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Abstract

We solve a recent conjecture, proving that the Lebesgue constant
of Chebyshev-like angular nodes for trigonometric interpolation on a
subinterval [−ω, ω] of the full period [−π, π] is attained at ±ω, its
value is independent of ω and coincides with the Lebesgue constant of
algebraic interpolation at the classical Chebyshev nodes in (−1, 1).
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1 Introduction

In several recent papers, subperiodic trigonometric interpolation and quadra-
ture have been studied, i.e., interpolation and quadrature formulas exact on

Tn([−ω, ω]) = span{1, cos(kθ), sin(kθ), 1 ≤ k ≤ n , θ ∈ [−ω, ω]} , (1)

where 0 < ω ≤ π; cf. [2, 5, 6]. These are related by a simple nonlinear trans-
formation to interpolation and quadrature on [−1, 1], and have been called
“subperiodic” since they concern subintervals of the period of trigonometric
polynomials.

For any fixed trigonometric degree ≤ n, consider the 2n+ 1 angles

θj := θj(n, ω) = 2 arcsin(sin(ω/2)τj) ∈ (−ω, ω) , j = 0, 1, . . . , 2n , (2)

where 0 < ω ≤ π, and

τj := τj,2n+1 = cos

(

(2j + 1)π

2(2n + 1)

)

∈ (−1, 1) , j = 0, 1, . . . , 2n (3)

∗Supported by the “ex-60%” funds of the University of Padova, and by the GNCS-

INdAM.
1Dept. of Mathematics, University of Padova, Italy

e-mail: marcov@math.unipd.it

1



are the zeros of the 2n+1-th Chebyshev polynomial T2n+1(x). Denoting by

ℓj(x) = T2n+1(x)/(T
′

2n+1(τj)(x− τj)) (4)

the j-th algebraic Lagrange polynomial (of degree 2n) for the nodes {τj},
ℓj(τk) = δjk, in [2] it has been proved that the cardinal functions for trigono-
metric interpolation at the angular nodes (2) can be written explicitly as

Ln(θ) = Lω
n(θ) = ℓn(x) (5)

and for j 6= n

Lj(θ) = Lω
j (θ) =

1

2
(ℓj(x) + ℓ2n−j(x))

(

1 +
τ2j

sin(θj)

sin(θ)

x2

)

= aj(θ) ℓj(x) + bj(θ) ℓ2n−j(x) , (6)

where

x = x(θ) =
sin(θ/2)

sin(ω/2)
∈ [−1, 1] (7)

with inverse
θ = θ(x) = 2 arcsin(sin(ω/2)x) ∈ [−ω, ω] , (8)

and

aj(θ) =
1

2

(

1 +
cos(θ/2)

cos(θj/2)

)

, bj(θ) =
1

2

(

1− cos(θ/2)

cos(θj/2)

)

= 1−aj(θ) . (9)

It is worth recalling that the key role played by the transformation (7) on
subintervals of the period was also recognized in [1, E.3, p. 235], and more
recently in [8], in the context of trigonometric polynomial inequalities.

Moreover, in [2] stability of such Chebyshev-like subperiodic trigono-
metric interpolation has been studied, proving that its Lebesgue constant
increases logarithmically in the degree

2n
∑

j=0

|Lj(θ)| ≤
1√

1− α2

2n
∑

j=0

|ℓj(x)| ≤
1√

1− α2

(

1 +
2

π
log(2n+ 1)

)

,

where α = sin(ω/2), ω < π. This estimate is useless for ω → π (α → 1), but
in view of numerical evidences (see Figure 1), it has been there conjectured
essentially that: the Lebesgue constant of the angular nodes (2) is attained
at θ = ±ω, its value is independent of ω and coincides with the Lebesgue
constant of algebraic interpolation at the classical Chebyshev nodes (3).

In this note we prove that the conjecture holds, so that the Lebesgue
constant has a logarithmic bound independent of ω.
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Figure 1: Lebesgue functions for degree n = 5 corresponding to the angular
nodes (2) for ω = π/3 (left) and ω = π/2 (right).

2 Bounding the Lebesgue constant

We begin with the following

Lemma 1 Let us consider the angles {θj} in (2) and the corresponding car-
dinal functions {Lj(θ)} in (6). Moreover, let us consider {φj} and {Lπ

j (φ)},
i.e., the (equally spaced) angles in (−π, π)

φj =
2(j − n)π

2n+ 1
= 2arcsin (τj) , j = 0, 1, . . . , 2n , (10)

and the corresponding cardinal functions for ω = π, where

φ = 2arcsin(x) = 2 arcsin(sin(θ/2)/ sin(ω/2)) (11)

with inverses

x = sin(φ/2) , θ = 2arcsin(sin(ω/2)x) = 2 arcsin(sin(ω/2) sin(φ/2)) ,
(12)

cf. (7)-(8).
Then, for every ω ∈ (0, π) the following inequality holds

|Lj(θ)|+ |L2n−j(θ)| ≤ |Lπ
j (φ)|+ |Lπ

2n−j(φ)| , j = 0, 1, . . . , 2n ,

and in particular for |θ| ≥ |θj|, (i.e., |x| ≥ |τj| and |φ| ≥ |φj |)

|Lj(θ)|+ |L2n−j(θ)| = |ℓj(x)|+ |ℓ2n−j(x)| = |Lπ
j (φ)|+ |Lπ

2n−j(φ)| .

Proof. First, notice that in view of (4), if |x| ≥ |τj | the sign of ℓj(x) is the
same of ℓ2n−j(x), whereas if |x| < |τj | the sign of ℓj(x) is opposite to that
of ℓ2n−j(x). Indeed, T2n+1(x) is odd, T

′

2n+1(x) is even, and τ2n−j = −τj.
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Then, the sign of Lj(θ) and Lπ
j (φ) is the same of ℓj(x). Consider

the representation (6)-(9), and observe that aj(θ) ≥ 0 since θ/2, θj/2 ∈
(−π/2, π/2). Moreover, for |x| ≥ |τj| we have |θ| ≥ |θj| and bj(θ) ≥ 0,
whereas for |x| < |τj| we have |θ| < |θj| and bj(θ) < 0. It follows that ℓj(x)
has the same sign of aj(θ) ℓj(x) and of bj(θ) ℓ2n−j(x), and thus also of Lj(θ).
The case of the sign of Lπ

j (φ) is completely analogous.
Consider now |Lj(θ)| + |L2n−j(θ)|. If |x| ≥ |τj| (i.e., |θ| ≥ |θj | and

|φ| ≥ |φj|) then Lj(θ) and L2n−j(θ) have the same sign, along with Lπ
j (φ)

and Lπ
2n−j(φ), hence

|Lj(θ)|+ |L2n−j(θ)| = |Lj(θ) + L2n−j(θ)| = |ℓj(x) + ℓ2n−j(x)|

= |Lπ
j (φ) + Lπ

2n−j(φ)| = |Lπ
j (φ)|+ |Lπ

2n−j(φ)| ,
but since

|ℓj(x) + ℓ2n−j(x)| = |ℓj(x)|+ |ℓ2n−j(x)|
the equality case follows immediately.

On the contrary, if |x| < |τj| then Lj(θ) and L2n−j(θ) have opposite sign
and the same holds for Lπ

j (φ) and Lπ
2n−j(φ). Thus

|Lj(θ)|+ |L2n−j(θ)| = |Lj(θ)− L2n−j(θ)| =
∣

∣

∣

∣

cos(θ/2)

cos(θj/2)
(ℓj(x)− ℓ2n−j(x))

∣

∣

∣

∣

=
cos(θ/2)

cos(θj/2)
|ℓj(x)− ℓ2n−j(x)| <

cos(φ/2)

cos(φj/2)
|ℓj(x)− ℓ2n−j(x)|

=

∣

∣

∣

∣

cos(φ/2)

cos(φj/2)
(ℓj(x)− ℓ2n−j(x))

∣

∣

∣

∣

= |Lπ
j (φ)−Lπ

2n−j(φ)| = |Lπ
j (φ)|+|Lπ

2n−j(φ)| ,

as soon as we prove that cos(θ/2)
cos(θj/2)

< cos(φ/2)
cos(φj/2)

for |x| < |τj |.
In fact, the latter becomes

cos(arcsin(sin(ω/2)x))

cos(arcsin(sin(ω/2)τj))
<

cos(arcsin(x))

cos(arcsin(τj))
,

that is
√

1− sin2(ω/2)x2

1− sin2(ω/2)τ2j
<

√

1− x2

1− τ2j

or
1− sin2(ω/2)x2

1− sin2(ω/2)τ2j
<

1− x2

1− τ2j
.

Now, this is equivalent to

1−sin2(ω/2)x2−τ2j +sin2(ω/2)x2τ2j < 1−x2−sin2(ω/2)τ2j +sin2(ω/2)x2τ2j ,

that is
x2(1− sin2(ω/2)) < τ2j (1− sin2(ω/2))
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which holds true since we have assumed |x| < |τj|. �

We can now state and prove the main result of this note.

Theorem 1 The maximum of the Lebesgue function of the subperiodic in-
terpolation angles {θj} in (2), i.e., their Lebesgue constant, is attained at
θ = ±ω, its value is independent of ω, and satisfies

Λn = max
θ∈[−ω,ω]

2n
∑

j=0

|Lj(θ)| = max
φ∈[−π,π]

2n
∑

j=0

|Lπ
j (φ)| =

2n
∑

j=0

|Lj(±π)|

=
2n
∑

j=0

|Lj(±ω)| =
2n
∑

j=0

|ℓj(±1)| = max
x∈[−1,1]

2n
∑

j=0

|ℓj(x)| . (13)

Proof. From Lemma 1 it follows immediately that

2n
∑

j=0

|Lj(θ)| ≤
2n
∑

j=0

|Lπ
j (φ)|

and in particular for θ = ±ω

2n
∑

j=0

|Lj(±ω)| =
2n
∑

j=0

|Lπ
j (±π)| =

2n
∑

j=0

|ℓj(±1)| .

Now, by a classical result by Ehlich and Zeller [7], the maximum of
the Lebesgue function of trigonometric interpolation of degree at most n at
the 2n + 1 equally spaced angular nodes {φj} in (10), is attained (also) at
φ = ±π. In fact, their Lebesgue function is periodic with period 2π/(2n+1),
and takes its maximum value at the midpoint of each interval [φj , φj+1],
j = −1, 0, . . . , 2n. On the other hand, also the maximum of the Lebesgue
function of algebraic interpolation at the classical Chebyshev nodes (3) is
attained at x = ±1, cf. [3]. Then

2n
∑

j=0

|Lj(±ω)| ≤ max
θ∈[−ω,ω]

2n
∑

j=0

|Lj(θ)| ≤ max
φ∈[−π,π]

2n
∑

j=0

|Lπ
j (φ)| =

2n
∑

j=0

|Lπ
j (±π)|

=
2n
∑

j=0

|Lj(±ω)| =
2n
∑

j=0

|ℓj(±1)| = max
x∈[−1,1]

2n
∑

j=0

|ℓj(x)| . �
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Remark 1 Observe that in view of well-known estimates (see [3, 4]) and
Theorem 1 above

Λn = max
θ∈[−ω,ω]

2n
∑

j=0

|Lj(θ)| = max
x∈[−1,1]

2n
∑

j=0

|ℓj(x)|

= max
φ∈[−π,π]

2n
∑

j=0

|Lπ
j (φ)| ≤

2

π
log(n) + δn ,

where the sequence δn decreases monotonically from 5/3 to its infimum
(2/π)(log(16/π)+ γ) = 1.40379 . . . , γ being the Euler-Mascheroni constant.
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