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Numerical methods for sparse recovery

Massimo Fornasier

Abstract. These lecture notes are an introduction to methods receetigloped for perform-
ing numerical optimizations with linear model constraiatgl additional sparsity conditions
to solutions, i.e. we expect solutions which can be repteseas sparse vectors with re-
spect to a prescribed basis. Such a type of problems has beently greatly popularized
by the development of the field of nonadaptive compressedisitiqn of data, the so-called
compressed sensingnd its relationship witlf;-minimization. We start our presentation by
recalling the mathematical setting of compressed sensirsgraference framework for devel-
oping further generalizations. In particular we focus oa #malysis of algorithms for such
problems and their performances. We introduce and anatgskdmotopy method, the itera-
tively reweighted least square method, and the iterative trmesholding algorithm. We will
see that the properties of convergence of these algorithmsltitions depends very much on
special spectral properties (Restricted Isometry PrgmerNull Space Property) of the matri-
ces which define the linear models. This provides a link tocthérses of Holger Rauhut and
Jared Tanner who will address in detail the analysis of suchggties from different points of
view. The concept of sparsity does not necessarily affecetiiries of a vector only, but it can
also be applied, for instance, to their variation. We wilbstthat some of the algorithms pro-
posed for compressed sensing are in fact useful for opttroizaroblems with total variation
constraints. Usually these optimizations on continuousaias are related to the calculus of
variations on bounded variation (BV) functions and to getiimeneasure theory, which will
be the objects of the course by Antonin Chambolle. In the maéqart of the lecture notes
we address sparse optimizations in Hilbert spaces, andiefipdor situations when no Re-
stricted Isometry Property or Null Space Property are assunive will be able to formulate
efficient algorithms based on iterative soft-thresholdifsgp for such situations, althought their
analysis will require different tools, typically from namsoth convex analysis. The course by
Ronny Ramlau, Gerd Teschke, and Mariya Zhariy addresstgefutevelopments of these al-
gorithms towards regularization in nonlinear inverse jois as well as adaptive strategies. A
common feature of the illustrated algorithms will be thedriational nature, in the sense that
they are derived as minimization strategies of given enéuggtionals. Not only the varia-
tional framework allows us to derive very precise statemabbut the convergence properties
of these algorithms, but it also provides the algorithmswainh intrinsic robustness. We will
finally address large scale computations, showing how wedefine domain decomposition
strategies for these nonsmooth optimizations, for probleaming from compressed sensing
and/;-minimization as well as for total variation minimizationgblems.

The first part of the lecture notes is elementary and it dogegeguire more than the ba-
sic knowledge of notions of linear algebra and standarduakiies. The second part of the
course is slightly more advanced and addresses problemhiertspaces, and we will make
use of more advanced concepts of nonsmooth convex analysis.

Key words. Numerical methods for sparse optimization, calculus ofatmms, algorithms for
nonsmooth optimization.
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1 An Introduction to Sparse Recovery

1.1 Notations

In the following we collect general notations. More specifatations will be intro-
duced and recalled in the following sections.

We will considerR” as a Banach space endowed with different norms. In partjcula
later we use thé,-norms

1/p
N |
(Zz:l ’wJ’ > ’ 0< p < o0, (11)

2]y = llz[le, == llzllpy =
max;—1_ N |zj[, p=o0.

Associated to these norms we denote their unit ballpy := By = {zr eR:
|z[l[, < 1} and the balls of radius? by By, (R) := By (R) := R- Byy. As-
sociated to a closed convex bodyc0 Q ¢ RY, we define its polar set b§° =
{y € RY : sup,cq(r,y) < 1}. This allow us to define an associated ndfnilq, =
SUp,eqo (T, Y)-

The index setZ is supposed countable and we will consider theZ) spaces op-
summable sequences as well. Their norm are defined as usligiraitarly to the
case ofRY. We use the same notatioty, for the ¢,(Z)-balls as for the ones in
RY. With A we will denote usually an x N real matrix,m, N € N or an operator
A : 0>(Z) — Y. We denote withA* the adjoint matrix or withK™* the adjoint of
an operatorkK. We will always work on real vector spaces, hence, in finitaeh-
sions,A* usually coincides with the transposed matrix2fThe norm of an operator
K : X — Y acting between two Banach spaces is denotedifbyx .y ; for matrices
the norm|| A| denotes the spectral norm. The support of a vecterR”, i.e., the set
of coordinates which are not zero, is denotedstoyp(x).

We will consider index setd C Z and their complementd® = Z \ A. The sym-
bols|A| and#A are used indifferently for indicating the cardinality &f We use the
notation A, to indicate a submatrix extracted from by retaining only the columns
indexed inA as well as the restrictions, of vectorsu to the index sef\.

Positive constants used in estimates are denoted as usu@l'hy C, co, Co, c1, C1, ¢2,Co, . . ..

1.2 A Toy Mathematical Model for Sparse Recovery

1.2.1 Adaptive and compressed acquisition
Letk e N,k < N and
S = {z € R : #supp(x) < k},

is the set of vectors with at moktnonzero entries, which we will call-sparse vectors
Thek-best approximation errathat we can achieve in this set to a vector RY with
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respect to a suitable space quasi-ndrn| x is defined by given by

op(z)x = Ziensz |z — z||x-

Example 1.1 Letr(z) be the nonincreasing rearrangement dfe.,r(x) = (@4, ..., [2iy|)T
and|z;,| > |x;, | forj =1,..., N — 1. Then itis straightforward to check that
N 1/p
or(x)n = Z rj(x)? , 1<p<oo.

P
j=k+1

In particular, the vectox ;) derived fromx by setting to zero all théV — k smallest
entries in absolute value is call¢ite best:-term approximatiorto x and it coincides
with
= i - . 1.2
opy = arg min [lo — 2y (1.2)

forany 1< p < oc.

Lemma 1.2 Letr = % —Landz e RN, Then

1
p
Uk(w)gp < ”ngqk_r, k=12 ... N.

Proof. Let A be the set of indexes of thelargest entries of in absolute value. If
e = ri(z), then

_1
e < lafle, k.
Therefore
or(@)) =3l <Y eyl
JEA JEA
—q

_ _Db—g
el k" ]

IN

which implies
ok(@)e, < [lzlle, k™"

O

The computation the begtterm approximation of: € RY, in general requires the
search of the largest entries 0fin absolute value, and therefore the testing of all the
entries of the vectog. This procedure iadaptive since it depends on the particular
vector.



Numerical methods for sparse recovery 5

1.2.2 Nonadaptive and compressed acquisition: compressednsing

One would like to describelanear encodemvhich allows to compute approximatively
k measurement&, ..., y)” and a nearly optimal approximation @fin the follow-
ing sense:

Provided a sefs ¢ RY, there exists a linear magp : RV — R™,
with m ~ k and a possibly nonlinear map : R — R such that

[z — A(Az)|lx < Cor(z)x

forallz € K.

Note that the way we encode= Az is via a prescribed magd which is indepen-
dent ofz as well as the decoding procedukemight depend om, but not onz. This
is why we call this strategy aonadaptive (or universal) and compressed acquisition
of z. Note further that we would like to recover an approximation: from nearly
k-linear measurements which is of the order of kAeest approximation error. In this
sense we say that the performances of the encoder/decastemsyl, A) is nearly
optimal.

1.2.3 Optimal performances of encoder/decoder pairs

Let us defineA,, y the set of all encoder/decoder paitd, A) with A am x N
matrix andA any function. We wonder whether there exists such a neatiynap
pair as claimed above. Let us fix < N two natural integers, anf ¢ R™. For
1< k < N we denote

oi(K)x = sup ox(x)x, andE,,(K)x = inf  sup ||z — A(A(2))|x-
zEK (AA)€Am N zeK

We would like to find the largest such that
Em(K)X < CoO’k(K)X.

We respond to this question in the particular case witere By, and X = 69’. This
setting will turn out to be particularly useful later on andsi already sufficient for
showing that, unfortunately, it is impossible to reconstttt € 5,, with an accuracy
asymptotically (form, N larger and larger) of the order of thkebest approximation
error in eé” if & = m, but itis necessary to have a slightly larger number of mreasu
ments, i.e.k = m — e(m, N).

The proper estimation df,,, (K) x turns out to be linked to the geometrical concept
of Gelfand width



6 M. Fornasier

Definition 1.3 Let K be a compact set iX. Then theGelfand widthof K of order
mis
d"(K)x = inf sup{||z]|x :x € KNY}.
YCcX
codim(Y) <m

We have the following fundamental equivalence.

Proposition 1.4 Let K ¢ R any closed compact set for whi¢h = — K and such
that there exists a constafly > for which K + K ¢ CoK. If X ¢ RY is a normed
space, then

d™(K)x < En(K)x < Cod™(K)x.

Proof. Let ' = ker A. Note thatY = N has codimension less or equal ito.
Conversely, given any spad¢ c R of codimension less or equal i, we can
associate a matrid whose rows are a basis fof-, With this identification we see
that

d"(K)x = inf :neNNK}.
(K)x =, inf  sup{flnx :n }

If (4,A) is and encoder/decoder pair.if), xy andz = A(0), then for anyy € N we
have also-n € N. It follows that either|n — z||x > |[n]lx or || — n — z||x > |Inllx-
Indeed, if we assumed that both are false then

12nllx =lln—2z+2z+nlx <ln—zlx +I[ —n—zlx <2nlx,

which is not possible. SincE = — K we conclude that

d™(K = inf su meNNK
(K)x aonf sup{finllx < n }
< sup |[ln—z|x
neENNK
= sup |[ln—A(An)|x
neENNK

IN

Sup I — A(Az)|x

By taking the infimum over allA, A) € A,, x we obtain
d"(K)x < Em(K)x.

To prove the other inequality, choose an optiffiasuch that

d"(K)x =sup{|lz|]|x :z €Y e NN K}
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Let us denote the solution affine spag¢y) := {z : Az = y}. Let us define a
decoder as follows: I§F(y) N C # () then we taker(y) € F(y) andA(y) = Z(y). If
F(y)n =0 thenA(y) € F(y). Hence, we can estimate

E K = lnf su T — A Ax
m(E)x =, Jof | suplle = Alda)lx
= sup [z —a'|[x
z,2' €F(y)NK
= sup  Inflx < Cod™(K)x-.
n€CH(NNK)

d

The following result was proven in the relevant work of KashGarnaev, and
Gluskin [45, 46, 50] already in the '70s and '80s. See [20,f88]a description of
the relationship between this result and the more modemt pbview related to com-
pressed sensing.

Theorem 1.5 The Gelfand width offlv-balls in E;,V for 1 < ¢ < p < 2 are estimated
by
Clqj(mv N,p, q) < dm(BZq)ép < OZ\II(m> N,p, q)v

where
1, —% iﬁz:%g
U(m,N,p,q)) = min ¢ 1, N*"a™ 2} , l<g<p<2
U(m,N,2,1)) = min< 1, W}, g=1landp =2

From Proposition 1.4 and Theorem 1.5 we obtain
C~’1\Ij(m7 vav Q) < Em(BZq)Zp < éZ\II(my N7p7 q)

In particular, forg = 1 andp = 2, we obtain, fom, IV large enough, the estimate

~ [log(N +1
Cl % S Em(BZ]_)Zz

If we wanted to enforce
En(Bey)e, < Cop(Byy)e,,

then Lemma 1.2 would imply

w < Cok_%7 ork < 007.
m - - log%%—l

Hence, we proved the following
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Corollary 1.6 Form, N fixed, there exists an optimal encoder/decoder pairA)
Ay, N, inthe sense that
Em(Bfl)éz S Co-k(Bél)éza
only if
m

k< C

— N 1.3
o olog%—l—l (1.3)

for some constant’y > O independent oin, V.

The next section is devoted to the the construction of opteanaoder/decoder pairs
(A,A) € A, n as stated in the latter corollary.

1.3 Survey on Mathematical Analysis of Compressed Sensing

In following section we want to show that under a certain prop called theRe-
stricted Isometry Propert¢RIP) for a matrixA4,

The decoder, which we call-minimization

Aly) =arg | min ||y (1.4)
performs

[z = Ayl < Crop(x) ey, (1.5)
as well as

Uk(x)éiv

[z — Ayl < CZW’ (1.6)

forall z € RV,

Note that by (1.6) we immediately obtain
BBy )y < Cok™2,
implying once again (1.3). Hence, the following questionwik address is the exis-
tence of matrices! with RIP for whichk is optimal, i.e.,
m

B ———.
log N/m +1

1.3.1 Anintuition why £1-minimization works well

In this section we would like to provide an intuitive expléina of the stable results
(1.5) and (1.6) provided by;-minimization (1.4) in recovering vectors from partial
linear measurements. Equations (1.5) and (1.6) ensuretioyar that if the vector:
is k-sparse then/;-minimization (1.4) will be able to recoveréixactlyfrom m linear
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measurementg obtained via the matri¥l. This result is quite surprising because the
problem of recovering a sparse vector, or the solution ofdhewing optimization

min ||x\|gé\r subject toAx = y, @.7)

is know [56, 58] to beNP-completé whereas/s-minimization is a convex problem
which can be solved at any prescribed accuracy in polynotima. For instance
interior-point methods are guaranteed to solve the prolearfixed precision in time
O(m?N1®) [60]. The first intuitive approach to this surprising resslby interpreting

£1-minimization as theonvexificatiorof the problem (1.7).

Figure 1.1 A non convex functionf and a convex approximation< f from below.
If we were interested to solve an optimization problem
min f(x) subject tar € C,

where f is a nonconvex function an@ is a closed convex set, it might be convenient
to recast the problem by considering its convexificatian, i.

min f(x) subject tar € C,
wheref is called theconvex relaxatioror theconvex envelopf f and it is given by
f(x) :=sup{g(z) < f(z) : g is a convex functiok.
The motivation of this choice is simply geometrical. Whilean have many minimiz-
ers onC, its convex enveloff has global minimizers (but not strictly local ones), and

such global minima are likely to be in a neighborhood of a glahinimum of f, see
Figure 1.1. One rewrites

N
0, t=0
Izl == lzjlo,  [tlo ;:{ L 0cte1”
]_1 ) —

In general its resolution has a complexity which is growirighva rate faster than any polynomial, for
instance exponentially, in the dimension N of the problem.
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0.2 0.4 0.6 0.8 1

Figure 1.2 The absolute value functidn| is the convex relaxation of the function|o
on |0, 1].

Its convex envelope i,y (R) N {z : Az = y} is bounded below by%”xugiv =

}—12 Z;V:l |z;|, see Figure 1.2. This observation gives already a first isgioe of the
motivation why/1-minimization can help in approximating sparse solutiohglo =
y. However, it is not yet clear when a global minimizer of

min Hw”zi\’ subject toAx = y, (1.8)
does really coincide with a solution to (1.7). Again a singg@®metrical reasoning can

help us to get a feeling about more general principles whiithbe addressed more
formally in the following sections.

Ax=z

Figure 1.3 The /1-minimizer within the affine space of solutions of the linegstem
Ax = y coincides with the sparsest solution.

Assume for a moment théf = 2 andm = 1. Hence we are dealing with an affine
space of solution& (y) = {z : Az = y} which s just a line ifR2. When we search for
the ¢1- norm minimizers among the elemeri®gy) (see Figure 1.3), we immediately
realize that, except for pathological situations whéfe= ker A is parallel to one of
the faces of the polytop®,., there is a unique solution which coincides also with a
solution with minimal number of nonzero entries. Therefdirgve exclude situations
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in which there existy € A such thatn;| = || or, equivalently, we assume that

i < Inpa2 fiy (1.9)

for all n € A and for onei = 1,2, then the solution to (1.8) is a solution to (1.7)!
Note also that, if we give a uniform probability distributido the angle inO, 2r]
formed by N and any of the coordinate axes, then we realize that the Ipaibal
situation of violating (1.9) has null probability. Of coersin higher dimension such
simple reasoning becomes more involved, since the numb&cet and edges of
an Eflv-ball BZ{V becomes larger larger and one should cumulate the praieditf
different angles with respect to possible affine spacesdifensionN—m. However,
condition (1.9) is the right prototype of a property (we dathe Null Space Property
(NSP) and we describe it in detall in the next section) whighargntees, also in higher
dimension, that the solution to (1.8) is a solution to (1.7).

1.3.2 Restricted Isometry Property and Null Space Property

Definition 1.7 One says thatl € R™*" has theNull Space PropertyNSP) of order
EforO<~ < 1if

nalley < Vlinaclley,

for all setsA € {1,..., N}, #A < k and for allp € N = ker A.

Note that this definition greatly generalizes conditio®]ivhich we introduced by
our simple and rough geometrical reasonindfm However, let us stress that in order
to address stability properties such as (1.5) and (1.6) if@hdnly the exact recovery
of sparse vectors), it will not be sufficient to requ|i]n@\qu < |Imae Hgiv, but also a gap
1]l < ~llnac v provided by the introduction of a constant< 1 is fundamental.
We need further to introduce a related property for matrices

Definition 1.8 One says thatl ¢ R™*" has the RIP of ordek if there exists 0<
0k < 1 such that

(1 —dr)llzlley < 1Az[lpy < (146Kl 23
forall z € Y.

The RIP turns out to be very useful in the analysis of stahilftcertain algorithms
as we will show in Section 2.1.4. The RIP is also introducedabise it implies the
Null Space Propertyand when dealing with random matrices (see Section 1.84l) i
more easily addressed. Indeed we have:

Lemma 1.9 Assume thatl € R™*" has the RIP of ordef{ = k+h with0 < dx <

1. ThenA has the NSP of orde¥ and constanty = %%
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Proof. LetA C {1,..., N}, #A < k. DefineAg = A andAj, Ay, ..., A, disjoint sets

of indexes of size at mogt, associated to a decreasing rearrangement of the entries
of n € N. Then, by using Cauchy-Schwarz inequality, the RIP twibe, fact that

An = 0, and eventually the triangle inequality, we have the foitg sequence of
inequalities:

IN

VElInallgy < VElmagonaslley
(1= 0k) VI Ansulley = (1= 0x) T VEIAnsUAGU--0A, [l

Inalex

A

1+96
< (1-6x)" Wk ZuAnA ly < 7 Kf Zum ley-  (1.10)

j=2

Note now thati € Aj;q and?¢ € A; imply by construction ofA;s by decreasing
rearrangement of the entriespf

7il < [mel.
By taking the sum ovef first and than thé.’-norm overi we get
1 —-1/2
il < B e s @ndlimag ey < B2 |nag e

By using the latter estimates in (1.10) we obtain

1+ 0k 1+ [k
malley < 35 \/72\\?7/\ oy < ( \/%) [l g

The RIP property does imply the NSP, but the converse is net thctually the RIP
is significantly more restrictive. A very detailed discussbn the limitations provided
by the RIP will be the object of the course by Jared Tanner.

O

1.3.3 Performances of;-minimization as an optimal decoder

In this section we address the proofs of the approximatiopgnties (1.5) and (1.6).

Theorem 1.10 Let A € R™*N which satisfies the RIP of ord@k with do, < § <

2 . . g . 5
—gﬁ (or S|mpIyA satlsfl.es: the NSP of ordérwith constanty = %\/g) , then the
decoderA as in(1.4) satisfieq(1.5).

Proof. By Lemma 1.9 we have

1+6 /1
Ialle = 351/ 5lmaclley
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forall A c {1,...,N}, #A < kandn € N = ker A. Letz* = A(Az), so that
n=z"—z¢eN,and
"oy < Il

One denotes now with the set of the-largest entries af in absolute value. One has
[2hlley + llzhelley < llzalley + llzaelloy-
It follows immediately by triangle inequality

lealley = lImalley + lInaclley = lleaclley < llzalloy + lleaclley-

Hence

1+ /1
IWWWWWW+%WM_15JJWM+%WM
or, equivalently,

2
H77Ac‘|g{\f < ﬁak("ﬂ)zl- (.11
T 15V 2

In particular, note that by < § we haveffg\/’ < 1. Eventually we conclude
with the estimates

|z — x*Hg:{\f HUAH@{\’ + ”UAC”Z{V

1+6\/I

< (=22 5 1) Inae
< <1_5 >t >||77A e
< Crok(T)ey,

(i)
EVE

Similarly we address the second estimate (1.6).

where(C; :=

Theorem 1.11 Let A € R™*N which satisfies the RIP of ord@k with d3, < § <

\/2_1 . . g
oo then the decodeA as in(1.4) satisfieq1.6).
Proof. Letz* = A(Ax). As we proceeded in Lemma 1.9, we dengte z*—xz € N,
Ao = A the set of the B-largest entries ofy in absolute value, and; of size at most
k composed of nonincreasing rearrangement entries. Then

1+9

nalley < ﬁk 2”77AC”4V,
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Note now that by Lemma 1.2 and by Lemma 1.9

_1 _
Inaclley < @) Ellalley = @) 72 (Inalley + Inaclley

< (26)7V2(Cllmelley + llac ey )
cC+1
V2

for a suitable constar@ > 0. Note that, being\ set of the 2-largest entries of; in
absolute value, one has also

< 2 e

||77AC||1 < ||77(suppx[2k])c‘|l < ‘|"7(suppx[k])c||1> (1.12)

where zy;) is the bestk-term approximation tac. The use of this latter estimate,
combined with the inequality (1.11) finally gives

e =2y = lnalley + lmaclley

Ck™2||nac o

IN

< ézk‘_l/zok (:L')gl.
O

We would like to conclude this section by mentioning a furtsibility property of
£1-minimization as established in [12].

Theorem 1.12 Let A € R™*" which satisfies the RIP of ordék with d4;, sufficiently
small. Assume further thalz + e = y wheree is a measurement error. Then the
decoderA as the further enhanced stability property:

Uk(x)eiv
|z — A(YJ)H@V < (3 Uk(w)zy + T2 + HeHeg . (1.13)

1.3.4 Random matrices and optimal RIP

In this section we would like to mention how for different $&s of random matrices
it is possible to show that the RIP property can hold withropiiconstants, i.e.,

m

B ———.
log N/m +1

at least with high probability. This implies in particuléinat such matrices exist, they
are frequent, but they are given to us only with an uncegtaint
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Gaussian and Bernoulli random matrices

Let (€2, p) be a probability measure space aXich random variable off2, p). One can
define a random matrid(w), w € Q™ as the matrix whose entries are independent
realizations ofX. We assume further thﬁlA(w)xH?N has expected vaIu|¢cH§N and

2 2

P([lA@aly — llolZy| = ellolyy ) <2072, 0<e<1  (114)

Example 1.13 Here we collect two of the most relevant examples for whighdbn-
centration property (1.14) holds:

1. One can choose, for instance, the entried at i.i.d. Gaussian random variables,
Ayj ~ N(0, ), andcg(e) = £2/4 — £3/6. This can be shown by using Chernoff in-
equalities and a comparison of the moments of a Bernoultlaamvariable to those of
a Gaussian random variable;

2. One can also use matrices where the entries are indepeedénations oft+-1
Bernoulli random variables

A — +1/y/m, with probability 3
Y ~1/y/m, with probability 3

Then we have the following result, shown, for instance in [3]

Theorem 1.14 Suppose thaty, N and0 < § < 1 are fixed. IfA(w),w € Q™ is a
random matrix of sizen x N with the concentration propert{i.14) then there exist
constants:y, c > 0 depending o such that the RIP holds fod (w) with constant
andk < Clm with probability exceedingd — 2e~<2",

An extensive discussion on RIP properties of different roas; for instance par-
tial Fourier matrices or structured matrices, will be pd®ad in the course by Holger
Rauhut.

2 Numerical Methods for Compressed Sensing

The previous sections showed tifatminimization performs very well in recovering
sparse or approximately sparse vectors from undersampéegurements. In appli-
cations it is important to have fast methods for actuallyisgl /,-minimization or
to have similar guarantees of stability. Two such methodse-homotopy (LARS)
method introduced by [35, 64], the iteratively reweighteddt square method (IRLS)
[30], and the iterative hard thresholding algorithm [6, Avil be explained in more
detail below.
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As a first remark, thé;-minimization problem
min ||z||y  subject toAx =y (2.15)

is in the real case equivalent to the linear program

N
minZUj subjectto v >0, (A|— A =y. (2.16)
j=1

The solutionz* to (2.15) is obtained from the solutiart of (2.16) viaz* = (I]| —
I)v*. Any linear programming method may therefore be used fosisgl(2.15). The
simplex method as well as interior point methods apply itigalar [60], and standard
software may be used. (In the complex case, (2.15) is equit/td a second order cone
program (SOCP) and can be solved with interior point metraxisell.) However,
such methods and software are of general purpose and onexpegt ¢hat methods
specialized to (2.15) outperform such existing standarthats. Moreover, standard
software often has the drawback that one has to provide theé&trix rather than fast
routines for matrix-vector multiplication which are awile for instance in the case of
partial Fourier matrices. In order to obtain the full perfi@nce of such methods one
would therefore need to re-implement them, which is a dagrtask because interior
point methods usually require much fine tuning. On the contitze two specialized
methods described below are rather simple to implement ang efficient. Many
more methods are available nowadays, including greedyadsttsuch as Orthogonal
Matching Pursuit [74] and CoSaMP [73]. However, only theethmethods below are
explained in detail because they highlight the fundamesdatepts which are useful
to comprehend also other algorithms.

2.1 Direct and lterative Methods

2.1.1 The Homotopy Method

The homotopy method — or modified LARS — [34, 35, 62, 64] so(2e%5) in the real-
valued case. One considers theregularized least squares functionals

F() = 3lAz — g+ Alels, @ €RY, 3> 0, @17)
and its minimizerr,. When\ = \is large enough themX = 0, and furthermore,
limy_ox) = «*, wherez™* is the solution to (2.15). The idea of the homotopy method
is to trace the solutiom, from z5 = 0 to z*. The crucial observation is that the
solution path\ — z) is piecewise linear, and it is enough to trace the endpoiritseo
linear pieces.

The minimizer of (2.17) can be characterized using the s$igvdntial, which is
defined for a general convex functién: RY — R at a pointz € RY by

OF(z) = {v e RN, F(y) — F(z) > (v,y — z) forally € RV},
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Clearly,z is a minimizer of " if and only if 0 € 0F(x). The subdifferential o, is
given by
OF\(z) = A" (y — Az) + \0||z|1

where the subdifferential of thg-norm is given by
Ozl ={veRN: v €dzy,l=1,...,N}

with the subdifferential of the absolute value being

d|z| = { {sgn(2)}, ?f z f 0,
[—1,1] if z=0.

The inclusion O 0F)(z) is equivalent to

(A™(y — Az)), = Asgn(wg) if 2, # 0, (2.18)
[(A*(y — Az)y| < A if 2, =0, (2.19)

forall/=1,... N.

As already mentioned above the homotopy method starts mth= =, = 0.
By conditions (2.18) and (2.19) the correspondingan be chosen as = (@ =
|A*y||s0- In the further stepg = 1,2, ... the algorithm computes minimizers, z(2) . ..
and maintains an active (support) §&t Denote by

the current residual vector. The columns of the mattiare denoted by, ¢ =
1,...,N and for a subsel” C {1,...,N} we let Ay be the submatrix ofA cor-
responding to the columns indexed by

Step 1:Let

). * _ (D
(0= arg max [(A%y)| = arg max o).

One assumes here and also in the further steps that the maxsrattained at only
one index{. The case that the maximum is attained simultaneously abtwaoore
indeces? (which almost never happens) requires more complicatibaswe would
like to avoid here. One may refer to [35] for such detalils.

Now setTy = {¢*}. The vectord € R¥ describing the direction of the solution
(homotopy) path has components

dit) = llacllz?sen((Ay)e),  df? =00 # 0%,
The first linear piece of the solution path then takes the form

z=1x(y) =20 +4d® = 7a®, 5 e [0,7D].
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One verifies with the definition af(D) that (2.18) is always satisfied far= x(vy) and
A= A7) = A0 — 5, ~ € [0,\9]. The next breakpoint is found by determining the
maximaly = v > 0 for which (2.19) is satisfied, which is

A0 _ D) 20 (1)
+® = min { “ ot (2.20)
00 | 1

— (A*AdM), 1+ (A*AdWD)

where the minimum is taken only over positive arguments. nTH& = z(y(Y) =
+DdD is the next minimizer offy for A = A\ = XO — ~@) This \( satis-

fiesAM = || ||o. Let /@ be the index where the minimum in (2.20) is attained
(where we again assume that the minimum is attained only atirtex) and put
To = {¢D 2},

Stepj: Determine the new directiod’) of the homotopy path by solving
A}jATjd%) = sgn(c%)), (2.21)

which is a linear system of equations of size at m@$t x |T;|. Outside the com-
ponents inT}; one setsdgj) = 0,/ ¢ T;. The next piece of the path is then given
by

z(y) =2V +4d9, 5 e[0,49)].

The maximaky such that:(~) satisfies (2.19) is

AG-D o) A\G-D) (4)
ygf) min Cé. , + CZ, . (2.22)
teT; | 1— (A*AdW))," 1+ (A*AdW)),

The maximaky such thatz(+) satisfies (2.18) is determined as

(4) (4-1)
o —;1611751{ zd D jdiY. (2.23)

Both in (2.22) and (2.23) the minimum is taken only over pesiarguments. The
next breakpoint is given byU*Y = z(7) with v0) = min{yf),y(_j)}. If 7(7)
determines the minimum then the indé% ¢ 7 providing the minimum in (2. 22) is
added to the active sef 4 = T; U {¢7)}. If ’y(J) = 7Y then the index") e

is removed from the active sefﬁl =T \ {E_ }. Further, one updates(ﬂ) =
A0=1 — ~ (), By construction\() = ||c0) | 4

The algorithm stops wheA) = ||c) ||, = 0, i.e., when the residual vanishes,
and outputz* = zU). Indeed, this happens after a finite number of steps. [35}guto
the following result.

Theorem 2.1 If in each step the minimum i(2.22) and (2.23) is attained in only
one index/, then the homotopy algorithm as described yields the ma@mof the
£1-minimization problen2.15).
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If the algorithm is stopped earlier at some iteratijpthen obviously it yields the
minimizer of F, = F\¢;. In particular, obvious stopping rules may also be used to
solve the problems

min ||z||s subject to| Az — ylj2 < e (2.24)
and min|[Az —yl[2 subject to|z|]; < 0. (2.25)

The second of these is called the LASSO [72].

The LARS (least angle regression) algorithm is a simple fization of the ho-
motopy method, which only adds elements to the active seach step. So/(_” in
(2.23) is not considered. (Sometimes the homotopy methdiceigfore also called
modified LARS.) Clearly, LARS is not guaranteed any more &ld/the solution of
(2.15). However, it is observed empirically — and can be gnorigorously in certain
cases [34] — that often in sparse recovery problems, the topyonethod does never
remove elements from the active set, so that in this case L&RISromotopy perform
the same steps. It is a crucial point that if the solution o152 is k-sparse and the
homotopy method never removes elements then the solutastamed after precisely
k-steps. Furthermore, the most demanding computationélapatep; is then the
solution of thej x j linear system of equations (2.21). In conclusion, the hompt
and LARS methods are very efficient for sparse recovery probl

2.1.2 lteratively Reweighted Least Squares

In this section we want to present an iterative algorithmalwvhunder the condition that
A satisfies the NSP, is guaranteed to reconstruct vectorshdthame approximation
guarantees (1.5) d@s-minimization. Moreover, we will also show that such algjom
has a guaranteed linear rate of convergence which, with arainmodification, can
be improved to a superlinear rate. We need to make first a intimfduction which
hopefully will shed light on the basic principles of this aighm and their interplay
with sparse recovery and-minimization.

DenoteF(y) = {x : Ax = y} andN = ker A. Let us start with a few non-rigorous
observations; next we will be more precise. Fef 0 we simply have

2

t] = e
t]

Hence, ar/;-minimization can be recasted into a weighteeminimization, and we

may expect

N
arg min ) Z

N
: 2),.x—1
Tj| ~ arg min Zac:v
2€F(y j:1| J| xe]_.(y)j:l ]| j| 9

as soon as* is the wanted’;-norm minimizer. Clearly the advantage is that minimiz-
ing a smooth quadratic functige|? is better than addressing the minimization of the
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nonsmooth functiont|. However, the obvious drawbacks are that neither we dispose
of x* a priori (this is the vector we are interested to computel)vm@ can expect that

x; # 0foralli = 1,..., N, since we hope fok-sparse solutions Hence, we start
assuming that we dispose of a good approximati¢nof |(})% + €3|7Y/2 ~ |27|~!

and we compute
N

2" = arg min wzwy, (2.26)

F J
z€F(y )]=
then we up-date,, 1 < ¢,, we define

Wit = [(2})? + a7, (2.27)

and we iterate the process. The hope is that a proper choige-ef O will allow for
the computation of ad;-minimizer, althought such limit property is far from being
obvious. The next sections will help us to describe the riglthematical setting
where such limit is justified.

The relationship betweené;-minimization and reweighted £,-minimization

Lemma 2.2 An elementz* € F(y) has minimal/;-norm among all elements &
F(y) if and only if

1D sen(@)ml < D Iml, neN. (2.28)

x#0 =0

Moreover,z* is unique if and only if we have strict inequality for glle N/ which are
not identically zero.

Proof. If x € F(y) has minimum¢;-norm, then we have, for any € N and any
t € R,

N N
Z |z + tn;| > Z |z;]. (2.29)
i=1 i=1

Fix n € N. If tis sufficiently small thenr; + ¢n; andz; will have the same sign
s; := sgn(x;) wheneverr; # 0. Hence, (2.29) can be written as

t Z Sini + Z |t77@ >
x;7#0 z;=0

Choosingt of an appropriate sign, we see that (2.28) is a necessaryticond
For the opposite direction, we note that if (2.28) holds tf@neachn € N, we
have

N
Solail = D> simi=> si(zi+tm) - Z Sifli
=1
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N
< Y sl tm) Y il < i+ il (2.30)
=1

;70 z;=0

where the first inequality uses (2.28).

If = is unique then we have strict inequality in (2.29) and hendessquently in
(2.28). If we have strict inequality in (2.28) then the suhignt strict inequality in
(2.30) implies uniqueness. a

Next, consider the minimization in a weightégdw)-norm. Suppose that the weight
w is strictly positivewhich we define to mean that; > Oforall j € {1,...,N}. In
this casefz(w) is a Hilbert space with the inner product

N
(U, V) 1= ijujvj. (2.31)
Define
W= i . 2.32
= arg min 1203 ) (2.32)

Because th¢ - HgN -norm is strictly convex, the minimizer" is necessarily unique;
it is completely characterlzed by the orthogonality coiodis

(. My =0, VYneN. (2.33)

Namely,z* necessarily satisfies (2.33); on the other hand, any element(y)
that satisfiegz, n),, = 0 for all » € A/ is automatically equal ta™.

A fundamental relationship betweéprminimization and weighteé,-minimization
is easily shown, which might seem totally unrelated at fiigitts due to the different
characterization of respective minimizers.

Lemma 2.3 Assume that* is an/;-minimizer and that:* has no vanishing coordi-
nates. Then the (unique) solutieff of the weighted least squares problem

- ; - R -1
V¥ = argzén}}a) HZH@(W w:= (wi,...,wy), Wherew; = [z7]77,

coincides withz*.
Proof. Assume thate* is not the/) (w ) -minimizer. Then there existgs € N such

that 0< (%, ) = Z?’:lenjx; = E] 17; sgn(z}). However, by Lemma 2.2 and
because:* is an/,-minimizer, we havezjz1 ul sgn( z7) = 0, acontradiction. [0



22 M. Fornasier

An iteratively re-weighted least square algorithm

Since we do not know:*, this observation cannot be used directly. However, itdead
to the following paradigm for finding*. We choose a starting weight® and solve
the weighted/, minimization for this weight. We then use this solution tdide a
new weightw! and repeat this process. An IRLS algorithm of this type appéa
the first time in the approximation practice in the Ph.D. ihe$Lawson in 1961 [52],
in the form of an algorithm for solving uniform approximati@roblems, in particular
by Chebyshev polynomials, by means of limits of weighfgenorm solutions. This
iterative algorithm is now well-known in classical appnmétion theory as Lawson’s
algorithm. In [19] it is proved that this algorithm has inmiple a linear conver-
gence rate. In the 1970s extensions of Lawson’s algorithmd faninimization, and
in particular/;-minimization, were proposed. In signal analysis, IRLS wesgposed
as a technique to build algorithms for sparse signal reoact&n in [47]. Perhaps
the most comprehensive mathematical analysis of the pedioce of IRLS for/,,-
minimization was given in the work of Osborne [63]. Howeulg interplay of NSP,
£1-minimization, and a reweighted least square algorithmbess clarified only re-
cently in the work [30]. In the following we describe the essa lines of the analysis
of this algorithm, by taking advantage of results and teoilugy already introduced
in previous sections. Our analysis of the algorithm (2.26) é2.27) starts from the
observation that

1
[t| = IuI)l;Icl) > (wt2 +wt),

the minimum being reached far = ‘—;f' Inspired by this simple relationship, given

a real numbet > 0 and a weight vectow € RY, withw; > 0, = 1,..., N, we
define

1
J(z,w,€) = ZZJZ"UJ]‘ + Z(ezwj + wj_l) , zeRY, (2.34)

The algorithm roughly described in (2.26) and (2.27) cangoasted as an alternat-
ing method for choosing minimizers and weights based ontthetional 7 .

To describe this more rigorously, we define fore RY the nonincreasing rear-
rangement:(z) of the absolute values of the entrieszofThusr(z); is thei-th largest
element of the sef|z;|, 7 = 1,..., N}, and a vectow is k-sparse iffr(v);41 = 0.
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Algorithm 1. We initialize by takingu® := (1,...,1). We also sety := 1. We
then recursively define for = 0,1, ...,

2"l = arg min J(z,w", e,) = arg min ||2||p (00 2.35
g min ( ) gzef(y)H lep(m) (2.35)
and
r@™ D

(2.36)

€n+1 := min(ep,,

N )
whereK is a fixed integer that will be described more fully later. Viladefine

w't = argmin J (2", w, en41). (2.37)
w>0
We stop the algorithm it,, = 0; in this case we defing’ := 2" for j > n.
However, in general, the algorithm will generate an infiséguencéx"),,c y of
distinct vectors.

Each step of the algorithm requires the solution of a weijlgast squares problem.
In matrix form

e = DAY (AD ANy, (2.38)

where D,, is the N x N diagonal matrix whosg-th diagonal entry isv} and A*
denotes the transpose of the matfix Oncex"*1 is found, the weights"** is given
by

w@—i—l _ [(l,ﬂ—i-l)Z + €2+1]—1/2’ 7=21...,N. (2.39)

J J n

Preliminary results

We first make some comments about the decreasing rearrangemgeand thej-term
approximation errors for vectors R . We have the following lemma:

Lemma 2.4 The mapz +— r(z) is Lipschitz continuous ofR”Y, || - ||,..): for any
2,72 € RN, we have
Ir(2) = (2w < M2 = 2llece - (2.40)

Moreover, for anyj, we have
|O-j(z)él - O-j(z/)41| < HZ - Zl”fp (241)
and for any.J > j, we have

(J - j)T(Z)J < HZ - Z/HQ + Uj(zl)gl' (2-42)
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Proof. For any pair of pointg andz’, and any;j € {1,..., N}, letA be asetofi — 1
indices corresponding to thie— 1 largest entries in’. Then

r(z); < max|z| < max |z + |2 — 2'|lee = r(2); + Iz = [l (2.43)
i€AC i€AC

We can also reverse the roles:oéindz’. Therefore, we obtain (2.40). To prove (2.41),
we approximate: by aj-term best approximatiom;; € ¥; of 2’ in /1. Then

0j(2)e, < |z = 251lley < Mz = 2'ley + 05(2 ey

and the result follows from symmetry.
To prove (2.42), it suffices to note thal — j) (z); < 0(2)e,. a

Our next result is an approximate reverse triangle inetyufr points inF(y). Its
importance to us lies in its implication that whenever twing®z, 2’ € F(y) have
closel;-norms and one of them is close t&-aparse vector, then they necessarily are
close to each other. (Note that it also implies that the otleetor must then also be
close to thak-sparse vector.) This is a geometric property of the nultspa

Lemma 2.5 Assume that the NSP holds for somand~ < 1. Then, for any, 2’ €
F(y), we have

1+v

”Z,_Z”Zl < 1_,.Y

(I12'llex = l12lle, + 20L(2)ey) - (2.44)

Proof. LetT be a set of indices of the largest entries in. Then

12" = 2)relle, < Nepelley + l2elley
= 12"y = Nz lley + oL (2)ey
= lzlle, + 12'lley = N2lley = Nl27lley + oL(2)ey
= |lzzlle, = 27 lley + 12l = I2lley + 20L(2)e,
< NG = 2)rlley + 12 e, = N2lle, +20L(2)e,. (2.45)

Using the NSP, this gives

1" = 2)rlley < VNE = 2)relley < YUIE = 2zl + 121l — 2lle + 20L(2))-

(2.46)
In other words,
~
I = 2)rlles < 2=/l = 12l + 200 (2.47)
Using this, together with (2.45), we obtain
1+7y
12" = 2lley = I(z" = 2)elley + (2" = 2)7lley < E(Ilz’\la = |lzlle, +20L(2)ey),
(2.48)

as desired. O
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By using the previous lemma we obtain the following estimate

Lemma 2.6 Assume that the NSP holds for som@nd~ < 1. Suppose thafF(y)
contains anL-sparse vector. Then this vector is the unigyeminimizer inF(y);
denoting it byz*, we have moreover, for all € F(y),

1+~y
1 5 O'L(’U)gl . (249)

o — 2"l < 2

Proof. For the time being, we denote tliesparse vector itF (y) by .
Applying (2.44) withz’ = v andz = x,, we find

o=@l < T2l = sl
sincev € F(y) is arbitrary, this implies thafv||,, — ||zs|l¢, = O for allv € F(y), so
thatz, is an/i-norm minimizer inF(y).

If 2" were anothefi-minimizer inF(y), then it would follow that|z'(|,, = ||zs]|¢,,
and the inequality we just derived would imply’ — z,||s, = 0, orz’ = z,. It follows
thatz is the unique/;-minimizer inF(y), which we denote by*, as proposed earlier.

Finally, we apply (2.44) with’ = z* andz = v, and we obtain

. 1+y 1+~
lv =27l < 3= V(IIx lley = llvlley + 201 (v)e) < 23— VJL(v)el,
where we have used tifg-minimization property of:*. a

Our next set of remarks centers around the functignalefined by (2.34). Note
that foreaclm = 1,2,..., we have

zi 2+ 2 Y2 (2.50)

Mz

1
‘7( e , W 6n+1

J=1

We also have the following monotonicity property which refdr alln > 0:

j(xn—i-l’wn—i-l’ €n+1) < j($n+l7wn7 €n+1) < j(xn—i-l’wn’ En) < j(xn’wn’ En)‘
(2.51)
Here the first inequality follows from the minimization peapy that definesy” 1,
the second inequality from, 11 < ¢,, and the last inequality from the minimization
property that defines”*1. For eachn, 2! is completely determined by"; for
n = 0, in particular,z! is determined solely by, and independent of the choice
of 20 € F(y). (With the initial weight vector defined by® = (1,...,1), 2! is the
classical minimunv?,-norm element ofF (y).) The inequality (2.51) forn = 0 thus
holds for arbitraryr® € F(y).



26 M. Fornasier

Lemma 2.7 For eachn > 1 we have
2"l < T (a*, w°, €0) =: A (2.52)

and
wi > A j=1...,N. (2.53)

Proof. The bound (2.52) follows from (2.51) and

2" ley <D (@) + ]2 = T (@™ w, en)-

N
J=1

The bound (2.53) follows fronfw?)~* = [(27)2 + E2]Y2 < J(z", w",en) < A,

n

where the last inequality uses (2.51). ad

Convergence of the algorithm

In this section, we prove that the algorithm converges. @aitiag point is the follow-
ing lemma that establishés™ — z"+1) — 0 forn — oc.

Lemma 2.8 Given anyy € R™, thex™ satisfy
[e.9]
D et —an|ff, < 242 (2.54)
n=1

where A is the constant of Lemnfa7. In particular, we have

lim (z" — 2"*1) = 0. (2.55)

n—~00

Proof. Foreachn = 1,2,..., we have

2[\7(1.”7 wn7 En) - j(xnr‘rl’ wn+17 6n+1)] 2 2[t7(xn7 wn7 En) - j(xn+l7 wna en)]
_ (wn7 xn>wn . <xn+1’ wn+l>wn
_ <:L,n + ‘,L,n-i-l’ " — :L'n+1>wn
— (wn . wn+l7 " — wn+l>

N
= D wjlaf —af Y
7j=1

> A7Yz" — 22, (2.56)

wn

where the third equality uses the fact that+1, 2" — 2"*1),» = O (observe that
2" — 2 € N and invoke (2.33)), and the inequality uses the bound (2&3jhe
weights. If we now sum these inequalities owel 1, we arrive at (2.54). ad
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From the monotonicity ot,,, we know thate := lim,,_., €, exists and is non-
negative. The following functional will play an importartle in our proof of conver-
gence:

z —|—e 1/2 (2.57)

Mz

7j=1
Notice that if we knew that™ converged tar then, in view of (2.50),f.(z) would

be the limit of 7 (2™, w", €,). Whene > 0 the functionalf. is strictly convex and
therefore has a unique minimizer

€

x® :=arg min f.(z). (2.58)
z€F(y)

This minimizer is characterized by the following lemma:

Lemma 2.9 Lete > O0andz € F(y). Thenz = x° if and only if (2, 1) g(..) = O for
all n € N, wherew(z,¢); = [22 + 2|72

Proof. For the “only if” part, letz = 2¢ andn € N be arbitrary. Consider the analytic
function

Ge(t) = fe(z +tn) — f=(2).

and by the minimization propert.(¢t) > 0 for allt € R.

We haveG.(0) =
=0.A |mple calculation reveals that

Hence,G.(0)

N
iz
Gel0) = 2y oo = (& it

Jj=1

which gives the desired result.

For the “if” part, assume that € F(y) and(z,7).-) = O for alln € N, where
w(z,¢) is defined as above. We shall show thé a minimizer off. on F(y). Indeed,
consider the convex univariate functigu? + €2]%/2. For any pointuo we have from
convexity that

[u? 4+ Y2 > [ud + €)Y + [ud + 7Y ?ug(u — up), (2.59)

because the right side is the linear function which is tabgethis function atug. It
follows that for any point € F(y) we have

N
fe0) = fl2)+ D [+ 22(vj—2) = fe(2)+{2,0—2)a(s0) = fe(2), (2.60)

J=1

where we have used the orthogonality condition (2.66) aadatt thaty — z is in V.
Sincevw is arbitrary, it follows that: = 2, as claimed. a
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We now give the convergence of the algorithm.

Theorem 2.10 Let K (the same index as used in the update @l86) be chosen so
that A satisfies the Null Space Property of ord€r with v < 1. Then, for eachy €
R™, the output of Algorithm 1 converges to a vectowith 7(Z) g +1 = N lim,, o0 €
and the following hold:

@) If ¢ = lim,,~ &, = 0, thenz is K-sparse; in this case there is therefore a unique
¢1-minimizerz*, andz = x*; moreover, we have, for < K, and anyz € F(y),

2(1+7)

- (2.61)

|z — Z|lo, < cop(2)e, Withe:=
@ii) If e = lim,, .00 € > 0, thenz = a5,
(iii) In this last case, ify satisfies the stricter boungl < 1 — 22, (or, equivalently, if
7L < K), then we have, for alt € F(y) and anyk < K — £%, that

. _ L 2144) | K—k+3
|z — z||g, < éop(2)e,, Withé:= el b i (2.62)
1—
As a consequence, this case is excluded (if) contains a vector of sparsity <
K— 2.
1—

Note that the approximation properties (2.61) and (2.62)aactly of the same order
as the one (1.5) provided y-minimization. However, in generat,is not necessarily
an/1-minimizer, unless it coincides with a sparse solution.

The constant can be quite reasonable; for instancey K 1/2 andk < K — 3, then
we haver: < 9312 < 27.

Proof. Note that since,,+1 < ¢,, thee, always converge. We start by considering
the case := lim,, .o, €, = 0.

Casee = 0: In this case, we want to prove that converges , and that its limit
is an/y,-minimizer. Suppose that, = 0 for someno. Then by the definition of the
algorithm, we know that the iteration is stoppedhat ng, andz™ = x™, n > nq.
Thereforez = z™°. From the definition of,,, it then also follows that(z")x 11 =0
and soxr = z"o is K-sparse. As noted in Lemma 2.6, iffé-sparse solution exists
when A satisfies the NSP of ordet with v < 1, then it is the uniqué;-minimizer.
Thereforez equalsz*, this unique minimizer.

Suppose now that, > 0 for all n. Sinces,, — 0, there is an increasing sequence
of indices(n;) such that,,, < ¢,,_1 for all i. By the definition (2.36) ofc;, )nen, We
must have:(z") k11 < Ne,,_1 forall i. Noting that(z"),,c s is @ bounded sequence,
there exists a subsequer(ge) je s Of (n;)icar SUch thala?7) ;c - converges to a point
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z € F(y). By Lemma 2.4, we know that(z?7) 11 converges to(z) x+1. Hence we
get
T(%)K-i-l = lim T(ij)K+1 < llim N6pj_1 = 0, (263)
J—00 Jj—00

which means that the support-width @fis at mostK, i.e. z is K-sparse. By the
same token used above, we again have that «*, the uniquel;-minimizer. We
must still show thatz™ — z*. Sincez?” — z* ande,, — 0, (2.50) implies
J(xPi,wPi e, ) — |lz*|s. By the monotonicity property stated in (2.51), we get
J (™, w", e,) — ||2*||s,. Since (2.50) implies

j(l,n’wn’gn) - N&n g ||anél < j(xnawnﬁgn)a (264)

we obtain||z"||,, — ||z*||¢,. Finally, we invoke Lemma 2.5 with’ = 2", z = z*,
andk = K to get

timsup " — 2, < i—z (1im fla"l — ") =0, (265)
which completes the proof that* — z* in this case.

Finally, (2.61) follows from (2.49) of Lemma 2.6 (with = K), and the observation
thato,,(2) > o (2) if n < n'.

Casee > 0. We shall first show thai™ — z°, n — oo, with 2 as defined by
(2.58). By Lemma 2.7, we know that™)>° ; is a bounded sequence®? and hence
this sequence has accumulation points. (2€%) be any convergent subsequence of
(z™) and letz € F(y) be its limit. We want to show that = z°.

Sincew? = [(z7)% + €]7/2 < %, it follows thatlim; o w}' = [(Z;)? +
?]7Y2 = @(z,¢e); =: w;,j = 1,..., N. On the other hand, by invoking Lemma 2.8,
we now find that:"+1 — Z, i — oo. It then follows from the orthogonality relations
(2.33) that for every; € N, we have

(@,m)g = lim (2" n)yni = 0. (2.66)

1— 00

Now the “if” part of Lemma 2.9 implies that = x°. Hencez® is the unique accumu-
lation point of (z™),,c o and therefore its limit. This establishes (ii).
To prove the error estimate (2.62) stated in (iii), we firsierthat for any: € F(y),
we have
[°]le, < fe(2®) < fe(2) < |zl + Ne, (2.67)

where the second inequality uses the minimizing property oHence it follows that
|z%]|¢, — [|2]le, < Ne. We now invoke Lemma 2.5 to obtain

1+
11—+~
From Lemma 2.4 and (2.36), we obtain

[ = 2le, < [Ne+ 201 (2)e,]. (2.68)

Ne = lim Ne, < lim 7(2") g1 = r(2®) k41 (2.69)

n—oo
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It follows from (2.42) that

(K+1-k)Ne < (K+1-kr(a)r
< [2° = 2lly + on(2)y
1+y
< 1 et 20k(z)a] + or(2)n, (2.70)

where the last inequality uses (2.68). Since by assumptioR owe havek — k >
7=, i.e. K +1—k > 12, we obtain

2(K — k) + 3

(K —k) - 2

NE—I—ZO’k(Z)gl < O’k(z)gl.

Using this back in (2.68), we arrive at (2.62).

Finally, notice that ifF(y) contains &-sparse vector (with < K — 1%)- then we
know already that this must be the unig@ieminimizer x*; it then follows from our
arguments above that we must have 0. Indeed, if we had > 0, then (2.70) would
hold for z = z*; sincex™ is k-sparsegy(z*),, = 0, implyinge = 0, a contradiction
with the assumptioa > 0. This finishes the proof.

0

Local linear rate of convergence

It is instructive to show a further very interesting reswincerning the local rate of
convergence of this algorithm, which makes heavily use efNlSP as well as the
optimality properties we introduced above. One assumesthatF(y) contains the
k-sparse vector®. The algorithm produces the sequendée which converges ta*,
as established above. One denotes the (unknown) suppbs lofsparse vectar™ by
T.

We introduce an auxiliary sequence of error vecigrs N vian™ := 2" — x* and

B = " lley = 1™ = 2"y

We know thatZ,, — O.
The following theorem gives a bound on the rate of convergaid,, to zero.

Theorem 2.11 AssumeA satisfies NSP of ordek with constanty such that0 < v <

1— 2. Suppose that < K — 2,0 < p < 1, and0 < y < 1 — 225 are such

that 1 ) 1
L+
#'_7l—p <1+7K—|—1—k7><1'

Assume thafF(y) contains ak-sparse vector™ and letT' = supp(z*). Letng be
such that

0

E, < R":=pmin|z]| (2.71)
€T
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Then for alln > ng, we have

Consequently:™ converges ta:* exponentlally.
Proof. We start with the relation (2.33) withh = w", 2% = "% = z* + »**1, and
n =zt — 2* = ™1 which gives

N

> (@i el =0,
i=1

Rearranging the terms and using the fact tkais supported o', we get

*

N

n+12 n __ * n+1 n_ Z; n+1
STt = = ata] _—Z—[( gt @7
i=1

€T €T

Prove of the theorem is by induction. One assumes that wedtewenFE,, < R*
already. We then have, for alle T,

'] < "l = En < plai]

so that . i} i}
[(x?)2 4 €e2]Y2 = |z |oi+nf] " 1-0p

and hence (2.73) combined with (2.74) and NSP gives

, (2.74)

Z\n"“!z i, ey < 72 Hn"“Ha

At the same time, the Cauchy-Schwarz inequality combinetl thie above estimate
yields

[ A <Z|77"+1|2 ?) <Z[(w?)2+6ﬁ]”2>

i€Te i€Te
N
(Z In?+1|2w?> (Z[(m) +e ]1/2>
i= i€l
< 1—||nT61Hel(Hn e + Ne) . (2.75)

If prit = 0, thenzit = 0. In this caser™*! is k-sparse and the algorithm has
stopped by definition; since”™ — 2* is in the null spaceV/, which contains nd-
sparse elements other than 0, we have already obtained Ith®sa:" ™ = z*. If
nrt # 0, then after canceling the factpn’~ |, in (2.75), we get

B
I e, < 72 (Il + New)
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and thus
n n n n YA+ 0w
17" ey = I e + I e < (X405 e, < 1o, (In™[ley + Nen) -
(2.76)
Now, we also have by (2.36) and (2.42)
n 1 B " ey
Nep <r(2")k+1 < (lz" = 2*[l¢, + on(z7)e,) = , (2.77)

K+1-k

since by assumptiosy (z*) = 0. This, together with (2.76), yields the desired bound,

1(1+1)

En = el <
+1 HT} Hél 1_p < K+1—k

) 17" lex = 1.

In particular, since: < 1, we haveFE,, 11 < R*, which completes the induction step.
It follows that E,, 1 < uFE, for all n > ng. O

A surprising superlinear convergence promotingé.-.-minimization for = < 1

The linear rate (2.72) can be improved significantly, by a\&mple modification of
the rule of updating the weight:

2—7

witt = ((m?+1)2+eﬁ+l) 2 j=1,...,N, forany0< 7 < 1.

This corresponds to the substitution of the functi@mwith

jT(z,w,e)::E szz-wj—kz eij—i— . — , zGRN,wGRf,EERJF.

Surprisingly the rate of local convergence of this modifiggbdthm is superlinear;
the rate is larger for smaller, increasing to approach a quadratic regime-as 0.
More precisely the local erraf,, := [[z" — 2”7y satisfies

By < p(y, 1) EZT, (2.78)

wherepu(v,7) < 1 for > 0 sufficiently small. The validity of (2.78) is restricted to
z™ in a (small) ball centered at*. In particular, ifz° is close enough to* then (2.78)
ensures the convergence of the algorithm toktfsparse solution™.

Numerical results

In this section we present numerical experiments thattititis that the bounds derived
in the theoretical analysis do manifest themselves in wect
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We start with numerical results that confirm the linear rdteomvergence of our itera-
tively re-weighted least square algorithm farminimization, and its robust recovery
of sparse vectors. In the experiments we used a matrof dimensionsm x N

and GaussiaV'(0,1/m) i.i.d. entries. We already mentioned that such matrices are
known to possess (with high probability) the RIP propertytmaptimal bounds. In
Figure 2.1 we depict the approximation error to the uniquarsgst solution shown

in Figure 2.2, and the instantaneous rate of convergence.niimerical results both
confirm the expected linear rate of convergence and the robasnstruction of the
sparse vector.
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Figure 2.1An experiment, with a matrix of size 250« 1500 with Gaussia\/ (0, 2—%,0)
i.i.d. entries, in which recovery is sought of the 45-sparsetor z* represented in
Figure 2.2 from its image = Axz. Left: plot of logo(||z" — 2*|¢,) as a function of
n, where thex™ are generated by Algorithm 1, with) defined adaptively, as in (2.36).
Note that the scale in the ordinate axis does not report tharithm Q -1, -2, ...,
but the corresponding accuracie€ 101,102, ... for ||z" — z*||,,. The graph also
plots e, as a function of.. Right: plot of the ratiog|z" — 22|, /[|z™ — 271,
and(e,, — ent1)/(en—1 — €,) for the same examples.

Next, we compare the linear convergence achieved ¥yiminimization with the
superlinear convergence obtained by the iteratively rigfited least square algorithm
promoting/,-minimization.

In Figure 2.3 we are interested in the comparison of the rat@mvergence when
our algorithm is used for different choices of @ = < 1. Forr = 1,.8,.6 and
.56, the figure shows the error, as a function of the iterattep s, for the iterative
algorithm, with different fixed values af. ForT = 1, the rate is linear, as in Figure
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Figure 2.2 The sparse vector used in the example illustrated in FigureThis vector
has dimension 1500, but only 45 non-zero entries.

2.1. For the smaller values = .8, .6 and.56 the iterations initially follow the same
linear rate; once they are sufficiently close to the sparkgisn, the convergence rate
speeds up dramatically, suggesting we have entered ttwrebvalidity of (2.78). For
smaller values of numerical experiments do not always lead to convergencsonre
cases the algorithm never get to the neighborhood of théisolvhere convergence is
ensured. However, in this case a combination of initiakiiens with the/;-inspired
IRLS (for which we always have convergence) and later ii@nat with /--inspired
IRLS for smallerr allow again for a very fast convergence to the sparsestisojut
this is illustrated in Figure 2.3 for the case= .5.

o Comparison of the rate of convergence for different t
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Figure 2.3 We show the decay of logarithmic error, as a function of thenber of
iterations of the algorithm for different values of(1, 0.8, 0.6, 0.56). We show also
the results of an experiment in which the initial 10 iterati@re performed with = 1
and the remaining iterations with= 0.5.
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Enhanced recovery in compressed sensing and relationshipitiw other work

In this section, we shortly report a phenomenon of enhanofrmgite of recovery as
depicted in Figure 2.4. As shown there, the IRLS with weidh& gradually moved
from an/1- to an/,-minimization goal produce a higher experimentally deieed
probability of successful recovery as a functiornkof

Comparison of iterative re-weighted least squares for |1 - I‘ minimization in Compressed Sensing
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Figure 2.4 The (experimentally determined) probability of succeksfigcovery of a
sparse 250-dimensional vecterwith sparsityk, from its imagey = Az, as a func-
tion of k. In these experiments the matri is 50 x 250 dimensional, with i.i.d.
GaussianV/ (0, 5—10) entries. The matrix is generated once; then, for each $paedue

k shown in the plot, 500 attempts were made, for randomly geeer-sparse vec-
torsz. Two different IRLS algorithms were compared, one with virginspired by
£1-minimization and the other with weights that gradually mdéwrom an/;- to an

£--minimization goal, with finalr = 0.5.

Some open problems

1. In practice this algorithm appears very robust and itveaence is either linear
or even superlinear when properly tuned as previously &tdit However, such guar-
antees of rate of convergence are valid only in a neighbattod@ solution which is
presently very difficult to estimate. This lack of knowleddees not allow us yet to
estimate properly the complexity of this method.

2. Fort < 1 the algorithm seems converging properly whes not too small, but
when, say; < 0.5, then the algorithm tends to fail to reach the region of goted
convergence. It is an open problem to characterize verpshsuch phase transition,
and heuristic methods of avoidance of local minima are algpeat interest.

3. While error guarantees of the type (1.5) are given, it smowhether (1.6) and
(1.13) can hold for this algorithm.
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2.1.3 Extensions to the Minimization Functionals with Tota Variation Terms

In concrete applications, e.g., for image processing, digétbe interested to recover
at best a digital image provided only partial linear or noaéir measurements, possibly
corrupted by noise. Given the observation that natural aad-made images can be
characterized by a relatively small number of edges anchsite relatively uniform
parts, one may want to help the reconstruction by imposiagtke interesting solution
is the one which matches the given data and has also a fewntlizgities localized on
sets of lower dimension.

In the context otompressed sensitag described in the previous sections, we have
already clarified that the minimization 6f-norms occupies a fundamental role for the
promotion of sparse solutions. This understanding fusssin important interpreta-
tion of total variation minimizationi.e., the minimization of th&.*-norm of deriva-
tives [68], as a regularization technique for image resimma The problem can be
modelled as follows; lef2 c R?, for d = 1,2 be a bounded open set with Lipschitz
boundary, and{ = L?(Q2). Foru € L} ()

loc

V(u,Q) := sup {/ udivep dr : ¢ € [C’(}(Q)]d,HcpHoo < 1}
Q

is the variation ofu. Further,u € BV (2), the space of bounded variation functions
[1,38], if and only if V' (u, 2) < co. In this case, we denot® (u)|(2) = V(u, Q). If
u € Wh(Q) (the Sobolev space df'-functions with L!-distributional derivatives),
then|D(u)|(Q) = [, |Vu|dx. We consider as in [16,77] the minimization ¥/ ()
of the functional

J () = || Ku = g[5 + 20 | D(u)] (), (2.79)

whereK : L2(Q2) — L?(Q) is a bounded linear operatgr,c L?(Q2) is a datum, and
« > 0 is a fixedregularization parameter Several numerical strategies to perform
efficiently total variation minimization have been propdda the literature. How-
ever, we will discuss in the following only how to adapt amat@/ely reweighted least
square algorithm to this particular situation. For simipliove would like to work on

a discrete setting and we refer to the course presented lmnAnChambolle for more
details related to the continuous setting [16, 43].

Let us fix the main notations. Since we are interested in aetissetting we define
the discreted-orthotopeQ = {a1 < ... < aj } x ... x {zf < ... < 2% } C RY,
d € N and the considered function spacesire- RN1xN2x..xNa \whereN; € N for
i=1,...,d. Foru € H we writeu = u(z;);jez With

d
7= [{1...,Ne}
k=1

and
1 d )

u(z;) = u(w;, . ..
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wherei; € {1,..., N;} and(z;)iez € Q. Then we endow with the norm

1/2 1/2
HszHsz(}jm@mﬁ :(22@@%) .

icZ zeQ
We define the scalar product ofv € H as
(u,v) = Y u(z;)v(w;)
iz
and the scalar product pf ¢ € H? as

(D Qe = Y _(p(1), q(5))pe

ieT

with (y, 2)pa = 3-0_; y;2; for everyy = (y1,...,ya) € RYandz = (21,...,2q) €
R<. We will consider also other norms, in particular

1/p
Jullp, = (Z M%)!”) , 1<p<oo,

ieT
and

l[ulloc = sup [u(zs)|.
ieZ

We denote the discrete gradievit: by

(Vu)(zi) = (Vu) (@), ..., (Vu)(23))
with
(Vi) () = u(acill, . ,acng, .. ,wfd) — u(acill, . ,ng, ... ,wfd) if i; <N
' if i; = N;

forallj =1,...,dandforalli = (i1,...,i4) € Z.
Lety : R — R, we define forw € H¢

P(lwD(©) =) ellwl@)) =Y e(lw(z)))

ieZ z€Q

wherely| = \/yf + ...+ yg. In particular we define thimtal variationof « by setting
o(s) = sandw = Vu, i.e.,

Vul(@) = 3 [Vu(e)] = 3 [Vua)|.

i€z e
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For an operatofs we denoteK ™ its adjoint. Further we introduce tltiscrete diver-
gencediv : H¢ — H defined, in analogy with the continuous setting,dly = —V*
(V* is the adjoint of the gradieriv’). The discrete divergence operator is explicitly
given by

pl(xill,...,xfd)—pl(wgl_l,...,xfd) ifl <ip <N
(divp)(z;) = pl(xill, . ,xgld) ifip =1
—pl(:nill_l, . ,a:ldd) if iy =N
pd(xlll, ,acgd) - pd(xill, .. ,xgld_l) ifl <ig < Ng
+...+ pd(xill,. ,ac;ld) if ig=1
—pi(ad, .2 _y) if iq = Na,

for everyp = (pt,...,p%) € H% and for alli = (iy,...,iq) € Z. (Note that if we
considered discrete domaiftsvhich are not discreté-orthotopes, then the definitions
of gradient and divergence operators should be adjustexdiagly.) We will use the
symbol 1 to indicate the constant vector with entry valuesid & to indicate the
characteristic function of the domain C 2. We are interested in the minimization of
the functional

T (u) = | Ku — g|5+ 2|V (u)] (), (2.80)

whereK € L('H) is alinear operatoy € H is a datum, and: > 0 is a fixed constant.
In order to guarantee the existence of minimizers for (2u8®pssume that:

(C) J is coercive inH, i.e., there exists a constafit > 0 such tha{7 < C} :=
{u e H:J(u) <C}is bounded irH.

It is well known that if 1¢ ker(K) then condition (C) is satisfied, see [77, Proposition
3.1], and we will assume this condition in the following.

Similarly to (2.34) for the minimization of th&-norm, we consider the augmented
functional

J(u,w) := || Ku — g||3 + (Z w(z)|Vu(x)]? + i) . (2.81)

€ w(x)

We used again the notatiqfi with the clear understanding that when applied to one
variable only refers to (2.80), otherwise to (2.81). Thenthee IRLS method for com-
pressed sensing, we consider the following
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Algorithm 2. We initialize by takingu® := 1. We also set > ¢ > 0. We then
recursively define fon = 0,1, ...,

nl— i " 2.82
u arg min J (u,w") ( )

and
w'tl = arg min T w). (2.83)

max(e,min(w,1/¢))

Note that, by considering the Euler-Lagrange equation82§ds equivalent to the
solution of the following linear second order partial diface equation

div (w"Vu) — SK*(KU —g) =0, (2.84)

which can be solved, e.g., by a preconditioned conjugatéigmamethod. Note that
e < w" < 1/e and therefore the equation can be recasted into a symmesitive
definite linear system. Moreover, as perhaps already esgettte solution to (2.83) is
explicitly computed by

1
wtl = max (E,min (W, 1/5)) )

For the sake of the analysis of the convergence of this dlgorilet us introduce the
following function:
15

€
— — 0<zL<
zgz —1—2 <z<¢g

Pe(2) =4 2 e<z<1/e

52 1
— — >1/e.
22 —|—2E z>1/e

Note that
pe(2) = |zl
and
2] = lim g (2).
e—0
We consider the following functional:
Te(u) = || Ku — g|3 + 200:(|V (u)]) (), (2.85)
Which is clearly approximating/ from above, i.e.,

J-(u) > J(u), and iEﬂ()je(u) = J(u). (2.86)
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Moreover, sincg7- is convex and smooth, by taking the Euler-Lagrange equatioa
have thatu. is a minimizer for7. if and only if

/
div (VWG ) - 2K (Ku—g) =0, (2.87)
|Vul o'

We have the following result of convergence of the algorithm

Theorem 2.12 The sequencg.™),cn has subsequences that converge to a minimizer
ue := u®° of J.. If the minimizer was unique, then the full sequence woulvege
to it.

Proof. Observe that

j(un’wn) _j(un-i—l’wn—i—l) _ (j(un7wn) _j(un-l—l’wn))

Therefore 7 (u™,w™) is a nonincreasing sequence and moreover it is bounded from

below, since
1
inf \V 2.~ | >o0
ot (gww u(z)| *W)) >

This implies that7 (u™, w™) converges. Moreover, we can write

B, =Y c(w” (), [Vu ™ (@)]) - c(w™ (@), [Vur (),

e
wherec(t, z) := t2? + 1. By Taylor's formula, we have

de

0 (2w — ) + 2 (e ) — P,

c(w™, z) = c(w™, 2) + 5 52

for ¢ € conv(w”,w" ). By definition of w™*!, and taking into account that <
w"*t < 1 we have

dc

o (,wn+l ‘Vun—i-l( )’)(wn o wn+l) > 07

andZ¢(t, ) = 3 > 2:3 for anyt < 1/e. This implies that

j(un’wn)_j( n+1 n+1 2 > 3Z’w wn—i—l(w)’Z’

zef)



Numerical methods for sparse recovery 41

and since7 (u™, w™) is convergent, we have
[w" — w" |, — 0, (2.88)

for n — oo. Sinceu™*! is a minimizer of 7 (u, w") it solves the following system of
variational equations

> (w"w"“@c) Vipla) + 2 (- 9)(w)K<p(w)> (2.89)

zef)
for all ¢ € H. Therefore we can write

Z <w”+1Vun+l(w) -Vo(x) + S(Kum_l — g)(m)Kgp(x))

zef)

= Y@ - W)Vt (e) - Vla),

z€Q

and

Z <w"+1Vu"+1(w) -Vo(x) + S(Kum'l — g)(m)Kgp(x)) '

z€Q
< O™ — w2 VU 2] Vgl 2.

(Remind that every norm is equivalent in finite dimension8y monotonicity of

+1 ,,n+1 i +1_ et(Vurtl)
(J (u™* w" ), and sincay™ ™t = g We have

j(u07w0) > j(un—i-l’wn—i-l) — ja(un—i-l) > j(un+l) > C]_’VU‘(Q) > Cz”VU”+1”2.

Moreover, since7.(u"*!) > J(u"*1) andJ is coercive, by condition (C), we have
that ||u"*1||, and |[Vu"*1|, are bounded uniformly with respect ta Therefore,
using (2.88), we can conclude that

Z <w"+1Vu"+1(w) -Vo(x) + S(Kum'l — g)(m)Kgp(x)) '

e
< ™ — w2 V2] Vell2 — O,

for n — oo, and there exists a subsequeria&)),, that converges ift{ to a func-
tion u>°. Sincew™t! = %ﬁﬂ‘l‘), and by taking the limit fom — oo, we obtain
that in fact

/ o0 2
div (LD G - 2 g (g — gy — 0, (2.90)
|Vue| a

The latter are the Euler-Lagrange equations associatéa tuhctional 7. and there-
fore u°° is a minimizer of7.. O
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It is left as a — not simple — exercise the proof of the follogviesult. One has to
make use of the monotonicity of the approximation (2.86)thef coerciveness qQf
(property (C)), and of the continuity @f.. See also [25] for more general tools from
so-calledl’-convergencdor achieving such variational limits.

Proposition 2.13 Let us assume thdty,);, is a sequence of positive numbers mono-
tonically converging to zero. The accumulation points efsequencéu., );, of mini-
mizers of7;, are minimizers of7.

Let us note a few differences between Algorithm 1 and Algoni2. In Algorithm
1 we have been able to establish a rule of up-dating the pa&eamaccording to the
iterations. This was not done for Algorithm 2, where we cdasithe limit fore — 0
only at the end. It is an interesting open question how canimal&neously address
a choice of a decreasing sequerteg),, during the iterations and show directly the
convergence of a minimizer ¢f.

Figure 2.5Fragments of the frescoes.

A relevant application

In this section we would like to report the surprising apaiiee results from the
work [43], where the IRLS for total variation minimizatiora$ been used for vector-
valued functions.

On March 11, 1944, the famous Eremitani Church in Paduay]ltahs destroyed
in an Allied bombing along with the inestimable frescoes hydfea Mantegnat
al. contained in the Ovetari Chapel. In the last 60 years, skaésmpts have been
made to restore the fresco fragments (Figure 2.5) by taaditimethods, but without
much success. An efficient pattern recognition algorithra used to map the original
position and orientation of the fragments, based on corspasi with an old gray level
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image of the fresco prior to the damage. This innovativeriegte allowed for the
partial reconstruction of the frescoes. In Figure 2.6 wenshsample of the results
due to this computer-assisted restoration.

Figure 2.6 On the left the scene “St. James Led to Martyrdom” with a feagifnents
localized by the computer assisted recollocation. On titg rive point out a particular
of the scene.

Unfortunately, the surface covered by the colored fragmanbnly 77m?, while
the original area was of several hundreds. This means thabuld reconstruct so far
only a fraction (less than%) of this inestimable artwork. In particular the original
color of the blanks is not known. This begs the question ofthéeit is possible
to estimatemathematicallythe original colors of the frescoes by making use of the
potential information given by the available fragments tredgray level of the pictures
taken before the damage.

250
200
150
100

50

Figure 2.7 Estimate of the nonlinear curve from a distribution of points with coor-
dinates given by the linear combination + £,g + £3b of the(r, g, b) color fragments
(abscissa) and by the corresponding underlying gray |évilecoriginal photographs
dated to 1920 (ordinate).
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We get our inspiration from physics: it is common experiefitat in an inho-
mogeneous material heat diffuses anisotropically fromt kearces; the mathemati-
cal (partial differential) equations that govern this ptrenon are well-known. In
turn similar equations (see (2.84)) can be used to diffusectilor (instead of the
heat) from the ‘color-sources’, which are the placed fragisiekeeping into account
the inhomogeneity due to the gradients provided by the kngray levels. We de-
scribe formally the model as follows. A color image can be eied as a function
u:QcR - Ri, so that, to each “pointk € 2 of the image, one associates
the vectoru(x) = (r(x),g(x),b(x)) € R2 of the color represented by the differ-
ent channels, for instance, red, green, and blue. The gvay & an image can be
described as non-linear projection of the coldi&, g,b) := L(&1r + 29 + £3b),
(r,g,b) € R3, wherety,&,&5 > 0,& + & + &3 =1, andL : R — R is a suitable
non-negative increasing function. For example Figure @escribes the typical shape
of an L function, which is estimated by fitting a distribution of dditom the real color
fragments, see Figure 2.6. However, it is always possibte-equalize the grey level
in such a wayL(§) = £. In this case the functiod is simply a linear projection. The

Figure 2.8 The first column illustrates two different data for the rex@ation prob-
lem. The second column illustrates the corresponding oeizeld solution.
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recolorization is modeled as the minimum (color image) atuof the functional

3
= w(z) — u(z)|?dx w(z)) — o(z)|%dx ut(z)|dx
J(U)—M/Q\D\() ()\d+/D!£(()) (2)[Pdz + | > |Vu'(x)|da,

Q=1

(2.91)
where we want to reconstruct the vector valued functios: (ut,u?,v®) : Q c R? —
RR3 (for RGB images) from a given observed couple of color/gesgl functiona, 7).
The observed functiom is assumed to represent correct informatiery, the given
colors, onQ\ D, and® the result of thenonlinear projectionl : R3 — R, e.g, the
gray level, onD. Note also that we consider the total variation of each ofttihee
color components. In casé is linear (e.g., after re-equalization of the gray level),
the functional 7, suitably discretized, can be recasted into the form (2.8®¥nce
the method previously described can be applied. See Fig8rtoRa sample of the
mathematical recolorization in the real-life problem.

2.1.4 lIterative Hard Thresholding

In this section we address the following

Algorithm 3. We initialize by takingz® = 0. We iterate
" = Hy (2" + A*(y — Az™)), (2.92)

where
Hy(x) = [y, (2.93)

is the operator which returns the bésterm approximation ta;, see (1.2).

Note that ifx* is k-sparse andiz™ = y, thenz* is a fixed point of
¥ =Hp(z" + A" (y — Az™)).
This algorithm can be seen as a minimizing method for thetfonal
T (@) = lly — Az|Gy + 20| gy, (2.94)

for a suitablea = «a(k) > 0 or equivalently for the solution of the optimization
problem
min ||y — Az||y subject oy < k.
x 2

Actually, it was shown [6] that if|A|| < 1 then this algorithm converges to a local
minimizer of (2.94). We would like to analyze this algorithimllowing [7] in the
caseA satisfies the RIP. We start with a few technical lemmas whigddight on
fundamental properties of RIP matrices and sparse appatixing, as established in
[73].
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Lemma 2.14 For all index setsA € {1,..., N} and all A for which the RIP holds
with orderk = |A|, we have

ARyl < (14 001yl ey (2.95)
(1= 8)2ealley < IARArZAlly < (14 81)2[lealley (2.96)

and
I(Z = AR An)zalley < Ofllzally- (2.97)

Furthermore, for two disjoint setd; and A, and all A for which the RIP holds with
orderk = |A1 U A2|,
14K, Axsenally < 6fllzallgy- (2.98)

Proof. The proof of (2.95)-(2.97) is straightforward and it is l&stthe reader. For
(2.98), just note thatélilAA2 is a submatrix ofA*Alw\zAAluA2 — I, and therefore
AR, Aol < (1T — A} ua,AMun, |- One concludes by (2.97). O

Lemma 2.15 Suppose the matriA satisfies the RIP of ordér with constant;, > 0.
Then for all vectorse, the following bound holds

[Azf|py < (14 6k) (le! + W) (2.99)
= k gé\f ]{71/2 . .

Proof. In this proof we consideR” as a Banach space endowed with several different
norms. In particular, the statement of the lemma can be degaas a result about the
operator norm ofA as a map between two Banach spaces. ForhAsefl,2,..., N},

we considerBéé the ¢/>-norm unit ball of vectors supported ihand we define the
convex set

Sconv{ U B%} c RV,
[T|<k

The setS can be consider the unit ball of a noim ||s on RY, and the upper bound
of the RIP property a statement about the normidfetweenS := (R" || - ||s) and
6= (37,1l - lley), i-e., (with a slight abuse of notation)

[Allg—ey = max [Azf|py < (14 0p).
Let us define a second convex body,

H95HzN
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and we consider, analogously (and with the same abuse diotahe operator norm
HAHK_@T = Ixnea%HAiUHzéV
The content of the lemma is the claim that

JAllc—ey < IAlls_ey-

To establish this point it is sufficient to check thiétC S. To do that we do prove the
reverse inclusion of the polar sets, i.e.,

S° C K°.
Remind that the polar set 6f ¢ RY is

0° :={y : sup(z,y) < 1}.
e

If Q2 is convex thaM2°° = ). Moreover, the norm associated to a convex b@dyan
also be expressed by

|z]lq = sup (z,y).
yeNe

In particular, the norm with unit bal$° is easily calculated as

|lz|lse = max ||z7]|2.
|T|1<k

Now, consider a vector in the unit ball.S° and let/ be the support of thé-best
approximation ofc. We must have

el < —
XJe =~ T =
o \/E
otherwise|z;| > % for all 7 € I, but then||z|se > ||zs]|]2 > 1, a contradiction.
Therefore, we can write
1
=X+ Tye € Beé\f +\/—EBé£

But the set on the right-hand side is precis&ly since

o lelp
ySGUII()O(iU’w = llellx = lzlly + 2
— swp @)+ sw (@)= s (@)
yGBlé\z Zekl_l/széVo yEBlé\r+kl_l/ZBléVo

In summaryS° C K°. a
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Lemma 2.16 For anyz we denoter*l = z — 2. Let

If A has the RIP of ordek, then the norm of the erra¥ can be bounded by

_ O’k(x)e{V
6y < (14 00) { anla)y + — = ) + leley- (2.100)
Proof. Decomposer = ) + =¥ andé = Az!¥) + e. To compute the norm of the
error term, we simply apply the triangle inequality and Lean2al5. ad

After this collection of technical results, we are able ttabksh a first convergence
result.

Theorem 2.17 Given a noisy observatiop = Ax + e, wherez is k-sparse. IfA has

the RIP or order3k and constant3, < 7132 then, at iterationn, Algorithm 2 will

recover an approximation™ satisfying

Iz = 2"l < 27" lallg + Sllelly- (2.101)

n* = |lo M (2.102)
~ 152 el '

iterations, the algorithm estimataswith accuracy

Furthermore, after at most

||z — "

o < 6llelly (2.103)
Proof. Let us denote™ := 2" + A*(y — Az"), r" = x — 2", and B"™ := supp(r")).
By triangle inequality we can write

e — 2 gy < lepnes — Zgroallgy + 2505 — 2l

By application offy, 2"+% = Hy (™). This implies||z’;7t, — Zhnsilley < llwpnis —

Z%WH”%V’ and

|l — g;n—i-lHZéV < 2||lzgn — Z%n+1‘|gé\r.
We can also write

Zgnﬂ = x%nﬂ + A*BnﬂA?”n + A*Bn+1€-
We then have

o — wnHHégV

IN

2”an+1 — w%n+1 — A*Bn+1ATn — A*Bn+1€Héé\f

IN

2||(I - A*BnuABnH)?”nHzéV + 2||A*Bn+1ABn\Bn+17"n||z§V + 2||A*Bn+1€”e§V
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Note that| B"| < 2k and thatf B"*! U B"| < 3k. By an application of the bounds in
Lemma 2.14, and by using the fact tldaf < d3; (note that a B-sparse vector is also
3k-sparse)

1 2 2
Il < 263 nin iy + 263755 g oy + 201+ d8) ey
MoreoverHrgnHH,gév + Hr%n\BnHH@z < \/QHr"Hgév. Therefore we have the bound
1 2
Iy < 202831l + 201+ ba) ey

By assumptions?, < 7132 and 3/263, < 3. (Note that here we could simply choose

any value5§,C < % and obtain a slightly different estimate!) The we get theursion

HT"HH@V < 2_1||7“"||z§\f +2.17][ellpy,
which iterated (note that® = 0 and 217)_°° ;27" < 4.34) gives
Iy < 27l g + 434l

This is precisely the bound we were looking for. The rest ef skatements of the
theorem are left as an exercise. d

We have also the following result.

Corollary 2.18 Given a noisy observation = Az + e, wherex is an arbitrary vector
If A has the RIP or ordeBk and constanﬁ%k < 3i2 then, at iteratiorn, Algorithm 2
will recover an approximation:” satisfying

=

. - k(@) gy
o —a"lly < 27" ally +6 | o)y + tlelly ). (2109)
Furthermore, after at most

n* = | 1og, [ ey (2.105)
~ %2 \ ey |

iterations, the algorithm estimateaswith accuracy

n* Uk:(ﬂf)eiv
|l — = Hgé\r <7 O‘k(lﬂ)zé\r + 7 + HeHzé\’ . (2.106)
Proof. We first note
|z — w"Héév < o)y + 2k — wnHégv-

The proof now follows by boundinfr ;) — :c"||,3év. For this we simply apply Theorem

2.17 toxy, with € instead ofe, and use Lemma 2.16 to bounﬂé”eév. The rest is left
as an exercise. O
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A brief discussion

This algorithm has error reduction guarantee from the vegirining of the iteration,
and it is robust to noise, i.e., an estimate of the type (1ht®)s. Moreover, each
iteration costs mainly as much as an applicatioaldfl. At first glance this algorithm
is greatly superior with respect to IRLS; however, we havsttess that IRLS can
converge superlinearly and a fine analysis of its complagityidely open.

3 Numerical Methods for Sparse Recovery

In the previous chapters we put most of the emphasis on fiimitergsional linear
problems (also of relatively small size) where the modelrinal has the RIP or the
NSP. This setting is suitable for applications in codingfm#ng or compressed acqui-
sition problems, hence from human-made problems coming fexhnology, while it
does not fit many possible applications where we are ineulest recover quantities
from partial real-life measurements. In this case we mayl teavork with large di-
mensional problems (even infinite dimensional) where thdehlinear (or nonlinear)
operator which defines the measurements has not such nigerfies as the RIP and
NSP. A typical example of such situation is the one repontethé previous chapter
related to the color recovery from a real-life restoratioobbem.

Here and later we are concerned with the more general settidgthe efficient
minimization of functionals of the type:

T (u) = | Ku—yl§ + 2|({u, 9x)rezlley. 25 (3.107)

whereK : X — Y is a bounded linear operator acting between two separatierti
spacesX andY, y € Y is a given measurement, add:= {1} c7 IS @ prescribed
countable basis foX with associated dual := {TZJA}AEI Forl< p < o, the

sequence normully, . (z) := (X aer lualPan) Y7 is the usual norm for weightegh

summable sequences, with weight= (a))xez € RZ, such thatay > a > 0.

Associated to the basis, we are given the synthesisihafy(Z) — X defined by

Fu:=> uyy, uely(I). (3.108)
AT

We can re-formulate equivalently the functional in termssefuences if2(Z) as
follows:

J () = To(w) = (K o F)u -yl + 2|[ulls, ) (3.109)

For ease of notation let us writé := K o F. Such a functional turns out to be very
useful in many practical problems, where one cannot obsdireetly the quantities
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of most interest; instead their values have to be inferrethftheir effect on observ-
able quantities. When this relationship between the obbdey and the interesting
quantity u is (approximately) linear the situation can be modeled erattically by
the equation

y = Ku, (3.110)

If K is a “nice” (e.g., well-conditioned), easily invertible enator, and if the data
are free of noise, then this is a well-known task which candokessed with standard
numerical analysis methods. Often, however, the mapping not invertible or ill-
conditioned. Moreover, typically (3.110) is only an ideali version in which noise
has been neglected; a more accurate model is

y = Ku + e, (3.111)

in which the data are corrupted by an (unknown) neisén order to deal with this
type of reconstruction problemragularizationmechanism is required [37]. Regular-
ization techniques try, as much as possible, to take adyardf(often vague) prior
knowledge one may have about the nature;oivhich is embedded into the model.
The approach modelled by the function@lin (3.107) is indeed tailored to the case
whenwu can be represented bysparseexpansion, i.e., when can be represented by
a series expansion (3.108) with respect to an orthonornss lpar a frame [27]) that
has only a small number of large coefficients. The previoaptErs should convince
the reader that imposing an additiodginorm term as in (3.108) has indeed the effect
of sparsifying possible solutions. Hence, we model thesstyaconstraint by a regu-
larizing ¢1—term in the functional to be minimized; of course, we couldgider also

a minimization of the type (2.94), but that has the disachgatof being nonconvex
and not being necessarily robust to noise, when no RIP dondiare imposed on the
model operator.

In the following we will not use anymore the bold formfor a sequence if(Z),
since here and later we will exclusively work with the spégd).
3.1 lterative Soft-Thresholding in Hilbert Spaces

Several authors have proposed independently an iteratftehsesholding algorithm
to approximate minimizers* := v}, of the functional in (3.108), see [35, 41, 70, 71].
More preciselyy* is the limit of sequences™ defined recursively by

WD =5, [uW ATy — A A (3.112)
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starting from an arbitrary.(9), whereS,, is the soft-thresholding operation defined by
Sa(u)y = Sqa, (uy) with

xr — T r>T
S(x)=14 0 Iz <7 . (3.113)

x+T < —T

This is our starting point and the reference iteration onciwhwe want to work out
several innovations. Strong convergence of this algoritvas proved in [28], under
the assumption thajtd| < 1 (actually, convergence can be shown alsd|féf < /2
[21]; nevertheless, the conditidd|| < 1 is by no means a restriction, since it can
always be met by a suitable rescaling of the functiohah particular ofK, i, anda).
Soft-thresholding plays a role in this problem becauseaii$eto the unique minimizer
of a functional combinindg, and/;—norms, i.e., (see Lemma 3.1)
. 2

Sa(a) —argugil(al)(\lu all* + 2|ufla) - (3.114)
We will call the iteration (3.112) thigerative soft-thresholding algorithmor thethresh-
olded Landweber iteratio(ISTA).

In this section we would like to provide the analysis of thenergence of this
algorithm. Due to the lack of assumptions such as the RIPeoN®P, the methods we
use comes exclusively from convex analysis and we cannedkantage of relatively
simple estimates as we did for the convergence analysisgufriéhms 1,3.

3.1.1 The Surrogate Functional

The first relevant observation is that the algorithm can bagsed into an iterated min-
imization of a properly augmented functional, which we ¢iadl surrogate functional
of 7, and it is defined by

T5(u,0) = || Au=yl§ + 2ulle, @ + lu = allz) — [ 4u = Aaf}.  (3.115)
Assume here and later thiat|| < 1. Observe that
lu = allf,iz) — [ Au = Aa|§ > Cllu - alF,z), (3.116)
for C = (1— ||A]|?) > 0. Hence
J(u) = js(u,u) < js(u, a), (3.117)

and
T (u,a) — T (u,u) > C|lu— aH%z(I). (3.118)

In particular, 7° is strictly convex with respect ta and it has a unique minimizer
with respect ta; oncea is fixed. We have the following technical lemmas.
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Lemma 3.1 The soft-thresholding operator is the solution of the feiltg optimiza-
tion problem:

Sa - i - 2"’2 a) -
(a) argug};%)(llu all* + 2llufl1q)

Proof. By componentwise optimization, we can reduce the problemgoalar prob-
lem, i.e., we need to show that

S, (ay) = argmin(z — ay)? + 20|z,
€T

which is shown by a simple direct computation. kétbe the minimizer. It is clear that
sgn(z*) sgn(ay) > 0 otherwise the function is increased.. Hence we need tonggeti
(x —ay)?+2a sgn(ay )z which has minimum at = (ay —sgn(ay)ay). If [ax| > ay
thanz* = z. Otherwisesgn(z) sgn(ay) < 0 andz cannot be the minimizer, and we
have to choose* = 0. o

Lemma 3.2 We can express the optimization®f (u, a) with respect tau explicitly
by

Sala+ A*(y — Aa)) = arg min J°(u,a).
uEéz(I)

Proof. By developing the norm squares in (3.115) it is a straigitéod computation
to show

js(uv (1) = H’LL - (CL + A*(y - Aa))H%z(I) + 2”“”1,04 + <I>(a,A,y),

where®(a, A, y) is a function which does not depend an The statement follows
now from an application of Lemma 3.1 and by the observatiat the addition of
constants to a functional does not modify its minimizer. a

3.1.2 The Algorithm and Preliminary Convergence Properties

By Lemma 3.2 we achieve

Algorithm 4. We initialize by taking any.(%) € ¢,(Z). We iterate

u™D = s, [u(") + A*y — A* Au™

- i 75 (. ™).
argug%;l(ﬂz)J (u, u'™)
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Lemma 3.3 The sequencg (u(™) is nondecreasing. Moreovér(™), is bounded
in ¢2(7) and
lim [Ju®™t —u™|2 ) =0, (3.119)

Proof. Let us consider the estimates

TH ™, )
jS(u(n+1) 7 u(n))
jS(u(n+1)’u(n+1)) _ j(u(n—i-l))’

j(u("))

AVARRV]

Hence, the sequencg(u(™) is nondecreasing, and
JW®) > T (™) > 2aljut™|pz) > 2a][ut™|4,z).
Therefore,(u(™),, is bounded irf2(Z). By (3.192), we have
J ™) = J @) = Cllul — V)2 4.

Sincej(u(")) > 0 is a decreasing sequence and is bounded below, it alsorgesye
and
(n+1)

lim |lu u(")Hfz(z) = 0.

n—~00

O

This lemma already gives strong hints that the algorithmveages. In particular,
two successive iterations become closer and closer (3.448)by the uniform bound-
edness ofu(™),, we know already that there are weakly converging subsegsen
However, in order to conclude the convergence of the fulusage to a minimizer of
J we need more technical work.

3.1.3 Weak Convergence of the Algorithm

As as simple exercise we state the following
Lemma 3.4 The operatolS,, is honexpansive, i.e.,

[Sa(u) = Sala)lle,z) < llu — alleyz), (3.120)
for all u,a € l2(Z).

Proof. Sketch: reason again componentwise and distinguish casethevu, and/or
a) are smaller or larger than the threshdid . a

Moreover, we can characterize minimizers’oin the following way.
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Proposition 3.5 Define
I'(u) = Sq [u+ A%y — A" Au] .

Then the set of minimizers ¢f coincides with the sefix(T") of fixed points of". In
particular, since7 is a coercive functional, it has minimizers, and therefbréas
fixed points.

Proof. Assume that: is the minimizer oij(-,a). Let us now observe, first of all,
that

js(u—i—h,a) = js(u,a)+2<h,u—a—A*(y—Aa)>

+ Y 2 (Jux + hal = [ual) + [1R]1Z,)-
ez

We define nowZo = {u) = 0} andZ; = 7 \ Zp. Since, by Lemma 3.2 we have

u = Sq(a + A*(y — Aa)), and substituting it for;, we then have

T (u+h,a) = T (w,a) = |hlF,q+ Y [2aalha] = 2ha(ax — A*(y — Aay)]
AEDy

+ Y [2aaun + hal = 20 |us] + ha(—20 sgn(uy)]
AeIq

If A e Iothen|a>\—A*(y—Aa>\)| < ay, so that 2)4)\|h>\|—2h>\(a)\—A*(y—Aa>\) > 0.
If A € 7;, we distinguish two cases: if, > 0, then

2a,\\u>\ + h)\’ — 2a,\\u>\] + hA(—Za,\ sgn(’u)\)) = 204)\“11)\ + h)\’ — (U)\ + h)\)] > 0.
If uy <0, then
2ap|up + hy| = 2oz [ur] + ha(—2c sgn(uy)) = 2a[Juy + ha| + (ux + hy)] > 0.

It follows
T+ hya) — T%(u,a) > Hh||§2(l). (3.121)
Let us assume now that
u==S,u+ Ay — A*Au].

Thenu is the minimizer of7° (-, ), and therefore
js(u + h,u) 2 js(’u,,’u,) + Hh”i(I)

Observing now that/ (u) = J° (u, u) and that7® (u+h, u) = J (u+h) + | h[|F, )~
|AR||2., we conclude that7 (u + h) > J(u) + ||Ah||2 for every f. Henceu is
a minimizer of 7. Vice versa, ifu is a minimizer of 7, then it is a minimizer of
J°(-,u), and hence a fixed point &f. a
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We need now to recall an important and well-known resultteelgo iterations of
nonexpansive maps [61]. We report it without proof; a siffigadi version of it can be
also found in the Appendix B of [28].

Theorem 3.6 (Opial’s Theorem) Let the mappind” from ¢>(Z) to itself satisfy the
following conditions:

(i) T'is nonexpansive, i.efl'(u) — I'(a)lle,z) < lu — allg,(z), for all u, a € £2(T),
(i) Iis asymptotically regular, i.e\I""(u) — I (u)||r,¢z) — 0 forn — oo;
(i) the setFix(T") of its fixed points is not empty.
Then, for allu, the sequencé™(u)),, converges weakly to a fixed pointhix(T").

Eventually we have the weak convergence of the algorithm.

Theorem 3.7 For any initial choiceu(®) e ¢5(T), Algorithm 4 produces a sequence
(u(™),, which converges weakly to a minimizer.6f

Proof. It is sufficient to observe that, due to our previous restésnma 3.4, Lemma
3.3, and Proposition 3.5, and the assumplidfj < 1, the mafd'(u) = S, [u + A*y — A* Au]
fulfills the requirements of Opial’s Theorem. a

3.1.4 Strong Convergence of the Algorithm

In this section we shall prove the convergence of the suiveeissrates: (™ not only in
the weak topology, but also in norm. Let us start by introdga@ome useful notations:

v =w—limu™, €M =4 —yr b=t 4 A (y — Au®).
We split again the proof into several intermediate lemmas.

Lemma 3.8 We have
14§ — o,

forn — oo.

Proof. Since
€0 — € = So(h+ (I - A" A)E™) —Sa(h) — €,
and||¢ Y — 0|, 7y = [Ju+D — ™|, 7) — 0 forn — oo, we have
ISa(h + (I = A*A)E™) = Sa(h) — €™ |gyz) — O, (3.122)
for n — oo, and hence, also

max(0, [|€"[le,z) = ISa(h+ (I = A"A)E™) = So(M)|lyz)) = 0, (3.123)
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for n — oo. SinceS, is honexpansive we have
1Sa(h + (I = A*A)EM) = Sa()lleyz) < 1T = A*AE™ 2y < 1) ey
therefore the thax” in (3.123) can be dropped, and it follows that
1€ lex(z) — 1T = A*A)E™ gy — O, (3.124)
for n — oo. Because
1€ ez + 17 = A* DM |2y < 21€" lgyz) = 2™ = u¥[lyz) < C,
(Remind that:(™) is uniformly bounded by Lemma 3.3.), we obtain
”5"”522(;[) = [I(1 = A*A)f(n)ng(I) — 0,
for n — oo by (3.124). The inequality
IEM12 7y — (T — ATAYE™ 2 7y = 2 AT — || A" AE™Z ) > | A6™3,
then implies the statement. a

The previous lemma allows us to derive the following fundatakproperty.
Lemma 3.9 For h given as above|Sy(h + £™) — Sa(h) — €|,y — O, for

n — oQ.

Proof. We have

1Sa(h +£0) = Sa(h) = €™l

< |ISa(h + (I — A*A)™M) = Sa(h) — €™ ||y

+ [Salh+ €M) = Sa(h+ (I — A*A)EM||, )

< [Salh+ (I = A*A)E™) —Sa(h) — €| ryz) + [|AAE™ || ).

Both terms tend to O, the first because of (3.122) and the delsecause of Lemma
3.8. O

Lemma 3.10 If for somea € ¢»(Z7) and some sequeng¢e™),,, w — lim,, v" = 0, and
limy, [|Sa(a +v™) — Sq(a) — v™ |4,y = 0, then|jv™||s,z) — O, for n — oo.

, - 5\ 2
Proof. Let us define a finite sefo C 7 such thatys, 7 7, [ax[* < (§)°, where
a = infy ay. Because this is a finite s&, ., [v}|> — 0 forn — oo, and hence
we can concentrate OR, .7\ 7, [v}[? only. For each, we splitZ; = T \ Z into two
subsetsZy, = {\ € Zp ¢ |[v} + ax| < ax} andZy, = 71\ Zo,. If A € Zy, then
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Say (@ + v&")) = Sa,(ay) = 0 (sincelay| <
Sa, (ay) —v¥| = [v}]. It follows

Y AP <D ISay(ax +0]) = Say(an) —o§? =0,

XETy AeT

N}

< ), so that|Sq, (ay + v}) —

i 2
for n — oo. It remains to prove thazxeil,n |vY| —>70 asn — oo. If X € Z; and
lax + Y| > ay, thenoY| > ay + Y| — |ax| > ax — G > § > |ay], so thatay + v}
andvy have the same sign. In particular, — ¢ > |ay| impliesay — |ay| > . It
follows that

[0X = Sa (ax +vX) + Say(@r)] = |vX = Say (ax + X))

= [0} = (ax +0X) + axsgn(vy)]
a

> — > =
> ay \ax\_4

This implies that
n n|2 a 2 -
D7 [Say(ar+v3) = Say(ax) =3P > (5) [aal
Aeil_ﬁ

But, 37, . 1Say (ax + 1Y) = Sa, (ax) — o2 > (%)2 — 0 forn — oo and therefore
71, must be empty for large enough. 0

The combination of Lemma 3.8 and Lemma 3.9, together witiwtbak convergence
Theorem 3.7 allows us to have norm convergence.

Theorem 3.11 For any initial choiceu(?) € ¢5(Z7), Algorithm 4 produces a sequence
(u(™),, which converges strongly to a minimizer of 7.

3.2 Principles of Acceleration

Recently, also the qualitative convergence propertieterdtive soft-thresholding have
been investigated. Note first that the aforementioned tiondor || A|| < 1 (or even
|All < v/2) does not guarantee contractivity of the iteration operat- A* A, since
A*A may not be boundedly invertible. The insertion f does not improve the
situation sinceS,, is nonexpansive, but also noncontractive. Hence, for ampnizer
u* (which is also a fixed point of (3.112)), the estimate

lu” = u™ gz < ||(7 = A*A) (" = u)||,, 7y < 1 = A Al — 6z,
(3.125)

does not give rise to a linear error reduction. However, uadeitional assumptions

on the operatord or on minimizersu*, linear convergence of (3.112) can be easily
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ensured. In particular, i# fulfills the so-calledfinite basis injectivityFBI) condition
(see [10] where this terminology is introduced), i.e., foy dinite setA C Z, the
restriction A, is injective,then (3.112) converges linearly to a minimizéof 7. The
following simple argument shows indeed that the FBI conditimplies linear error
reduction as soon dkA|| < 1. In that case, we have strong convergence (Theorem
3.11) of theu™ to a finitely supported limit sequenag’. We can therefore find a
finite index setA C Z such that all iterates™) andu* are supported id\. By the

FBI condition, A, is injective and hencel*A|xxa is boundedly invertible, so that

I — A} A, is a contraction orx(A). Using

uEX"H) =S, (u&n) + A\ (v — AAuXL)))

and an analogous argument as in (3.125), it follows [that— « (9 ey < Yl —

u™ |10y, wherey = max{|1 — [[(A*Alxxa) "2 7Y, [| A*Alaxal — 1} € (0,1).
Typical examples wherd = K o F' fulfills the FBI condition arise whek is injective
andV is either a Riesz basis foY or a so-called FBI frame, i.e., each finite subsystem
of W is linearly independent. However, depending/grthe matrixA* A|, .4 can be
arbitrarily badly conditioned, resulting in a constanpemeductiorny, arbitrarily close

to 1.

However, it is possible to show that for several FBI opematgr and for certain
choices ofl, the matrix4* A can be preconditioned by a matiix /2, resulting in the
matrix D~Y2A4*AD~/2, in such a way that any restrictiqiD~1/2A4* AD=Y2) y . o
turns out to be well-conditioned as soon/as 7 is a small set, but independently of
its “location” within Z. Let us remark that, in particular, we do not claim to be able
to have full well-conditioned matrices (as it happens inlypeked problems [23, 24]
by simple diagonal preconditioning), but that only smabitaary finite dimensional
submatrices are indeed well-conditioned. Let us say thataam promote a “local”
well-conditioning of the matrices.

Typically one considers injective (non local) compact epers K with Schwartz
kernel having certain polynomial decay properties of theveéves, i.e.,

Ku(z) = /Q B(z, Eu(€)de, z €D,

for Q0,0 c RY, u e X := H'(Q), and
1090 ®(,€)| < ca gl — g7 ¢ € R, and multi-indexes:, 3 € N7,

Moreover, for the proper choice of the discrete maiix4 := F*K*KF', one uses
multiscale base%¥, such as wavelets, which do make a good job in this situatids.
refer the reader to [22] for more details.
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[Kx = yl? [Kx = yl?

(a) (b)

Figure 3.1 The path, in the|z||; vs. | Kz — y||? plane, followed by the iterates™

of three different iterative algorithms. The operatorand the data are taken from a
seismic tomography problem [53]. The boxes (in both (a) &y dorrespond to the
thresholded Landweber algorithm. In this example, iteeathresholded Landweber
(3.112) first overshoots thg norm of the limit (represented by the fat dot), and then
requires a large number of iterations to redﬂm@) |l again (500 are shown in this fig-
ure). In (a) the crosses correspond to the path followed éyt¢nates of the projected
Landweber iteration (which is given as in (3.126) f#f) = 1); in (b) the triangles
correspond to the projected steepest descent iterati@@§8.in both cases, only 15
iterates are shown. The discrepancy decreases more qtocldyojected steepest de-
scent than for the projected Landweber algorithm. The diiE corresponds to the
limit trade-off curve generated by.* (&) for decreasing values af > 0. The vertical
axes uses a logarithmic scale for clarity.
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3.2.1 From the Projected Gradient Method to the Iterative Sdt-Thresholding
with Decreasing Thresholding Parameter

With such a “local” well-conditioning, it should also be alethat iterating on small
setsA will also improve the convergence rate. Unfortunately,itdative soft-thresholding
does not act initially on small sets (see also Figure 3.4 dgdré& 3.5), but it rather
starts iterating on relatively large sets, slowly shrigkio the size of the support of
the limitu*.

Let us take a closer look at the characteristic dynamics gbAthm 4 in Figure
3.1. Let us assume for simplicity here thgt = & > 0 for all A € Z. As this plot of
the discrepanc(u™) = ||[Ku™ — y||2 = ||Au™ — y||2. versus||u(™]; shows,
the algorithm converges initially relatively fast, themitershoots the valugu*||; and
it takes very long to re-correct back. In other words, startirom «(9 = 0, the
algorithm generates a pa{l&("); n € N} that is initially fully contained in the/;1-ball
Bgr = Bél(I)(R) = {u S gz(A); H’LLH]_ < R}, with R := H’LL*H]_ Then it gets out of
the ball to slowly inch back to it in the limit.

The way to avoid this long “external” detour was proposed2@] [by forcing the
successive iterates to remain within the b&lk. One method to achieve this is to
substitute for the thresholding operations the projeckegn, where, for any closed
convex se’, and anyu, we defineP«(u) to be the unique point id' for which the
/>—distance tas is minimal. With a slight abuse of notation, we shall dernbtg, by
Pr; this will not cause confusion, because it will be clear fritia context whether the
subscript ofP is a set or a positive number.

Furthermore, modifying the iterations by introducing amajtie “descent parame-
ter” 5") > 0 in each iteration, defining*Y by

does lead, in numerical simulations, to much faster comrarg. The typical dynam-
ics of this modified algorithm are illustrated in Figure &), (which clearly shows the
larger steps and faster convergence (when compared withrtjected Landweber
iteration in Fig. 3.1(a) which is fo(™ = 1). We shall refer to this modified algo-
rithm as theprojected gradient iteratiorr the projected steepest desc€RiSD). The
motivation of the faster convergence behavior is the faatt We never leave the target
¢1-ball, and we tend not to iterate on large index sets. On tB&s lodi this intuition we
find even more promising results for an ‘interior’ algoritimwhich we still project
on ¢1-balls, but now with a slowly increasing radius, i.e.

uY = Py (u(”) + M A*(y — Au("))) and  RCMY = (n+ 1)R/N
(3.127)
where N is the prescribed maximum number of iterations (the origirthosen as
the starting point of this iteration). The better performamof this algorithm can be
explained by the fact that the projecti®z (u) onto an¢s-ball of radiusR do coincide
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IKx = y?

S>> > D

10 20 [[x]1

Figure 3.2 Trade-off curve and its approximation with algorithm (371 200 steps.

with a thresholdingPr(u) = S, ;) (u) for a suitable thresholding parameter=
a(u; R) depending one and R, which is larger for smalleR.

Lemma 3.12 For any fixeda € ¢2(Z) and forr > 0, ||S;(a)||1 is a piecewise linear,
continuous, decreasing function of moreover, ifa € (1(A) then|[So(a)ll¢, ) =
HaHgl(I) and ”S'r(a)Hél(I) = Ofor 7 > max, ’CL)\‘.

Proof. [[S-(a)lle, @) = >3 [Sr(ax)] = 225 Sr(laal) = Xa, 5 -(lax] — 7); the sum
in the right hand side is finite far > 0. a

A schematic illustration is given in Figure 3.3.

Lemma 3.13 If [|a||,,(z) > R, then thelz(Z) projection ofa on the/;-ball with radius
R is given byPgr(a) = S,(a) wherey (depending oru and R) is chosen such that
1S.(a)llaz) = B- 1f [lalleyz) < RthenPr(a) = So(a) = a.

Proof. Supposé||a||,,zy > R. Because, by Lemma 3.125,(a)|,(z) is continu-
ous iny and|[S,(a)|, ) = O for sufficiently largeu, we can choosg: such that
[Su(a)lleyz) = R. (See Figure 3.3.) On the other hand, = S, (a) is the unique
minimizer of ||u — CLHZ(I) + 2ullulle, () (€€ Lemma 3.1), i.e.,

* 2 * 2
|u* = allf,) + 2ullu™{ley@) < llu—allg, @) + 26llulle @
for all u # 7*. Sincel|u*||y,(z) = R, it follows that
Vu € Br, u#u" : lu* = all® < [lu— all?

Henceu" is closer tas than any othet in Bg. In other wordsPr(a) = u* = S, (a).0
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1S-(a)llx

lall2]

|
|
|
|
1
T

max; |a;] T

Figure 3.3 For a given vectorn € /5, ||S;(a)||1 is a piecewise linear continuous and
decreasing function af (strictly decreasing for < max; |a;|) . The knots are located
at{la;|,7 : 1...m} and 0. Findingr such that|S;(a)|, ) = R ultimately comes
down to a linear interpolation. The figure is made for the diiimensional case.

This in particular implies that the algorithm (3.127) itesinitially on very small
sets which inflate by growing during the process and apprtieckize of the support of
the target minimizer.*. Unlike the thresholded Landweber iteration and the ptejkc
steepest descent [28, 29], unfortunately there is no prebbf convergence of this
‘interior’ algorithm, being a very interesting open pratole

However, we can provide an algorithm which mimics the bebranf (3.127), i.e., it
starts with large thresholding parametef&) and geometrically reduces them during
the iterations to a target limit > O, for which the convergence is guaranteed:

u™ =S [u(") + ATy — A" AU (3.128)

For matricesA for which the restrictionsA* A|y .5 are uniformly well-conditioned
with respect toA of small size, our analysis provides also a prescribed firega of
convergence of the iteration (3.128).

3.2.2 Sample of Analysis of Acceleration Methods
Technical lemmas

We are particularly interested in computing approximatiovith the smallest possi-
ble number of nonzero entries. As a benchmark, we recallttigamost economical
approximations of a given vectar € ¢»(Z) are provided again by theestk-term

approximationsvy,;, defined by discarding in all but thek € Ny largest coefficients
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in absolute value. The error of beStterm approximation is defined as

0 (V)e, = v — viglley(2)- (3.129)

The subspace of all, vectors with besk-term approximation rate > 0, i.e.,
ok(v)e, S k7° for some decay rate > 0, is commonly referred to as tiveeak?,
space/¥(Z), for 7 = (s + 3)~*, which, endowed with

[|gw(z) = sup (k + 1)°01(v)e,, (3.130)
keNp

becomes the quasi-Banach sp&&7), | - v (z)). Moreover, forany 6< e <2 -,
we have the continuous embeddifi)gZ) — (¥ (Z) — £,;1(Z), justifying why ¢* (Z)
is called weal/, (7).

When it comes to the concrete computations of good apprdianswith a small
number of active coefficients, one frequently utilizes aierthresholding procedures.
Here small entries of a given vector are simply discardecereds the large entries
may be slightly modified. In this paper, we shall make usgofi-thresholdinghat we
already introduced in (3.113). It is well-known, see [28RtS,, is hon-expansive for
anya € RT,

[Sa(v) = Sa(w)lley@) < v —wllgyg), forallv,w € (7). (3.131)
Moreover, for any fixed: € R, the mapping- — S, (x) is Lipschitz continuous with
|S;(x) — Sp(x)| <|r—7|, forallr,7" > 0. (3.132)

We readily infer the following technical estimate.

Lemma 3.14 Assume; € l5(T), o, 8 € RE such thata = inf ) = inf) B\ = 3 >
0, and define\; (v) := {A € T : Jvy| > a} Then

1/2
I8(0) = S5(0)ly < (#Aalv)) " max Jox — Bl (3.139)

Proof. By (3.132) we have the estimate

1/2
[Sa(v) = Ss)lley@) = (Z’Sax(vk)_SﬁA(UA)F)

AT

1/2
|Sa (va) — S, (vx)z)

)\GA

(AE{MEI |vu|>min{cy,Bu}}

1/2
Say (vx) — S, (UA)Z)

IN

<# ) max |ay — By

AeAG(v)
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g

Letv € ¢¥(Z), itis well-known [31,57]
#Ma(v) < Clolfupa", (3.134)

and, fora, = a forall A € Z, we have
[0 = Sa(®)llex@) < Clolpuen a2, (3.135)

where the constants are given 6y= C(7) > 0. Letv € (o(Z) := N,~ol¥(Z), and
|v|g, := # supp(v) < co. Then we have the straightforward estimate

#Aa(v) < |vlg, (3.136)
and, fora, = a forall A € Z, we have
lv = Sa(®)ley) < 0l %6, (3.137)

which is easily shown by a direct computation. In the seqwelshall also use the
following support size estimate.

Lemma3.15 Letv € £(Z) andw € (£2(Z) with |[v — w||g,z) < €. Assumer =
(ax)aer € RZ andinfy a) = @ > 0. Then it holds

462
#supp Sq(w) < #As(w) < +4C|U|MI -, (3.138)

whereC = C(7) > 0. In particular if v € ¢o(Z) then the estimate is refined

4¢?

#supp Sy (w) < #A5(w) < =2 + [v]go(2)- (3.139)
Proof. We consider two set§; = {\ € 7 : |wy| > @, and|vy| > &/2}, and
Iy ={X€T:|wy| >a, and|vy| < &/2}. Then from (3.134)

#I]_ < #{)\ S 7: |U)\| > OZ/Z} < 2TC|U|Zw(I -7 < 4C|’U|gw Ta

and

(/2P (#T2) < Y fox —wp[P <&

ANETy

These estimates imply (3.138), and similarly one gets .13 a
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Decreasing iterative soft-thresholding

For threshold parameters o™ € RZ, wherea™ > q, i.e.,a&") > ay forall \ € A,
anda = infyc7 oy > 0, we consider the iteration

Algorithm 5.

W@ =0, ™V =5 o) (u™ + A%y — Au™)), n=0,1,... (3.140)

which we call thedecreasing iterative soft-thresholding algoritiip-ISTA).

Theorem 3.16 Let ||A|| < v/2and leta := (I — A*A)u* + A*y € (¥(ZT) for some

Al|u* 2
0 < 7 < 2. Moreover, letL = L(a) := % + 4C|]asz(I)d‘T, and as-

sume that forS* := suppw* and all finite subset®. C 7 with at most#A < 2L
elements, the operatdil — A*A)|(s-ua)x(s+ua) IS contractive ordz(S* U A), i.e.,
H(I — A*A)|S*UA><S*UAw||Zz(S*UA) < /VOHwHZz(S*UA)’ forall w € EQ(S* U A), or

I(I = A™A)

s+uAxs<UAll < 70, (3.141)

where0 < ~g < 1. Then, for anyyo < v < 1, the iteratesu(™ from (3.140)fulfill
# suppu™ < L and they converge to* at a linear rate

[|u* — U(")sz(z) <A uleyz) = €n (3.142)
whenever the™ are chosen according to
ax < ol” < ay+ (v —v0) L Y2, forall A € A. (3.143)

Proof. We develop the proof by induction. For the initial iteratee Waveu(® =

0, so that# suppu® < L and (3.142) is trivially true. Assume as an induction
hypothesis thaf(™ := supp(u(™) is such that#S™ < L, and||u* — u(")ng(I) <

€,. Abbreviatingw™ := u(™ + A*(y — Au™), by ||A*A|| < 2 and the induction
hypothesis, it follows that

7= w™ gz = || (T = A*A) (u* — u® < lu* = u™ ) < €n. (3.144)

Mgy
Hence, using (3.138), we obtain the estimate

2
4es,

#S ) = L supp S, (w™) < Ag(w™) < §+4CW’Z;U(I)@_T < L. (3.145)
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Since also#S™ < L by induction hypothesis, the sat™ := §(™ y §(+1) has
at most Z elements, so that, by assumpti¢h,— A*A)| g xm) « supm) IS contractive
with contraction constanfy. Using the identities

Ugiam = Sallguam)
= Sa(ugupm + Aguam (¥ — AguamUg am )

and

(n+1) (n)
uSUA(n) - Sa(") (wSUA(n) )

(n) * (n)
= Sam (g m T Aguam ¥ = Aguam gy m));

it follows from (3.131), (3.133), (3.125), and™ > « that

(n+1

lw* — w4,z

= (" = ") a0 lleygsuacm)

= HSa(ﬂguA(m) — Sam (wgng)sz(suA(n))

= HSa(ﬂsuAW)) - Sa(wé@z\(m)uez(sm(n)) + HSa(wgﬂAm) —Sam (wé@Mm)Hez(squ»

< H(I — A" Al g pam xsuam ) (u” — u(n))su/ﬂn) ng(suA(n))

- (#Aa(w("))) e ( W oy — |>

< v+ (aatul®)) (oo =)

Using (3.145) we obtaifiu—u™*V |,y < fyoen+\/f( Maxy () \a&") —oo\\),
and, since the/™ are chosen according to (3.143), the claim follows. a

Note that assumption (3.141) in finite dimension essewpt@incides with the re-
guest that the matri¥ satisfies the RIP (see Lemma 2.14). With these results at hand
and those related to RIP matrices in finite dimension, wergtted situation of estimat-
ing the relevant parameters in order to apply Theorem 3.J8wie are dealing with a
compressed sensing problem. We proceed to a numerical cisompaf the algorithm
D-ISTA in (3.140) and the iterative soft-thresholding ISTA Figure 3.4 we show the
behavior of the algorithms in the computation of a sparsemiger v* for A being a
500 x 2500 matrix with i.i.d. Gaussian entries,= 102, 49 = 0.1 andy = 0.95. In
Figure 3.5 we show the behavior of the algorithms in the sdtat®n but for param-
etersa = 1074, 49 = 0.01 andy = 0.998. In both the cases, related to small values
of « (we reiterate that a small range @fs the most crucial situation for the efficiency
of iterative algorithms, see Section 3.2.2), ISTA tendstéoate initially on vectors
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with a large number of nonzero entries, while D-ISTA inflasésvly the support size
of the iterations to eventually converge to the right suppbr*. The iteration on an
inflating support allows D-ISTA to take advantage of the legall-conditioning of the
matrix A from the very beginning of the iterations. This effect résith acontrolled
linear rate of convergence which is much steeper than theoISTA. In particular in
Figure 3.5 after 1500 D-ISTA has correctly detected the sttppf the minimizeru*
and reached already an accuracy of 49 whereas it is clear that the convergence of
ISTA is simply dramatically slow.

Dynamics of the algorithms Sparse minimizer u” and approximations due to the algorithms
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Figure 3.4 We show the behavior of the algorithms ISTA and D-ISTA in tloenpu-
tation of a sparse minimizer* for A being a 500x 2500 matrix with i.i.d. Gaussian
entries,o = 1072, 7o = 0.1 andy = 0.95. In the top left figure we presents the dy-
namics of the algorithms in the plafie||;, — log(||Au — y||3). On the bottom left, we
show the absolute error to the precomputed minimiZewith respect to the number
of iterations. On the bottom right we show how the size of tingperts of the itera-
tions grow with the number of iterations. The figure on theright shows the vector
u*, and the approximations due to the algorithms. In this cagk the algorithms
approximate with very high accuracy the minimizérafter 1800 iterations.
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Dynamics of the algorithms X
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Figure 3.5We show the behavior of the algorithms ISTA and D-ISTA in toenpu-
tation of a sparse minimizer* for A being a 500x 2500 matrix with i.i.d. Gaussian
entries,a = 1074, 49 = 0.01 andy = 0.998. In the top left figure we presents the dy-
namics of the algorithms in the platje||,, — log(||Au — y||3). On the bottom left, we
show the absolute error to the precomputed minimiZewxith respect to the number of
iterations. On the bottom right we show how the size of thegsts of the iterations
grow with the number of iterations. The figure on the top rigihbws the vecton*,
and the approximations due to the algorithms. In this cas8TA detects the right
support ofu* after 1500 iterations, whereas ISTA keeps dramaticallypédnind.

Related work

There exist by now several iterative methods that can be fseithe minimization
problem (3.109) irfinite dimensions We shall account a few of the most recently
analyzed and discussed:

(a) theGPSR-algorithn{gradient projection for sparse reconstruction), anoitieer
ative projection method, in the auxiliary variablegy > 0 with v = = — y [39].

(b) thet, — £ algorithm, an interior point method using preconditioned conjugate
gra- dient substeps (this method solves a linear systemdhn eater iteration
step) [51].

(c) FISTA (fast iterative soft-thresholding algorithm) is a vaiatiof the iterative
soft-thresholding [5]. Define the operatbfu) = S,(u + A*(y — Au)). The



70 M. Fornasier

FISTA is defined as the iteration, starting f6f) = 0,

) — 1
(n+1) _ () o 2~ = (,m) _, 01
U =T (u + i) <u U )) ,

Wheret(”"‘l) — w andt(o) =1.

As is addressed in the recent paper [54] which accounts adetajled comparison
of these different algorithms, they do perform quite wellentthe regularization pa-
rametera is sufficiently large, with a small advantage for GPSR. Whegets quite
small all the algorithms, except for FISTA, deterioratendfigantly their performances.
Moreover, local conditioning properties of the linear agier A seem particularly af-
fecting the performances of iterative algorithms.

While these methods are particularly suited for finite disienal problems, it would
be interesting to produce an effective strategy, for angeaof the parametet, for
a large class of infinite dimensional problems. In the repaper [22] the following
ingredients are combined for this scope:

« multiscale preconditioningallows for a local well-conditioning of the matrix
A and therefore reproduces at infinite dimension the conditiof best perfor-
mances for iterative algorithms;

 adaptivity combined with adecreasing thresholding strategllow for a con-
trolled inflation of the support size of the iterations, promoting thinimal com-
putational cost in terms of number of algebraic equatiossyell as the exploita-
tion from the very beginning of the iteration of the local iwebnditioning of the
matrix A.

In [66] the authors propose as well an adaptive method sital22] where, instead of
the soft-thresholding, eoarsening functioni.e., a compressed hard-thresholding pro-
cedure, is implemented. The emphasis in the latter comimiis on the regularization
properties of such an adaptive method which does not dispioseeference energy
functional (3.107), and it will be the object of the lectupresented by R. Ramlau, G.
Teschke, and M. Zhariy.

3.3 Domain Decomposition Methods fol,-Minimization

Besides the elegant mathematics needed for the convergeact one of the ma-
jor features of Algorithm 4 is its simplicity, also in term§implementation. Indeed
thresholding methods combined with wavelets have been pftesented, e.g., in im-
age processing, as a possible good alternative to totadtiariminimization which

requires instead, as we already discussed in the previatiors® the solution of a
degenerate partial differential equation. As pointed outhie previous sections, in
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general iterative soft-thresholding can converge verylisio

In particular, it is practically not possible to use such &odathm when the di-
mension of the problem is really large, unless we providehal modifications we
accounted above. And still for certain very large scale lgmols, this might not be
enough. For that we need to consider further dimensiongityiction techniques. In
this section we introduce a sequential domain decompasitiethod for the linear
inverse problem with sparsity constraints modelled by8)1 The goal is to join
the simplicity of Algorithm 4 with a dimension reduction tedque provided by a de-
composition which will improve the convergence and the clexify of the algorithm
without increasing the sophistication of the algorithm.

For simplicity, we start by decomposing the “domain” of tleggenced into two
disjoint setsZ;, 7, so thatZ = 7; U Z,. The extension to decompositions into multiple
subset = 7; U --- U Zys follows from an analysis similar to the basic cage= 2
Associated to a decompositich= {Z1,7Z,} we define theextension operator; :
02(Z;) — la(T), (Eiv)x = vz, If X € Z;, (Ejv)\ = 0, otherwisej = 1, 2. The adjoint
operator, which we call theestriction operatoy is denoted byR; := EY. With these
operators we may define the functiog@{us, uz), J : f2(Z1) x £2(Z;) — R, given by

T (u1,uz) := J(F1u1 + Faup).

For the sequence; we use the notatiom, ; in order to denote its components. We
want to formulate and to analyze the following algorithmckPan initial E1u§°> +
Ezugo) = u® e ¢1(T7), for exampleu® = 0, and iterate

ugn—i-l) = arg min,, c/,(7,) J (v1, ugn))
ug™ = arg ming,e 2y T (WY, 02) (3.146)
w(tl) = Elugnﬂ) + Ezugnﬂ).

Let us observe thdtFus + Eauzlle, 7y := |lulleyzy) + lluzlle (z,), hence

arg min j(vl,ugn)) =arg min ||(g — AEgu;n)) — AEyv1||2 + 7|11

vleéz(ll) ’Uleéz(l—l)
A similar formulation holds forarg min,,cy,(z,) j(u§"+l),v2). This means that the
solution of the local problems of; is of the samekind as the original problem
arg min,cg,(7y J (u), but the dimension for each has been reduced. Unfortunately

the functionalsj(u,ug")) andj(ugnﬂ),v) do not need to have a unique minimizer.
Therefore the formulation as in (3.162) is not in principlelMdefined. In the follow-
ing we will consider a particular choice of the minimizerglan particular we will
implement Algorithm 4 in order to solve each local problenmisichoice leads to the
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following algorithm.

Algorithm 6. Pick an initial Eluf’) + E2u§°> = u® € £4(7), for example
«© = 0, and iterate

u(n—l—l,O) . u(n,L)

1 — M
u§n+1,e+1) =S, (ugn-l—l,é) i RlA*((y _ AEgué"’M)) _ AElugnJrl’é)))
{=0,...,.L-1
ugn—l-l,O) _ ugn,l\/[)

ugn+1,e+1) =S, (ugn-l—l,é) i RzA*((y _ AElugnJrl’L)) _ AEgugnJrl’é)))

(=0... M—-1
| u(n+1) — E1u§n+1,L) +E2u§"+l’M).

(3.147)

Of course, for = M = oo the previous algorithm realizes a particular instance of
(3.162). However, in practice we will never execute an itdéimumber of inner iter-
ations and therefore it is important to analyze the convergef the algorithm when
L, M € N are finite.

At this point the question is whether algorithm (3.147) lkeabnverges to a mini-
mizer of the original functional7. This is the scope of the following sections. Only
for ease of notation, we assume now that the thresholdirepeteree > 0 is a scalar,
henceS,, (u) acts on (u) with the same thresholdifig(u, ) for each vector component
U

3.3.1 Weak Convergence of the Sequential Algorithm

A main tool in the analysis of non-smooth functionals andrthenima is the concept
of subdifferential. We introduce it already in the preséotaof the homotopy method
in Section 2.1.1. Recall that for a convex functiod@dlbn some Banach spaéé its
subdifferentialo F'(x) at a pointz € V with F'(z) < oo is defined as the set

OF(x) = {2 e V* 2" (z—2)+ F(z) < F(z)forall z € V},

whereV* denotes the dual space Bf. It is obvious from this definition that @
OF (z) if and only if z is a minimizer ofF".

Example 3.17 Let V = ¢41(Z) and F () := ||z||1 is the/; norm. We have
| |[u(x) = {£ €Lla(T): Ex €0 [(xN), N €T} (3.148)
whered| - |(z) = {sgn(z)} if z # 0andd| - |(0) = [—1,1].
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By observing thad(||A - —y||2)(u) = {24*(Au — y)} and by an application of [36,
Proposition 5.2] combined with the example above, we oltaénfollowing charac-
terizations of the subdifferentials gf and 7.

Lemma 3.18 i) The subdifferential of/ at u is given by

0T (u) = 2A"(Au—y)+2ad| - [[1(u)
= {§€l(T): &) € [2A"(Au — y)|\ + 200 - [(un) }-

i) The subdifferential of7* with respect to the sole componenis given by

0T (u,a) = —2(a+ A*(y — Aa)) + 2u + 20| - ||1(u)
= {£el(T): 6n € [-20a+ A%y — Aa))]x + 2ur + 200 - |(un)}-

In light of Lemma 3.2 we can reformulate Algorithm 5 by

(n+1,0) _  (n,L)
U1 =U

ug-n-l-l,é-l-l) (n,M) (n+1,0) + Ezu(n,M))

= arg min,, e,z J° (Brug + Bpuy ™, Eruy 2

¢(=0,....[—1
ugn-l-l,O) ugn,M)

ugn-i-l,é-i—l) — arg minuzeéz(Iz) js(Elug-n-i-l,L) + E2u27E1u§-n+17L) + Ezu;n-l—l,é))
(=0,...,M—1
u(n+1) — Elug-n-i-l,L) + Ez’u,;n—’_l’M).

(3.149)
Before we actually start proving the weak convergence oétgerithm in (3.210) we
recall the following definition [67].

Definition 3.19 LetV be atopological space anti= (A,,),cn @ sequence of subsets
of V. The subsetd C V is called thelimit of the sequenced, and we writeA =
lim,, A,,, if

A={a €V :3a, € Ap,a= li}Lnan}.

The following observation will be useful for us, see, e.§7,[Proposition 8.7].

Lemma 3.20 Assume thal" is a convex function oR™ and (z,,),en € RM a con-
vergent sequence with limit such thatl'(x,,),I'(x) < oco. Then the subdifferentials
satisfy

lim OI'(x,) C OT'(z).

n—0o0

In other words, the subdifferentidll’ of a convex function is aouter semicontinuous
set-valued function
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Theorem 3.21 (Weak convergence)he algorithm in(3.210) produces a sequence

(u(™),en in £2(T) whose weak accumulation points are minimizers of the fonati

J. In particular, the set of the weak accumulation points is4eonpty and if.(>) is

a weak accumulation point then
u®) =S, () + A*(g — Aul>))).

Proof. Let us first observe that by (3.191)

T @™y = 75w u™)y = 5B + Bl

=I5B + Byl M)

,E (”L)

(n+1,1)

By definition ofu; and its minimal properties in (3.210) we have

jS(E u(n,L)+E (nM) Elu(n+10)+E (nM))
> j (E (n+11)+Eu(nM) Eu(n-l—lO)_’_Ezuén,M)).

Again, an application of (3.191) gives

j (El (n+ll)+E ( ),Elu(n+10)—|-E (nM))
> j (El (n—i—ll)_'_Eu;, ),Elu(n+1l)—|-E (nM))

Putting in line these inequalities we obtain

T@™) > 7B 4 B, B 4 gpufrtD)
In particular, from (3.192) we have
j(u(n))_jS( (n+1 1)+E (n M)’Elu:(Ln+l,1)+E2 (n, ) > C|| (n+11)

By induction we obtain

+ Eou

2 )

,El (n+10) + B, u(n M))

(n+1,0)2

1

j(u(n)) > jS( n+11) +E ugn M)7E1u(n+11) + Bou (n M)) >
> jS( n+1L)+E (nM) Elu(n+1L)+E (nM))
— j(ElugnH’L) +E ué" M)),
and

L—1
n n+1,L n,M n+1,/0+1 n+1,0
T @) = F (B 4 Bpuy"™) > €7 JuHHY o2

(=0

1%z
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(n+1,1)

By definition ofu,, and its minimal properties we have

jS(Elu(nH’L) + EzugmM), Elu(n+1’L) + Ezugn’M))
> J5(Bw (n+1 L, EzugnJrl’l),El (n+1,L) By (n+l o))

By similar arguments as above we find

j( ) > jS( n+l L) _'_Ezugn—i-l,M)’Elug.n—i-l,L) +E2u§n+l,1\/[)) _ j(u("+1)),
(3.150)
and

j(u(n)) N j(u(n-i-l))

L—1 M-1

+1,0+1 +1£ +1m+1 +1, 2

> 0<Zuu§" P a2 e 3 g m>||wz>>-
=0 m=0

(3.151)

From (3.193) we have7 (u(@) > 7 (u™) > 2a|u™ |, z) > 2al[u™||,,). This
means thatu™),,cy is uniformly bounded irf>(Z), hence there exists a weakly con-
vergent subsequende ")) ;cy. Let us denoteu(>) the weak limit of the subse-
guence. For simplicity, we rename such subsequenqmm)neN. Moreover, since
the sequencé” (u(™)),cn is monotonically decreasing and bounded from below by
0, itis also convergent. From (3.194) and the latter corarerg we deduce

L-1 M-1

+1,0+1 +1,0 +1,m+1 +1,
(Zuuﬁ" D O gy D g ! m)\\§2<zz)>—>0, n— oc.
= m=0

(3.152)
In particular, by the standard inequality? + b2) > 3(a + b)? for a,b > 0 and the
triangle inequality, we have also

[u®™ — ™| 1) = 0, n— oo (3.153)
We would like now to show that

0e lim a7 (u™) c 87 (u>).

To this end, and in light of Lemma 3.18, we reason componeetwBy definition of
u{" ) we have
0e [—2w{" ™Y 4 RiA*((y — ABuS"™) — AEW" Y],
+ 2" 4 200] - (W),



76 M. Fornasier

for A € 71, and by definition oh("“’M) we have

for A € Z,. Let us comput@7 (u"*1)),,

aj(u(n+l)) [ ZA*(y AE, u(n+l L) AEz’LLgH_l’M))])\ + 2048| . |(ug\nl+1 K))’
(3.154)
where\ € Z, and K = L, M for i = 1,2 respectively. We would like to find a

¢ ¢ 5.7 (um+D), such thate!" ™ — 0 for n — cc. By (3.154) we have that for
ANETq

0= [2(u{" V4 Ry A ((y— ABpu™™) - AByu{ V) 4 20 20
forac{ ™ € 9] - |(u'y+"), and, by (3.154), foh € T
0= [_z(uén—’_l’M_l)—i-RzA*((y—AElug_n+l’L))—AEzuén—’_l’M_l)))] +2 (n+1 M)+2 (n+1)7

for ag (nt1) ¢ a| - ]( "H M)) Thus by adding zero from (3.154) as represented by
the prewous two formulas, we can choose

6 = 2y - ) [RaA AR Y — ),

+ [RiA*AB(uf M — M)

if A\ e Z;and

(n+1) _ 2( (n-‘rl M) ug\r’;l—l,M—l)) [RZA AE ( (n+1,M) ug-n—l—l,M—l))])”

if A € Z,. For both these choices, from (3.195) and (3.196), and biragty of A, we
havef(’”1 — 0 forn — oo. By continuity of A, weak convergence af™ (which
implies componentwise convergence), and Lemma 3.20 wénobta

Oe lim 8J (™), Cc T (u'®),, VAel.
It follows from Lemma 3.18 that @ 9.7 (u(>). By the properties of the subdifferen-
tial we have that.(*®) is a minimizer of.7. Of course, the reasoning above holds for

any weakly convergent subsequence and therefore all weakmtation points of the
original sequencéu'™),, are minimizers of7.

Similarly, by taking now the limit fom — oo in (3.154) and (3.154), and by using
(3.195) we obtain

0 € [=2(Ryu™+ Ry A*((y— AB2Ryu™)) — AB; Ryu®))|\+2u'> 4200 | (u™),
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for \ € 7, and
0 € [~2(Rau™)+ RpA* ((y— A1 Ryu™) — AE2 Rpu(™) ] +2ul™ 4200 (u{>).
for A € Z,. In other words, we have
0€ 9,75 (>, ul>).
An application of Lemma 3.18 and Proposition 3.5 imply
u®) =S, (ul® + A*(y — Aul>))).

g

Remark 3.22 1. Becausa:/(™) = S, (u(®) + A*(y — Au(*))), we could infer the
minimality of «(°*) by invoking Proposition 3.5. In the previous proof we wanted
present an alternative argument based on differentialismhs.

2. Since(u™), ey is bounded and (3.195) holds, alég'"),,, are bounded for
i=1,2.

3.3.2 Strong Convergence of the Sequential Algorithm

In this section we want to show that the convergence of a suiesee(u"/ ), to any
accumulation point:(°®) holds not only in the weak topology, but also in the Hilbert
spacel,(Z) norm. Let us define

77(n-i—l) — ug-n-i-l,L) . ugm)’ n(n+1/2) — ug-n-l-l,L—l) . ugm)’
Iu(n—i-l) — u;n-l—l,M) . ugoo)7 Iu(n+1/2) — ugn-l—l,]\/f—l) . u;oo)’

whereu™ := R;u(>). From Theorem 3.35 we also have

7

ul™ = Sa(ul™ + RiT(g - TEW™ - TEAS™)), i=12

2

:hl
Let us also denoté := E1hy + Fohy andE™ = Eyin(t1/2) 4 By (n+1/2),

For the proof of strong convergence we need the followingriaal lemmas. Their
strategy of their proofs is similar to that of Lemma 3.8 andnioea 3.9.

Lemma 3.23 ||A¢™) 2. — Ofor n — oo.
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Proof. Since

gD 42 s (b 4 (I — RyA*AE)y" Y2
— Ry A*ABEu™) — Sy (hy) — Y2,
plm D) =y Y2 — S (hy 4 (I — RpA*AEp)u™ /2
—  RoA*AE™ V) =S, (hy) — p"+Y2),

and ") — gy = Jug =y -0, ult )
n n+1,M n+1,M—1
ut +1/2)||€z(11) = ||u§ tLM) Ug - )||zz(12) — 0 by (3.195), we have

[Sa(h1 + (I — RyA*AE )" — Ry A* AE ™) — Sq(h1) — 02|11,y
> ||ISa(he+ (I — RIA*AE)n Y2 — Ry A* AEu(™)
(n+1/2

—Sa(hl)Héz(Il) —In )Héz(Il) — 0, (3.155)

and
||Sa(h2 + (I — RZA*AEz)Iu(TH-l/Z) _ RZA*AEl,’,}(TL+1)) _ Sa(hZ) _ ,U(n+1/2) ||52(12)
> ”Sa(hZ + (I — RzA*AEZ)Iu(TH-l/Z) _ RZA*AEln(n+l))
=Sa(h2)lley(z) — Hu(n+1/2)”62(12) 0. (3.156)

By nonexpansiveness 8f, we have the estimates

[Sahe + (I — RpA* AE) ™2 — Ry A* AE1n™™)) — Su(ha) |l ey(z,)

< (I = ReA* AEp) u" ™2 — Ry A* AE "™ 1,1,
< H([ - RZA*AEZ)M(n+1/2) - RZA*AEln(n+l/2) ”52(12)
+ |[RpATAE (T2 — DY

;:5(”)

Similarly, we have

ISa(ha + (I = RiA* A Y2 — Ry A* ABu™) — So(ha) | eyz,)
(I — RyA* AEy )™ Y2 — Ry A* AEu™ ||y, 1)

< (I = RA*AE) ™Y — Ry A* AEu" 2| 1,

+ HRlA*AEz(,u(nH/Z) - M(n))sz(Il) .

IN

§5(n)
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Combining the previous inequalities, we obtain the estmat

ISa(ha + (I — RiA* AE )™ Y2 — RyA* ABppu™ — So(hy)lI2z,,
ISa(ha + (I — RpA* AEp) " 1/2) — Ry A* AEm™ Y — S (ha) |27,
I(T — RyA* AE ™Y — Ry A* AEou™ |7 s

+ (T = RpA* ABp)u™ Y2 — RpA* ABmm™ V|2

= (I = RaA* AB)n" 2 — Ry A" AR+
2
+  [|[RLATAEy(p Y2 — u("))Hez@l))

+ (I = RoA* AR ™Y/ — RoA* ABy ™2,

+

2
| Rz A" ABS (" 42) — D) |z, )

IN

107 = A" AN E ) + (67)2 + (60)2 4 C'(e™) + 61))
< €M) + (™) + (60)2 + O™ +5))

The constant’ > 0 is due to the boundedness@f-*). Certainly, by (3.195), for
everye > 0 there existsig such that fom > ng we have(s(™)2 + (6()2 - C' (e +
§(M)) < e. Therefore, if

ISa(h1+ (I = R1A*AE Y2 — RiA®AE™ = So(h) 3,2,
+ [ISalha + (I — RoA* AB) ™2 — Ry A* AEin ™Y — So(ho)|2, 7,y = 11€™ 12,2,

then

< | - RA AB) Y2 — Ry AT ABp™ |2 o)
+ |I(I = RoA* AE) "2 — Ry A* AEin "2 1y — 1€™12,
< (M2 4 (M2 4 C'(e™ 4 6M)) < e

If, instead, we have

ISa(h1+ (I = RiA* AEL)"™ Y2 — RiA* ABu™) — Sa(ha)[If 2,
+ [ISa(hz + (I — RpA* ABp)pul" ™2 — Ry A* AEN™ ) — S0 (ho) |2, 7,y < €™ 1127
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then by (3.155) and (3.156)

I€™12

(17 = RaA* AR Y — RyA* ABu™) |2, 1,
+ ||(I = RpA*AEp) " +/2) RzA*AEm("H))”i(IZ))
< IE™NE,0
— [ISa(h1 + (I = RiA* AE )R "2 — Ry A* AEp™) = Sa(h)l[f 1,
— |Salhz + (I = RpA* AE) p" 2 — Ry A* AE ™) = Sa(h2)|2, ()
= |IE™ 2
— [ISalla + (I = RiA"AE)N"™ 2 — RiA* AEp™) — Sa(ha)|fa,)

—  [ISalhz + (I = RpA* AEp) "2 — Ry A* ABIN™HY) = Su(h2) 17,1,

< |22 g,

— |ISa(h1+ (I = RiA"AB "2 — RyA* AEp™) — Sa ()|, 2,

|2 g

<e

— [Salhz + (I = RoA” ABR)u" /2 — Ry A" AEw ™) — Sa(h2) Iz,

for n large enough. This implies

i [HS(”)H?z(z) — (I = RaA"AB) D) — Ry AT AR 2, 1,

+ (= ReA AE) Y — oA AEm "2 )| = 0

Observe now that

+
<
_|_

<

I(T = RaA* AE) pt" 2 — Ry A ABp™ |2, 1y

I(I = ReA* AB)u "2 — RpA* AEw " V|7, 1,

(I(I = ReA*AEy) "2 — Ry A* AB "2 || ) + 612
(I(I — ReA*AE) "2 — Ry A* AE1n ™| 1,1, + ™))?
(I — A*A){(n)H?Z(I) + <(5(n))2 + (5(n))2 i 20/(6(") + 5(n))) ’
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for a suitable constart’ > 0 as above. Therefore we have
I 20y — (I = RaA AR — Ry A" AB™) 2 1,
+  ||(I = RoA* AE,) (" +1/2) — RzA*AEm("H))H%z(IZ))

> e ) — I = A" A gy — ()2 + (600)2 + 207 () +5)

2| A€ — |4 Ay — (€00 + (37 + 20 (™ + )

Y

JAE G = ()2 4 ()2 + 207" +5) ).

This implies|| A¢™||2. — 0 for n — cc.

Lemma 3.24 For h = Erhy + Ezha, |[Sa(h + €M) — Sa(h) — €™ |4y — O, for

n — Q.

Proof. We have
Sa(h+ &M — A% A¢™)
= By (Salhn + (I~ RA" AR — RyA® ABulm+12))
B (Salho + (I — RoA® ABQ)u /) — RpA® Ayy("+1/2))
Therefore, we can write
Sa(h+ €M™ — A% AM)
= By [Salhn + (I~ RaA ABY) Y2 — RyA® AE™)
+ Sa(h1+ (I - RlA*AEl)U(n+l/2) _ RlA*AEz,u(n"'l/z))
— Sa(hl + ([ — RlA*AEl)T](n+1/2) _ RlA*AEZM(n))]
+ FE» [Sa(hZ + (I — RZA*AEz)Iu(n—i-l/Z) _ RZA*AEln(n—i-l))
+ Sa(hg + (I — RpA* AE) "2 — Ry A* AE (" +Y/2))

— Salhz+ (I = ReA" AB)u" 2 — RpA* AEw™+Y))|.

By using the nonexpansivenessSyf, the boundedness of the operatéis R;, A* A,
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and the triangle inequality we obtain,

”Sa(h + f(n)) - Sa(h) - f(n)Hez(I)

< [ISa(h + €M — A*AEM) — Sy (h) — €™l
Sa(h + &™) — Sa(h + M — A*AM)||, 1
< | ISa(ha+ (I = RyAAE) ™D — RiA* AE ™) — So(ha) — "2 |1z

;:A("L)

+ [Salhz + (I = RpA*AE) "™ — RoA* AE1 ™) — So(ha) — 1" ™24,

+ B = 1y + "D =gy gy

_|_

|A* AE™ || 1)
—_—

The quantitiesA(™, B(™ vanish forn — oo because of (3.155) and (3.156). The
quantity C(") vanishes fom — oo because of (3.195), anB(™ vanishesn — oo
thanks to Lemma 3.23. d

By combining the previous technical achievements, we cam state the strong
convergence.

Theorem 3.25 (Strong convergenceplgorithm 5 produces a sequenté™ ), ¢y in
0>(Z) whose strong accumulation points are minimizers of thetfonal 7. In par-
ticular, the set of strong accumulation points is non-empty

Proof. Let u(>) be a weak accumulation point and let":));cy be a subsequence
weakly convergent ta(>). Let us denote the latter sequereé™ ),,cy again. With

the notation used in this section, by Theorem 3.35 and (3.4@5have that (™ =
Eqynt1/2) 4 £y, (n+1/2) weakly converges to zero. By Lemma 3.24 we hiawg, . o, ||S, (h+
¢) =S4 (h)—£™||,(z) = 0. From Lemma 3.10 we conclude ti§&t) = E1n"+1/2)+
E,u("*+1/2) converges to zero strongly. Again by (3.195) we have théb),,ciy con-
verges tou(>) strongly. O
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3.3.3 A Parallel Domain Decomposition Method

The most natural modification to (3.147) in order to obtairaeafielizable algorithm

is to substitute the term("*t1.L) with R1u(™ in the second inner iterations. This
makes the inner iterations ¢fif andZ, mutually independent, hence executable by
two processors at the same time. We obtain the followingrdlgo: Pick an initial
u(® € ¢4(T), for exampleu(® = 0, and iterate

(n-‘rl 0 — Ryu (n)
(n+1e+1 S, u (n+1,6) “R A*((g AEszu( )) _ AEw&"H’Z)))
{=0,.

, L —
ugn-‘rl 0) — Rou n)

ugn+1 L+1) S, <u(n+1£ + RpA*((g — AElRlu(")) _ AEzug"H’g)))
1

(=0,... M-
GRS Elu(n+ ,L) —|—E2 (n+1, M)

(3.157)
The behavior of this algorithm is somehow bizzare. Indebd, @lgorithm usually
alternates between the two subsequences giveri®y and its consecutive iteration
u(?*+1) | These two sequences are complementary, in the sense éfgagrihode in-
dependent patterns of the solution. In particular, #6°) = o + u”, v ~ «/
and «(@*+1 ~ " for n not too large. During the iterations and farlarge the
two subsequences slowly approach to each other, mergingotiglementary fea-
tures and shaping the final limit which usually coincideshwite wanted minimal
solution, see Figure 3.6. Unfortunately, this “oscillgttxehavior” makes impossible
to prove monotonicity of the sequen¢g (u(™)),cn and we have no proof of con-
vergence. However, since the subsequences are earlytindictfferent features of

3.5
2 3 0.3
1.5 2.3 3
o.g ot 0.5
10 20 30 4 O—5"20 302 T0 20 30 4

Figure 3.60n the left we show.(2", in the center,(2**1 | and on the right.(>*). The
two consecutive iterations contain different featuresaltwill appear in the solution.

the final limit, we may modify the algorithm by substituting*t? = E ("H’L)

(E1u<”+l Dy, u(n+1 M)y 4y (m)

_l’_

Eoul"™ M) with (1) .= that is the average of the cur-
rent |terat|on and the previous one. ThIS enforces an eaglgimg of complementary
features and leads to the following algorithm:
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Algorithm 7. Pick an initialu(® € ¢1(Z), for exampleu®© = 0, and iterate

u:(Ln—i-l 0 — Ry u( n)
un+lZ+1 <u (n+1,¢) —|—R A*((g — AEngu(")) AE, (”+1f)))
1

(=0,...,

L —
§n+l,0) Rzu(n)

(n+1 +1) _ S, ( (n+1,0) + RpA*((g — AElRlu(”)) ABEou (n+1 5))>

| ¢=0,...,M-1

u:(L'rL+l,L)+E2u§n+l,]W))
2

u("+1) — (El +u(n)

(3.158)

The proof of strong convergence of this algorithm is veryilsimto the one of
Algorithm 6. For the details, we refer the reader to [42].

3.4 Domain Decomposition Methods for Total Variation Minimization

We would like to continue our parallel discussionégfminimization as well as total
variation minimization as we did in Section 2.1.3. In parkar, we would like to show
that also for total variation minimization it is possible flrmulate domain decom-
position methods. Several numerical strategies to per&ffroiently total variation
minimization have been proposed in the literature as welith®\t claiming of be-
ing exhaustive, we list a few of the relevant methods, odliéretheir chronological
appearance:

(i) the linearization approach of Vogel et al. [32] and of @timlle and Lions [16]
by iteratively re-weighted least squares, see also Se2tihf;

(ii) the primal-dual approach of Chan et al. [17];

(iii) variational approximation via locally quadratic fationals as in the work of
Vese et al. [2,77];

(iv) iterative thresholding algorithms based on projetsionto convex sets as in the
work of Chambolle [14] as well as in the work of Combettes araj3/f21];

(v) iterative minimization of the Bregman distance as invitoek of Osher et al. [65]
(also notice the very recent Bregman split approach [48]);

(vi) graph cuts [15, 26] for the minimization of (2.79) withi = I (the identity
operator) and an anisotropic total variation;

(vii) the approach proposed by Nesterov [59] and its modifica by Weiss et
al. [78].

These approaches differ significantly, and they provide rvioging view of the
interest this problem has been able to generate and of ilcatye impact. How-
ever, because of their iterative-sequential formulatitmme of the mentioned methods
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is able to address in real-time, or at least in an acceptaliguatational time, ex-
tremely large problems, such as 4D imaging (spatial plupteai dimensions) from
functional magnetic-resonance in nuclear medical imggastronomical imaging or
global terrestrial seismic tomography. For such largeessahulations we need to
address methods which allow us to reduce the problem to & Beiuence of sub-
problems of a more manageable size, perhaps computablestnf tre methods listed
above. With this aim we introduced subspace correction amaath decomposition
methods both fo¥;-norm and total variation minimizations [42, 44, 69]. We et
the interested reader to the broad literature included4hfi@r an introduction to do-
main decompositions methods both for PDEs and convex naaiton.

Difficulty of the problem

Due to the nonsmoothness and nonadditivity of the totalatian with respect to a
nonoverlapping domain decomposition (note that the taahtion of a function on
the whole domain equals the sum of the total variations osubdomains plus the size
of the jumps at the interfaces [44, formula (3.4)]; this i€ @f the main differences
to the situation we already encountered wifhminimization), one encounters addi-
tional difficulties in showing convergence of such deconitas strategies to global
minimizers. In particular, we stress very clearly that walbwn approaches as in
[13, 18, 75, 76] are not directly applicable to this probldracause either they do ad-
dress additive problems (as the one/giminimization) or smooth convex minimiza-
tions, which isnot the case of total variation minimization. Moreover the iagting
solutions may be discontinuous, e.g., along curves in 2[@s&discontinuities may
cross the interfaces of the domain decomposition patchencé] the crucial diffi-
culty is the correct numerical treatment of interfaceshwiite preservation of cross-
ing discontinuities and the correct matching where thetswius continuous instead,
see [44, Section 7.1.1].

The work [44] was patrticularly addressed rionoverlappingdomain decomposi-
tions QLU € Q C QU D andQ N O, = (. Associated to the decomposition
defineV; = {u € L?(Q) : supp(u) C Q;}, fori = 1,2; note thatL?(Q) = Vi @ V5.
With this splitting we wanted to minimiz¢Z by suitable instances of the following
alternating algorithm: Pick an initia; & V5 5 u{” + ul? = u©, for example
4@ = 0, and iterate

u(1"+1) ~ argming, ey, J(v1 + ugn))

uénﬂ) A arg ming,ecv, j(u&"H) + v)

utD) — u:(Ln+l) + u;n—i-l)'

In [44] an implementation of this algorithm is proposedsiguaranteed to converge,
and to decrease the objective energymonotonically. One could prove its conver-
gence to minimizers aff only under technical conditions on the interfaces of the sub
domains. However, in numerical experiments, the algoriseems always converging
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robustly to the expected minimizer. This discrepancy betwiaeoretical analysis and
numerical evidences motivated the investigationoerrlappingdomain decomposi-
tions. The hope is that the redundancy given by overlappatghes and the avoidance
of boundary interfaces could allow for a technically ea#fieoretical analysis.

The approach, results, and technical issues

In this section we show how to adapt Algorithm 5 and Algoritbrto the case of an
overlappingdomain decompositions for total variation minimizatiomelsetting of an
overlapping domain decomposition eventually provides itls svframework in which
one can successfully prove its convergence to minimize(s,dioth in its sequential
and parallel forms. Let us stress that to our knowledge thike first method which
addresses a domain decomposition strategy for total w@riahinimization with a
formal theoretical justification of convergence. It is infamt to mention that there
are other very recent attempts of addressing domain decatigpomethods for total
variation minimization with successful numerical res(g].

The analysis is performed for a discrete approximation @fttimtinuous functional
(2.79), for ease again denotgdin (2.80). Essentially we approximate functiongy
their sampling on a regular grid and their gradiént by finite differencesvVu. Itis
well-known that such a discrete approximatibrconverges to the continuous func-
tional (see [9]). In particular, discrete minimizers ofg@), interpolated by piecewise
linear functions, converge in weaktopology of BV to minimizers of the functional
(2.79) in the continuous setting. Of course, when dealinip wumerical solutions,
only the discrete approach matters together with its appration properties to the
continuous problem. However, the need of working in the réisc setting is not
only practical, it is also topological. In fact bounded set®3V are (only) weakly-
x-compact, and this property is fundamental for showing tieatain sequences have
converging subsequences. Unfortunately, the wetdpology of BV is “too weak”
for our purpose of proving convergence of the domain decaitipa algorithm; for
instance, the trace on boundary setadsa continuous operator with respect to this
topology. This difficulty can be avoided, for instance, Iyapproximating the func-
tional (2.79) by means of quadratic functionals (as in [2,7I8) and working with
the topology ofiW1?(Q2), the Sobolev space df*-functions with L2-distributional
first derivatives. However, this strategy changes the smguature of the problem
which makes it both interesting and difficult. Hence, thecdite approach has the
virtues of being practical for numerical implementatiort,correctly approximating
the continuous setting, and of retaining the major featwrieish makes the problem
interesting. Note further that in the discrete setting ehtepological issues are not
a concern anymore, also the dimensiboan be arbitrary, contrary to the continuous
setting where the dimensiehhas to be linked to boundedness properties of the opera-
tor T, see [77, property H2, pag. 134]. For ease of presentatimhireorder to avoid
unnecessary technicalities, we limit our analysis to wpgjtthe problem into two sub-
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domains2; and2,. This is by no means a restriction. The generalization tdipial
domains comes quite natural in our specific setting, seg[ésdRemark 5.3]. When
dealing with discrete subdomaity, for technical reasons, we will require a certain
splitting property for the total variation, i.e.,

[Vul(€2) = [Vulo, [(Q)+ca(ul@aury)s  [VUl(€) = [Vulo,|(Q2)+c2(ul@\0m)ur,),

(3.159)
wherec; andce; are suitable functions which depend only on the restristidm,\ o,)ur,
andul(o,\q,)ur, respectively, see (3.166) (symbols and notations ardieldonce for
all in the following section). Note that this formula is thecrete analogous of [44, for-
mula (3.4)] in the continuous setting. The simplest exampfaliscrete domains with
such a property are discraefedimensional rectangleg-orthotope$. Hence, for ease
of presentation, we will assume to work withorthotope domains, also noting that
such decompositions are already sufficient for any prdatiea in image processing,
and stressing that the results can be generalized also tmisiatins with different
shapes as long as (3.159) is satisfied.

Additional notations

Additionally to the notations already introduced in Sectib1.3 for the total variation
minimization setting, we consider also the closed convéx se

K = {divp peH |p(z)|,, <1 forallz e Q}

where|p(z)|, = max {|p*(z)],...,[p%(z)|}, and denotePx (u) = argmin, ¢ x |lu—
v||2 the orthogonal projection ontds .

3.4.1 The Overlapping Domain Decomposition Algorithm

As before we are interested in the minimization of the fuorci
J () == || Ku — g|5 + 2a [V ()| (©), (3.160)

whereK € L(H) is alinear operatoy € H is a datum, and > 0 is a fixed constant.
and we assume thatd ker(K).

Now, instead of minimizing (3.160) on the whole domain wealepose into two
overlapping subdomain@; and(2, such that2 = Q; U Q,, 2, N Q, # 0, and (3.159)
is fulfilled. For consistency of the definitions of gradiendadivergence, we assume
that also the subdomairf; are discretel-orthotopes as well &, stressing that this
is by no means a restriction, but only for ease of presemati@ue to this domain
decompositiorf{ is split into two closed subspac&s = {u € H : supp(u) C Q;},
for j = 1,2. Note that{ = V1 + V5 is not a direct sum o7 and V5, but just a linear
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sum of subspaces. Thus amy= H has a nonunique representation

ug(z) e\
wx) = ui(z) fuz(z) €N, uw eV, i=12 (3.161)
uz () x €\ M

We denote by'; the interface betweef; and2,\ Q21 and byI'; the interface between
Q2 andQ; \ Q2 (the interfaces are naturally defined in the discrete ggttin
We introduce the trace operator of the restriction to a banni,

Trp:V; =R =12

with Tr |p, v; = v; |r,, the restriction ofy; onI';. Note thatR!" is as usual the set
of maps from[’; to R. The trace operator is clearly a linear and continuous opera
We additionally fix abounded uniform partition of unittBUPU) {1, x2} C H such
that

(@ Tr|r, xi =0fori=1,2,

0 x1t+x2=1,

(c) suppx; C ; fori=1,2,

(d) max{[[x1lloo; [X2lloc} = < o0.
We would like to solve

argmin,, cq, J (u)

by picking an initialV; + V5 3 @l + i@l = u© € H, e.g.,il” = 0,i = 1,2, and

iterate
(n+1)

WD argmin e T+ )
Tr|p,v1=0
u§n+1) A argmin  ,,ev, j(ug_n-H') + v)
W4 o D ijjéﬁl% (3.162)
Z~L:(Ln+l) — yq - um D
{ ag"“) = yp - uD),

Note that we are minimizing over functions € V; for i = 1, 2 which vanish on the in-
terior boundaries, i.eTr |r, v; = 0. Moreoveru(™ is the sum of the local minimizers

u&") andug"), which are not uniquely determined on the overlapping pEnerefore
we introduced a suitable correction Ry andy in order to force the subminimizing

sequence$u§"))neN and (ué"))neN to keep uniformly bounded. This issue will be
explained in detail below, see Lemma 3.36. From the defmitiby;, : = 1,2, it is
clear that

u§n+1) 4 ugn-l-l) _ u(n—i—l) (n+1) _ ,ag-"‘i‘l) + ﬂ(""‘l).

= (x1+x2)u 2
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Note that in generaﬂt(" £ 1 N(" and u2 ) 2 u2" . In (3.162) we use®” (the ap-
proximation symbol) because in practice we never perforettact minimization. In
the following section we discuss how to realize the appratiom to the individual
subspace minimizations.

3.4.2 Local Minimization by Lagrange Multipliers

Let us consider, for example, the subspace minimizatiof2pn

argmin v, J(vitug) = argmin_ e, [[Kvi— (g — Kug)l5+20|V (01 + uz Jo,)] (Q).
Tr\plvlzo Tr|1~101=0
(3.163)

First of all, observe thafu € H : Tr |p, u = Tr |p, up, J(u) < C} C {J < C},
hence the former set is also bounded by assumption (C) andittieization problem
(3.163) has solutions.

It is useful to us to consider again a surrogate functiginabf 7: Assumea, u; €
V1, up € V5, and define

Tt (ur + uz, a) := T (ur + uz) + [[ug — al5 — | K (u1 — a3 (3.164)
A straightforward computation shows that
Tt (urtuz, a) = [lur—(a+(K* (9 Kup—Ka)) |o,)[3+20 |V (uz + u2)| () +P(a, g, uz),

where® is a function ofa, g, u only. Note that now the variable; is not anymore
effected by the action dk. Consequently, we want to realize an approximate solution

to (3.163) by using the following algorithm: Fuﬁo ) ¢ 1,
Wl = argmin ey, Jf(u1 + ug, ug@ ), (>0 (3.165)
Tr\plulzo

Additionally in (3.165) we can restrict the total variation 2; only, since we have

V(ur+u2)| () = |V(u1+u2) o,] (1) + caluzloapur,).  (3.166)

where we used (3.159) and the assumption thatanishes on the interior boundary
I";. Hence (3.165) is equivalent to

. ¢ .
argmin ey, jf(ul—l—uz,ug )) =argmin ey, |luz — leg—l—Zoz IV (u1 +u2) |o,| (1),

Tr\plulzo TI‘|[‘1U1:0

wherez; = u§> + (K*(g — Kup — Kul )) |o,. Similarly the same arguments work
for the second subproblem.

Before proving the convergence of this algorithm, we needdafy first how to
practically computm(“l) for @ M) given. To this end we need to introduce further
notions and to recall some useful results.



90 M. Fornasier

Generalized Lagrange multipliers for nonsmooth objectivefunctions

We consider the following problem
argmin,c{F(z) : Gx = b}, (3.167)
whereGG : V — V is a linear operator olr. We have the following useful result.

Theorem 3.26 [49, Theorem 2.1.4, p. 305] L& = {G*\: X\ € V} = Range(G™).
Thenzo € {x € V : G(z) = b} solves the constrained minimization problé3l67)
if and only if

0€ 0F (xz0) + N.

We want to exploit Theorem 3.26 in order to produce an algorit solution to
each iteration step (3.165), which practically stems fromgolution of a problem of
this type

argmin_ ey [lun — 213 + 20 [V (ua + uz o, )| (Q4).
Tr\plulzo
It is well-known how to solve this problem ifi, = 0 in Q1 and the trace condition is
not imposed. For the general case we propose the followilng@o strategy. In what
follows all the involved quantities are restricted(e, e.9.,u1 = u1 |q,, u2 = u2 |o,.

Theorem 3.27 (Oblique thresholding) For u, € V5 and for z; € V3 the following
statements are equivalent:
() wi =argmin ey [ug — 215 + 20 [V(ug + u2)| (Q1);
TI‘|[‘1’LL1:0
(i) there existsy € Range(Tr |r,)* = {n € V1 with supp(n) = I'1} such thatO €
ug — (21— 1) + ady; [V (- + u2)| (1) (u1);
(iii) there existsy € Vi with supp(n) = I'1 such thaw] = (I — Pagx)(21+u2—n) —
up € V3 andTr |p1 u}k_ =0

(iv) there exists) € Vq with supp(n) = I'y such thatTr |, n = Tr |p, 21+ Tr |,
P,k (n—(z1+u2)) orequivalentlyy = (Tr |r,)* Tr |r, (21 + Pax (n — (21 + u2))).

We call the solution operation provided by this theorenohlique thresholdingin
analogy to the terminology fat-minimization (see Lemma 3.1), because it performs
a thresholding of the derivatives, i.e., it sets to zero nubshe derivatives ofu =
u1 + up &~ z1 on€)q, providedu, which is a fixed vector is%.

Proof. Let us show the equivalence between (i) and (ii). The probleifi) can be
reformulated as

uj = argmin, oy, {F(u1) = [lug — z1||% + 2|V (ug + u2)| (1), Tr |, ug = 0}.
(3.168)
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Recall thatTr |r,: Vi — Rt is a surjective map with closed range. This means
that (Tr |r,)* is injective and thaRange(Tr |r,)* = {n € Vi with supp(n) =1}
is closed. Using Theorem 3.26 the optimality«df is equivalent to the existence of
n € Range(Tr |r,)* such that

0 € 0y, F(ul) + 2n. (3.169)
Due to the continuity oflu; — z1\|§ in V1, we have, by [36, Proposition 5.6], that
O F(uf) = 20uf — 21) + 200y |V (- + )| (Q)(uf).  (3.170)
Thus, the optimality of:] is equivalent to
0€uj —2z1+n+ ady; |V(- +u2)| (1) (ul). (3.171)

This concludes the equivalence of (i) and (ii). Let us show tiat (iii) is equivalent
to (ii). The condition in (iii) can be rewritten as

§" = (I — Par)(21 +u2 — 1), £ =y +up.

Since |V(:)] > 0 is 1-homogeneous and lower-semicontinuous, by [44, Elamp
4.2.2], the latter is equivalent to

0€&" — (21 +uz2—n)+ady, V()| (21)(€),

and equivalent to (ii). Note that in particular we haxe |V (-)| (©21)(£*) = ov; [V (- + u2)| (Q21)(u3),
which is easily shown by a direct computation from the debtnitof subdifferential.
We prove now the equivalence between (iii) and (iv). We have

uj = (I —Pux)(z1+uz—n)—uze Vi, neVywith supp(n) =T1,Tr |, u] =0
= 21— 10— Pax(21+u2—1n).
By applyingTr |, to both sides of the latter equality we get
0="Tr|p, 21 —Tr|p, n—Tr |p, Par(21+u2—n).

By observing that— Tr |r, Pox(§) = Tr |, Parx(—§), we obtain the fixed point
equation
Tr |p, n = Tr |r, 21+ Tr |r, Parc(n — (21 + u2)). (3.172)

Conversely, since all the considered quantities in
(I — Pug)(z1+u2—1n) —u

are inV1, the whole expression is an elementiinand hence:] as defined in (jii) is
an element in/y andTr |, ] = 0. This shows the equivalence between (iii) and
(iv) and therewith finishes the proof. a
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We wonder now whether any of the conditions in Theorem 3.2Wlised practically
satisfied. In particular, we want to show that V7 as in (iii) or (iv) of the previous
theorem is provided as the limit of the following iteratigarithm:

n® e Vi, suppn@ =11 ™D = (Tv |p,)* Tr |, (Zl + Pore ('™ — (21 + uz))) , m >
(3.173)

Proposition 3.28 The following statements are equivalent:

(i) there exists) € Vi such thaty = (Tr |r)* Tr |p, (21 + Pax(n — (21 + u2)))
(which is in turn the condition (iv) of Theorem 3.27)

(i) the iteration (3.173) converges to amyc V1 that satisfies (3.172).

For the proof of this Proposition we need to recall some \Wetiwn notions and
results.

Definition 3.29 A nonexpansive mafi : H — H is strongly nonexpansive if for
(up, — vn)n, bounded and 7 (u,,) — 7 (vn)||l2 — ||un — vn|l2 — O we have

U — vp — (T (up) — 7 (vy)) = 0, n — oc.

Proposition 3.30 (Corollaries 1.3, 1.4, and 1.5 [11]}.et7 : H — H be a strongly
nonexpansive map. Théix7 = {u € H : 7 (u) = u} # 0 if and only if (7"u),,
converges to a fixed poimg € fix 7 for any choice of: € H.

Proof. (Proposition 3.28) Projections onto convex sets are slyamgnexpansive [4,
Corollary 4.2.3]. Moreover, the composition of stronglynegpansive maps is strongly
nonexpansive [11, Lemma 2.1]. By an application of Propmsi8.30 we immediately
have the result, since any map of the typ&) = Q(&) + &o is strongly nonexpansive
whenever(Q is (this is a simple observation from the definition of strigngonex-
pansive maps). Indeed, we are looking for fixed pointg ef (Tr |r,)* Tr |r, (21 +

Pak (n—(21+u2))) or, equivalently, of = (Tr [r,)" Tr |r, Par (§)—((Tr [ry)" Tr [r, u2),

=Q =80
Wheref = (TI‘ ‘Fl)* Tr ’Fl (77 - (Zl + UZ)) a

Convergence of the subspace minimization

From the results of the previous section it follows that ttegation (3.165) can be
explicitly computed by

u{™ = Sa () + K* (g — Kup — Kul?) +uz — ) —ua, (3.174)
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whereS,, := I — P,x andn¥ e V4 is any solution of the fixed point equation
o= (Trln) T ey (04K (9 — Kuz = Kuf)

— PaK(ugz) + K*(9g— Kup — Kugz) 4+ up — 77))) .
The computation off) can be implemented by the algorithm (3.173).

Proposition 3.31 Assumeuy € V2 and || K| < 1. Then the iteration(3.174)con-
verges to a solution] € Vi of (3.163)for any initial choice ofugo) e V.

The proof of this proposition is similar to the one of Theorgm and it is omitted.
Let us conclude this section mentioning that all the requksented here hold sym-
metrically for the minimization orl», and that the notations should be just adjusted

accordingly.

3.4.3 Convergence of the Sequential Alternating SubspaceiMmization

In this section we want to prove the convergence of the dlyor{3.162) to minimizers
of 7. In order to do that, we need a characterization of solutairtee minimization
problem (2.80) as the one provided in [77, Proposition 4ot]the continuous set-
ting. We specify the arguments in [77, Proposition 4.1] for discrete setting and we
highlight the significant differences with respect to thatamious one.

Characterization of solutions

We make the following assumptions:

(A,) ¢ : R — Ris aconvex function, nondecreasingRr such that

() ¢(0)=0.
(i) There existc > 0 andb > 0 such thatz — b < p(z) < ¢z + b, for all
z e RT.

The particular example we have in mind is simplfs) = s, but we keep a more gen-
eral notation for uniformity with respect to the continuogssion in [77, Proposition
4.1]. In this section we are concerned with the following engeneral minimization
problem

argmin, ey {Jp () := |[Ku — g|f3 + 200(|Vul ) ()} (3.175)

whereg € H is a datumgp > 0 is a fixed constant (in particular far(s) = s).

To characterize the solution of the minimization problenil{®) we use duality
results from [36]. Therefore we recall the definition of th@njugate (or Legendre
transform)of a function (for example see [36, Def. 4.1, pag. 17]):
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Definition 3.32 Let V andV* be two vector spaces placed in the duality by a bilinear
pairing denoted by-, -) and¢ : V' — R be a convex function. Theonjugate function
(or Legendre transformy™ : V* — R is defined by

¢ (u*) = sup{(u,u*) — ¢(u)}.
ueV
Proposition 3.33 Let ¢, u € H. If the assumptioniA,,) is fulfilled, then¢ € 07, (u)
if and only if there existd/ = (Mo, M) € H x H%, 20l < ¢ ¢ [0,+00) for all
x € € such that

(M(z), (Vu)(z))ga + 200(](Vu)(z)|) + 2005 <‘]\42(;)’> = 0 forallz e

(3.176)
K*My—divM +¢ = 0 (3.177)
— My = 2(Ku — g), (3.178)

whereyj is the conjugate function of; defined byp1(s) = ¢(]s|), for s € R.
If additionally ¢ is differentiable and(Vu)(x)| # 0 for z € €, then we can
computeM as
v ¢ (|(Vu)(2)])
M(z) = —2a————>(Vu)(z). (3.179)
[(Vu)(2)]
Remark 3.34 (i) For ¢(s) = s the functionys from Proposition 3.33 turns out to
bepi(s) = |s|. Its conjugate functior; is then given by

0 forls*|<1

se oo else

p1(s") = sup{(s*,s) — [s]} = {
R

Hence condition (3.176) specifies as follows

(M (), (Vu)(x))ra + 20|(Vu)(z)| = 0

and, directly from the proof of Proposition 3.33 in the Apgian |M (z)| < 2«
forall x € Q.

(i) We want to highlight a few important differences withspect to the continuous
case. Due to our definition of the gradient and its relatigmalith the divergence
operator— div = V* no boundary conditions are needed. Therefore condition
(10) of [77, Proposition 4.1] has no discrete correspondemtur setting. The
continuous total variation of a function can be decomporemldan absolute con-
tinuous part with respect to the Lebesgue measure and aairmart, whereas
no singular part appears in the discrete setting. Therefonelition (6) and (7)
of [77, Proposition 4.1] have not a discrete correspondiineie
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(i) Aninteresting consequence of Proposition 3.33 id¢ tha mapS, = (I — P,x)
is bounded, i.e.||S,(2*)||2 — oo if and only if || z*||, — oo, for k — oco. In
fact, since

Sa(z) = argmin|lu — 2|3 + 20| Vu| (),
from (3.177) and (3.178), we immediately obtain
Sa(z) =2z — %divM,
andM is uniformly bounded.

Proof. (Proposition 3.33.) Itis clear thate 0.7,(u) ifand only ifu = argmin, ¢4 {J,(v)—
(¢,v)x}, and let us consider the following variational problem:

inf {Tp(v) = (G vpn} = inf {[|Kv = gll3 + 200(IVV)(@Q) = (G, v)n}  (P)
We denote such an infimum hbyf(?). Now we compute ®*) the dual of P). Let
F H->RG:HxH' SR, G :H—R,G:H®— R, such that
F) = —(Gon
Gi(wo) = [lwo — glf3
Go(w) = 20p(|w])(€2)
G(w) = Gi(wo) + G2(w)

with w = (wp,w) € H x H?. Then the dual problem ofR) is given by (cf. [36, p
60])

sup  {—F"(A"p") = G"(—p")} (P*)

p*EHXH

where.# : H — H x H% is defined by

Mo = (Kv, (Vo)l,..., (Vo))
and.#* is its adjoint. We denote the supremum iR*j by sup(P*). Using the
definition of the conjugate function we comput andG*. In particular

F (M p*) = sup{(A"p",0)p—F (v)} = sup( A p*+(,v) = { prt¢

veH vEH oo otherwise

wherep* = (pg,p*) and

G'(p*) = sup {(p",w)pxpne —G(w)}
wEH XHE

= sup {0, wo) 1 + (%, W)pga — G1(wo) — Go(w) }
w=(wp,w)EH X HI

sup {(po, wo)n — G1(wo)} + sup {(p*, W)pa — Go(w)}
woEH weH?

= Gi(po) + 92(P")
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We have that

Gi5) = (%2 +4.15 )
H
and (see [36])

sy _ o e 1P
G3(57) = 2005 (1) (@
if % € Dom ¢7, whereyj is the conjugate function @b, defined by

v1(s) = o(|s]) s eR.

For ease we include in below the explicit computation of ¢hesnjugate functions.
So we can write®*) in the following way

—Po * * ’ﬁ*‘
sup < — +9,—p > — 2« ( > Q } (4.180)
p*elC{ < 4 0 H Y1 20 ( )
where
K= {p* GHXHd:% 6DomgpiforaII:EGQ,///*p*—kg:o}.

The functiony; also fulfills assumption4,)(ii) (i.e., there existg; > 0,0 > 0 such
thatciz — b < ¢1(2) < c12 + b, for all z € RT). The conjugate function af; is
given by i (s) = sup,cr{(s,2) — ¢1(2)}. Using the previous inequalities and that
p1iseven (i.e.p1(z) = ¢1(—2) for all z € R) we have

—b if|s| <
o else '
(4.181)

(sup{(s, 2)—ca|z|+b} =) sup{(s, 2)—p1(2)} = sup{(s, z)—c1|2|-b} =
z€R z€R z€R

In particular, one can see that Dom ¢ if and only if [s| < c1.
From.#*p* + ¢ = 0 we obtain

(AP )+ (G win = (pFs A w)ggars + (G w)n = (po, Kw)r + (07, Vw)pa + (Cw)w = C
for all w € H. Then, sincep*, Vw)yq« = (— divp*,w)y (See Section 2.1.3), we have

K*p —divp* + ¢ = 0.
Hence we can writéC in the following way

P (z)|
20

K= {p* = (p5,7") € H x HE: <ciforallxz e Q,K*pg—divp*JrC:O}.

We now apply the duality results from [36, Theorem lll.4.4hce the functional in
(P) is convex, continuous with respect.tdv in H x H?, andinf(P) is finite. Then

inf(P)= sup(P*)€ R and (P*) has a solution\/ = (My, M) € K.
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Let us assume thatis a solution of P) and M is a solution of P*). Frominf(P)=
sup(P*) we get

|]Ku—g|]%+2ag0(]Vu\)(Q)—(C,u>H =— <# +9, M0>H—20480i (%) Q)

(4.182)

whereM = (Mo, M) € H x H¢, ‘M( ) < ¢; andK* Mg — div M + ¢ = 0, which
verifies the direct implication of (3. 177) In particular

—(¢,u)yp = (KMo, u)y — (div M, u)y = (Mo, Ku)p + (M, Vu)ya,

and
| K u—g||3+ (Mo, Ku)p+(M, Vu)Hd+2agp(|Vu|)(Q)—|—< —240 +9, —Mo> +20p] <% (Q) -
a.183)
Let us write (4.183) again in the following form
d
S Eu—g) @)+ Mo(w)(Ku)(x) + > S M (2) (V) (z) + Y 200(|(Vu) ()
e €N e j=1 z€Q
#3 (FR 4 g) (atoa) + 320t (P ) o
e e
(4.184)

Now we have
L 20p(|(Va) () )+ —g MY (@) (Vu) (2)+20¢] (%) = 2a¢(|(Vu)(z)|)—
S (M ()| (V) (z)] + 20405 (I%ﬂ) > 0 by the definition ofy}, since

2007 (252) = supgega{ (M (2), S)za—200(1S1)} = supsegal (117 ()], S )ga—
20(1S))}

2. |(Ku-g)(e >|2+Mo +( M) 4 g(@)(~Mo(x)) = (((Ku)(@) -
9(w)))*+Mo(x) (K (w))+ (Mg} = ( u)(z) — g(x)) + Mf2)" >
0.

Hence condition (4.183) reduces to

2000(]( ZMJ ) + 20007 (’MSC)‘> =0 forallz e

(4.185)
— Mo(z) = 2((Ku)(z) — g(z)) forallz € Q. (4.186)
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Conversely, if such anf = (Mo, M) € H x H? with % < ¢ exists which ful-

fills conditions (3.176)-(3.178), it is clear from previocgnsiderations that equation
(4.182) holds. Let us denote the functional on the left sidg d82) by

P(u) == || Ku = g||3 + 20¢(|Vul)(Q) — (¢ u)n
and the functional on the right side of (4.182) by

P = (S g}~ 2003 (5 @.

We know that the functionaP is the functional of P) and P* is the functional of
(P*). Henceinf P = inf(P) andsup P* = sup(P*). SinceP is convex, continuous
with respect toZu in H x H%, andinf(P) is finite we know from duality results [36,
Theorem I11.4.1] thainf(P)= sup(P*)e R. We assume thal/ is no solution of P*),
i.e., P*(M) < sup(P*), andu is no solution of P), i.e, P(u) > inf(P). Then we
have that

P(u) > inf (P) = sup (P*) > P*(M).

Thus (4.182) is valid if and only i/ is a solution of P*) andw is a solution of P)
which amounts to saying thate 0.7, (u).

If additionally ¢ is differentiable and(Vu)(x)| # 0 for z € 2, we show that we
can computel/ (x) explicitly. From equation (3.176) (resp. (4.185)) we have

203 (L0 ) = —01(0), (Voo — 20|Vl (4.38)

From the definition of conjugate function we have

2 (™) =2 { (50 ) -0}

“2p{ () )

: (4.188)
_ —M(z)
= Zagg %@t {< 50, 7S>Rd - @1(‘5‘)}
= sup {(~NI(2), 8)pa — 2001/}

Now, if [(Vu)(z)| # 0 forz € €, then it follows from (4.187) that the supremum is
taken on inS = |(Vu)(z)| and we have

Vs(=(M (), S)ra — 200(|S])(92)) = O
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which implies

=i ¢ (|(Vu)(2)]) : ,
M (x) = —2a———""=(Vu)(x) j=1,...,d,
(z) (V) (@)] (Vu) (z)
and verifies (3.179). This finishes the proof. a

Computation of conjugate functions. Let us compute the conjugate function of
the convex functiorGs (wo) = ||wo — g||3. From Definition 3.32 we have

91(po) = sup {{wo, po)n — Ga(wo)} = sup {(wo, po)n — (wo — g, wo — g)n}-

woEH woEH
We setH (wg) = (wo, py)H — (wo — g, wo — g)x. To get the maximum off we
compute the Gateaux-differentialag of H,

H'(wo) = p§ — 2(wo — g) =0

and we set it to zerd!’ (wo) = 0, sinceH" (wo) < 0, and we getvg = 2 4 g. Thus
we have that

p* * * >k
sup H(ue) = (% +0.58) = GG
woEH H

Now we are going to compute the conjugate functiorgefw) = 2ap(|w|)(£2).

Associated to our notations we define the spage= RS ™™, From Definition
3.32 we have

G2(p") = sup {(@,p")pa — 2a(|w])(2)}

weH
= sup+ ?)upd {0, p*) e — 2a0(|w])(Q2) }

weH

H
€70 (@ =t(x)

= Sl;g{@, )1 — 2000(2) (1)}

If © were an even function then

sup {(t, |[p*[)n — 2000()(Q) } = fgg{@, D" [ — 2000(2) ()}

teH
“ep (), o)
:m¢(%§m>

wherey™ is the conjugate function a@f.




100 M. Fornasier

Unfortunately ¢ is not even in general. To overcome this difficulty we have to
choose a function which is equal¢ds) for s > 0 and does not change the supremum
for s < 0. For instance, one can chogsg(s) = ¢(|s|) for s € R. Then we have

5171{;1{(75, Py — 200(8) ()} = félg{(t, D" )H — 2001 (£) (€2) }

whereyyj is the conjugate function @f;. Note that one can also choagg(s) = ¢(s)
for s > 0 andyi(s) = oo for s < 0.
Convergence properties

We return to the sequential algorithm (3.162). Let us expliexpress the algorithm
as follows:

Algorithm 7. Pick an initial Vi + V3 3 @” + i@l := u© e H, for example,
% = 0,i = 1,2, and iterate

u(n—i—l,O) . ﬂ(n)

1
(n+1,641) . _(n)  (n+1,0)
uy =argmin ey, Jy(ur+ay ,uy )
Tr\plulzo
{=0,...,.L—-1
1,0 ~
u§n+ 0 _ ué")
(n+1,m+1) : (n+1 L) (n+1,m)
uy =argmin ey, J5(uy + u2, Uy )
Tr|r,uz=0

m=0,... M-1

u(n+1) — ug-n+l,L) + u§n+l,1\/[)

~("+1) = X1 - (1)
ﬁgnﬂ) = 2 - ul"tD),

(3.189)

Note that we do prescribe a finite numbdeand M of inner iterations for each sub-
space respectively and thet+2) = "™ + @™ with u{"" £ @Y i = 1,2,
in general. In this section we want to prove |ts convergencary choice of. and M.

Observe that, for € V; and|| K| < 1,
lui — al3 — (| Ku; — Kall3 > Cllui — all3, (3.190)
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for C = (1— ||K|?) > 0. Hence
I (u) = T (w,w;) < T (u,a), (3.191)

and

TP (u,a) = TP (u,u3) = Cllu; — a3 (3.192)
Proposition 3.35 (Convergence properties) et us assume that’|| < 1. The algo-
rithm in (3.210) produces a sequen@é™ ),,cry in H with the following properties:

(i) Ju™) > Ju")forall n € N (unlessu™ = u(*+D);

(i) limy, o [[u™tD — 4], =0
(iii) the sequencéu™),cn has subsequences which convergé(in

Proof. Let us first observe that

n s/~(n ~(n) ~(n s/~(n ~(n n+1,0
Ty = gp@? +ag) ) = g +ay? ey,

(n+1,1)

By definition ofu; and the minimal properties @dﬁ"“’l) in (3.210) we have

jf(ﬂgn)Jr&gn)’ (n+10)>j1( n+11)+u§n)7ug-n+l,0)).

From (3.191) we have

Putting in line these inequalities we obtain

n+1,1) n
J@) = 7@ @),
In particular, from (3.192) we have

j(u(n)) _j( (TL-‘rll) + ( ) > CH n+11 ug-’ﬂ-‘rl,o)H%‘

After L steps we conclude the estimate

and

)~ T i) 2 O3 o g
(=0

(n+1,1)

By definition ofu, and its minimal properties we have

Tl (n1.0) | & )> 75 (u (n+1,L) _’_uén-i-l,l)’uén-i-l,O))'
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By similar arguments as above we finally find the decreasitimate

j(u(")) > j(ugm_l’L) +u§n+l’M)) _ j(u("+1)) _ j(ﬁgn—H) +ﬁ§n+1))7 (3.193)

and
j(u(")) _ j(u(n+l))
— 1,041 10 e Lm+1 1
2C <Z D RO 2 4 N7 (g Y g ’m)||§> . (3.194)
£=0 m=0

which verifies(7).

From (3.193) we havg (u(?) > 7 (u(™). By the coerciveness condition (@)™),.en
is uniformly bounded irf{, hence there exists a convergent subsequ(em@e))keN
and henceiii) holds. Let us denote(>) the limit of the subsequence. For sim-
plicity, we rename such a subsequence(by")),cn. Moreover, since the sequence
(7 (u™)),en is monotonically decreasing and bounded from below by G él$o
convergent. From (3.194) and the latter convergence wecgedu

L-1 M-1
(=0 m=0

(3.195)
In particular, by the standard inequality? + %) > %(a + b)? for a,b > 0 and the
triangle inequality, we have also

[u™ —u |, -0, n— oco. (3.196)
This gives(ii) and completes the proof. d

The use of the partition of unityx1, x2} allows not only to guarantee the boundedness
of (u™),,cn, but also of the sequencés™),.cx and (i5™ ), en.

Lemma 3.36 The sequence{s]&"))neN and(ﬂé”))neN produced by the algorithr{8.210)
are bounded, i.e., there exists a constaht- 0 such that|i\" ||, < € for i = 1,2.

Proof. From the boundedness @f(™),,cyy we have

1312 = |Ixsu™]2 < Kl[u™], < & fori=1,2

From Remark 3.34 (iii) we can also show the following auxiliiemma.

Lemma 3.37 The sequencesnin’”)n and(ngn’M))n are bounded.
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Proof. From previous considerations we know that

ug-n L) _ Soz(z}_ML_l) + agn—l) . n&n L)) . ﬁ;n—l)

ugn,M) _ Sa(ZémM_l) + u(n L) 77én,M)) . ug.n L).
Assume(vﬁ )) were unbounded, then by Remark 3.34 (iii), al%p(z (L) 4

ﬂé”_l) - 175” L)) would be unbounded. Slnc(@L2 N and(ug L)), are bounded by
Lemma 3.36 and formula (3.195), we have a contradiction.s‘(hﬁ’”)n has to be
bounded. With the same argument we can show(bl;ﬁﬁtM))n is bounded. d

We can eventually show the convergence of the algorithm momizers of 7.

Theorem 3.38 (Convergence to minimizers)Assumé|K|| < 1. Then accumulation
points of the sequende(™),,cn produced by algorithm (3.210) are minimizers 6f
If 7 has a unique minimizer then the seque®)),,cy converges to it.

Proof. Let us denote:(>) the limit of a subsequence. For simplicity, we rename such

a subsequence ky.(™), cy. From Lemma 3.36 we know thatz&"))neN, (aé"’)neN

and consequentlyu!™"),cx,(uy""),cr are bounded. So the limit(>*) can be
written as
ul® =y 44 = a4 ) (3.197)

whereu!™ is the limit of (u{™")),,cx, u5™ is the limit of (ul"*"), ey, anda!> is

the limit of (@\™),,en for i = 1,2. Now we show tha’ag’o) = ug’o). By using the

7

triangle inequality, from (3.195) it directly follows that
g M — a3V, — 0, n— oo (3.198)

Moreover, sincey,; € V> is a fixed vector which is independent of we obtain from
Proposition 3.3%::) that
2™ = u®™ V), =0, n— oo,
and hence
|ad) — @), - 0, n — oo. (3.199)

Putting (3.198) and (3.199) together and noting that

” (n+1,M)

- ~ 1
uy — a2+ [|las — @yt

LM ~ 1
22 g — a5z

we have
Jug ™M — @7, -0, 0 oo, (3.200)
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which means that the sequenc(aé" M JneN and(ﬂé"))neN have the same limit, i.e.,
a5 = ul™, which we denote by, Then from (3.200) and (3.197) it directly

follows thati{™ = u{>,
As in the proof of the obligue thresholding theorem we set

Faug" ) = o™ oY 209 (Y gl 0a)
where
z§n+1,L) - u:(Ln-i-l,L—l) +(K*(g — K&é") _ Kug.n—i-LL—l))) o
The optimality condition foru("Jrl L)is

0 € By, Fi(ul (n+1, L)) " 2n§n+l,L)
where

" = (Tr [p,)* T |, ((ZinH’L)) t+ Pagc (") — o0 - ﬂén))) '

In order to use the characterization of elements in the #febelintial of |Vu/|((2),
i.e., Proposition 3.33, we have to rewrite the minimizatmmoblem for F;. More
precisely, we define

n+1,L n+1,L
; A2 4 20| v (") (1)

for 51"+1L € Vq with Tr |r, 5(”+1L = &é"). Then the optimality condition for
gin-l-l L) - is

0 € oy (M) 4 op{n i) (3.201)
Note that mdee(i (n+L.L) s optimal if and only |fu("Jrl L — §"+1’L) - ﬂg") o is
optimal.

Analogously we define

- n+1,M n+1,M n+1,L n+1 n+1,M
Fa(g M) = g Y= 4 20096 ()
for ¢ M) ¢ Vo with Tr |, €M) = 4 ") and the optimality condition for
§2n+1 M) . is
0 € (MY 4 ot (3.202)
where

n+1,M * n+1,M n+1,M n+1,M n+1,L
ng M = (T [, Ty (8770) 4 Page () — {0 0 )
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Let us recall that now we are considering functionals as op®&sition 3.33 with
o(s) = s, K =1,andQ = Q;, i = 1,2. From Proposition 3.33 and Remark

3.34 we get that\" "), and consequently(’”rl ") is optimal, i.e., —2p{" ") ¢
oFy (")), if and only if there exists aMl("H) = (Méﬁﬂ) M("“)) €V x V!

with [17{"" ()| < 2 for all € Q4 such that

M (@), (V@ 4 ag)) (@) + 2000((V (" 4 a5 (@) = 0

(3.203)
2" () — AT () — div 1 () — 2" (2) = 0.
(3.204)
for all z € Q. Analogously we get that," """, and consequently"***") is

optimal, i.e., —2n{" ™) € aFy (M) if and only if there exists ale("“) =
(MéZJrl) M("+l)) € Vo x Vg with |M(”Jrl ()| < 2a for all z € Q, such that

)

(M (@), (V@ 4T (@) ga + 200(|(V (@D 4 @l ) = 0

(3.205)
—2(uy M () — 25 (@) — div Mg (@) — 208 (2) = o,
(3.206)

for all z € 9. Since(M\" (2)),en is bounded for all: € Q1 and (M{™ (x))nen
is bounded for allx € 2, there exist convergent subsequen(:ﬁ%l"’“)(ac)),fE N
and (Mz("k)(x))ke,\/. Let us denotd\Zl(oo)(a:) and Mz(w)(a:) the respective limits
of the sequences. For simplicity we rename such sequenc(aMﬁS)(x))neN and

(M3 () )nen
Note that, by Lemma 3.37 (or simply from (3.204) and (3.208p sequences

(ngn’L))neN and (ngn’M))neN are also bounded. Hence there exist convergent sub-

sequences which we denote, for simplicity, again(bY’L))neN and (ng”thneN

with limits 7>, i = 1,2. By taking in (3.203)-(3.206) the limits for — oo we
obtain

(M (2), (VW™ + a5 (@))ga + 200(|(V (P +uS))(z))) =0 forallz € O
2l (z) — 2% (@) — div M (@) — 20 (z) =0 forallz €

() (), (V (0™ +u5)) (2))ga + 2060(|(V(ul +u5))(2)]) = 0 forallz € 0,
—2(u§°o)(x) — zéoo)(ac)) —div MZ(OO) (x) — 2n§oo)(ac) =0 forallz € Qp
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(c0) (c0)

Sincesuppn; ' = 'y andsuppn, ' = I'> we have

(M) (@), (V () (2))za + 2000(|(V () (z)[) =0 foralle € 2
2K ((Ku™)(x) — ¢ (2)) — div M) (z) = 0 forallz € 01\ Ty
(3.207)
(M5 (), (V () (2))pa + 2060(|(V () (2))) =0 forallz € Q;

—2K*((Kul™®)(z) — g (2)) — div My (z) =0 forallz € Qp\ Ts.
(3.208)

Observe now that from Proposition 3.33 we also have thatD(u(>)) if and only
if there exists) () = (M), 11090y with [11{° ()| < 2 for all € © such that
(M) (), (V(u))(2))ga + 200(|(V(u*)(z)[) =0 forallz € Q

. (3.209)
—2K* ((Kul®)(z) — ¢ (2)) — div M) (z) =0 forallz € Q.

Note thatJ\Z/j(w) (x),j = 1,2, forz € Q1 N Q, satisfies both (3.207) and (3.208).
Hence let us choose

MP () iz e (Q\ Q)UT,

With this choice of /() equations (3.207) - (3.209) are valid and hent®) is
optimal in€2. ad

Remark 3.39 (i) If Vu(®)(z) # O forz € Q;, j = 1,2, thend™ is given as in
equation (3.179) by

7(0)

J

_ (Vul>) g, (@)
() = -2« .

(V) Jo,)(z)]

(i) The boundedness of the sequen(né%b))neN and(ﬂé”))neN has been technically
used for showing the existence of an optimal decompositieh = u§°°> +u§°°)

in the proof of Theorem 3.38. Their boundedness is guardrete Lemma 3.36

by the use of the partition of the unityx1, x2}. Let us emphasize that there is

no way of obtaining the boundedness of the local sequem}SsL))neN and

(ué"’M))neN otherwise. In Figure 3.12 we show that the local sequences ca

become unbounded in case we do not modify them by means oftitidqn of

the unity.
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(iii) Note that for deriving the optimality condition (3.2pfor «(>°) we combined the
respective conditions (3.207) and (3.208) fé?o) and u§°°>. In doing that, we
strongly took advantage of the overlapping property of thiedemains, hence
avoiding a fine analysis off’o) and néoo) on the interfaced’; andI',. This is
the major advantage of this analysis with respect to the ooé@ded in [44] for
nonoverlapping domain decompositions.

3.4.4 A Parallel Algorithm

The parallel version of the previous algorithm (3.210) eeas follows:

Algorithm 9. Pick an initial V3 + V5 > @’

ﬁl(.o) = 0,7 = 1,2, and iterate

)+ ag‘” = 49 e H, for example,

1,0 ~
UYH- ,0) _ Ug_N)
104+ ; iy ul"
’U«g ) — argmin  ,,ev,  J7(u1 + Ug )7u:(L ))
Tr|p,u1=0
(—0,.., -1
1,0 ~
u;n—i- ,0) _ u;”)
ntLmt1 . n+1,L n+1m
u; ) — al“gmln up€ Vo "728 (ug. ) + uz’ u; ))
Tr|F2uzzo
m=0.  M-1

(n+1) . UYHLL) 1 vt LM)

u = 2
A" = yp - u D
ﬂgnﬂ) =y - u™tD.

(3.210)
As for ¢1-minimization also for this version the parallel algorithisrshown to con-
verge in a similar way as its sequential counterpatrt.

3.4.5 Applications and Numerics

In this section we shall present the application of the setmlealgorithm (3.162)
for the minimization of7 in one and two dimensions. In particular, we show how to
implement the dual method of Chambolle [14] in order to cotaplie orthogonal pro-
jection P,k (g) in the oblique thresholding, and we give a detailed explanaif the
domain decompositions used in the numerics. Furthermorprasgent numerical ex-
amples for imagénpainting i.e., the recovery of missing parts of images by minimal
total variation interpolation, and compressed sensinghhémonadaptive compressed
acquisition of images for a classical toy problem inspirgariagnetic resonance imag-
ing (MRI) [55]. The numerical examples of this section anspextive Matlab codes
can be found at [79].
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Computation of P,k (g)

To solve the subiterations in (3.162) we compute the mirémizy means of oblique
thresholding. More precisely, let us denatg = ag"), uy = u&"“’“l), andz; =
Wl 4 K (g — Kup — Ku{"™"). We shall compute the minimizen of the first
subminimization problem by

up = (I — PaK)(Zl —+ up — 77) —up eV
for ann € V4 with suppn = I'1 which fulfills
Tr|r, () = Tr |y (21 + Pax(n — 21 — u2)) .

Hence the element € V1 is a limit of the corresponding fixed point iteration

n©® € Vi, suppn©@ =T1, 7™ = (Tr |p,)* Tr |, (2’1 + Pore(n'™ — 21 — uz)) , m>0.
(3.211)
Here K is defined as in Section 3.4, i.e.,

K= {divp:p e HY p(z)|, <1 Vre Q}

To compute the projection onteK in the oblique thresholding we use an algorithm
proposed by Chambolle in [14]. His algorithm is based on ictanations of the
convex conjugate of the total variation and on exploiting ¢brresponding optimality
condition. It amounts to comput®, i (¢) approximately byx div p(™), wherep(™ is
thenth iterate of the following semi-implicit gradient descergalithm:

Chooser > 0, letp(® = 0 and, for any» > 0, iterate

_ p(@) + 7(V(divp™) — g/a))(a)
1+ 7[(V(divp™ —g/a))(z)|

p(n—i-l) (x)

Forr > O sufficiently small, i.e.; < 1/8, the iterationa div p(™ was shown to
converge toP,x(g) asn — oo (compare [14, Theorem 3.1]). Let us stress that
we propose here this algorithm just for the ease of its ptaien; its choice for the
approximation of projections is of course by ho means aiotisin and one may want
to implement other recent, and perhaps faster strategges|[¥5, 26, 48, 65, 78].

Domain decompositions

In one dimension the domail = [a, b] is split into two overlapping intervals. Let
|21 N Q2| =: G be the size of the overlap 6f; and(2,. Then we setQ1| =: ny =
[N—JZFG} Q1 = [a,n1] andQy = [n1 — G + 1,b]. The interfaceg’; andI'; are located
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ini = n1+ 1 andni — G respectively (cf. Figure 3.8). The auxiliary functiopsand
X2 can be chosen in the following way (cf. Figure 3.7):

1 l’iEQ]_\Qz
Xl(wz): 1.

1-Z@—(n1—G+1) zeQn

1 l’iEQz\Ql
Xo(;) = 1. .

@(Z—(’I’Ll—G—Fl)) r; € Q1N

Note thaty1(z;) + x2(x;) = 1 forallxz; € Q (i.eforalli =1,...,N).

15

0.5

chil
chi2
n

05 I L L L L L L L
10 20 30 40 50 60 70 80 90 100

Figure 3.7 Auxiliary functionsy; andy for an overlapping domain decomposition with two
subdomains.

In two dimensions the domail = [a, b] x [c,d] is split in an analogous way with
respect to its rows. In particular we ha®e = [a,n1] X [¢,d] andQ, = [n1 — G +
1,0] x [e,d], compare Figure 3.9. The splitting in more than two domasnddne
similarly:

SetQ) = QU ... U Qy, the domair) decomposed intd/ domains(?;,
i=1,...,N, whereQ; andQ;, 1 are overlapping foi = 1,..., A — 1.
Let |Q; N Q;41] =: G equidistant for every = 1,..., A/ — 1. Sets =
[N1/N]. Then

0= [1,3—1—%] x [c, d]
fori=2:N—-1
0, = [(i—l)s—g—l—l,i8+§] X [e, d]
2 2
end

Qv =[N —1)s — % +1, N1] X [c,d].
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The auxiliary functionsy; can be chosen in an analogous way as in the one dimen-
sional case:

Lliy—((i—Ds—G/2+1) (zi,u1,) € Q1N

1 (Tiys Yip) € 4\ (Lim1 U Qiga)
1- é(il— (is — G/2+ 1)) (@iy, Yip) € N Qg1
fori=1,..., N with Qg = Qpry1 = 0.

Xi(Tig, Yip) =

Qo

I'y

M
Figure 3.8 Overlapping domain decomposition in 1D.

a = I
Q1\

Ty | —— —— I' — —
Q1N

Tpgt1 | —— —— Iy —_— —
Q2 \ Q1

b=uxpn

Figure 3.9 Decomposition of the image in two domaifts and(,.

To compute the fixed poing of (3.172) in an efficient way we make the following
considerations, which allow to restrict the computaticonii(2, to a relatively small
stripe around the interface. The fixed points actually supported of'; only, i.e.,
n(x) = 0in Q1 \ I'1. Hence, we restrict the fixed point iteration fpto a relatively
small stripeQ2; ¢ 91 Analogously, one implements the minimizationsygfon {2,.

Numerical experiments

In the following we present numerical examples for the satjakalgorithm (3.210)
in two particular applications: signal interpolation/igeainpainting, and compressed
sensing [79].
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Figure 3.10 We present a numerical experiment related to the interpolaif a 1D signal
by total variation minimization. The original signal is gnprovided outside of the green
subinterval. The initial daturg is shown in (a). As expected, the minimizet™®) is the
constant vector 1, as shown in (b). In (c) and (d) we displayréttes of decay of the relative
error and of the value Qf respectively, for applications of the algorithm (3.210)wdifferent
sizes G=1,5,10,20,30 of the overlapping region of two si¢lbirals.
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Figure 3.11 We show a second example of total variation interpolatiodh The initial
datumg is shown in (a). As expected, a minimiz€P°) is (nearly) a piecewise linear function,
as shownin (b). In (c) and (d) we display the rates of decaly@felative error and of the value
of 7 respectively, for applications of the algorithm (3.210)wdifferent sizes G=1,5,10,20,30
of the overlapping region of two subintervals.
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In Figure 3.10 and Figure 3.11 we show a partially corruptBdsignal on an in-
terval (2 of 100 sampling points, with a loss of information on an im&rD C (.
The domainD of the missing signal points is marked with green. Theseasigaints
are reconstructed by total variation interpolation, inginimizing the functional7 in
(2.80) witha = 0.4 andKu = 1\ p - u, Where L, p is the indicator function of
Q\ D. A minimizer u(>) of 7 is precomputed with an algorithm working on the
whole interval() without any decomposition. We show also the decay of redaivor
and of the value of the energy for applications of algorithm (3.210) on two subdo-
mains and with different overlap sizés = 1,5,10,20,30. The fixed pointg)’s are
computed on a small intervé]i, 1 = 1,2, of size 2. These results confirm the behav-
ior of the algorithm (3.210) as predicted by the theory; tlygpdthm monotonically
decreases/ and computes a minimizer, independently of the size of tlelapping
region. A larger overlapping region does not necessarilylyra slower convergence.
In these figures we do compare the speed in terms of CPU timEiglre 3.12 we
also illustrate the effect of implementing the BUPU withinetdomain decomposition
algorithm. In this case, with datupas in Figure 3.11, we chose= 1 and an overlap
of size G = 10. The fixed points’s are computed on a small inten@}, i = 1,2
respectively, of size 6. Figure 3.13 shows an example of tmaih decomposition
algorithm (3.210) for total variation inpainting. As foredHLD example in Figures
3.10-3.12 the operatdk is a multiplier, i.e.,Ku = 1q\ p - u, where(2 denotes the
rectangular image domain adl C €2 the missing domain in which the original image
content got lost. The regularization parametes fixed at the value 1. In Figure
3.13 the missing domaib is the black writing which covers parts of the image. Here,
the image domain of size 449 570 pixels is split into five overlapping subdomains
with an overlap siz&z = 28 x 570. Further, the fixed pointgs are computed on a
small stripeQ);, i = 1,...,5 respectively, of size & 570 pixels. Finally, in Figure
3.14 we illustrate the successful application of our dontEnomposition algorithm
(3.210) for a compressed sensing problem. Here, we conaidezdical-type image
(the so-called_ogan-Shepp phantgnand its reconstruction from only partial Fourier
data. In this case the linear operator= S o F, whereF denotes the 2 Fourier ma-
trix and .S is adownsampling operatawhich selects only a few frequencies as output.
We minimize 7 with a set at 04 x 10~2. In the application of algorithm (3.210) the
image domain of size 258 256 pixels is split into four overlapping subdomains with
an overlap siz& = 20 x 256. The fixed points’s are computed in a small strige,
i=1,...,4 respectively, of size & 256 pixels.
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Initial Picture

Figure 3.13This figure shows an application of algorithm (3.210) for gaanpainting. In
this simulation the problem was split into five subproblem®werlapping subdomains.
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