
Approximate Fekete points

for weighted polynomial interpolation∗

A. Sommariva, M. Vianello
Department of Pure and Applied Mathematics

University of Padova
35121 Padova, Italy

February 18, 2010

Abstract

We compute approximate Fekete points for weighted polynomial

interpolation, by a recent algorithm based on QR factorizations of

Vandermonde matrices. We consider in particular the case of univari-

ate and bivariate functions with prescribed poles or other singularities,

which are absorbed in the basis by a weight function. Moreover, we

apply the method to the construction of real and complex weighted

polynomial filters, where the relevant concept is that of weighted norm.
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1 Introduction.

In the framework of polynomial interpolation, Fekete points are points that
maximize the Vandermonde determinant (in any polynomial basis) on a given
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compact set, and thus ensure that the corresponding Lebesgue constant grows
(at most) algebraically, being bounded by the dimension of the polynomial
space. Their analytical properties and their efficient computation, are still es-
sentially open research problems in the multivariate setting (see, e.g., [11, 44]
and references therein). In particular, the computation of Fekete points re-
quires solving large scale optimization problems already at moderate degrees.
Much more is known in the univariate case, but the computational problem
is still open in one complex variable (where, however, good alternatives are
known, like Fejer or Leja-like points, cf. e.g. [3, 27]).

In some recent papers [9, 10, 39], a greedy algorithm has been stud-
ied, that computes (multivariate) approximate Fekete points by extracting
maximum volume submatrices from rectangular Vandermonde matrices on
suitable discretization meshes. It works on arbitrary geometries and uses
only optimized tools of numerical linear algebra (essentially QR-like factor-
izations). There is a strong connection with the theory of admissible meshes
for multivariate polynomial approximation, recently developed by Calvi and
Levenberg [15]. There are also good perspectives in the application to nu-
merical cubature, and to the numerical solution of PDEs by collocation and
discrete least squares methods [45]. A renewed interest is indeed arising in
methods based on global polynomial approximation, see e.g. [29].

The algorithm can be described in a very general functional, not neces-
sarily polynomial, setting. Given a compact set K ⊂ Rd (or Cd), a finite-
dimensional space of linearly independent continuous functions,

SN = span(φj)1≤j≤N , (1)

and a finite set {ξ1, . . . , ξN} ⊂ K, we can construct the Vandermonde-like
matrix

V (ξ1, . . . , ξN) = [vij] := [φj(ξi)] . (2)

If det(V (ξ1, . . . , ξN)) 6= 0 the set {ξ1, . . . , ξN} is unisolvent for interpolation
in SN , and

ψj(x) =
det(V (ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN))

det(V (ξ1, . . . , ξj−1, ξj, ξj+1, . . . , ξN))
, j = 1, . . . , N , (3)

is a cardinal basis, i.e. ψj(ξk) = δjk and

LSN
f(x) =

N
∑

j=1

f(ξj)ψj(x) (4)
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interpolates any function f at {ξ1, . . . , ξN}. In the case that such points max-
imize the (absolute value of the) denominator of (3) in KN (Fekete points),
then ‖ψj‖∞ ≤ 1 for every j, and thus the norm of the interpolation operator
LSN

: C(K) → SN is bounded by the dimension of the interpolation space,

ΛN := ‖LSN
‖ = max

x∈K

N
∑

j=1

|ψj(x)| ≤ N . (5)

Clearly, Fekete points as well as the “Lebesgue constant” ΛN are independent
of the choice of the basis in SN , since the determinant of the Vandermonde-
like matrices changes by a factor independent of the points (namely the
determinant of the transformation matrix between the bases).

The maximization in KN is a nonlinear optimization problem in dN real
(or complex) variables. The idea of the algorithm is to maximize on a suitable
discretization mesh of K

X = {xi} ⊂ K , 1 ≤ i ≤ M , M > N , (6)

i.e. to construct the rectangular M ×N Vandermonde-like matrix

V (x1, . . . , xM) = [vij ] := [φj(xi)] , (7)

and to extract from it a maximum volume N×N square submatrix. Observe
that such a discrete nonlinear optimization problem is known to be NP-Hard
(cf. [17]), but an approximate solution can be obtained by the following
greedy algorithm applied to A = V t:

Algorithm greedy (max volume submatrix of A ∈ RN×M , M > N)

• ind = [ ] ;

• for k = 1, . . . , N

– “select the largest norm column colik(A)”; ind = [ind, ik];

– “remove from every column of A its orthogonal projection onto
colik”;

end;
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which works when A is full rank, and gives the set of indexes ind = (i1, . . . , iN)
corresponding in our problem to the approximate Fekete points

X∗ = {xi1 , . . . , xiN} . (8)

The algorithm can be conveniently implemented by the well-known QR
factorization with column pivoting, originally proposed by Businger and
Golub in 1965 [12], and used for example by the Matlab “mldivide” or “\”
operator in the solution of underdetermined linear systems (via the LAPACK
routine DGEQP3, cf. [25, 31]). The full algorithm proposed in [39], applied
in the present general setting, can be summarized in a Matlab-like notation
as follows:

Algorithm AFP (Approximate Fekete Points by iterative refinement)

• take a suitable discrete subset X = (x1, . . . , xM) ⊂ K, M > N

• V0 = V (x1, . . . , xM) ; P0 = I ;

• for k = 0, . . . , s− 1

Vk = QkRk ; Uk = inv(Rk) ;

Vk+1 = VkUk ; Pk+1 = PkUk ;

end ;

• A = V t
s ; b = (1, . . . , 1)t ; (the choice of b is irrelevant in practice)

• w = A\b ; ind = find(w 6= 0) ; X∗ = X(ind) ;

The greedy algorithm above is implemented directly by the last row of Algo-
rithm AFP (in Matlab), irrespectively of the actual value of the vector b. The
for loop above implements a change of polynomial basis from (φ1, . . . , φN)
to the nearly-orthogonal basis (q1, . . . , qN) = (φ1, . . . , φN)Ps with respect to
the discrete inner product (f, g) =

∑

f(xj)g(xj), whose purpose is to over-
come possible numerical rank-deficiency and severe ill-conditioning arising
with nonorthogonal bases (usually s = 1 or s = 2 iterations suffice); for a
complete discussion of this algorithm we refer the reader to [9, 10, 39].
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Remark 1 The effectiveness of Algorithm AFP in producing good interpo-
lation points, depends on the distribution of the initial discretization points,
which in turn should take into account the geometry of the domain as well as
the peculiarity of the function space. In the case of total-degree nonweighted
polynomial interpolation, SN = Pd

n, N = dim(Pd
n(K)), it is known that good

starting meshes are the (weakly) admissible meshes studied in [15], since ap-
proximate Fekete points extracted from such meshes have good interpolation
properties and the same asymptotic behavior of the true Fekete points (cf.
[9, 10, 39]). In particular, the associate discrete measure (1/N)

∑N

j=1 δxij
con-

verges weak-∗ to the equilibrium measure of K in the sense of (pluri)potential
theory [9].

Remark 2 Observe that if we take b = (m1, . . . , mN )tPs in the Algorithm
AFP, where mj =

∫

K
φj(x)dµ are the “moments” of the original basis with

respect a given measure µ on K, then w(ind) = (wi1, . . . , wiN ) is an array
of weights of a cubature formula which is exact on SN = span(φj)1≤j≤N .
For example, in the total-degree polynomial case, SN = Pd

n(K), with dµ =
dx, the moments of any polynomial basis can be computed over arbitrary
geometries by the Gauss-Green cubature formula, based on spline tracking
of the boundaries, developed in [40].

2 Weighted polynomial interpolation.

The literature on weighted polynomial interpolation is very extensive, since
it concerns a variety of theoretical and applied topics, like rational interpola-
tion with prescribed poles, weighted potential theory, Gaussian quadrature,
numerical treatment of integral equations, design of weighted digital filters
in signal processing, and many others. Extensive references to such a vast
literature are beyond the scope of this work; we suggest that the interested
reader consult, for example, [22, 26, 30, 36] with the references therein.

In the present paper, which is mainly of a computational and experimental
character, we focus on approximating Fekete points for weighted polynomial
interpolation on compact sets, in the following framework (cf. (1)-(4)). Let

SN = w P
d
n(K) := span(wpj)1≤j≤N , w ∈ C(K) , (9)
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where K ⊂ Rd (or Cd) is a compact set, and (pj) is a basis of the total-degree
polynomial space

P
d
n(K) = span(pj)1≤j≤N , N = dim(Pd

n(K)) =

(

n + d

d

)

. (10)

We have in mind two distinct situations

• prescribed singularities: we interpolate in SN functions of the form

f = wg (11)

where g is regular and the weight function absorbs the singularities of
f , like e.g. real or complex poles not belonging but possibly close to K

• weighted norms: we interpolate directly a regular function g by a
polynomial p ∈ Pd

n(K), but the error is measured with a weighted
norm

‖g − p‖w := ‖w(g − p)‖K = max
x∈K

|w(x)(g(x) − p(x))| (12)

where weights in different ways different parts of the domain, e.g. the
union of two disjoint intervals, which is relevant to the design of digital
filters

As will be shown in the examples, the important thing with prescribed
singularities is to adjust the basis according to the weight function. Once
a suitable weighted basis for interpolation is chosen, weighted approximate
Fekete points give slightly better results than nonweighted ones.

On the other hand, the two instances above are two faces of the same
coin, as is shown by the following observation. Let the set {ξ1, . . . , ξN} be
unisolvent for interpolation in SN . Then, it is also unisovent for interpola-
tion in Pd

n(K), in view of the following relation between Vandermonde-like
matrices

[w(ξi) pj(ξi)] = diag(w(ξi)) [pj(ξi)] . (13)

Moreover, it is easy to see that the cardinal functions for interpolation in
SN are ψj(x) = (w(x)/w(ξj))ℓj(x), 1 ≤ j ≤ N , where ℓj is the fundamental
Lagrange polynomial for the point ξj . Observe that unisolvence implies that
w(ξj) 6= 0 for all j. On the other hand, the existence of unisolvent inter-
polation sets for SN , for example weighted Fekete points, is guaranteed by
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continuity of w as soon as supp(w) ∩K is polynomial determining (i.e., any
polynomial vanishing there is identically zero).

Concerning the interpolation operators, it follows immediately by unique-
ness that

LSN
f(x) = w(x)LPd

n(K)g(x) , f = wg , (14)

and thus

‖f − LSN
f‖K = ‖w(g − LPd

n(K)g)‖K = ‖g − LPd
n(K)g‖w . (15)

Concerning convergence, it is worth observing that, at least with “exact”
Fekete points for SN ,

‖f − LSN
f‖∞ ≤ (1 + ‖LSN

‖) inf
p∈Pd

n(K)
‖w(g − p)‖K

≤ (1 + dim(Pd
n(K))) ‖w‖K inf

p∈Pd
n(K)

‖g − p‖K

=

(

1 +

(

n + d

d

))

‖w‖K inf
p∈Pd

n(K)
‖g − p‖K , (16)

i.e. convergence is certainly guaranteed as soon as

inf
p∈Pd

n(K)
‖g − p‖K = o(n−d) , n→ ∞ (17)

(we stress, however, that often the Lebesgue constant of (approximate) Fekete
points has a much slower growth than that estimated by (5)). In this regard,
Jackson-like theorems on the rate of convergence of best polynomial approxi-
mation onK are needed (cf., e.g., [33]). In one complex variable, for example,
by a classical result of Walsh and Russell [43] we have convergence for every
function g analytic in a compact set K with connected complement, even
when K =

⋃m

i=1Ki is a finite disjoint union of compacts with Jordan bound-
ary, and g|Ki

= gi, i = 1, . . . , m are possibly different analytic functions.
Observe that if w is analytic itself in K, the maximum modulus of the de-
terminant of the weighted Vandermonde matrix (13) in KN , is attained on
the product of boundaries (∂K)N ⊆ ∂KN by the maximum principle applied
to each variable. Indeed, it can even be proved that the Shilov boundary of
KN , i.e. the smallest subset of the topological boundary ∂KN where every
holomorphic function of N complex variables attains its maximum modu-
lus, is contained in (∂K)N ; cf., e.g., [37, §2.5]. Thus we can compute the
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Fekete points on the boundary ∂K of K. This is an advantage, since also
geometrically we deal with a one-dimensional instead of a two-dimensional
problem.

Before presenting the numerical examples, it is worth discussing briefly
the following problem: which should be a reasonable distribution of the start-
ing mesh X, from which we extract approximate Fekete points by algorithm
AFP? In the case of nonweighted polynomial interpolation, a guideline is
given by the theory of “admissible meshes” for polynomial approximation
recently developed by Calvi and Levenberg in [15]. The key feature of an
admissible mesh X is a polynomial inequality like

‖p‖K ≤ C ‖p‖X , p ∈ P
d
n(K) , (18)

which ensures that the Lebesgue constant of Fekete points of X can be
bounded proportionally to that of exact Fekete points of K

ΛN = ‖LPd
n(K)‖ ≤ CN , (19)

since for the fundamental Lagrange polynomials we have the bound ‖ℓj‖K ≤
C ‖ℓj‖X ≤ C; see [15, §4.4]. Observe that necessarily card(X) ≥ dim(Pd

n(K)).
Starting from (18), a rough functional inequality can be obtained also in

the space SN = wPd
n(K), at least if w 6= 0 in K. Indeed, if X is an admissible

mesh for nonweighted polynomial interpolation,

‖wp‖K = |w(x̂)p(x̂)| ≤ |w(x̂)| ‖p‖K ≤ |w(x̂)|C ‖p‖X = |w(x̂)|C |p(η)| ,
(20)

for suitable x̂ ∈ K, η ∈ X. Thus we get, if w 6= 0 in K,

‖wp‖K ≤ |w(x̂)|
|w(η)| C |w(η)p(η)| ≤ maxx∈K |w(x)|

minx∈X |w(x)| C ‖wp‖X

≤ C ′
w ‖wp‖X , C ′

w = ‖w‖K ‖1/w‖K C , (21)

i.e., X is an admissible mesh also for weighted polynomial interpolation. An
estimate on the growth of the Lebesgue constant of Fekete points of X in the
space SN now follows

ΛN = ‖LSN
‖ ≤ C ′

w N . (22)

We observe, however, that (22) turns out to be largely an overestimate of
the actual growth of the Lebesgue constant. In order to get more suitable
meshes and more refined bounds one should take into account the specific
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structure of the weight function w, possibly by using Markov-like inequalities
for weighted polynomials, to mimick the construction of [15, Thm.5].

A possible refinement can be given when K =
⋃ν

i=1Ki and X =
⋃ν

i=1Xi

with Xi ⊂ Ki, ‖p‖Ki
≤ Ci‖p‖Xi

, 1 ≤ i ≤ ν (the discrete subsets Xi are not
disjoint, in general). In this case we obtain easily the estimate

‖p‖K ≤ C ′′
w‖p‖X , C ′′

w = max
1≤i≤ν

{‖w‖Ki
‖1/w‖Ki

Ci} , C ′′
w ≤ C ′

w . (23)

3 Numerical examples.

The study of rational interpolation and approximation of univariate an-
alytic functions with prescribed poles has a long history, dating back to
the fundamental work by Walsh and successive extensions by Bagby; cf.
[2, 42]. Also its computational issues have been deeply investigated, see e.g.
[4, 5, 16, 34, 41] and references therein.

Here we begin by considering weighted polynomial interpolation in SN =
wPn([−1, 1]) with a weight function

w(x) =
1

πm(x)
, πm ∈ Pm([−1, 1]) , (24)

where the real and complex zeros of πm do not belong (but possibly are close)
to the interval.

In the literature computational methods have been studied to find almost
optimal points for rational interpolation with prescribed poles. For example,
one can compute and use as interpolation points in SN the zeros of the monic
polynomial pn ∈ Pn such that the ratio pn/πm has the smallest possible
max-norm (a min-max approach like that leading to Chebyshev polynomials
and Chebyshev points for polynomial interpolation). This can be done by
transforming the problem to a numerical eigenvalue problem; cf. e.g. [41]
and references therein.

The first four examples below show that the computation of approximate
Fekete points for SN is a natural and effective alternative approach to the
problem of rational interpolation with prescribed poles in one real variable.
On the other hand, the algorithm is general purpose, and is able to handle
even complex or bivariate instances, as well as other kinds of singularities.
It can also be applied to the construction of weighted real or complex poly-
nomial filters useful in signal processing.
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Example 1. (real interval, one real pole)
We interpolate the function

f(x) =
cos (x)

(1 + ε− x)2
, x ∈ K = [−1, 1] , ε > 0 , (25)

which has a real pole of the second order at x = 1 + ε. In Figure 1 we
compare polynomial interpolation at the Chebyshev-Lobatto points, with
interpolation in wPn again at the Chebyshev-Lobatto points for

w(x) = wε(x) = (1 + ε− x)−2 , (26)

and at approximate Fekete points computed by Algorithm AFP using the
Chebyshev polynomial basis (i.e., φj(x) = wε(x)Tj(x), Tj(x) = cos (j arccosx),
j = 0, . . . , n), with 2 refinement iterations and a starting mesh X of 1000
equispaced points (cf. (6)). The density of X ensures that it is an admissible
mesh in the sense of (18) for (nonweighted) polynomial interpolation up to
the highest degree (n = 30), since it has stepsize h < 2/n2. This result
relies on the classical Markov polynomial inequality ‖p′‖[−1,1] ≤ n2 ‖p‖[−1,1],
p ∈ Pn, cf. [6] and the construction in [15, Thm.5].

In this case, estimate (22) has no practical usefulness, since it becomes
ΛN = O(ε−2)N = O(n ε−2), which is several orders of magnitude above the
actual growth. To improve the construction, one should have at hand a tight
Markov-like inequality for rational functions of the form p/πm, p ∈ Pn and
m fixed, whereas this subject seems to have been studied in the literature for
the case of (n, n) rational functions (with denominator of degree exactly n).

Some improvement in the estimate of the Lebesgue constant, however, can
obtained following (23). Given the mesh X with constant stepsize as above,
let us take Ki = [−1 + ih,−1 + (i+n)h] and Xi = {−1 + jh, i ≤ j ≤ i+ n},
i = 1, . . . , ν, where −1 + (ν + n)h = 1. Then K =

⋃

Ki, X =
⋃

Xi, and all
the Xi are admissible meshes with constants Ci ≤ C. On the other hand, it is
not difficult to show that maxi {‖wε‖Ki

‖1/wε‖Ki
} = (1 + nh/ε)2. Since h =

O(n−2), the mesh X being an admissible mesh for nonweighted polynomial
interpolation, we get C ′′

wε
= O(1)+O((nε)−1)+O((nε)−2) and by (22)-(23),

being N = n+1, the final estimate ΛN ≤ C ′′
wε
N = O(n)+O(ε−1)+O(ε−2/n).

Example 2. (real interval, two conjugate poles)
We consider here the function

f(x) =
cos (x)

ε2 + x2
, x ∈ K = [−1, 1] , (27)
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Figure 1: Interpolation errors (left) and Lebesgue constants (right) versus the
interpolation degree, in Example 1 for ε = 1 (top) and ε = 0.01 (bottom); the
interpolation spaces are Pn with Chebyshev-Lobatto points (*), wεPn with
Chebyshev-Lobatto points (+), wεPn with approximate Fekete points (◦).
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which has two complex conjugate poles of the first order at x = ±iε, taking

wε(x) = (ε2 + x2)−1 . (28)

The numerical results are collected in Figure 2. Observe that, in both Exam-
ples 1 and 2, the choice of the interpolation space is much more relevant than
the choice of the points. Nevertheless, weighted polynomial interpolation at
approximate Fekete points shows small Lebesgue constants, close to those of
nonweighted polynomial interpolation (growth like O(log n)), and the best
interpolation errors also for small ε.

It is interesting to have a look at the distribution of the interpolation
points: see Figures 3 and 4. In Figure 4 we show the distribution function of
the interpolation points, that is the fraction of points which are smaller than
or equal to x. Notice that for ε = 1 the approximate Fekete points distribute
like the Chebyshev-Lobatto points, whereas for smaller ε they also tend to
cluster at the point in the interval nearest to the pole(s).

Example 3. (two disjoint intervals, one real pole in between)
In the case of a single real interval, other algorithms exist to compute near-
optimal points for rational interpolation with prescribed poles, like that de-
scribed in [41]. On the other hand, one of the strengths of Algorithm AFP
is that it can work on quite general compact sets, with real or complex vari-
ables. We consider now the case of simultaneous interpolation on two disjoint
real intervals,

f(x) =
cos (x)

(x+ ε)2
, x ∈ K = [−1,−0.6] ∪ [0, 1] , (29)

where f has a second order pole at x = −ε, which lies between the two
intervals for 0 < ε < 0.6. We take

wε(x) = (x+ ε)−2 , (30)

and we discretize the first interval by 200 and the second by 500 equispaced
points, respectively. This gives an admissible mesh for (nonweighted) poly-
nomial interpolation on K up to degree n = 30, as union of two admissible
meshes (cf. [15] and the discussion in Example 1). The interpolation spaces
are Pn with approximate Fekete points for nonweighted polynomial inter-
polation, wεPn again with the latter points, and wεPn with approximate

12



0 5 10 15 20 25 30
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Figure 2: As in Figure 1 for the function of Example 2.

Figure 3: N = 16 interpolation points of degree n = 15 in Example 1 (left)
and Example 2 (right): Chebyshev-Lobatto points (top), approximate Fekete
points for ε = 1 (middle) and ε = 0.01 (bottom).
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Figure 4: Distribution functions of N = 31 approximate Fekete points of
degree n = 30 in Example 1 (left) and Example 2 (right), for ε = 1 (top)
and ε = 0.01 (bottom).
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Fekete points for weighted polynomial interpolation (basis {wεTj} in Algo-
rithm AFP). Figure 5 collects the numerical results, that are comparable to
those of Example 2.

In Figures 6 and 7 we show the distribution of the interpolation points.
In the case of nonweighted interpolation, the physical interpretation is that
we have computed an approximate equilibrium configuration of N repelling
equal charges located on the two intervals. We observe that there are more
interpolation points in the largest interval, and that they tend to cluster
at the intervals endpoints, more rapidly at the external ones and in case of
weighted interpolation also at the endpoint nearest to the pole. This has
been confirmed in several other numerical experiments (by increasing n and
decreasing ε), which are not reported for brevity’s sake.

Example 4. (complex disk, one real pole)
In order to show the flexibility of the method, we consider again the function
of Example 1, but now on the complex unit disk

f(x) =
cos (x)

(1 + ε− x)2
, x ∈ K = {x ∈ C : |x| ≤ 1} , ε > 0 . (31)

As already observed, since the weight function wε(x) = (1 + ε − x)−2 is
analytic in a neighborhood of K, we can compute the Fekete points on the
boundary ∂K = {x ∈ C : |x| = 1} by the maximum principle. Fekete points
for nonweighted polynomial interpolation are one of the few explicitly known
cases, namely any sequence of N = n + 1 equispaced points on the unit
circle is a set of Fekete points for interpolation degree n. The approximate
Fekete points for weighted polynomial interpolation have been computed by
Algorithm AFP using the monomial basis and two refinement iterations,
starting form a mesh of 1000 equispaced points on the unit circle.

The numerical results are reported in Figure 8, and in Figure 9 the ap-
proximate Fekete points for degree n = 15, corresponding to ε = 1 and
ε = 0.01, are displayed. Notice that for the smallest value of ε the points
tend to cluster at x = 1, the point of the circle nearest to the pole x = 1+ ε.

Example 5. (two real variables in the square, line of algebraic singularities)
We give now an example in two real variables, taking the function

f(x) =
cos (x(1) + x(2))

(1 + ε− x(1))2
, x = (x(1), x(2)) ∈ K = [−1, 1] × [−1, 1] , ε > 0 .

(32)
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Figure 5: Interpolation errors (left) and Lebesgue constants (right) versus
the interpolation degree, in Example 3 for ε = 0.3 (top) and ε = 0.01 (bot-
tom); the interpolation spaces are Pn with approximate Fekete points for
nonweighted polynomial interpolation (*), wεPn again with the latter points
(+), wεPn with approximate Fekete points for weighted polynomial interpo-
lation (◦).

Figure 6: N = 21 interpolation points of degree n = 20 with K =
[−1 − 0.6] ∪ [0, 1] and wε(x) = (x + ε)−2 : approximate Fekete points for
nonweighted polynomial interpolation (top), approximate Fekete points for
weighted polynomial interpolation with ε = 0.3 (middle) and ε = 0.01 (bot-
tom).
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Figure 7: Distribution functions of N = 31 approximate Fekete points of
degree n = 30 in Example 3, for ε = 0.3 (left) and ε = 0.01 (right).

This function is analytic up to an entire line of singularities at x(1) = 1 + ε.
In Figure 10 we show the interpolation errors and the Lebesgue constants

corresponding to different interpolation spaces and nodes, and in Figure 11
we plot the approximate Fekete points corresponding to degree n = 10. As a
starting mesh to extract approximate Fekete points we have taken a 120×120
uniform grid, which is an admissible mesh for (nonweighted) polynomial in-
terpolation up to n = 10 (being the product of two one-dimensional admis-
sible meshes, cf. [15]). The comparison is with nonweighted interpolation
at the so-called “Padua points”, the first known example of nearly opti-
mal points for total degree polynomial interpolation in two variables, with a
Lebesgue constant increasing like log squared of the degree (cf. [7, 8, 14]).

Example 6. (two disjoint intervals, nonalgebraic singularities)
Algorithm AFP is general purpose, and can handle without problems even
nonalgebraic singularities, for example singularities of derivatives inside the
domain. A nontrivial example of this kind is given by the following function,
defined on the union of two disjoint intervals K = [−1,−0.6] ∪ [0, 1],

f(x) =







sin (
√

1 + x) , x ∈ [−1,−0.6]

arctan (|x− 0.5|) , x ∈ [0, 1]
(33)
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Figure 8: Interpolation errors (left) and Lebesgue constants (right) versus
the interpolation degree, in Example 4 for ε = 1 (top) and ε = 0.01 (bot-
tom); the interpolation spaces are Pn with Fekete points for nonweighted
polynomial interpolation (*), wεPn again with the latter points (+), wεPn

with approximate Fekete points for weighted polynomial interpolation (◦).
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Figure 9: N = 16 approximate Fekete points of degree n = 15 in the complex
disk of Example 4, with ε = 1 (left) and ε = 0.01 (right).

Taking as a weight function

w(x) =







√
1 + x , x ∈ [−1,−0.6]

|x− 0.5| , x ∈ [0, 1]
(34)

the function f is factorizable as f = wg with g (separately) analytic in
each of the two intervals (since the Maclaurin series of sin and arctan have
only odd powers), whereas w absorbs the singularities of f (which is only
Hölder continuous). The numerical results are collected in Figures 12 and 13.
Notice that the errors of weighted polynomial interpolation are larger than
in Example 4, since here we deal with different analytic functions on disjoint
intervals, and the convergence rates of best polynomial approximations are
different.

Example 7. (real digital filters)
Simply stated, in the design of weighted polynomial digital filters of FIR
(Finite Impulse Response) type, one seeks a polynomial p of degree n that
approximates a function g, termed the response of the filter, on a real or
complex compact set K, in the sense that the weighted norm ‖w(p− g)‖K is
small, where w is a suitable continuous and nonnegative weight function. In
many applications K is a finite union of disjoint intervals or complex arcs (the
frequency bands), and both g and w are piecewise constant functions (the
values 0 and 1 of g corresponding to the so-called stopband and passband,
respectively).
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Figure 10: Interpolation errors (left) and Lebesgue constants (right) versus
the interpolation degree, in Example 5 for ε = 1 (top) and ε = 0.01 (bot-
tom); the interpolation spaces are Pn with the Padua points for nonweighted
polynomial interpolation (*), wεPn again with the latter points (+), wεPn

with approximate Fekete points for weighted polynomial interpolation (◦).
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Figure 11: N = 66 approximate Fekete points of degree n = 10 in the real
square of Example 5, with ε = 1 (left) and ε = 0.01 (right).
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Figure 12: Interpolation errors (left) and Lebesgue constants (right) versus
the interpolation degree, in Example 6; the interpolation spaces are Pn with
approximate Fekete points for nonweighted polynomial interpolation (*), and
wPn with approximate Fekete points for weighted polynomial interpolation
(◦).

Figure 13: N = 31 interpolation points of degree n = 30 with K =
[−1,−0.6] ∪ [0, 1] and w(x) as in Example 6: approximate Fekete points
for nonweighted (top) and weighted (bottom) polynomial interpolation.
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We cannot even try to give an appropriate quoting of the enormous lit-
erature on this important subject of signal processing. To give only some
highlights, it is worth noting the classical paper [32], where the popular
Parks-McClellan algorithm for the design of optimal real equiripple filters,
based on the Remez exchange algorithm, was originally proposed, as well as
the treatise [13]. The method has then been extended in various directions
to deal also with complex filters, see e.g. [26] and references therein. Other
methods are based, for example, on potential theory and conformal mapping,
see e.g. [21, 23, 38]. The use of polynomial filters is also interesting within
numerical linear algebra, see e.g. [24, 35].

Since we use here for the first time algorithm AFP for the construction of
polynomial filters based on interpolation at approximate Fekete points, we
begin by a simple nonweighted case, an example of a high-pass filter. We
consider the response function (this example is taken from [21, §6])

g(x) =







0 , x ∈ K1 = [−1,−0.4]

1 , x ∈ K2 = [−0.3, 1]
(35)

defined on K = K1 ∪K2, where K1 is the stopband and K2 is the passband
(the interval (−0.4,−0.3) is the transition band in signal processing termi-
nology). As weight function we take w ≡ 1, and as initial discretization an
admissible mesh obtained by union of two uniform admissible meshes of K1

and K2, respectively.
The numerical results are collected in Figure 14. The amplitude of the

oscillations near the internal endpoints (a sort of Gibb’s phenomenon well
studied in [38]) depends on the length of the transition band. In Figure 15,
for comparison, we show the filter of degree n = 30 with a transition band
of double length, namely for K2 = [−0.2, 1], and the interpolation errors up
to degree n = 60.

We observe that the quality of the filters is lower than that of optimal
equiripple filters (but not as much as could be predicted by the Lebesgue
constants, cf. (16)), and even slightly lower than that of filters obtained
via numerical conformal mapping; cf. [21, §6]. This means that interpola-
tion at approximate Fekete points cannot be considered a real competitor in
standard instances of polynomial filtering. On the other hand, its strength
consists in a higher flexibility, that makes it applicable to quite general com-
pact sets K, response functions g and weight functions w, in one or even
several real or complex variables.
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In order to give an example of a weighted filter, we consider the following
multiband response function on the union of three disjoint intervals K =
K1 ∪K2 ∪K3

g(x) =























0 , x ∈ K1 = [−1,−0.4]

1 , x ∈ K2 = [−0.2, 0.2]

0.5 , x ∈ K3 = [0.4, 1]

(36)

with a piecewise constant weight function corresponding to a triple of positive
weights (w1, w2, w3)

w(x) = wi , x ∈ Ki , i = 1, 2, 3 . (37)

This is only an illustrative example, but it is worth recalling that multiband
polynomial filters are a standard tool in digital signal processing, cf. [13].

In Figure 16 we show four multiband filters, obtained by interpolation
at approximate Fekete points of degree n = 30, corresponding to different
choices of the weights. In Figure 17 we plot the estimated Lebesgue con-
stants, up to degree n = 30. Again, the starting discretization mesh is
obtained by taking the union of three admissible meshes for nonweighted
interpolation on the subintervals, which in view of (23) is also an admissible
mesh for weighted interpolation with the same bound, the weight function
being piecewise constant. Observe that the presence of a dominant weight
forces the nonweighted error to be much smaller on the corresponding band
than on the other bands.

Example 8. (complex digital filters)
Algorithm AFP can be easily adapted to produce polynomial filters in the
complex plane. We consider the following example, taken form [26], of a
nearly linear-phase low-pass filter on the union K = K1 ∪K2 of two disjoint
arcs of the complex unit circle

g(x) = x12 , w(x) = 1 , x ∈ K1 = {eiθ , |θ| ≤ 0.12π} ,
g(x) = 0 , w(x) = 10 , x ∈ K2 = {eiθ , 0.24π ≤ |θ| ≤ π} . (38)

Again, we have chosen as starting mesh the union of two admissible meshes
of K1 and K2, which in view of (23) is also an admissible mesh for weighted
interpolation with the same bound. As in Example 4, we use the standard
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Figure 14: Top: high-pass polynomial nonweighted filters forK1 = [−1,−0.4]
and K2 = [−0.3, 1] of degree n = 30 (left), and n = 60 (right); the small
circles (◦) indicate the approximate Fekete points. Bottom: interpolation
errors (left) and Lebesgue constants (right) versus the interpolation degree.
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Figure 15: High-pass nonweighted polynomial filter for K1 = [−1,−0.4] and
K2 = [−0.2, 1] of degree n = 30 (left), and interpolation errors up to degree
n = 60 (right).

complex monomial basis to construct the Vandermonde matrix, with two
refinement iterations in Algorithm AFP.

In Figure 18 we show the approximate Fekete points of degree n = 31 and
the estimated Lebesgue constants up to degree n = 35. The interpolation
error in the weighted norm at degree n = 31 is ‖w(g−LP31(K)g)‖K ≈ 0.1, to
be compared with an error of about 0.04 obtained in [26] with the optimal
polynomial filter of degree 31, computed by the Remez algorithm.

Example 9. (two-dimensional digital filters)
Two-dimensional digital filters have important applications in the processing
of images and other two-dimensional signals; see, e.g., [1, 28]. Here we show
two examples of two-dimensional filters constructed by interpolation at ap-
proximate Fekete points. We begin with the following response function on
a square domain

g(x) = 0 , x ∈ K1 = {(x(1), x(2)) : min (|1 ± x(1)|, |1 ± x(2)|) ≤ 0.2} ,
g(x) = 1 , x ∈ K2 = [−0.6, 0.6] × [−0.6, 0.6] ,

(39)
with a square passband and a square frame as stopband (see Figures 19-20).
This kind of “rectangularly symmetric” two-dimensional filters are discussed,
e.g., in [28].

In order to compute approximate Fekete points of not small degree by
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Figure 16: Multiband polynomial filters forK1 = [−1,−0.4], K2 = [−0.2, 0.2]
andK3 = [0.4, 1] at approximate Fekete points of degree n = 30: nonweighted
(top-left), weights (100, 1, 1) (top-right), (1, 100, 1) (bottom-left), (1, 1, 100)
(bottom-right); the small circles (◦) indicate the approximate Fekete points.
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Figure 17: Lebesgue constants versus the interpolation degree for the multi-
band filters above: nonweighted (top-left), weights (100, 1, 1) (top-right),
(1, 100, 1) (bottom-left), (1, 1, 100) (bottom-right).
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Figure 18: N = 32 approximate Fekete points of degree n = 31 for the
complex low-pass weighted filter in Example 8 (left); Lebesgue constants
versus the interpolation degree (right).
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algorithm AFP, already in two dimensions it begins to be important to start
from a weakly admissible mesh instead of an admissible mesh (cf. [9, 15]).
Indeed, two-dimensional admissible meshes of degree n obtained by Markov
inequalities have O(n4) points, due to a O(1/n2) spacing, and this leads to
a heavy computational load in algorithm AFP.

On the other hand, weakly admissible meshes are discrete subsets of a
compact K, where a polynomial inequality like (18) holds where C = Cn is
not constant but increases at most algebraically with n. Such a relaxation of
the polynomial inequality implies that their cardinality can be much lower
than that of admissible meshes. Recall that, for example, any set X of
cardinality N = dim(Pd

n(K)), which is unisolvent for interpolation of degree
n, satisfies (18) with C = Cn equal to the Lebesgue constant (thus, e.g.,
Fekete points of K form a weakly admissible mesh). As with admissible
meshes, weakly admissible meshes can be constructed by finite unions. All
inequalities (19)-(23) still hold with Cn replacing C.

In the present example we have used the weakly admissible mesh obtained
by union of the Padua points of the internal square and of four rectangles
giving the square frame. We recall that the Padua points are the first known
example of optimal points for total degree polynomial interpolation in two
variables, with a Lebesgue constant increasing like log squared of the degree;
cf. [7, 8, 14]. This implies that in (18)-(23) we have C = Cn = O(log2 n).

In Figure 19 we show the two-dimensional nonweighted polynomial filters
obtained by interpolation at approximate Fekete points, extracted from such
weakly admissible meshes at degree n = 20 and n = 30 (the interpolation
errors on K are about 0.13 and 0.04, respectively). In Figure 20 we see
the approximate Fekete points of degree n = 20 with the underlying weakly
admissible mesh made of Padua points, and the growth of the estimated
Lebesgue constants.

In this simple example, a filter could have been constructed also as tensor-
product of one-dimensional filters (cf. [1]), but the difference is that the
present is a total-degree filter, which for the same n has roughly half the
number of coefficients, namely N = dim(P2

n(K)) = (n + 1)(n + 2)/2 instead
of (n + 1)2 = dim(P1

n(K)
⊗

P1
n(K)) coefficients. A more difficult example is

given by the following weighted response function

g(x) = 0 , w(x) = w1 , x ∈ K1 = {(x(1), x(2)) : x(1) + x(2) ≤ 0.8} ,
g(x) = 1 , w(x) = w2 , x ∈ K2 = {(x(1), x(2)) : x(1) + x(2) ≥ 1} , (40)
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Figure 19: Nonweighted polynomial filters of degree n = 20 (left) and n = 30
(right) for Example 9-(39).
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Figure 20: Left: N = 231 nonweighted approximate Fekete points (circles) of
degree n = 20 extracted from a weakly admissible mesh (dots) for Example
9-(39). Right: estimated Lebesgue constants versus the interpolation degree
for the same example.
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Figure 21: Two-dimensional filters of degree n = 20 for Example 9-(40) with
w1 = 1, w2 = 1 (left) and w1 = 10, w2 = 1 (right).

where the stopband and the passband are triangular. Again, we extract the
approximate Fekete points from the union of weakly admissible meshes of the
two triangles. In [9], the concept of “geometric” weakly admissible mesh has
been developed, namely one obtained by a suitable geometric transformation
from a known weakly admissible mesh on a reference domain. In the case of a
triangle, we can simply map the Padua points of degree 2n in [−1, 1]2 to the
triangle by the well-known Duffy quadratic transformation [19], obtaining a
weakly admissible mesh of degree n for the triangle with Cn = O(log2 2n);
see [9] for a more complete discussion.

In Figure 21 we show the corresponding nonweighted (left) and weighted
(w1 = 1, w2 = 10; right) filters of degree n = 20. The interpolation error of
the nonweighted filter is about 0.11 on the passband and 0.07 on the stop-
band, whereas the nonweighted error of the weighted filter becomes about
0.28 on the passband and is reduced to about 0.01 on the stopband. The
respective approximate Fekete points are plotted in Figure 22, and the esti-
mated Lebesgue constants in Figure 23.
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Figure 22: N = 231 approximate Fekete points of degree n = 20 (circles)
extracted from a geometric weakly admissible mesh (dots) for Example 9-(40)
with w1 = 1, w2 = 1 (left) and w1 = 10, w2 = 1 (right).
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Figure 23: Estimated Lebesgue constants versus the interpolation degree for
the two filters of Example 9-(40) with w1 = 1, w2 = 1 (left) and w1 = 10,
w2 = 1 (right).
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