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Abstract

In this note we prove almost sure unisolvence of RBF interpolation on
randomly distributed sequences by a wide class of polyharmonic splines
(including Thin-Plate Splines), without polynomial addition.
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Interpolation by RBF (Radial Basis Functions) is nowadays one of the basic
tools of computational mathematics, with a special relevance in the framework
of multivariate approximation by scattered data and of meshless methods for
numerical modelling. In the literature, since the beginning of RBF theory,
unisolvence has been proved mainly resorting to positive definiteness, which
becomes conditional for some RBF such as multiquadrics and polyharmonic
splines (CPD, Conditionally Positive Definite of order m); cf. e.g. [4, 5, 14] for
definitions and properties.

On the other hand, while for multiquadrics and other CPD of order m = 1
it is known that the interpolation matrix at distinct nodes is nonsingular [10],
unisolvence without the addition of a polynomial term of degree m − 1 seems
not investigated for other popular CPD RBF, such as polyharmonic splines. We
recall that polyharmonic splines correspond to the radial functions

ϕ(r) = r2k log(r) , k ∈ N

(TPS, Thin-Plate Splines, order m = k + 1) and

ϕ(r) = rν , 0 < ν /∈ 2N
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(RP, Radial Powers, order m = ⌈ν/2⌉); cf. e.g. [3, 4, 6, 9]. One of their most
relevant features is that they are scale invariant, namely the condition number
of the interpolation matrix [ϕ(ε∥xi − xj∥2)] and the cardinal basis functions of
interpolation are independent of the scale parameter ε > 0; cf. e.g. [5]. We
recall that with scale dependent bases the scaling choice and effect are a delicate
matter and still an active research topic in RBF interpolation; cf. e.g. [8] with
the references therein.

The following statement appeared in the treatise [4]: “There is no result
that states that interpolation with Thin-Plate Splines (or any other strictly con-
ditionally positive definite function of order m ≥ 2) without the addition of
an appropriate degree m − 1 polynomial is well-posed”. This is not completely
true, since there was a known result for univariate RP with ν = 3 (m = 2),
cf. [1]. The only other known result concerns the case m = 1, cf. [10]. To our
knowledge, the situation does not seem to have changed thenceforth.

In this note we prove that interpolation at random points by TPS or RP with
noninteger exponent is almost surely unisolvent without the need of adding a
polynomial term. We shall use the key property of TPS and RP of being analytic
functions up to their center, where they present a singularity of some derivative.
Recently, the nonstandard case of fixed centers (different from the sampling
points) has been treated in [2] (we may also mention [13] where however only
spaces of everywhere analytic functions are considered).

Here we cope the more difficult case of classical RBF interpolation where the
centers and the sampling points coincide. The fact that unisolvence in practice
occurs for TPS without polynomial addition has been clearly recognized and
partially discussed in the recent paper [12], though only via numerical results.

Theorem 1 Let Ω be an open connected subset of Rd, d ≥ 2, and {xi}i≥1

be a randomly distributed sequence on Ω with respect to any given probability
density σ(x), i.e. a point sequence produced by sampling a sequence of abso-
lutely continuous random variables {Xi}i≥1 which are independent and identi-
cally distributed in Ω with density σ ∈ L1

+(Ω). Moreover, let Vn = [ϕj(xi)],
ϕj(x) = ϕ(∥x − xj∥2), 1 ≤ i, j ≤ n, be the interpolation matrix with respect to
TPS or RP with noninteger exponent.

Then, for every n ≥ 2 the matrix Vn is a.s. (almost surely) nonsingular.

Proof. Before starting the proof, some observations are in order. Notice that
the diagonal of Vn is zero, since with polyharmonic splines ϕ(0) = 0. Moreover,
in any dimension d ≥ 2 the functions {ϕj(x)} are linearly independent in Ω iff
the centers are distinct (which is a necessary condition for unisolvence). In fact,
each ϕj is analytic in Ω\{xj} and singular at xj , by analyticity of ϕ(

√
·) in R+,

being composition of analytic functions singular at 0 like log(
√
·) and (

√
·)ν , 0 <

ν /∈ 2N; cf. e.g. [7]. If the {ϕj(x)} were linearly dependent with distinct centers,
one of them being linear combination of the others would become analytic at
its own center. Finally, we recall the basic property that a subset of Ω has null
measure with respect to dσ = σ(x) dx, if it has null Lebesgue measure. A set
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with null Lebesgue measure is usually called a “null set” in measure theory. The
condition becomes also necessary when σ is almost everywhere positive.

First, we prove that x1 and x2 are a.s. distinct and V2 is a.s. nonsingular.
Indeed, det(V2) = −ϕ2(x1)ϕ1(x2) = −ϕ2(∥x1 − x2∥2). In the case of RP, the
determinant vanishes iff x1 = x2. In the case of TPS, this happens iff x1 = x2

or ∥x1−x2∥2 = 1 (by the presence of the logarithmic term). But the probability
that x2 = x1 given x1 is null, because in general the probability that a random
point belongs to a finite set is null, a finite set being a null set. On the other
hand, the probability that ∥x1 − x2∥2 = 1 given x1 is also null, because this
means that the random point x2 should fall on the unit circle centered at x1,
which is a null set.

Next, we prove that the same properties holds for n = 3. The fact that x1,
x2 and x3 are a.s. distinct and that a.s. ∥x1 − x2∥2 ̸= 1, ∥x1 − x3∥2 ̸= 1 and
∥x2−x3∥2 ̸= 1 follows from the same arguments above. On the other hand, it is
a general fact that 3×3 matrices with null diagonal and positive extra-diagonal
entries have a positive determinant, as it can be easily checked. Indeed, it turns
out that for any such A = [aij ], 1 ≤ i, j ≤ 3, we have det(A) = a12a23a31 +
a13a21a32 > 0. In our case the property holds a.s., since the aij = ϕ(∥xi−xj∥2),
i ̸= j, are a.s. nonzero.

Now, let us assume almost sure nonsingularity for n × n interpolation ma-
trices on random sequences and that the points x1, . . . , xn are a.s distinct with
n ≥ 3, and prove that the same properties hold with n + 1. Consider the
(n + 1) × (n + 1) matrix Un+1(x) obtained by adding to Vn the (n + 1)-th
column [ϕ1(x), . . . , ϕn(x), 0]

t and the (n+ 1)-th row [ϕ1(x), . . . , ϕn(x), 0] ,

Un+1(x) =

 Vn Φ⃗t
n(x)

Φ⃗n(x) 0

 , Φ⃗n(x) = [ϕ1(x), . . . , ϕn(x)]

Applying Laplace rule to the (n+ 1)-th row, we get

fn(x) = det(Un+1(x)) = αn(x)ϕn(x) + · · ·+ α1(x)ϕ1(x) ,

where α1, . . . , αn are the corresponding minors with the appropriate sign. More-
over, developing the minor corresponding to αn(x) by its last row and putting
in evidence the factor ϕn(x), we get

fn(x) = dn−1ϕ
2
n(x) +An(x)ϕn(x) +Bn(x) , dn−1 = −det(Vn−1) ,

where An(x) ∈ span(ϕ1, . . . , ϕn−1) and Bn(x) ∈ span(ϕjϕk , 1 ≤ j, k ≤ n − 1).
Then fn is a.s. not identically zero in Ω.

Indeed, let us take a neighborhood of xn where all the ϕj , 1 ≤ j ≤ n − 1,
are analytic, and fix all the variables but one to the corresponding coordinates
of xn. Then the problem is reduced to show that the univariate function g(t) =
ϕ(|t− t0|) = (t− t0)

2k log(|t− t0|) cannot satisfy the identity g2 ≡ αg+β, where
α(t) and β(t) are analytic in a neighborhood of t0 (where t0 is the coordinate
of xn corresponding to the free univariate variable, say t).
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A first proof in the case of TPS is the following. Observe that α ̸≡ 0,
otherwise g2 ≡ β would be analytic, whereas it has a singularity of the 4k-th
derivative at t0. In fact, taking for simplicity t > t0 and applying Leibniz rule
for the derivatives of a product to g2, we get that the lower derivatives of g2

are regular whereas D4kg2 has a log2 singularity at t0 (and the same holds for
αg ≡ g2 − β). Since α ̸≡ 0, the Taylor series of α centered at t0 cannot have all
zero coefficients, i.e. there exists a minimum m ≥ 0 such that Dmα(t0) ̸= 0.

Then, α(t) =
∑∞

j=m Djα(t0)(t− t0)
j/j!, and for t > t0

α(t)g(t) =

∞∑
j=m

Djα(t0)(t− t0)
j+2k log(t− t0)/j!

so that, again by Leibniz rule applied termwise to the series, the lower derivatives
of αg are regular whereas Dm+2k(αg) has a log singularity at t0, which gives a
contradiction for any value of m.

The reasoning just developed does not seem to extend in the case of RP
with noninteger exponent. We give now a second proof, which is valid for both,
TPS and RP with noninteger exponent. Indeed, if g2 ≡ αg+ β then g(t) solves
for every fixed t the quadratic equation g2(t)− α(t)g(t)− β(t) = 0, that is g(t)
necessarily takes one of the values

g±(t) =
1

2

(
α(t)±

√
∆(t)

)
,

where ∆(t) = α2(t) + 4β(t) is the discriminant.
First, ∆(t0) = 0, otherwise the sign would be preserved in a neighborhood

of t0. If ∆(t0) > 0 then by continuity g ≡ g+ or alternatively g ≡ g− there, with
both analytic at t0, whereas g is singular at t0 having a singularity of D2k for
TPS and of D⌈ν⌉ for RP. If on the contrary ∆(t0) < 0, both g+(t0) and g−(t0),
and hence g(t0) would be complex nonreal at t0, whereas g(t0) = 0.

Now, since ∆(t) is analytic, by a well-known result ∆(t) = (t − t0)
mh(t),

where m is called the order of the zero, 1 ≤ m ∈ N, and h is (locally) analytic
and nonvanishing at t0 (cf., e.g., [7]). Then, if h(t0) < 0 we have h(t) < 0 in a
neighborhood and ∆(t) < 0 for t > t0 (any m), i.e. g±(t) and hence g(t) are
complex nonreal for t > t0.

If h(t0) > 0 we have h(t) > 0 in a neighborhood. For m odd, ∆(t) < 0
for t < t0, i.e. g±(t) and hence g(t) are complex nonreal for t < t0. For
m even, by continuity g ≡ g+ or alternatively g ≡ g− for t > t0, we get

g±(t) = 1
2

(
α(t)± (t− t0)

m/2
√
h(t)

)
. Notice that all the derivatives of g±(t)

have a finite limit for t → t+0 . In all cases, we get a contradiction for TPS
and RP with noninteger exponent, since g(t) is real (positive) for t ̸= t0, and
singular at t0 with a suitable derivative going to ∞ for t → t0.

We can now use the fact that fn(x) is analytic in the open connected set
Ω \ {x1, . . . , xn} (notice that the latter has a unique connected component in
dimension d ≥ 2), being sum of products of analytic functions, and is a.s. not
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identically zero there, otherwise by continuity it would be a.s. identically zero
on the whole Ω, which has been just excluded.

Clearly, the points {x1, . . . , xn, xn+1} also are a.s. distinct because such are
{x1, . . . , xn} and the probability that xn+1 coincides with one of them is null, a
finite set being a null set. On the other hand, Vn+1 = Un+1(xn+1) holds since
ϕn+1(xn+1) = 0 and ϕj(xn+1) = ϕn+1(xj) for j = 1, . . . , n.

Then, det(Vn+1) = det(Un+1(xn+1)) = fn(xn+1) is a.s. nonzero, since the
zero set of fn is a null set by a well-known basic result of measure theory,
asserting that the zero set of a not identically zero real analytic function on an
open connected set in Rd is a null set (cf. [11] for an elementary proof). □

Remark 1 We recall that that for the RP with ν = 1 unisolvence is well-
known, due to invertibility of distance matrices for any choice of distinct points
in any dimension (cf. [10]). The same can be said for ν = 3 in dimension d = 1,
by the result proved in [1]. To our knowledge, nothing is known for integer
ν > 3, for non integer ν > 0 and for TPS. On the other hand, the mere fact that
the points are distinct does not guarantee unisolvence for TPS. For example, if
n−1 points are taken, deterministically or even randomly, on a unit sphere (the
boundary of a unit ball) centered at another fixed one, the resulting n×n TPS
interpolation matrix has a null row (since log(1) = 0) and hence is singular.

We observe finally that the present proving approaches do not seem to work
for univariate instances (where Ω \ {x1, . . . , xn} is disconnected), as well for
multivariate RP with odd integer exponent. These cases might deserve further
investigations.

Remark 2 We stress that our result does not mean that enriching the func-
tional space by polynomials, as in classical CPD RBF interpolation, is use-
less, because requiring exactness on low-dimensional polynomial spaces could
be driven by specific application purposes. For example the need of recovering
exactly constant and linear polynomials can arise in meshless methods for PDEs,
cf. e.g. [4]. Moreover, working with positive-definite symmetric matrices could
have computational advantages with respect to simply nonsingular symmetric
matrices. Indeed, the present result only means that polynomial addition is
not necessary within a wide class of polyharmonic splines to get unisolvence in
the continuous random setting with respect to any density, a fact apparently
unproved in the RBF literature till now. As noted in [12], there are applica-
tions where polynomial addition is not really needed, for example point cloud
modelling from high density geodetic data. In these cases, the result proved in
the present note can be meaningful.
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