On the Lebesgue constant of subperiodic trigonometric interpolation^{*}

Gaspare Da Fies and Marco Vianello¹

November 14, 2012

Abstract

We solve a recent conjecture, proving that the Lebesgue constant of Chebyshev-like angular nodes for trigonometric interpolation on a subinterval $[-\omega, \omega]$ of the full period $[-\pi, \pi]$ is attained at $\pm \omega$, its value is independent of ω and coincides with the Lebesgue constant of algebraic interpolation at the classical Chebyshev nodes in (-1, 1).

2000 AMS subject classification: 42A15, 65T40.

Keywords: subperiodic trigonometric interpolation, Lebesgue constant.

1 Introduction

In several recent papers, *subperiodic* trigonometric interpolation and quadrature have been studied, i.e., interpolation and quadrature formulas exact on

$$\mathbb{T}_n([-\omega,\omega]) = \operatorname{span}\{1, \cos(k\theta), \sin(k\theta), 1 \le k \le n, \ \theta \in [-\omega,\omega]\}, \quad (1)$$

where $0 < \omega \leq \pi$; cf. [2, 5, 6]. These are related by a simple nonlinear transformation to interpolation and quadrature on [-1, 1], and have been called "subperiodic" since they concern subintervals of the period of trigonometric polynomials.

For any fixed trigonometric degree $\leq n$, consider the 2n + 1 angles

$$\theta_j := \theta_j(n,\omega) = 2 \arcsin(\sin(\omega/2)\tau_j) \in (-\omega,\omega) , \quad j = 0, 1, \dots, 2n , \quad (2)$$

where $0 < \omega \leq \pi$, and

$$\tau_j := \tau_{j,2n+1} = \cos\left(\frac{(2j+1)\pi}{2(2n+1)}\right) \in (-1,1), \ j = 0, 1, \dots, 2n$$
 (3)

^{*}Supported by the "ex-60%" funds of the University of Padova, and by the GNCS-INdAM.

¹Dept. of Mathematics, University of Padova, Italy e-mail: marcov@math.unipd.it

are the zeros of the 2n + 1-th Chebyshev polynomial $T_{2n+1}(x)$. Denoting by

$$\ell_j(x) = T_{2n+1}(x) / (T'_{2n+1}(\tau_j)(x - \tau_j))$$
(4)

the *j*-th algebraic Lagrange polynomial (of degree 2n) for the nodes $\{\tau_j\}$, $\ell_j(\tau_k) = \delta_{jk}$, in [2] it has been proved that the *cardinal functions* for trigonometric interpolation at the angular nodes (2) can be written explicitly as

$$L_n(\theta) = L_n^{\omega}(\theta) = \ell_n(x) \tag{5}$$

and for $j \neq n$

$$L_j(\theta) = L_j^{\omega}(\theta) = \frac{1}{2} \left(\ell_j(x) + \ell_{2n-j}(x) \right) \left(1 + \frac{\tau_j^2}{\sin(\theta_j)} \frac{\sin(\theta)}{x^2} \right)$$
$$= a_j(\theta) \,\ell_j(x) + b_j(\theta) \,\ell_{2n-j}(x) , \qquad (6)$$

where

$$x = x(\theta) = \frac{\sin(\theta/2)}{\sin(\omega/2)} \in [-1, 1]$$
(7)

with inverse

$$\theta = \theta(x) = 2 \arcsin(\sin(\omega/2)x) \in [-\omega, \omega],$$
 (8)

and

$$a_{j}(\theta) = \frac{1}{2} \left(1 + \frac{\cos(\theta/2)}{\cos(\theta_{j}/2)} \right) , \quad b_{j}(\theta) = \frac{1}{2} \left(1 - \frac{\cos(\theta/2)}{\cos(\theta_{j}/2)} \right) = 1 - a_{j}(\theta) .$$
(9)

It is worth recalling that the key role played by the transformation (7) on subintervals of the period was also recognized in [1, E.3, p. 235], and more recently in [8], in the context of trigonometric polynomial inequalities.

Moreover, in [2] stability of such Chebyshev-like subperiodic trigonometric interpolation has been studied, proving that its Lebesgue constant increases logarithmically in the degree

$$\sum_{j=0}^{2n} |L_j(\theta)| \le \frac{1}{\sqrt{1-\alpha^2}} \sum_{j=0}^{2n} |\ell_j(x)| \le \frac{1}{\sqrt{1-\alpha^2}} \left(1 + \frac{2}{\pi} \log(2n+1)\right) ,$$

where $\alpha = \sin(\omega/2)$, $\omega < \pi$. This estimate is useless for $\omega \to \pi$ ($\alpha \to 1$), but in view of numerical evidences (see Figure 1), it has been there conjectured essentially that: the Lebesgue constant of the angular nodes (2) is attained at $\theta = \pm \omega$, its value is independent of ω and coincides with the Lebesgue constant of algebraic interpolation at the classical Chebyshev nodes (3).

In this note we prove that the conjecture holds, so that the Lebesgue constant has a logarithmic bound independent of ω .

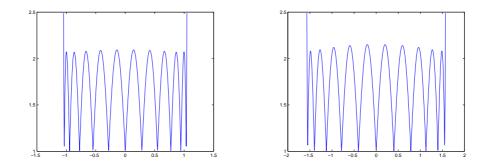


Figure 1: Lebesgue functions for degree n = 5 corresponding to the angular nodes (2) for $\omega = \pi/3$ (left) and $\omega = \pi/2$ (right).

2 Bounding the Lebesgue constant

We begin with the following

Lemma 1 Let us consider the angles $\{\theta_j\}$ in (2) and the corresponding cardinal functions $\{L_j(\theta)\}$ in (6). Moreover, let us consider $\{\phi_j\}$ and $\{L_j^{\pi}(\phi)\}$, i.e., the (equally spaced) angles in $(-\pi, \pi)$

$$\phi_j = \frac{2(j-n)\pi}{2n+1} = 2 \arcsin(\tau_j) , \quad j = 0, 1, \dots, 2n , \quad (10)$$

and the corresponding cardinal functions for $\omega = \pi$, where

$$\phi = 2 \arcsin(x) = 2 \arcsin(\sin(\theta/2))/\sin(\omega/2)) \tag{11}$$

with inverses

$$x = \sin(\phi/2) , \quad \theta = 2 \arcsin(\sin(\omega/2)x) = 2 \arcsin(\sin(\omega/2)\sin(\phi/2)) ,$$
(12)

cf. (7)-(8).

Then, for every $\omega \in (0, \pi)$ the following inequality holds

$$|L_j(\theta)| + |L_{2n-j}(\theta)| \le |L_j^{\pi}(\phi)| + |L_{2n-j}^{\pi}(\phi)|, \ j = 0, 1, \dots, 2n,$$

and in particular for $|\theta| \ge |\theta_j|$, (i.e., $|x| \ge |\tau_j|$ and $|\phi| \ge |\phi_j|$)

$$|L_j(\theta)| + |L_{2n-j}(\theta)| = |\ell_j(x)| + |\ell_{2n-j}(x)| = |L_j^{\pi}(\phi)| + |L_{2n-j}^{\pi}(\phi)|.$$

Proof. First, notice that in view of (4), if $|x| \ge |\tau_j|$ the sign of $\ell_j(x)$ is the same of $\ell_{2n-j}(x)$, whereas if $|x| < |\tau_j|$ the sign of $\ell_j(x)$ is opposite to that of $\ell_{2n-j}(x)$. Indeed, $T_{2n+1}(x)$ is odd, $T'_{2n+1}(x)$ is even, and $\tau_{2n-j} = -\tau_j$.

Then, the sign of $L_j(\theta)$ and $L_j^{\pi}(\phi)$ is the same of $\ell_j(x)$. Consider the representation (6)-(9), and observe that $a_j(\theta) \geq 0$ since $\theta/2, \theta_j/2 \in$ $(-\pi/2,\pi/2)$. Moreover, for $|x| \ge |\tau_j|$ we have $|\theta| \ge |\theta_j|$ and $b_j(\theta) \ge 0$, whereas for $|x| < |\tau_j|$ we have $|\theta| < |\theta_j|$ and $b_j(\theta) < 0$. It follows that $\ell_j(x)$ has the same sign of $a_j(\theta) \ell_j(x)$ and of $b_j(\theta) \ell_{2n-j}(x)$, and thus also of $L_j(\theta)$. The case of the sign of $L_i^{\pi}(\phi)$ is completely analogous.

Consider now $|L_j(\theta)| + |L_{2n-j}(\theta)|$. If $|x| \ge |\tau_j|$ (i.e., $|\theta| \ge |\theta_j|$ and $|\phi| \geq |\phi_j|$ then $L_j(\theta)$ and $L_{2n-j}(\theta)$ have the same sign, along with $L_j^{\pi}(\phi)$ and $L_{2n-j}^{\pi}(\phi)$, hence

$$|L_{j}(\theta)| + |L_{2n-j}(\theta)| = |L_{j}(\theta) + L_{2n-j}(\theta)| = |\ell_{j}(x) + \ell_{2n-j}(x)|$$
$$= |L_{j}^{\pi}(\phi) + L_{2n-j}^{\pi}(\phi)| = |L_{j}^{\pi}(\phi)| + |L_{2n-j}^{\pi}(\phi)|,$$

but since

$$|\ell_j(x) + \ell_{2n-j}(x)| = |\ell_j(x)| + |\ell_{2n-j}(x)|$$

the equality case follows immediately.

On the contrary, if $|x| < |\tau_j|$ then $L_j(\theta)$ and $L_{2n-j}(\theta)$ have opposite sign and the same holds for $L_j^{\pi}(\phi)$ and $L_{2n-j}^{\pi}(\phi)$. Thus

$$|L_{j}(\theta)| + |L_{2n-j}(\theta)| = |L_{j}(\theta) - L_{2n-j}(\theta)| = \left|\frac{\cos(\theta/2)}{\cos(\theta_{j}/2)}(\ell_{j}(x) - \ell_{2n-j}(x))\right|$$
$$= \frac{\cos(\theta/2)}{\cos(\theta_{j}/2)}|\ell_{j}(x) - \ell_{2n-j}(x)| < \frac{\cos(\phi/2)}{\cos(\phi_{j}/2)}|\ell_{j}(x) - \ell_{2n-j}(x)|$$
$$= \left|\frac{\cos(\phi/2)}{\cos(\phi_{j}/2)}(\ell_{j}(x) - \ell_{2n-j}(x))\right| = |L_{j}^{\pi}(\phi) - L_{2n-j}^{\pi}(\phi)| = |L_{j}^{\pi}(\phi)| + |L_{2n-j}^{\pi}(\phi)|$$

as soon as we prove that $\frac{\cos(\theta/2)}{\cos(\theta_j/2)} < \frac{\cos(\phi/2)}{\cos(\phi_j/2)}$ for $|x| < |\tau_j|$.

In fact, the latter becomes

$$\frac{\cos(\arcsin(\sin(\omega/2)x))}{\cos(\arcsin(\sin(\omega/2)\tau_j))} < \frac{\cos(\arcsin(x))}{\cos(\arcsin(\tau_j))}$$

that is

$$\sqrt{\frac{1 - \sin^2(\omega/2)x^2}{1 - \sin^2(\omega/2)\tau_j^2}} < \sqrt{\frac{1 - x^2}{1 - \tau_j^2}}$$

or

$$\frac{1 - \sin^2(\omega/2)x^2}{1 - \sin^2(\omega/2)\tau_j^2} < \frac{1 - x^2}{1 - \tau_j^2} \ .$$

Now, this is equivalent to

$$\begin{split} 1-\sin^2(\omega/2)x^2-\tau_j^2+\sin^2(\omega/2)x^2\tau_j^2 < 1-x^2-\sin^2(\omega/2)\tau_j^2+\sin^2(\omega/2)x^2\tau_j^2 \ , \end{split}$$
 that is

$$x^{2}(1 - \sin^{2}(\omega/2)) < \tau_{j}^{2}(1 - \sin^{2}(\omega/2))$$

which holds true since we have assumed $|x| < |\tau_j|$. \Box

We can now state and prove the main result of this note.

Theorem 1 The maximum of the Lebesgue function of the subperiodic interpolation angles $\{\theta_j\}$ in (2), i.e., their Lebesgue constant, is attained at $\theta = \pm \omega$, its value is independent of ω , and satisfies

$$\Lambda_n = \max_{\theta \in [-\omega,\omega]} \sum_{j=0}^{2n} |L_j(\theta)| = \max_{\phi \in [-\pi,\pi]} \sum_{j=0}^{2n} |L_j^{\pi}(\phi)| = \sum_{j=0}^{2n} |L_j(\pm\pi)|$$
$$= \sum_{j=0}^{2n} |L_j(\pm\omega)| = \sum_{j=0}^{2n} |\ell_j(\pm1)| = \max_{x \in [-1,1]} \sum_{j=0}^{2n} |\ell_j(x)| .$$
(13)

Proof. From Lemma 1 it follows immediately that

$$\sum_{j=0}^{2n} |L_j(\theta)| \le \sum_{j=0}^{2n} |L_j^{\pi}(\phi)|$$

and in particular for $\theta = \pm \omega$

$$\sum_{j=0}^{2n} |L_j(\pm \omega)| = \sum_{j=0}^{2n} |L_j^{\pi}(\pm \pi)| = \sum_{j=0}^{2n} |\ell_j(\pm 1)| .$$

Now, by a classical result by Ehlich and Zeller [7], the maximum of the Lebesgue function of trigonometric interpolation of degree at most n at the 2n + 1 equally spaced angular nodes $\{\phi_j\}$ in (10), is attained (also) at $\phi = \pm \pi$. In fact, their Lebesgue function is periodic with period $2\pi/(2n+1)$, and takes its maximum value at the midpoint of each interval $[\phi_j, \phi_{j+1}]$, $j = -1, 0, \ldots, 2n$. On the other hand, also the maximum of the Lebesgue function of algebraic interpolation at the classical Chebyshev nodes (3) is attained at $x = \pm 1$, cf. [3]. Then

$$\sum_{j=0}^{2n} |L_j(\pm\omega)| \le \max_{\theta \in [-\omega,\omega]} \sum_{j=0}^{2n} |L_j(\theta)| \le \max_{\phi \in [-\pi,\pi]} \sum_{j=0}^{2n} |L_j^{\pi}(\phi)| = \sum_{j=0}^{2n} |L_j^{\pi}(\pm\pi)|$$
$$= \sum_{j=0}^{2n} |L_j(\pm\omega)| = \sum_{j=0}^{2n} |\ell_j(\pm1)| = \max_{x \in [-1,1]} \sum_{j=0}^{2n} |\ell_j(x)| . \square$$

Remark 1 Observe that in view of well-known estimates (see [3, 4]) and Theorem 1 above

$$\Lambda_n = \max_{\theta \in [-\omega,\omega]} \sum_{j=0}^{2n} |L_j(\theta)| = \max_{x \in [-1,1]} \sum_{j=0}^{2n} |\ell_j(x)|$$
$$= \max_{\phi \in [-\pi,\pi]} \sum_{j=0}^{2n} |L_j^{\pi}(\phi)| \le \frac{2}{\pi} \log(n) + \delta_n ,$$

where the sequence δ_n decreases monotonically from 5/3 to its infimum $(2/\pi)(\log(16/\pi) + \gamma) = 1.40379..., \gamma$ being the Euler-Mascheroni constant.

References

- P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
- [2] L. Bos and M. Vianello, Subperiodic trigonometric interpolation and quadrature, Appl. Math. Comput. 218 (2012), 10630–10638.
- [3] L. Brutman, Lebesgue functions for polynomial interpolation a survey, Ann. Numer. Math. 4 (1997), 111–127.
- [4] E.W. Cheney and T.J. Rivlin, A note on some Lebesgue constants, Rocky Mountain J. Math. 6 (1976), 435–439.
- [5] G. Da Fies and M. Vianello, Algebraic cubature on planar lenses and bubbles, Dolomites Res. Notes Approx. 5 (2012), 7–12.
- [6] G. Da Fies and M. Vianello, Trigonometric Gaussian quadrature on subintervals of the period, Electron. Trans. Numer. Anal. 39 (2012), 102–112.
- [7] H. Ehlich and K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math. Ann. 164 (1966), 105–112.
- [8] M. Vianello, Norming meshes by Bernstein-like inequalities, preprint (online at: http://www.math.unipd.it/~marcov/publications.html).