ℓj(x)√
1− α2x2

dx , j = 1, . . . , 2n+ 1 .

Hence we must show that the weights {λj} of the algebraic quadrature for-
mula for the weight function λ(x) = 1/

√
1− α2x2, x ∈ (−1, 1), based on the

zeros of Tn(x), are positive (0 ≤ α ≤ 1).
Now, setting x = cos(φ),

λj =

∫ 1

−1

ℓj(x)√
1− α2x2

dx =

∫ π

0

sin(φ)
√

1− α2 cos2(φ)
ℓj(cos(φ)) dφ .

But, as is well known,

ℓj(cos(φ)) =
1

n
+

2

n

n−1
∑

r=1

cos(rφj) cos(rφ) ,

where cos(φj) are the zeros of Tn(x), and so

λj =
π

n

{

1

π

∫ π

0

sin(φ)
√

1− α2 cos2(φ)
dφ
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+
n−1
∑

r=1

(

2

π

∫ π

0

sin(φ)
√

1− α2 cos2(φ)
cos(rφ) dφ

)

cos(rφj)

}

=
π

n
Sn−1(φj) (15)

where Sn−1(φ) is the Fourier cosine series of degree n− 1 for

Fα(φ) :=
sin(φ)

√

1− α2 cos2(φ)
.

Let Aj denote the j − th Fourier coefficient of Fα(φ). Note that

A2m+1 =
2

π

∫ π

0

sin(φ)
√

1− α2 cos2(φ)
cos((2m+ 1)φ) dφ = 0

since cos((2m+ 1)(π − φ)) = (−1)2m+1 cos((2m+ 1)φ) = − cos((2m+ 1)φ).
Hence

S(φ) = A0 +
∞
∑

k=1

A2k cos(2kφ).

We calculate

A0 =
1

π

∫ π

0

sin(φ)
√

1− α2 cos2(φ)
dφ =

1

απ

∫ 1

−1

1√
1− x2

dx =
2

απ
arcsin(α) .

Next, we show that A2k < 0 for all k. First, note that

F ′
α(φ) = (1− α2)

cos(φ)

(1− α2 cos2(φ))3/2

and

F ′′
α(φ) = −(1− α2)

sin(φ)(1 + 2α2 cos2(φ))

(1− α2 cos2(φ))5/2
.

Hence

A2k =
2

π

∫ π

0
Fα(φ) cos(2kφ) dφ

=
4

π

∫ π/2

0
Fα(φ) cos(2kφ) dφ

=
4

π

(

Fα(φ)
sin(2kφ)

2k

∣

∣

∣

∣

φ=π/2

φ=0

− 1

2k

∫ π/2

0
F ′
α(φ) sin(2kφ) dφ

)

= − 2

kπ

∫ π/2

0
F ′
α(φ) sin(2kφ) dφ

where F ′
α(φ) ≥ 0 and is strictly decreasing on [0, π/2].

Observe that sin(2kφ) has alternating positive and negative zones all
of them symmetric and beginning with a positive zone. Figure 3 gives an
illustration for ω = π/5 and k = 6.
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Figure 3: F ′
α for ω = π/5 and sin(2kφ) for k = 6.

Hence we may match each negative zone with its preceeding positive
zone. However, since F ′

α(φ) is decreasing, the positive zone is always mul-
tiplied by a greater weight than the corresponding negative one. It follows
that

∫ π/2

0
F ′
α(φ) sin(2kφ) dφ > 0

and thus A2k < 0.
¿From (15) we have

λj =
π

n
Sn−1(φj)

=
π

n

(

A0 −
n−1
∑

k=1

|Ak| cos(kφj)

)

≥ π

n

(

A0 −
n−1
∑

k=1

|Ak|
)

=
π

n
Sn−1(0).

But since | sin(φ)|/
√

1− α2 cos2(φ) is continuous and piecewise smooth on
[−π, π]

lim
n→∞

Sn(0) = Fα(0) = 0 ,
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or, in other words,

lim
n→∞

(

A0 −
n−1
∑

k=1

|Ak|
)

= 0 .

Now, A0−
∑n−1

k=1 |Ak| is a decreasing sequence in n and so A0−
∑n−1

k=1 |Ak| ↓ 0,
which implies that A0 −

∑n−1
k=1 |Ak| > 0 for every n, and thus λj > 0 for

every j, which shows that wT
j > 0 for every j.

Concerning computation of the weights, by the Christoffel-Darboux for-
mula for the Chebyshev polynomials (cf., e.g., [6, §1.3.3])

1 + 2
2n+1
∑

k=1

Tk(x)Tk(y) =
T2n+2(x)T2n+1(y)− T2n+1(x)T2n+2(y)

x− y

and the fact that T2n+1(ξj) = 0, T ′
2n+1(ξj) = (−1)j−1(2n+1)/ sin(arccos(ξj))

and T2n+2(ξj) = (−1)j sin(arccos(ξj)), we get

ℓj(x) =
1

2n+ 1

(

1 + 2

2n
∑

k=1

Tk(x)Tk(ξj)

)

,

from which (14) immediately follows by observing that the odd generalized
Chebyshev moments vanish. �

We have also numerical evidence that:

Conjecture 2 The weights of the interpolatory trigonometric quadrature
formula based on the angular nodes (3) satisfy the inequality

0 < wF
j <

wT
j

2α
≤ wGC

j , j = 1, . . . , 2n + 1 (16)

where {wF
j } and {wGC

j } are the weights of the algebraic Fejér and Gauss-
Chebyshev quadrature formulas in (−1, 1), respectively.

For the reader’s convenience, a Matlab function (named trigquad.m)
that computes the angular nodes and weights of subperiodic trigonometric
quadrature, is available at: http://www.math.unipd.it/∼marcov/CAAsoft.html.

4 Applications

4.1 The equilibrium measure of an arc of a circle in C1

As a first application, on the basis of the results above we compute in an
elementary way the potential theoretic equilibrium measure (cf. [2, p. 444])
of an arc of the complex unit circle

Γω =
{

eiθ : −ω ≤ θ ≤ ω
}
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with angle 2ω. In what follows we set z = eiθ and zk = eiθk .
If Lk(θ) is the trigonometric Lagrange polynomial of degree n for the

angular nodes (3), then substituting cos(jθ) = (zj + z−j)/2, sin(jθ) = (zj +
z−j)/(2i) we see that

Pk(z) = znLk(θ)

is a complex algebraic polynomial of degree 2n. Further

Pk(zj) = znj Lk(θj) = znj δjk

so that
ℓk(z) = z−n

k Pk(z)

is the complex Lagrange polynomial of degree 2n for the points z1, z2, . . . , z2n+1.
Also, the Lebesgue function is

λ2n(z) =
2n+1
∑

k=1

|ℓk(z)| =
2n+1
∑

k=1

|Lk(θ)| = O(log n) , z ∈ Γω

and hence the equally weighted discrete measure based on the {zk} (or {θk})
tends weak-∗ to the equilibrium measure for Γω (cf., e.g., [2, Thm. 1.5]).

To find this measure we evaluate

1

2n + 1

2n+1
∑

k=1

f(θk) =
1

2n+ 1

2n+1
∑

k=1

f(2 arcsin(αξk)) =
1

2n+ 1

2n+1
∑

k=1

g(ξk)

where g(x) = f(2 arcsin(αx)); cf. (1)–(3). But

lim
n→∞

1

2n + 1

2n+1
∑

k=1

g(ξk) =
1

π

∫ 1

−1
g(x)

1√
1− x2

dx

since the {ξk} are the zeros of T2n+1(x).
Finally, by the change of variables θ = 2arcsin(αx) we get

1

π

∫ 1

−1
g(x)

1√
1− x2

dx =
1

π

∫ 1

−1
f(2 arcsin(αx))

1√
1− x2

dx

=
1

2απ

∫ ω

−ω
f(θ)

1
√

1−
(

sin(θ/2
α

)2
cos(θ/2) dθ

=
1

2π

∫ ω

−ω
f(θ)

cos(θ/2)
√

α2 − sin2(θ/2)
dθ.

Hence, we have shown the following

Theorem 1 The equilibrium measure for Γω is

dµ(θ) =
1

2π

cos(θ/2)
√

α2 − sin2(θ/2)
dθ =

1

2π

cos(θ/2)
√

sin2(ω/2)− sin2(θ/2)
dθ . (17)
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4.2 Algebraic cubature over circular sectors

The subperiodic trigonometric quadrature formula of Proposition 5 allows
the construction of algebraic quadrature formulas over multivariate domains
or surfaces for which an algebraic polynomial, by a suitable change of vari-
ables (e.g., polar or spherical coordinates), becomes a tensor product trigono-
metric or mixed algebraic/trigonometric polynomial on domains related to
circular arcs. Examples are circular sectors and lenses, or spherical lat-long
rectangles, spherical caps and lunes, spherical slices, and even surface/solid
sections of the cylinder or of the torus.

One of the simplest cases is that of a circular sector, which, with no loss
of generality, can be taken as

Sω = {(x, y) = (ρ cos(θ), ρ sin(θ)) , 0 ≤ ρ ≤ 1 , −ω ≤ θ ≤ ω} , ω ∈ (0, π) .

Algebraic cubature formulas, i.e., formulas exact for bivariate polynomials of
degree ≤ n, over circular sectors do not seem to be known in the literature.
Having at disposal the subperiodic trigonometric quadrature of Proposition
5, it is now simple to construct a product-like cubature formula for a sector.

Indeed, any bivariate polynomial P (x, y) ∈ P
2
n becomes in polar coordi-

nates a tensor product polynomial in Pn
⊗

Tn. Hence

∫∫

Sω

P (x, y) dx dy =

∫ 1

0

∫ ω

−ω
P (ρ cos(θ), ρ sin(θ)) ρ dθ dρ

=

⌈n
2
⌉+1
∑

i=1

2n+1
∑

j=1

ρGL
i wGL

i wT
j P (ρGL

i cos(θj), ρ
GL
i sin(θj)) , ∀P ∈ P

2
n (18)

where {ρGL
i } and {wGL

i } are the nodes and weights of the Gauss-Legendre
formula of degree of exactness n + 1 on [0, 1] (cf. [6]). Notice that the
cubature formula (18) has approximately n2 nodes, and that it is stable
since its weights ρGL

i wGL
i wT

j are all positive.
In Figure 4 we show the cubature nodes corresponding to different de-

grees of exactness in two circular sectors.
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