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Abstract

We solve a recent conjecture, proving that the Lebesgue constant
of Chebyshev-like angular nodes for trigonometric interpolation on a
subinterval [—w,w] of the full period [—m,7] is attained at +w, its
value is independent of w and coincides with the Lebesgue constant of
algebraic interpolation at the classical Chebyshev nodes in (—1,1).
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1 Introduction

In several recent papers, subperiodic trigonometric interpolation and quadra-
ture have been studied, i.e., interpolation and quadrature formulas exact on

T, ([~w,w]) = span{1,cos(kf),sin(kf), 1 <k <n, 0 € [-w,w]}, (1)

where 0 < w < ; cf. [2, 5, 6]. These are related by a simple nonlinear trans-
formation to interpolation and quadrature on [—1,1], and have been called
“subperiodic” since they concern subintervals of the period of trigonometric
polynomials.

For any fixed trigonometric degree < n, consider the 2n + 1 angles

0; :=0j(n,w) = 2arcsin(sin(w/2)7;) € (~w,w), j=0,1,...,2n, (2)
where 0 < w < 7, and

2+ 1)

m) e(-1,1), j=0,1,....2n (3

Tj = Tj2n+1 = COS (
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are the zeros of the 2n 4 1-th Chebyshev polynomial T4, 11(x). Denoting by

0j(x) = Tont1(2)/ (T 41 (75)(x = 75)) (4)
the j-th algebraic Lagrange polynomial (of degree 2n) for the nodes {7;},
0;(Ti) = 6jk, in [2] it has been proved that the cardinal functions for trigono-

metric interpolation at the angular nodes (2) can be written explicitly as
Ln(0) = Ly (0) = {n() (5)

and for j #n

22
= a;j(0) £(z) + b;(0) lon—;(2) , (6)
where
o 2(0) — sin(/2) _
0) =S e oL ™
with inverse
0 = 0(z) = 2arcsin(sin(w/2)zx) € [~w,w] , (8)
and
a;(6) = % (1 + %) , b(0) = % <1 - %) —1—a;(0). (9)

It is worth recalling that the key role played by the transformation (7) on
subintervals of the period was also recognized in [1, E.3, p. 235], and more
recently in [8], in the context of trigonometric polynomial inequalities.

Moreover, in [2] stability of such Chebyshev-like subperiodic trigono-
metric interpolation has been studied, proving that its Lebesgue constant
increases logarithmically in the degree

2n 2n
1 1 2
L) < ——— S i(z)] < —— (14 Z log(@2n+1)) ,
3. 1500 < =g 21560 = (1+ 2 020+ 1))

where a = sin(w/2), w < 7. This estimate is useless for w — 7 (a — 1), but
in view of numerical evidences (see Figure 1), it has been there conjectured
essentially that: the Lebesgue constant of the angular nodes (2) is attained
at 0 = +w, its value is independent of w and coincides with the Lebesgue
constant of algebraic interpolation at the classical Chebyshev nodes (3).

In this note we prove that the conjecture holds, so that the Lebesgue
constant has a logarithmic bound independent of w.



Figure 1: Lebesgue functions for degree n = 5 corresponding to the angular
nodes (2) for w = /3 (left) and w = 7/2 (right).

2 Bounding the Lebesgue constant
We begin with the following

Lemma 1 Let us consider the angles {0;} in (2) and the corresponding car-
dinal functions {L;(0)} in (6). Moreover, let us consider {¢;} and {L7(¢)},
i.e., the (equally spaced) angles in (—m, )

2(j —n)m

95 = om+1

= 2arcsin (75), j7=0,1,...,2n, (10)

and the corresponding cardinal functions for w = w, where
¢ = 2arcsin(z) = 2arcsin(sin(0/2)/ sin(w/2)) (11)
with inverses

x =sin(¢/2), 0 = 2arcsin(sin(w/2)z) = 2arcsin(sin(w/2) sin(¢/2)) ,
(12)
cf- (7)-(8).
Then, for every w € (0,m) the following inequality holds
1L (0)] + [Lan—;(0)] < |LF(O)| + [L5,—5(9)], 5 =0,1,...,2n,

and in particular for |8 > |0;], (i.e., |x| > |75| and |p| > |¢p;|)
1L (0)] + [Lan—j (0)] = €5 ()] + [lan—j ()| = |LF(D)] + [L3n—;(P)] -
Proof. First, notice that in view of (4), if |z| > |7;| the sign of ¢;(x) is the

same of £a,_j(x), whereas if |x| < |7;| the sign of £;(x) is opposite to that
of lon—j(x). Indeed, Ty y1(2) is odd, Ty, (x) is even, and To,—; = —7;.



Then, the sign of L;(¢) and L} (¢) is the same of £;(z). Consider
the representation (6)-(9), and observe that a;(¢) > 0 since 6/2,0;/2 €
(—m/2,m/2). Moreover, for |z| > |r;| we have |§] > |6;| and b;(0) > 0,
whereas for |z| < |7;] we have |0] < |0;] and b;(0) < 0. It follows that ¢;(x)
has the same sign of a;(6) ¢;(z) and of b;(8) £2,—;(x), and thus also of L;(6).
The case of the sign of L}r(qﬁ) is completely analogous.

Consider now |L;(0)| + |Lon—;(0)|. If || > |75 (ie., || > |0;] and
|¢| > |¢;]) then L;(¢) and Loy,—;(0) have the same sign, along with L7(¢)
and L3, :(¢), hence

1L ()] + [L2n—j (0)] = [L(0) + Lan—j(0)] = |¢;() + lon—j ()]

= |L7(¢) + L5,—;(9)| = |L] ()| + |L3,—;(d)] ,
but since
1€j(x) + Lon—j(z)| = [£;(x)] + [2n—j(2)]

the equality case follows immediately.

On the contrary, if |z| < |7;| then L;(#) and La,—;(#) have opposite sign
and the same holds for L7(¢) and L7, _;(¢). Thus
cos(6/2)

1L (0)] + |Lan—j(0)] = |L;j(0) — Lan—j(0)| = m(@'(ﬂf) — lon—j())

_ cos(0/2) () — -
= Cos(ﬂj/Q) Mj( ) eZn—J( )‘

| cos(¢/2) () -
= cos(gbj/Q) (6]( ) 6271—]( ))

as soon as we prove that

cos(¢/2) () — -
< cos(6;/2) 0 (x) — bon—j(z)]|

= [L7(9) =L j(9)| = L7 (D) |+]L5,—; ()] ,

cos(0/2)
cos(6;/2) <
In fact, the latter becomes

cos(/2)
cos(¢;/2) for

|z < 7.

cos(arcsin(sin(w/2)x))

cos(arcsin(x))

cos(aresin(sin(w/2)7;))

that is

1 — sin?(w/2)x2
\/1 — sinz(cu/Q)Tj2 =

or
1 — sin?(w/2)x?

cos(aresin(7;))

1 — 22
2
1—7;

1— 22

1- sinz(w/2)7'j2

Now, this is equivalent to

_ 2
17']

1—sin2(w/2)x2—T]»2+sin2(w/2)x27'j2 < 1—xz—sin2(w/2)7'j2+sin2(w/2)x27'j2 ,

that is

22(1 —sin®(w/2)) < sz(l — sin%(w/2))

4



which holds true since we have assumed |z| < |7;[. O

We can now state and prove the main result of this note.

Theorem 1 The maximum of the Lebesgue function of the subperiodic in-
terpolation angles {6;} in (2), i.e., their Lebesgue constant, is attained at
0 = tw, its value is independent of w, and satisfies

2n
= L;(0) = L7 (¢)| = L;(+
=, S0 = s 3210701 =5
2n 2n 2n
=S I = S IGED = max SSlG@] (13)
=0 =0 ve-LI S5
Proof. From Lemma 1 it follows immediately that
2n 2n
S OIL;0)] < Y IL7(9)]
=0 =0
and in particular for # = tw
2n 2n 2n
oL = Y ILf(Em) =D 16(=)]
=0 j=0 j=0

Now, by a classical result by Ehlich and Zeller [7], the maximum of
the Lebesgue function of trigonometric interpolation of degree at most n at
the 2n + 1 equally spaced angular nodes {¢;} in (10), is attained (also) at
¢ = +m. In fact, their Lebesgue function is periodic with period 27/(2n+1),
and takes its maximum value at the midpoint of each interval [¢;, ¢ji1],
j=—1,0,...,2n. On the other hand, also the maximum of the Lebesgue
function of algebraic interpolation at the classical Chebyshev nodes (3) is
attained at x = +1, cf. [3]. Then

2n 2n 2n
M IL (:I:w)|<9max Z|L )| < max ZW = |17 (&)
=0 Slrwel 52 ocl j=0
2n 2n 2n
=Y 1Lj(#w)| = Y [4(#D)] = max > |4(x)] . O
= = J:E[—l,l]]zo



Remark 1 Observe that in view of well-known estimates (see [3, 4]) and
Theorem 1 above

Z\L 1”2\6 z)

96[ w,w]
Z LT (¢ <2 log(n) + &,
7r7r] T ’

where the sequence d,, decreases monotonically from 5/3 to its infimum
(2/m)(log(16/m) +v) = 1.40379..., v being the Euler-Mascheroni constant.
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