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Numerical methods for sparse recovery

Massimo Fornasier

Abstract. These lecture notes are an introduction to methods recentlydeveloped for perform-
ing numerical optimizations with linear model constraintsand additional sparsity conditions
to solutions, i.e. we expect solutions which can be represented as sparse vectors with re-
spect to a prescribed basis. Such a type of problems has been recently greatly popularized
by the development of the field of nonadaptive compressed acquisition of data, the so-called
compressed sensing, and its relationship withℓ1-minimization. We start our presentation by
recalling the mathematical setting of compressed sensing as a reference framework for devel-
oping further generalizations. In particular we focus on the analysis of algorithms for such
problems and their performances. We introduce and analyse the homotopy method, the itera-
tively reweighted least square method, and the iterative hard thresholding algorithm. We will
see that the properties of convergence of these algorithms to solutions depends very much on
special spectral properties (Restricted Isometry Property or Null Space Property) of the matri-
ces which define the linear models. This provides a link to thecourses of Holger Rauhut and
Jared Tanner who will address in detail the analysis of such properties from different points of
view. The concept of sparsity does not necessarily affect the entries of a vector only, but it can
also be applied, for instance, to their variation. We will show that some of the algorithms pro-
posed for compressed sensing are in fact useful for optimization problems with total variation
constraints. Usually these optimizations on continuous domains are related to the calculus of
variations on bounded variation (BV) functions and to geometric measure theory, which will
be the objects of the course by Antonin Chambolle. In the second part of the lecture notes
we address sparse optimizations in Hilbert spaces, and especially for situations when no Re-
stricted Isometry Property or Null Space Property are assumed. We will be able to formulate
efficient algorithms based on iterative soft-thresholdingalso for such situations, althought their
analysis will require different tools, typically from nonsmooth convex analysis. The course by
Ronny Ramlau, Gerd Teschke, and Mariya Zhariy addresses further developments of these al-
gorithms towards regularization in nonlinear inverse problems as well as adaptive strategies. A
common feature of the illustrated algorithms will be their variational nature, in the sense that
they are derived as minimization strategies of given energyfunctionals. Not only the varia-
tional framework allows us to derive very precise statements about the convergence properties
of these algorithms, but it also provides the algorithms with an intrinsic robustness. We will
finally address large scale computations, showing how we candefine domain decomposition
strategies for these nonsmooth optimizations, for problems coming from compressed sensing
andℓ1-minimization as well as for total variation minimization problems.
The first part of the lecture notes is elementary and it does not require more than the ba-
sic knowledge of notions of linear algebra and standard inequalities. The second part of the
course is slightly more advanced and addresses problems in Hilbert spaces, and we will make
use of more advanced concepts of nonsmooth convex analysis.

Key words. Numerical methods for sparse optimization, calculus of variations, algorithms for
nonsmooth optimization.
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1 An Introduction to Sparse Recovery

1.1 Notations

In the following we collect general notations. More specificnotations will be intro-
duced and recalled in the following sections.
We will considerRN as a Banach space endowed with different norms. In particular,
later we use theℓp-norms

‖x‖p := ‖x‖ℓp := ‖x‖ℓN
p

:=





(∑N
i=1 |xj |p

)1/p
, 0< p <∞,

maxj=1,...,N |xj |, p = ∞.
(1.1)

Associated to these norms we denote their unit balls byBℓp := BℓN
p

:= {x ∈ R :

‖x‖p ≤ 1} and the balls of radiusR by Bℓp(R) := BℓN
p

(R) := R · BℓN
p

. As-

sociated to a closed convex body 0∈ Ω ⊂ R
N , we define its polar set byΩ◦ =

{y ∈ R
N : supx∈Ω〈x, y〉 ≤ 1}. This allow us to define an associated norm‖x‖Ω =

supy∈Ω◦〈x, y〉.
The index setI is supposed countable and we will consider theℓp(I) spaces ofp-
summable sequences as well. Their norm are defined as usual and similarly to the
case ofRN . We use the same notationsBℓp for the ℓp(I)-balls as for the ones in
R

N . With A we will denote usually am × N real matrix,m,N ∈ N or an operator
A : ℓ2(I) → Y . We denote withA∗ the adjoint matrix or withK∗ the adjoint of
an operatorK. We will always work on real vector spaces, hence, in finite dimen-
sions,A∗ usually coincides with the transposed matrix ofA. The norm of an operator
K : X → Y acting between two Banach spaces is denoted by‖K‖X→Y ; for matrices
the norm‖A‖ denotes the spectral norm. The support of a vectorx ∈ R

N , i.e., the set
of coordinates which are not zero, is denoted bysupp(x).
We will consider index setsΛ ⊂ I and their complementsΛc = I \ Λ. The sym-
bols |Λ| and#Λ are used indifferently for indicating the cardinality ofΛ. We use the
notationAΛ to indicate a submatrix extracted fromA by retaining only the columns
indexed inΛ as well as the restrictionsuΛ of vectorsu to the index setΛ.
Positive constants used in estimates are denoted as usual byc, C, c̃, C̃, c0, C0, c1, C1, c2, C2, . . . .

1.2 A Toy Mathematical Model for Sparse Recovery

1.2.1 Adaptive and compressed acquisition

Let k ∈ N, k ≤ N and

Σk := {x ∈ R
N : # supp(x) ≤ k},

is the set of vectors with at mostk nonzero entries, which we will callk-sparse vectors.
Thek-best approximation errorthat we can achieve in this set to a vectorx ∈ R

N with
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respect to a suitable space quasi-norm‖ · ‖X is defined by given by

σk(x)X = inf
z∈Σk

‖x− z‖X .

Example 1.1 Letr(x) be the nonincreasing rearrangement ofx, i.e.,r(x) = (|xi1|, . . . , |xiN |)T
and|xij | ≥ |xij+1| for j = 1, . . . , N − 1. Then it is straightforward to check that

σk(x)ℓN
p

:=




N∑

j=k+1

rj(x)
p




1/p

, 1 ≤ p <∞.

In particular, the vectorx[k] derived fromx by setting to zero all theN − k smallest
entries in absolute value is calledthe bestk-term approximationto x and it coincides
with

x[k] = arg min
z∈Σk

‖x− z‖ℓN
p
. (1.2)

for any 1≤ p <∞.

Lemma 1.2 Let r = 1
q − 1

p andx ∈ R
N . Then

σk(x)ℓp ≤ ‖x‖ℓqk
−r, k = 1,2, . . . ,N.

Proof. Let Λ be the set of indexes of thek-largest entries ofx in absolute value. If
ε = rk(x), then

ε ≤ ‖x‖ℓqk
− 1

q .

Therefore

σk(x)
p
ℓp

=
∑

j /∈Λ

|xj|p ≤
∑

j /∈Λ

εp−q|xj |q

≤ ‖x‖p−q
ℓq

k
− p−q

q |x‖q
ℓq
,

which implies

σk(x)ℓp ≤ ‖x‖ℓqk
−r.

The computation the bestk-term approximation ofx ∈ R
N , in general requires the

search of the largest entries ofx in absolute value, and therefore the testing of all the
entries of the vectorx. This procedure isadaptive, since it depends on the particular
vector.
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1.2.2 Nonadaptive and compressed acquisition: compressedsensing

One would like to describe alinear encoderwhich allows to compute approximatively
k measurements(y1, . . . , yk)

T and a nearly optimal approximation ofx in the follow-
ing sense:

Provided a setK ⊂ R
N , there exists a linear mapA : R

N → R
m,

with m ≈ k and a possibly nonlinear map∆ : R
m → R

N such that

‖x− ∆(Ax)‖X ≤ Cσk(x)X

for all x ∈ K.

Note that the way we encodey = Ax is via a prescribed mapA which is indepen-
dent ofx as well as the decoding procedure∆ might depend onA, but not onx. This
is why we call this strategy anonadaptive (or universal) and compressed acquisition
of x. Note further that we would like to recover an approximationto x from nearly
k-linear measurements which is of the order of thek-best approximation error. In this
sense we say that the performances of the encoder/decoder system(A,∆) is nearly
optimal.

1.2.3 Optimal performances of encoder/decoder pairs

Let us defineAm,N the set of all encoder/decoder pairs(A,∆) with A a m × N
matrix and∆ any function. We wonder whether there exists such a nearly optimal
pair as claimed above. Let us fixm ≤ N two natural integers, andK ⊂ R

N . For
1 ≤ k ≤ N we denote

σk(K)X := sup
x∈K

σk(x)X , andEm(K)X := inf
(A,∆)∈Am,N

sup
x∈K

‖x− ∆(A(x))‖X .

We would like to find the largestk such that

Em(K)X ≤ C0σk(K)X .

We respond to this question in the particular case whereK = Bℓ1 andX = ℓN2 . This
setting will turn out to be particularly useful later on and it is already sufficient for
showing that, unfortunately, it is impossible to reconstruct x ∈ Bℓ1 with an accuracy
asymptotically (form,N larger and larger) of the order of thek-best approximation
error inℓM2 if k = m, but it is necessary to have a slightly larger number of measure-
ments, i.e.,k = m− ε(m,N).

The proper estimation ofEm(K)X turns out to be linked to the geometrical concept
of Gelfand width.
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Definition 1.3 Let K be a compact set inX. Then theGelfand widthof K of order
m is

dm(K)X := inf
Y ⊂ X

codim(Y ) ≤ m

sup{‖x‖X : x ∈ K ∩ Y }.

We have the following fundamental equivalence.

Proposition 1.4 LetK ⊂ R
N any closed compact set for whichK = −K and such

that there exists a constantC0 > for whichK +K ⊂ C0K. If X ⊂ R
N is a normed

space, then

dm(K)X ≤ Em(K)X ≤ C0d
m(K)X .

Proof. Let N = kerA. Note thatY = N has codimension less or equal tom.
Conversely, given any spaceY ⊂ R

N of codimension less or equal tom, we can
associate a matrixA whose rows are a basis forY ⊥, With this identification we see
that

dm(K)X = inf
A∈Rm×N

sup{‖η‖X : η ∈ N ∩K}.

If (A,∆) is and encoder/decoder pair inAm,N andz = ∆(0), then for anyη ∈ N we
have also−η ∈ N . It follows that either‖η − z‖X ≥ ‖η‖X or ‖ − η − z‖X ≥ ‖η‖X .
Indeed, if we assumed that both are false then

‖2η‖X = ‖η − z + z + η‖X ≤ ‖η − z‖X + ‖ − η − z‖X < 2‖η‖X ,

which is not possible. SinceK = −K we conclude that

dm(K)X = inf
A∈Rm×N

sup{‖η‖X : η ∈ N ∩K}

≤ sup
η∈N∩K

‖η − z‖X

= sup
η∈N∩K

‖η − ∆(Aη)‖X

≤ sup
x∈K

‖η − ∆(Ax)‖X

By taking the infimum over all(A,∆) ∈ Am,N we obtain

dm(K)X ≤ Em(K)X .

To prove the other inequality, choose an optimalY such that

dm(K)X = sup{‖x‖X : x ∈ Y ∈ N ∩K}.
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Let us denote the solution affine spaceF(y) := {x : Ax = y}. Let us define a
decoder as follows: IfF(y) ∩ C 6= ∅ then we takēx(y) ∈ F(y) and∆(y) = x̄(y). If
F(y)∩ = ∅ then∆(y) ∈ F(y). Hence, we can estimate

Em(K)X = inf
(A,∆)∈Am,N

sup
x∈K

‖x− ∆(Ax)‖X

≤ sup
x,x′∈F(y)∩K

‖x− x′‖X

≤ sup
η∈C0(N∩K)

‖η‖X ≤ C0d
m(K)X .

The following result was proven in the relevant work of Kashin, Garnaev, and
Gluskin [45, 46, 50] already in the ’70s and ’80s. See [20, 33]for a description of
the relationship between this result and the more modern point of view related to com-
pressed sensing.

Theorem 1.5 The Gelfand width ofℓNq -balls in ℓNp for 1 ≤ q < p ≤ 2 are estimated
by

C1Ψ(m,N, p, q) ≤ dm(Bℓq)ℓp ≤ C2Ψ(m,N, p, q),

where

Ψ(m,N, p, q)) = min

{
1, N1− 1

q
m− 1

2

} 1/q−1/p
1/q−1/2

, 1< q < p ≤ 2

Ψ(m,N,2,1)) = min

{
1,
√

log(N/m)+1
m

}
, q = 1 andp = 2.

From Proposition 1.4 and Theorem 1.5 we obtain

C̃1Ψ(m,N, p, q) ≤ Em(Bℓq)ℓp ≤ C̃2Ψ(m,N, p, q).

In particular, forq = 1 andp = 2, we obtain, form,N large enough, the estimate

C̃1

√
log(N/m) + 1

m
≤ Em(Bℓ1)ℓ2.

If we wanted to enforce
Em(Bℓ1)ℓ2 ≤ Cσk(Bℓ1)ℓ2,

then Lemma 1.2 would imply
√

log(N/m) + 1
m

≤ C0k
− 1

2 , or k ≤ C0
m

log N
m + 1

.

Hence, we proved the following
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Corollary 1.6 Form,N fixed, there exists an optimal encoder/decoder pair(A,∆) ∈
Am,N , in the sense that

Em(Bℓ1)ℓ2 ≤ Cσk(Bℓ1)ℓ2,

only if

k ≤ C0
m

log N
m + 1

, (1.3)

for some constantC0 > 0 independent ofm,N .

The next section is devoted to the the construction of optimal encoder/decoder pairs
(A,∆) ∈ Am,N as stated in the latter corollary.

1.3 Survey on Mathematical Analysis of Compressed Sensing

In following section we want to show that under a certain property, called theRe-
stricted Isometry Property(RIP) for a matrixA,

The decoder, which we callℓ1-minimization,

∆(y) = arg min
Az=y=Ax

‖x‖ℓN
1

(1.4)

performs
‖x− ∆(y)‖ℓN

1
≤ C1σk(x)ℓN

1
, (1.5)

as well as

‖x− ∆(y)‖ℓN
2
≤ C2

σk(x)ℓN
1

k1/2
, (1.6)

for all x ∈ R
N .

Note that by (1.6) we immediately obtain

Em(BℓN
1

)ℓN
2
≤ C0k

−1/2,

implying once again (1.3). Hence, the following question wewill address is the exis-
tence of matricesA with RIP for whichk is optimal, i.e.,

k ≍ m

logN/m + 1
.

1.3.1 An intuition why ℓ1-minimization works well

In this section we would like to provide an intuitive explanation of the stable results
(1.5) and (1.6) provided byℓ1-minimization (1.4) in recovering vectors from partial
linear measurements. Equations (1.5) and (1.6) ensure in particular that if the vectorx
is k-sparse, thenℓ1-minimization (1.4) will be able to recover itexactlyfromm linear
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measurementsy obtained via the matrixA. This result is quite surprising because the
problem of recovering a sparse vector, or the solution of thefollowing optimization

min ‖x‖ℓN
0

subject toAx = y, (1.7)

is know [56, 58] to beNP-complete1 whereasℓ1-minimization is a convex problem
which can be solved at any prescribed accuracy in polynomialtime. For instance
interior-point methods are guaranteed to solve the problemto a fixed precision in time
O(m2N1.5) [60]. The first intuitive approach to this surprising resultis by interpreting
ℓ1-minimization as theconvexificationof the problem (1.7).

-4 -2 0 2 4
0

5

10

15

20

25

Figure 1.1A non convex functionf and a convex approximationg ≤ f from below.

If we were interested to solve an optimization problem

min f(x) subject tox ∈ C,

wheref is a nonconvex function andC is a closed convex set, it might be convenient
to recast the problem by considering its convexification, i.e.,

min f̄(x) subject tox ∈ C,

wheref̄ is called theconvex relaxationor theconvex envelopof f and it is given by

f̄(x) := sup{g(x) ≤ f(x) : g is a convex function}.

The motivation of this choice is simply geometrical. Whilef can have many minimiz-
ers onC, its convex envelop̄f has global minimizers (but not strictly local ones), and
such global minima are likely to be in a neighborhood of a global minimum off , see
Figure 1.1. One rewrites

‖x‖ℓN
0

:=

N∑

j=1

|xj|0, |t|0 :=

{
0, t = 0

1, 0< t ≤ 1
.

1 In general its resolution has a complexity which is growing with a rate faster than any polynomial, for
instance exponentially, in the dimensionm, N of the problem.
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1.2The absolute value function| · | is the convex relaxation of the function| · |0
on [0,1].

Its convex envelope inBℓN
∞

(R) ∩ {z : Az = y} is bounded below by1
R‖x‖ℓN

1
:=

1
R

∑N
j=1 |xj|, see Figure 1.2. This observation gives already a first impression of the

motivation whyℓ1-minimization can help in approximating sparse solutions of Ax =
y. However, it is not yet clear when a global minimizer of

min ‖x‖ℓN
1

subject toAx = y, (1.8)

does really coincide with a solution to (1.7). Again a simplegeometrical reasoning can
help us to get a feeling about more general principles which will be addressed more
formally in the following sections.

x
K5 K4 K3 K2 K1 0 1 2 3 4

K4

K2

2

4

Ax=z

 l1 -Kugel

Figure 1.3 Theℓ1-minimizer within the affine space of solutions of the linearsystem
Ax = y coincides with the sparsest solution.

Assume for a moment thatN = 2 andm = 1. Hence we are dealing with an affine
space of solutionsF(y) = {z : Az = y}which is just a line inR2. When we search for
the ℓ1- norm minimizers among the elementsF(y) (see Figure 1.3), we immediately
realize that, except for pathological situations whereN = kerA is parallel to one of
the faces of the polytopeBℓ2

1
, there is a unique solution which coincides also with a

solution with minimal number of nonzero entries. Therefore, if we exclude situations
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in which there existsη ∈ N such that|η1| = |η2| or, equivalently, we assume that

|ηi| < |η{1,2}\{i}| (1.9)

for all η ∈ N and for onei = 1,2, then the solution to (1.8) is a solution to (1.7)!
Note also that, if we give a uniform probability distribution to the angle in[0,2π]
formed byN and any of the coordinate axes, then we realize that the pathological
situation of violating (1.9) has null probability. Of course, in higher dimension such
simple reasoning becomes more involved, since the number offaces and edges of
an ℓN1 -ball BℓN

1
becomes larger larger and one should cumulate the probabilities of

different angles with respect to possible affine spaces of codimensionN−m. However,
condition (1.9) is the right prototype of a property (we callit the Null Space Property
(NSP) and we describe it in detail in the next section) which guarantees, also in higher
dimension, that the solution to (1.8) is a solution to (1.7).

1.3.2 Restricted Isometry Property and Null Space Property

Definition 1.7 One says thatA ∈ R
m×N has theNull Space Property(NSP) of order

k for 0< γ < 1 if
‖ηΛ‖ℓN

1
≤ γ‖ηΛc‖ℓN

1
,

for all setsΛ ⊂ {1, . . . , N}, #Λ ≤ k and for allη ∈ N = kerA.

Note that this definition greatly generalizes condition (1.9) which we introduced by
our simple and rough geometrical reasoning inR

2. However, let us stress that in order
to address stability properties such as (1.5) and (1.6) (andnot only the exact recovery
of sparse vectors), it will not be sufficient to require‖ηΛ‖ℓN

1
< ‖ηΛc‖ℓN

1
, but also a gap

‖ηΛ‖ℓN
1
≤ γ‖ηΛc‖ℓN

1
provided by the introduction of a constantγ < 1 is fundamental.

We need further to introduce a related property for matrices.

Definition 1.8 One says thatA ∈ R
m×N has the RIP of orderK if there exists 0<

δK < 1 such that

(1− δK)‖z‖ℓN
2
≤ ‖Az‖ℓN

2
≤ (1 + δK)‖z‖ℓM

2
,

for all z ∈ ΣK .

The RIP turns out to be very useful in the analysis of stability of certain algorithms
as we will show in Section 2.1.4. The RIP is also introduced because it implies the
Null Space Property, and when dealing with random matrices (see Section 1.3.4) it is
more easily addressed. Indeed we have:

Lemma 1.9 Assume thatA ∈ R
m×N has the RIP of orderK = k+h with 0< δK <

1. ThenA has the NSP of orderk and constantγ =
√

k
h

1+δK
1−δK

.
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Proof. LetΛ ⊂ {1, . . . , N}, #Λ ≤ k. DefineΛ0 = Λ andΛ1,Λ2, . . . ,Λs disjoint sets
of indexes of size at mosth, associated to a decreasing rearrangement of the entries
of η ∈ N . Then, by using Cauchy-Schwarz inequality, the RIP twice, the fact that
Aη = 0, and eventually the triangle inequality, we have the following sequence of
inequalities:

‖ηΛ‖ℓN
1

≤
√
k‖ηΛ‖ℓN

2
≤

√
k‖ηΛ0∪Λ1‖ℓN

2

≤ (1− δK)−1
√
k‖AηΛ0∪Λ1‖ℓN

2
= (1− δK)−1

√
k‖AηΛ2∪Λ3∪···∪Λs‖ℓN

2

≤ (1− δK)−1
√
k

s∑

j=2

‖AηΛj‖ℓN
2
≤ 1 + δK

1− δK

√
k

s∑

j=2

‖ηΛj‖ℓN
2
. (1.10)

Note now thati ∈ Λj+1 and ℓ ∈ Λj imply by construction ofΛ′
js by decreasing

rearrangement of the entries ofη

|ηi| ≤ |ηℓ|.

By taking the sum overℓ first and than theℓN2 -norm overi we get

|ηi| ≤ h−1‖ηΛj‖ℓN
1
, and‖ηΛj+1‖ℓN

2
≤ h−1/2‖ηΛj‖ℓN

1
.

By using the latter estimates in (1.10) we obtain

‖ηΛ‖ℓN
1
≤ 1 + δK

1− δK

√
k

h

s−1∑

j=1

‖ηΛj‖ℓN
1
≤
(

1 + δK
1− δK

√
k

h

)
‖ηΛc‖ℓN

1
.

The RIP property does imply the NSP, but the converse is not true. Actually the RIP
is significantly more restrictive. A very detailed discussion on the limitations provided
by the RIP will be the object of the course by Jared Tanner.

1.3.3 Performances ofℓ1-minimization as an optimal decoder

In this section we address the proofs of the approximation properties (1.5) and (1.6).

Theorem 1.10 LetA ∈ R
m×N which satisfies the RIP of order2k with δ2k ≤ δ <√

2−1√
2+1

(or simplyA satisfies the NSP of orderk with constantγ = 1+δ
1−δ

√
1
2) , then the

decoder∆ as in(1.4)satisfies(1.5).

Proof. By Lemma 1.9 we have

‖ηΛ‖ℓ1 ≤
1 + δ

1− δ

√
1
2
‖ηΛc‖ℓN

1
,
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for all Λ ⊂ {1, . . . , N}, #Λ ≤ k andη ∈ N = kerA. Let x∗ = ∆(Ax), so that
η = x∗ − x ∈ N , and

‖x∗‖ℓN
1
≤ ‖x‖ℓN

1
.

One denotes now withΛ the set of thek-largest entries ofx in absolute value. One has

‖x∗Λ‖ℓN
1

+ ‖x∗Λc‖ℓN
1
≤ ‖xΛ‖ℓN

1
+ ‖xΛc‖ℓN

1
.

It follows immediately by triangle inequality

‖xΛ‖ℓN
1
− ‖ηΛ‖ℓN

1
+ ‖ηΛc‖ℓN

1
− ‖xΛc‖ℓN

1
≤ ‖xΛ‖ℓN

1
+ ‖xΛc‖ℓN

1
.

Hence

‖ηΛc‖ℓN
1
≤ ‖ηΛ‖ℓN

1
+ 2‖xΛc‖ℓN

1
≤ 1 + δ

1− δ

√
1
2
‖ηΛc‖ℓN

1
+ 2σk(x)ℓ1,

or, equivalently,

‖ηΛc‖ℓN
1
≤ 2

1− 1+δ
1−δ

√
1
2

σk(x)ℓ1. (1.11)

In particular, note that byδ <
√

2−1√
2+1

we have1+δ
1−δ

√
1
2 < 1. Eventually we conclude

with the estimates

‖x− x∗‖ℓN
1

= ‖ηΛ‖ℓN
1

+ ‖ηΛc‖ℓN
1

≤
(

1 + δ

1− δ

√
1
2

+ 1

)
‖ηΛc‖ℓN

1

≤ C1σk(x)ℓ1,

whereC1 :=




2

„
1+δ
1−δ

q
1
2+1

«

1− 1+δ
1−δ

q
1
2


.

Similarly we address the second estimate (1.6).

Theorem 1.11 LetA ∈ R
m×N which satisfies the RIP of order3k with δ3k ≤ δ <√

2−1√
2+1

, then the decoder∆ as in(1.4)satisfies(1.6).

Proof. Letx∗ = ∆(Ax). As we proceeded in Lemma 1.9, we denoteη = x∗−x ∈ N ,
Λ0 = Λ the set of the 2k-largest entries ofη in absolute value, andΛj of size at most
k composed of nonincreasing rearrangement entries. Then

‖ηΛ‖ℓN
2
≤ 1 + δ

1− δ
k−

1
2‖ηΛc‖ℓN

1
,
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Note now that by Lemma 1.2 and by Lemma 1.9

‖ηΛc‖ℓN
2

≤ (2k)−
1
2‖η‖ℓN

1
= (2k)−1/2

(
‖ηΛ‖ℓN

1
+ ‖ηΛc‖ℓN

1

)

≤ (2k)−1/2
(
C‖ηΛc‖ℓN

1
+ ‖ηΛc‖ℓN

1

)

≤ C + 1√
2
k−1/2‖ηΛc‖ℓN

1
,

for a suitable constantC > 0. Note that, beingΛ set of the 2k-largest entries ofη in
absolute value, one has also

‖ηΛc‖1 ≤ ‖η(supp x[2k])c‖1 ≤ ‖η(supp x[k])c‖1, (1.12)

wherex[k] is the bestk-term approximation tox. The use of this latter estimate,
combined with the inequality (1.11) finally gives

‖x− x∗‖ℓN
2

= ‖ηΛ‖ℓN
2

+ ‖ηΛc‖ℓN
2

≤ Ck−1/2‖ηΛc‖ℓN
1

≤ C̃2k
−1/2σk(x)ℓ1.

We would like to conclude this section by mentioning a further stability property of
ℓ1-minimization as established in [12].

Theorem 1.12 LetA ∈ R
m×N which satisfies the RIP of order4k with δ4k sufficiently

small. Assume further thatAx + e = y wheree is a measurement error. Then the
decoder∆ as the further enhanced stability property:

‖x− ∆(y)‖ℓN
2
≤ C3

(
σk(x)ℓN

2
+
σk(x)ℓN

1

k1/2
+ ‖e‖ℓN

2

)
. (1.13)

1.3.4 Random matrices and optimal RIP

In this section we would like to mention how for different classes of random matrices
it is possible to show that the RIP property can hold with optimal constants, i.e.,

k ≍ m

logN/m + 1
.

at least with high probability. This implies in particular,that such matrices exist, they
are frequent, but they are given to us only with an uncertainty.
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Gaussian and Bernoulli random matrices

Let (Ω, ρ) be a probability measure space andX a random variable on(Ω, ρ). One can
define a random matrixA(ω), ω ∈ ΩmN , as the matrix whose entries are independent
realizations ofX. We assume further that‖A(ω)x‖2

ℓN
2

has expected value‖x‖2
ℓN

2
and

P

(∣∣∣‖A(ω)x‖2
ℓN

2
− ‖x‖2

ℓN
2

∣∣∣ ≥ ε‖x‖2
ℓN

2

)
≤ 2e−mc0(ε), 0< ε < 1. (1.14)

Example 1.13 Here we collect two of the most relevant examples for which the con-
centration property (1.14) holds:

1. One can choose, for instance, the entries ofA as i.i.d. Gaussian random variables,
Aij ∼ N (0, 1

m), andc0(ε) = ε2/4− ε3/6. This can be shown by using Chernoff in-
equalities and a comparison of the moments of a Bernoulli random variable to those of
a Gaussian random variable;

2. One can also use matrices where the entries are independent realizations of±1
Bernoulli random variables

Aij =

{
+1/

√
m, with probability 1

2

−1/
√
m, with probability 1

2

.

Then we have the following result, shown, for instance in [3].

Theorem 1.14 Suppose thatm,N and0 < δ < 1 are fixed. IfA(ω), ω ∈ ΩmN is a
random matrix of sizem×N with the concentration property(1.14), then there exist
constantsc1, c2 > 0 depending onδ such that the RIP holds forA(ω) with constantδ
andk ≤ c1

m
log(N/m)+1 with probability exceeding1− 2e−c2m.

An extensive discussion on RIP properties of different matrices, for instance par-
tial Fourier matrices or structured matrices, will be provided in the course by Holger
Rauhut.

2 Numerical Methods for Compressed Sensing

The previous sections showed thatℓ1-minimization performs very well in recovering
sparse or approximately sparse vectors from undersampled measurements. In appli-
cations it is important to have fast methods for actually solving ℓ1-minimization or
to have similar guarantees of stability. Two such methods – the homotopy (LARS)
method introduced by [35, 64], the iteratively reweighted least square method (IRLS)
[30], and the iterative hard thresholding algorithm [6, 7] –will be explained in more
detail below.
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As a first remark, theℓ1-minimization problem

min ‖x‖1 subject toAx = y (2.15)

is in the real case equivalent to the linear program

min
N∑

j=1

vj subject to v ≥ 0, (A| −A)v = y. (2.16)

The solutionx∗ to (2.15) is obtained from the solutionv∗ of (2.16) viax∗ = (I| −
I)v∗. Any linear programming method may therefore be used for solving (2.15). The
simplex method as well as interior point methods apply in particular [60], and standard
software may be used. (In the complex case, (2.15) is equivalent to a second order cone
program (SOCP) and can be solved with interior point methodsas well.) However,
such methods and software are of general purpose and one may expect that methods
specialized to (2.15) outperform such existing standard methods. Moreover, standard
software often has the drawback that one has to provide the full matrix rather than fast
routines for matrix-vector multiplication which are available for instance in the case of
partial Fourier matrices. In order to obtain the full performance of such methods one
would therefore need to re-implement them, which is a daunting task because interior
point methods usually require much fine tuning. On the contrary the two specialized
methods described below are rather simple to implement and very efficient. Many
more methods are available nowadays, including greedy methods, such as Orthogonal
Matching Pursuit [74] and CoSaMP [73]. However, only the three methods below are
explained in detail because they highlight the fundamentalconcepts which are useful
to comprehend also other algorithms.

2.1 Direct and Iterative Methods

2.1.1 The Homotopy Method

The homotopy method – or modified LARS – [34,35,62,64] solves(2.15) in the real-
valued case. One considers theℓ1-regularized least squares functionals

Fλ(x) =
1
2
‖Ax− y‖2

2 + λ‖x‖1, x ∈ R
N , λ > 0, (2.17)

and its minimizerxλ. Whenλ = λ̂ is large enough thenxλ̂ = 0, and furthermore,
limλ→0xλ = x∗, wherex∗ is the solution to (2.15). The idea of the homotopy method
is to trace the solutionxλ from xλ̂ = 0 to x∗. The crucial observation is that the
solution pathλ 7→ xλ is piecewise linear, and it is enough to trace the endpoints of the
linear pieces.

The minimizer of (2.17) can be characterized using the subdifferential, which is
defined for a general convex functionF : R

N → R at a pointx ∈ R
N by

∂F (x) = {v ∈ R
N , F (y) − F (x) ≥ 〈v, y − x〉 for all y ∈ R

N}.
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Clearly,x is a minimizer ofF if and only if 0 ∈ ∂F (x). The subdifferential ofFλ is
given by

∂Fλ(x) = A∗(y −Ax) + λ∂‖x‖1

where the subdifferential of theℓ1-norm is given by

∂‖x‖1 = {v ∈ R
N : vℓ ∈ ∂|xℓ|, ℓ = 1, . . . ,N}

with the subdifferential of the absolute value being

∂|z| =

{
{sgn(z)}, if z 6= 0,

[−1,1] if z = 0.

The inclusion 0∈ ∂Fλ(x) is equivalent to

(A∗(y −Ax))ℓ = λ sgn(xℓ) if xℓ 6= 0, (2.18)

|(A∗(y −Ax)ℓ| ≤ λ if xℓ = 0, (2.19)

for all ℓ = 1, . . . , N .
As already mentioned above the homotopy method starts withx(0) = xλ = 0.

By conditions (2.18) and (2.19) the correspondingλ can be chosen asλ = λ(0) =
‖A∗y‖∞. In the further stepsj = 1,2, . . . the algorithm computes minimizersx(1), x(2), . . .
and maintains an active (support) setTj. Denote by

c(j) = A∗(y −Ax(j−1))

the current residual vector. The columns of the matrixA are denoted byaℓ, ℓ =
1, . . . , N and for a subsetT ⊂ {1, . . . , N} we letAT be the submatrix ofA cor-
responding to the columns indexed byT .

Step 1: Let

ℓ(1) := arg max
ℓ=1,...,N

|(A∗y)ℓ| = arg max
ℓ=1,...,N

|c(1)ℓ |.

One assumes here and also in the further steps that the maximum is attained at only
one indexℓ. The case that the maximum is attained simultaneously at twoor more
indecesℓ (which almost never happens) requires more complications that we would
like to avoid here. One may refer to [35] for such details.

Now setT1 = {ℓ+}. The vectord ∈ R
N describing the direction of the solution

(homotopy) path has components

d
(1)
ℓ(1) = ‖aℓ‖−2

2 sgn((Ay)ℓ), d
(1)
ℓ = 0, ℓ 6= ℓ+.

The first linear piece of the solution path then takes the form

x = x(γ) = x(0) + γd(1) = γd(1), γ ∈ [0, γ(1)].
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One verifies with the definition ofd(1) that (2.18) is always satisfied forx = x(γ) and
λ = λ(γ) = λ(0) − γ, γ ∈ [0, λ(0)]. The next breakpoint is found by determining the
maximalγ = γ(1) > 0 for which (2.19) is satisfied, which is

γ(1) = min
ℓ 6=ℓ(1)

{
λ(0) − c

(1)
ℓ

1− (A∗Ad(1))ℓ
,

λ(0) + c
(1)
ℓ

1 + (A∗Ad(1))

}
, (2.20)

where the minimum is taken only over positive arguments. Then x(1) = x(γ(1)) =
γ(1)d(1) is the next minimizer ofFλ for λ = λ(1) := λ(0) − γ(1). This λ(1) satis-
fiesλ(1) = ‖c(1)‖∞. Let ℓ(2) be the index where the minimum in (2.20) is attained
(where we again assume that the minimum is attained only at one index) and put
T2 = {ℓ(1), ℓ(2)}.

Stepj: Determine the new directiond(j) of the homotopy path by solving

A∗
Tj
ATjd

(j)
Tj

= sgn(c
(j)
Tj

), (2.21)

which is a linear system of equations of size at most|Tj | × |Tj |. Outside the com-

ponents inTj one setsd(j)
ℓ = 0, ℓ /∈ Tj. The next piece of the path is then given

by
x(γ) = x(j−1) + γd(j), γ ∈ [0, γ(j)].

The maximalγ such thatx(γ) satisfies (2.19) is

γ
(j)
+ = min

ℓ/∈Tj

{
λ(j−1) − c

(j)
ℓ

1− (A∗Ad(j))ℓ
,
λ(j−1) + c

(j)
ℓ

1 + (A∗Ad(j))ℓ

}
. (2.22)

The maximalγ such thatx(γ) satisfies (2.18) is determined as

γ
(j)
− = min

ℓ∈Tj

{−x(j−1)
ℓ /d

(j)
ℓ }. (2.23)

Both in (2.22) and (2.23) the minimum is taken only over positive arguments. The
next breakpoint is given byx(j+1) = x(γ(j)) with γ(j) = min{γ(j)

+ , γ
(j)
− }. If γ(j)

+

determines the minimum then the indexℓ(j)+ /∈ Tj providing the minimum in (2.22) is

added to the active set,Tj+1 = Tj ∪ {ℓ(j)+ }. If γ(j) = γ
(j)
− then the indexℓ(j)− ∈ Tj

is removed from the active set,Tj+1 = Tj \ {ℓ(j)− }. Further, one updatesλ(j) =

λ(j−1) − γ(j). By constructionλ(j) = ‖c(j)‖∞.

The algorithm stops whenλ(j) = ‖c(j)‖∞ = 0, i.e., when the residual vanishes,
and outputx∗ = x(j). Indeed, this happens after a finite number of steps. [35] proved
the following result.

Theorem 2.1 If in each step the minimum in(2.22) and (2.23) is attained in only
one indexℓ, then the homotopy algorithm as described yields the minimizer of the
ℓ1-minimization problem(2.15).
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If the algorithm is stopped earlier at some iterationj then obviously it yields the
minimizer ofFλ = Fλ(j) . In particular, obvious stopping rules may also be used to
solve the problems

min ‖x‖1 subject to‖Ax− y‖2 ≤ ǫ (2.24)

and min ‖Ax− y‖2 subject to‖x‖1 ≤ δ. (2.25)

The second of these is called the LASSO [72].
The LARS (least angle regression) algorithm is a simple modification of the ho-

motopy method, which only adds elements to the active set in each step. Soγ(j)
− in

(2.23) is not considered. (Sometimes the homotopy method istherefore also called
modified LARS.) Clearly, LARS is not guaranteed any more to yield the solution of
(2.15). However, it is observed empirically – and can be proven rigorously in certain
cases [34] – that often in sparse recovery problems, the homotopy method does never
remove elements from the active set, so that in this case LARSand homotopy perform
the same steps. It is a crucial point that if the solution of (2.15) isk-sparse and the
homotopy method never removes elements then the solution isobtained after precisely
k-steps. Furthermore, the most demanding computational part at stepj is then the
solution of thej × j linear system of equations (2.21). In conclusion, the homotopy
and LARS methods are very efficient for sparse recovery problems.

2.1.2 Iteratively Reweighted Least Squares

In this section we want to present an iterative algorithm which, under the condition that
A satisfies the NSP, is guaranteed to reconstruct vectors withthe same approximation
guarantees (1.5) asℓ1-minimization. Moreover, we will also show that such algorithm
has a guaranteed linear rate of convergence which, with a minimal modification, can
be improved to a superlinear rate. We need to make first a briefintroduction which
hopefully will shed light on the basic principles of this algorithm and their interplay
with sparse recovery andℓ1-minimization.

DenoteF(y) = {x : Ax = y} andN = kerA. Let us start with a few non-rigorous
observations; next we will be more precise. Fort 6= 0 we simply have

|t| =
t2

|t| .

Hence, anℓ1-minimization can be recasted into a weightedℓ2-minimization, and we
may expect

arg min
x∈F(y)

N∑

j=1

|xj| ≈ arg min
x∈F(y)

N∑

j=1

x2
j |x∗j |−1,

as soon asx∗ is the wantedℓ1-norm minimizer. Clearly the advantage is that minimiz-
ing a smooth quadratic function|t|2 is better than addressing the minimization of the
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nonsmooth function|t|. However, the obvious drawbacks are that neither we dispose
of x∗ a priori (this is the vector we are interested to compute!) nor we can expect that
x∗j 6= 0 for all i = 1, . . . , N , since we hope fork-sparse solutions. Hence, we start

assuming that we dispose of a good approximationwn
j of |(x∗j )2 + ǫ2n|−1/2 ≈ |x∗j |−1

and we compute

xn+1 = arg min
x∈F(y)

N∑

j=1

x2
jw

n
j , (2.26)

then we up-dateǫn+1 ≤ ǫn, we define

wn+1
j = |(xn

j )2 + ǫ2n+1|−1/2, (2.27)

and we iterate the process. The hope is that a proper choice ofǫn → 0 will allow for
the computation of anℓ1-minimizer, althought such limit property is far from being
obvious. The next sections will help us to describe the rightmathematical setting
where such limit is justified.

The relationship betweenℓ1-minimization and reweighted ℓ2-minimization

Lemma 2.2 An elementx∗ ∈ F(y) has minimalℓ1-norm among all elementsz ∈
F(y) if and only if

|
∑

x∗
i 6=0

sgn(x∗i )ηi| 6
∑

x∗
i =0

|ηi|, η ∈ N . (2.28)

Moreover,x∗ is unique if and only if we have strict inequality for allη ∈ N which are
not identically zero.

Proof. If x ∈ F(y) has minimumℓ1-norm, then we have, for anyη ∈ N and any
t ∈ R,

N∑

i=1

|xi + tηi| >

N∑

i=1

|xi|. (2.29)

Fix η ∈ N . If t is sufficiently small thenxi + tηi andxi will have the same sign
si := sgn(xi) wheneverxi 6= 0. Hence, (2.29) can be written as

t
∑

xi 6=0

siηi +
∑

xi=0

|tηi| > 0.

Choosingt of an appropriate sign, we see that (2.28) is a necessary condition.
For the opposite direction, we note that if (2.28) holds thenfor eachη ∈ N , we

have

N∑

i=1

|xi| =
∑

xi 6=0

sixi =
∑

xi 6=0

si(xi + ηi) −
∑

xi 6=0

siηi
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6
∑

xi 6=0

si(xi + ηi) +
∑

xi=0

|ηi| 6

N∑

i=1

|xi + ηi|, (2.30)

where the first inequality uses (2.28).
If x is unique then we have strict inequality in (2.29) and hence subsequently in

(2.28). If we have strict inequality in (2.28) then the subsequent strict inequality in
(2.30) implies uniqueness.

Next, consider the minimization in a weightedℓ2(w)-norm. Suppose that the weight
w is strictly positivewhich we define to mean thatwj > 0 for all j ∈ {1, . . . ,N}. In
this case,ℓ2(w) is a Hilbert space with the inner product

〈u, v〉w :=
N∑

j=1

wjujvj . (2.31)

Define

xw := arg min
z∈F(y)

‖z‖ℓN
2 (w). (2.32)

Because the‖·‖ℓN
2 (w)-norm is strictly convex, the minimizerxw is necessarily unique;

it is completely characterized by the orthogonality conditions

〈xw, η〉w = 0, ∀η ∈ N . (2.33)

Namely,xw necessarily satisfies (2.33); on the other hand, any elementz ∈ F(y)
that satisfies〈z, η〉w = 0 for all η ∈ N is automatically equal toxw.

A fundamental relationship betweenℓ1-minimization and weightedℓ2-minimization
is easily shown, which might seem totally unrelated at first sight, due to the different
characterization of respective minimizers.

Lemma 2.3 Assume thatx∗ is anℓ1-minimizer and thatx∗ has no vanishing coordi-
nates. Then the (unique) solutionxw of the weighted least squares problem

xw := arg min
z∈F(y)

‖z‖ℓN
2 (w), w := (w1, . . . , wN ), wherewj := |x∗j |−1,

coincides withx∗.

Proof. Assume thatx∗ is not theℓN2 (w)-minimizer. Then there existsη ∈ N such
that 0< 〈x∗, η〉w =

∑N
j=1wjηjx

∗
j =

∑N
j=1 ηj sgn(x∗j ). However, by Lemma 2.2 and

becausex∗ is anℓ1-minimizer, we have
∑N

j=1 ηj sgn(x∗j ) = 0, a contradiction.
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An iteratively re-weighted least square algorithm

Since we do not knowx∗, this observation cannot be used directly. However, it leads
to the following paradigm for findingx∗. We choose a starting weightw0 and solve
the weightedℓ2 minimization for this weight. We then use this solution to define a
new weightw1 and repeat this process. An IRLS algorithm of this type appears for
the first time in the approximation practice in the Ph.D. thesis of Lawson in 1961 [52],
in the form of an algorithm for solving uniform approximation problems, in particular
by Chebyshev polynomials, by means of limits of weightedℓp–norm solutions. This
iterative algorithm is now well-known in classical approximation theory as Lawson’s
algorithm. In [19] it is proved that this algorithm has in principle a linear conver-
gence rate. In the 1970s extensions of Lawson’s algorithm for ℓp-minimization, and
in particularℓ1-minimization, were proposed. In signal analysis, IRLS wasproposed
as a technique to build algorithms for sparse signal reconstruction in [47]. Perhaps
the most comprehensive mathematical analysis of the performance of IRLS forℓp-
minimization was given in the work of Osborne [63]. However,the interplay of NSP,
ℓ1-minimization, and a reweighted least square algorithm hasbeen clarified only re-
cently in the work [30]. In the following we describe the essential lines of the analysis
of this algorithm, by taking advantage of results and terminology already introduced
in previous sections. Our analysis of the algorithm (2.26) and (2.27) starts from the
observation that

|t| = min
w>0

1
2

(
wt2 + w−1) ,

the minimum being reached forw = 1
|t| . Inspired by this simple relationship, given

a real numberǫ > 0 and a weight vectorw ∈ R
N , with wj > 0, j = 1, . . . ,N , we

define

J (z,w, ǫ) :=
1
2




N∑

j=1

z2
jwj +

N∑

j=1

(ǫ2wj + w−1
j )


 , z ∈ R

N . (2.34)

The algorithm roughly described in (2.26) and (2.27) can be recasted as an alternat-
ing method for choosing minimizers and weights based on the functionalJ .

To describe this more rigorously, we define forz ∈ R
N the nonincreasing rear-

rangementr(z) of the absolute values of the entries ofz. Thusr(z)i is thei-th largest
element of the set{|zj |, j = 1, . . . , N}, and a vectorv is k-sparse iffr(v)k+1 = 0.
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Algorithm 1. We initialize by takingw0 := (1, . . . ,1). We also setǫ0 := 1. We
then recursively define forn = 0,1, . . . ,

xn+1 := arg min
z∈F(y)

J (z,wn, ǫn) = arg min
z∈F(y)

‖z‖ℓ2(wn) (2.35)

and

ǫn+1 := min(ǫn,
r(xn+1)K+1

N
), (2.36)

whereK is a fixed integer that will be described more fully later. We also define

wn+1 := arg min
w>0

J (xn+1, w, ǫn+1). (2.37)

We stop the algorithm ifǫn = 0; in this case we definexj := xn for j > n.
However, in general, the algorithm will generate an infinitesequence(xn)n∈N of
distinct vectors.

Each step of the algorithm requires the solution of a weighted least squares problem.
In matrix form

xn+1 = D−1
n A∗(AD−1

n A∗)−1y, (2.38)

whereDn is theN × N diagonal matrix whosej-th diagonal entry iswn
j andA∗

denotes the transpose of the matrixA. Oncexn+1 is found, the weightwn+1 is given
by

wn+1
j = [(xn+1

j )2 + ǫ2n+1]
−1/2, j = 1, . . . ,N. (2.39)

Preliminary results

We first make some comments about the decreasing rearrangement r(z) and thej-term
approximation errors for vectors inRN . We have the following lemma:

Lemma 2.4 The mapz 7→ r(z) is Lipschitz continuous on(RN , ‖ · ‖ℓ∞): for any
z, z′ ∈ R

N , we have

‖r(z) − r(z′)‖ℓ∞ 6 ‖z − z′‖ℓ∞ . (2.40)

Moreover, for anyj, we have

|σj(z)ℓ1 − σj(z
′)ℓ1| 6 ‖z − z′‖ℓ1, (2.41)

and for anyJ > j, we have

(J − j)r(z)J 6 ‖z − z′‖ℓ1 + σj(z
′)ℓ1. (2.42)
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Proof. For any pair of pointsz andz′, and anyj ∈ {1, . . . ,N}, let Λ be a set ofj − 1
indices corresponding to thej − 1 largest entries inz′. Then

r(z)j 6 max
i∈Λc

|zi| 6 max
i∈Λc

|z′i| + ‖z − z′‖ℓ∞ = r(z′)j + ‖z − z′‖ℓ∞ . (2.43)

We can also reverse the roles ofz andz′. Therefore, we obtain (2.40). To prove (2.41),
we approximatez by aj-term best approximationz[j] ∈ Σj of z′ in ℓ1. Then

σj(z)ℓ1 6 ‖z − z[j]‖ℓ1 6 ‖z − z′‖ℓ1 + σj(z
′)ℓ1,

and the result follows from symmetry.
To prove (2.42), it suffices to note that(J − j) r(z)J 6 σj(z)ℓ1.

Our next result is an approximate reverse triangle inequality for points inF(y). Its
importance to us lies in its implication that whenever two points z, z′ ∈ F(y) have
closeℓ1-norms and one of them is close to ak-sparse vector, then they necessarily are
close to each other. (Note that it also implies that the othervector must then also be
close to thatk-sparse vector.) This is a geometric property of the null space.

Lemma 2.5 Assume that the NSP holds for someL andγ < 1. Then, for anyz, z′ ∈
F(y), we have

‖z′ − z‖ℓ1 6
1 + γ

1− γ

(
‖z′‖ℓ1 − ‖z‖ℓ1 + 2σL(z)ℓ1

)
. (2.44)

Proof. Let T be a set of indices of theL largest entries inz. Then

‖(z′ − z)T c‖ℓ1 6 ‖z′T c‖ℓ1 + ‖zT c‖ℓ1

= ‖z′‖ℓ1 − ‖z′T ‖ℓ1 + σL(z)ℓ1

= ‖z‖ℓ1 + ‖z′‖ℓ1 − ‖z‖ℓ1 − ‖z′T ‖ℓ1 + σL(z)ℓ1

= ‖zT ‖ℓ1 − ‖z′T ‖ℓ1 + ‖z′‖ℓ1 − ‖z‖ℓ1 + 2σL(z)ℓ1

6 ‖(z′ − z)T ‖ℓ1 + ‖z′‖ℓ1 − ‖z‖ℓ1 + 2σL(z)ℓ1. (2.45)

Using the NSP, this gives

‖(z′ − z)T ‖ℓ1 6 γ‖(z′ − z)T c‖ℓ1 6 γ(‖(z′ − z)T ‖ℓ1 + ‖z′‖ℓ1 − ‖z‖ℓ1 + 2σL(z)ℓ1).
(2.46)

In other words,

‖(z′ − z)T ‖ℓ1 6
γ

1− γ
(‖z′‖ℓ1 − ‖z‖ℓ1 + 2σL(z)ℓ1). (2.47)

Using this, together with (2.45), we obtain

‖z′ − z‖ℓ1 = ‖(z′ − z)T c‖ℓ1 + ‖(z′ − z)T ‖ℓ1 6
1 + γ

1− γ
(‖z′‖ℓ1 − ‖z‖ℓ1 + 2σL(z)ℓ1),

(2.48)
as desired.
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By using the previous lemma we obtain the following estimate.

Lemma 2.6 Assume that the NSP holds for someL and γ < 1. Suppose thatF(y)
contains anL-sparse vector. Then this vector is the uniqueℓ1-minimizer inF(y);
denoting it byx∗, we have moreover, for allv ∈ F(y),

‖v − x∗‖ℓ1 6 2
1 + γ

1− γ
σL(v)ℓ1 . (2.49)

Proof. For the time being, we denote theL-sparse vector inF(y) by xs.
Applying (2.44) withz′ = v andz = xs, we find

‖v − xs‖ℓ1 6
1 + γ

1− γ
[‖v‖ℓ1 − ‖xs‖ℓ1] ;

sincev ∈ F(y) is arbitrary, this implies that‖v‖ℓ1 − ‖xs‖ℓ1 > 0 for all v ∈ F(y), so
thatxs is anℓ1-norm minimizer inF(y).

If x′ were anotherℓ1-minimizer inF(y), then it would follow that‖x′‖ℓ1 = ‖xs‖ℓ1,
and the inequality we just derived would imply‖x′−xs‖ℓ1 = 0, orx′ = xs. It follows
thatxs is the uniqueℓ1-minimizer inF(y), which we denote byx∗, as proposed earlier.

Finally, we apply (2.44) withz′ = x∗ andz = v, and we obtain

‖v − x∗‖ 6
1 + γ

1− γ
(‖x∗‖ℓ1 − ‖v‖ℓ1 + 2σL(v)ℓ1) 6 2

1 + γ

1− γ
σL(v)ℓ1 ,

where we have used theℓ1-minimization property ofx∗.

Our next set of remarks centers around the functionalJ defined by (2.34). Note
that for eachn = 1,2, . . . , we have

J (xn+1, wn+1, ǫn+1) =

N∑

j=1

[(xn+1
j )2 + ǫ2n+1]

1/2. (2.50)

We also have the following monotonicity property which holds for alln > 0:

J (xn+1, wn+1, ǫn+1) 6 J (xn+1, wn, ǫn+1) 6 J (xn+1, wn, ǫn) 6 J (xn, wn, ǫn).
(2.51)

Here the first inequality follows from the minimization property that defineswn+1,
the second inequality fromǫn+1 6 ǫn, and the last inequality from the minimization
property that definesxn+1. For eachn, xn+1 is completely determined bywn; for
n = 0, in particular,x1 is determined solely byw0, and independent of the choice
of x0 ∈ F(y). (With the initial weight vector defined byw0 = (1, . . . ,1), x1 is the
classical minimumℓ2-norm element ofF(y).) The inequality (2.51) forn = 0 thus
holds for arbitraryx0 ∈ F(y).
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Lemma 2.7 For eachn > 1 we have

‖xn‖ℓ1 6 J (x1, w0, ǫ0) =: A (2.52)

and
wn

j > A−1, j = 1, . . . ,N. (2.53)

Proof. The bound (2.52) follows from (2.51) and

‖xn‖ℓ1 6

N∑

j=1

[(xn
j )2 + ǫ2n]1/2 = J (xn, wn, ǫn).

The bound (2.53) follows from(wn
j )−1 = [(xn

j )2 + ǫ2n]1/2 6 J (xn, wn, ǫn) 6 A,
where the last inequality uses (2.51).

Convergence of the algorithm

In this section, we prove that the algorithm converges. Our starting point is the follow-
ing lemma that establishes(xn − xn+1) → 0 for n→ ∞.

Lemma 2.8 Given anyy ∈ R
m, thexn satisfy

∞∑

n=1

‖xn+1 − xn‖2
ℓ2

6 2A2. (2.54)

whereA is the constant of Lemma2.7. In particular, we have

lim
n→∞

(xn − xn+1) = 0. (2.55)

Proof. For eachn = 1,2, . . . , we have

2[J (xn, wn, ǫn) − J (xn+1, wn+1, ǫn+1)] > 2[J (xn, wn, ǫn) − J (xn+1, wn, ǫn)]
= 〈xn, xn〉wn − 〈xn+1, xn+1〉wn

= 〈xn + xn+1, xn − xn+1〉wn

= 〈xn − xn+1, xn − xn+1〉wn

=
N∑

j=1

wn
j (xn

j − xn+1
j )2

> A−1‖xn − xn+1‖2
ℓ2
, (2.56)

where the third equality uses the fact that〈xn+1, xn − xn+1〉wn = 0 (observe that
xn+1 − xn ∈ N and invoke (2.33)), and the inequality uses the bound (2.53)on the
weights. If we now sum these inequalities overn > 1, we arrive at (2.54).
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From the monotonicity ofǫn, we know thatǫ := limn→∞ ǫn exists and is non-
negative. The following functional will play an important role in our proof of conver-
gence:

fǫ(z) :=
N∑

j=1

(z2
j + ǫ2)1/2. (2.57)

Notice that if we knew thatxn converged tox then, in view of (2.50),fǫ(x) would
be the limit ofJ (xn, wn, ǫn). Whenǫ > 0 the functionalfǫ is strictly convex and
therefore has a unique minimizer

xε := arg min
z∈F(y)

fǫ(z). (2.58)

This minimizer is characterized by the following lemma:

Lemma 2.9 Let ε > 0 andz ∈ F(y). Thenz = xε if and only if〈z, η〉ew(z,ε) = 0 for

all η ∈ N , wherew̃(z, ε)i = [z2
i + ε2]−1/2.

Proof. For the “only if” part, letz = xε andη ∈ N be arbitrary. Consider the analytic
function

Gε(t) := fε(z + tη) − fε(z).

We haveGε(0) = 0, and by the minimization propertyGε(t) > 0 for all t ∈ R.
Hence,G′

ε(0) = 0. A simple calculation reveals that

G′
ε(0) =

N∑

j=1

ηizi

[z2
i + ε2]1/2

= 〈z, η〉ew(z,ε),

which gives the desired result.
For the “if” part, assume thatz ∈ F(y) and〈z, η〉ew(z,ε) = 0 for all η ∈ N , where

w̃(z, ε) is defined as above. We shall show thatz is a minimizer offǫ onF(y). Indeed,
consider the convex univariate function[u2 + ǫ2]1/2. For any pointu0 we have from
convexity that

[u2 + ǫ2]1/2 > [u2
0 + ǫ2]1/2 + [u2

0 + ǫ2]−1/2u0(u− u0), (2.59)

because the right side is the linear function which is tangent to this function atu0. It
follows that for any pointv ∈ F(y) we have

fǫ(v) > fǫ(z)+

N∑

j=1

[z2
j +ǫ2]−1/2zj(vj−zj) = fǫ(z)+〈z, v−z〉w̃(z,ε) = fǫ(z), (2.60)

where we have used the orthogonality condition (2.66) and the fact thatv − z is inN .
Sincev is arbitrary, it follows thatz = xε, as claimed.
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We now give the convergence of the algorithm.

Theorem 2.10 LetK (the same index as used in the update rule(2.36)) be chosen so
that A satisfies the Null Space Property of orderK, with γ < 1. Then, for eachy ∈
R

m, the output of Algorithm 1 converges to a vectorx̄, with r(x̄)K+1 = N limn→∞ εn
and the following hold:
(i) If ε = limn→∞ εn = 0, thenx̄ isK-sparse; in this case there is therefore a unique
ℓ1-minimizerx∗, andx̄ = x∗; moreover, we have, fork 6 K, and anyz ∈ F(y),

‖z − x̄‖ℓ1 6 cσk(z)ℓ1, with c :=
2(1 + γ)

1− γ
(2.61)

(ii) If ε = limn→∞ εn > 0, thenx̄ = xε;
(iii) In this last case, ifγ satisfies the stricter boundγ < 1− 2

K+2 (or, equivalently, if
2γ

1−γ < K), then we have, for allz ∈ F(y) and anyk < K − 2γ
1−γ , that

‖z − x̄‖ℓ1 6 c̃σk(z)ℓ1, with c̃ :=
2(1 + γ)

1− γ

[
K − k + 3

2

K − k − 2γ
1−γ

]
(2.62)

As a consequence, this case is excluded ifF(y) contains a vector of sparsityk <
K − 2γ

1−γ .

Note that the approximation properties (2.61) and (2.62) are exactly of the same order
as the one (1.5) provided byℓ1-minimization. However, in general,̄x is not necessarily
anℓ1-minimizer, unless it coincides with a sparse solution.
The constant̃c can be quite reasonable; for instance, ifγ 6 1/2 andk 6 K − 3, then
we havẽc 6 9 1+γ

1−γ 6 27.

Proof. Note that sinceεn+1 ≤ εn, theεn always converge. We start by considering
the caseǫ := limn→∞ ǫn = 0.

Caseǫ = 0: In this case, we want to prove thatxn converges , and that its limit
is anℓ1-minimizer. Suppose thatǫn0

= 0 for somen0. Then by the definition of the
algorithm, we know that the iteration is stopped atn = n0, andxn = xn0 , n > n0.
Thereforex̄ = xn0. From the definition ofεn, it then also follows thatr(xn0)K+1 = 0
and sox̄ = xn0 is K-sparse. As noted in Lemma 2.6, if aK-sparse solution exists
whenA satisfies the NSP of orderK with γ < 1, then it is the uniqueℓ1-minimizer.
Therefore,̄x equalsx∗, this unique minimizer.

Suppose now thatǫn > 0 for all n. Sinceεn → 0, there is an increasing sequence
of indices(ni) such thatεni < ǫni−1 for all i. By the definition (2.36) of(εn)n∈N , we
must haver(xni)K+1 < Nǫni−1 for all i. Noting that(xn)n∈N is a bounded sequence,
there exists a subsequence(pj)j∈N of (ni)i∈N such that(xpj)j∈N converges to a point
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x̃ ∈ F(y). By Lemma 2.4, we know thatr(xpj)K+1 converges tor(x̃)K+1. Hence we
get

r(x̃)K+1 = lim
j→∞

r(xpj)K+1 6 lim
j→∞

Nǫpj−1 = 0, (2.63)

which means that the support-width ofx̃ is at mostK, i.e. x̃ is K-sparse. By the
same token used above, we again have thatx̃ = x∗, the uniqueℓ1-minimizer. We
must still show thatxn → x∗. Sincexpj → x∗ and ǫpj → 0, (2.50) implies
J (xpj , wpj , ǫpj ) → ‖x∗‖ℓ1. By the monotonicity property stated in (2.51), we get
J (xn, wn, εn) → ‖x∗‖ℓ1. Since (2.50) implies

J (xn, wn, εn) −Nεn 6 ‖xn‖ℓ1 6 J (xn, wn, εn), (2.64)

we obtain‖xn‖ℓ1 → ‖x∗‖ℓ1. Finally, we invoke Lemma 2.5 withz′ = xn, z = x∗,
andk = K to get

lim sup
n→∞

‖xn − x∗‖ℓ1 6
1 + γ

1− γ

(
lim

n→∞
‖xn‖ℓ1 − ‖x∗‖ℓ1

)
= 0, (2.65)

which completes the proof thatxn → x∗ in this case.
Finally, (2.61) follows from (2.49) of Lemma 2.6 (withL = K), and the observation

thatσn(z) > σn′(z) if n 6 n′.
Caseǫ > 0: We shall first show thatxn → xε, n → ∞, with xε as defined by

(2.58). By Lemma 2.7, we know that(xn)∞n=1 is a bounded sequence inR
N and hence

this sequence has accumulation points. Let(xni) be any convergent subsequence of
(xn) and letx̃ ∈ F(y) be its limit. We want to show that̃x = xε.

Sincewn
j = [(xn

j )2 + ǫ2n]−1/2 6 ǫ−1, it follows that limi→∞wni
j = [(x̃j)

2 +

ǫ2]−1/2 = w̃(x̃, ε)j =: w̃j , j = 1, . . . , N . On the other hand, by invoking Lemma 2.8,
we now find thatxni+1 → x̃, i→ ∞. It then follows from the orthogonality relations
(2.33) that for everyη ∈ N , we have

〈x̃, η〉ew = lim
i→∞

〈xni+1, η〉wni = 0. (2.66)

Now the “if” part of Lemma 2.9 implies that̃x = xε. Hencexε is the unique accumu-
lation point of(xn)n∈N and therefore its limit. This establishes (ii).

To prove the error estimate (2.62) stated in (iii), we first note that for anyz ∈ F(y),
we have

‖xε‖ℓ1 6 fǫ(x
ε) 6 fǫ(z) 6 ‖z‖ℓ1 +Nǫ, (2.67)

where the second inequality uses the minimizing property ofxε. Hence it follows that
‖xε‖ℓ1 − ‖z‖ℓ1 6 Nǫ. We now invoke Lemma 2.5 to obtain

‖xε − z‖ℓ1 6
1 + γ

1− γ
[Nǫ+ 2σk(z)ℓ1]. (2.68)

From Lemma 2.4 and (2.36), we obtain

Nǫ = lim
n→∞

Nǫn 6 lim
n→∞

r(xn)K+1 = r(xε)K+1. (2.69)
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It follows from (2.42) that

(K + 1− k)Nǫ 6 (K + 1− k)r(xε)K+1

6 ‖xε − z‖ℓ1 + σk(z)ℓ1

6
1 + γ

1− γ
[Nǫ+ 2σk(z)ℓ1] + σk(z)ℓ1, (2.70)

where the last inequality uses (2.68). Since by assumption on K, we haveK − k >
2γ

1−γ , i.e.K + 1− k > 1+γ
1−γ , we obtain

Nǫ+ 2σk(z)ℓ1 6
2(K − k) + 3

(K − k) − 2γ
1−γ

σk(z)ℓ1.

Using this back in (2.68), we arrive at (2.62).
Finally, notice that ifF(y) contains ak-sparse vector (withk < K − 2γ

1−γ ), then we
know already that this must be the uniqueℓ1-minimizerx∗; it then follows from our
arguments above that we must haveε = 0. Indeed, if we hadε > 0, then (2.70) would
hold for z = x∗; sincex∗ is k-sparse,σk(x

∗)ℓ1 = 0, implying ε = 0, a contradiction
with the assumptionε > 0. This finishes the proof.

Local linear rate of convergence

It is instructive to show a further very interesting result concerning the local rate of
convergence of this algorithm, which makes heavily use of the NSP as well as the
optimality properties we introduced above. One assumes here thatF(y) contains the
k-sparse vectorx∗. The algorithm produces the sequencexn, which converges tox∗,
as established above. One denotes the (unknown) support of thek-sparse vectorx∗ by
T .

We introduce an auxiliary sequence of error vectorsηn ∈ N via ηn := xn −x∗ and

En := ‖ηn‖ℓ1 = ‖x∗ − xn‖ℓN
1
.

We know thatEn → 0.
The following theorem gives a bound on the rate of convergence ofEn to zero.

Theorem 2.11 AssumeA satisfies NSP of orderK with constantγ such that0< γ <
1− 2

K+2. Suppose thatk < K − 2γ
1−γ , 0 < ρ < 1, and0 < γ < 1− 2

K+2 are such
that

µ :=
γ(1 + γ)

1− ρ

(
1 +

1
K + 1− k

)
< 1.

Assume thatF(y) contains ak-sparse vectorx∗ and letT = supp(x∗). Let n0 be
such that

En0
6 R∗ := ρ min

i∈T
|x∗i |. (2.71)
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Then for alln > n0, we have
En+1 6 µEn. (2.72)

Consequentlyxn converges tox∗ exponentially.

Proof. We start with the relation (2.33) withw = wn, xw = xn+1 = x∗ + ηn+1, and
η = xn+1 − x∗ = ηn+1, which gives

N∑

i=1

(x∗i + ηn+1
i )ηn+1

i wn
i = 0.

Rearranging the terms and using the fact thatx∗ is supported onT , we get

N∑

i=1

|ηn+1
i |2wn

i = −
∑

i∈T

x∗i η
n+1
i wn

i = −
∑

i∈T

x∗i
[(xn

i )2 + ǫ2n]1/2
ηn+1

i . (2.73)

Prove of the theorem is by induction. One assumes that we haveshownEn 6 R∗

already. We then have, for alli ∈ T ,

|ηn
i | 6 ‖ηn‖ℓN

1
= En 6 ρ|x∗i | ,

so that
|x∗i |

[(xn
i )2 + ǫ2n]1/2

6
|x∗i |
|xn

i |
=

|x∗i |
|x∗i + ηn

i |
6

1
1− ρ

, (2.74)

and hence (2.73) combined with (2.74) and NSP gives

N∑

i=1

|ηn+1
i |2wn

i 6
1

1− ρ
‖ηn+1

T ‖ℓ1 6
γ

1− ρ
‖ηn+1

T c ‖ℓ1

At the same time, the Cauchy-Schwarz inequality combined with the above estimate
yields

‖ηn+1
T c ‖2

ℓ1
6

(
∑

i∈T c

|ηn+1
i |2wn

i

)(
∑

i∈T c

[(xn
i )2 + ǫ2n]1/2

)

6

(
N∑

i=1

|ηn+1
i |2wn

i

)(
∑

i∈T c

[(ηn
i )2 + ǫ2n]1/2

)

6
γ

1− ρ
‖ηn+1

T c ‖ℓ1 (‖ηn‖ℓ1 +Nǫn) . (2.75)

If ηn+1
T c = 0, thenxn+1

T c = 0. In this casexn+1 is k-sparse and the algorithm has
stopped by definition; sincexn+1 − x∗ is in the null spaceN , which contains nok-
sparse elements other than 0, we have already obtained the solution xn+1 = x∗. If
ηn+1

T c 6= 0, then after canceling the factor‖ηn+1
T c ‖ℓ1 in (2.75), we get

‖ηn+1
T c ‖ℓ1 6

γ

1− ρ
(‖ηn‖ℓ1 +Nǫn) ,
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and thus

‖ηn+1‖ℓ1 = ‖ηn+1
T ‖ℓ1 + ‖ηn+1

T c ‖ℓ1 6 (1 + γ)‖ηn+1
T c ‖ℓ1 6

γ(1 + γ)

1− ρ
(‖ηn‖ℓ1 +Nǫn) .

(2.76)
Now, we also have by (2.36) and (2.42)

Nǫn 6 r(xn)K+1 6
1

K + 1− k
(‖xn − x∗‖ℓ1 + σk(x

∗)ℓ1) =
‖ηn‖ℓ1

K + 1− k
, (2.77)

since by assumptionσk(x
∗) = 0. This, together with (2.76), yields the desired bound,

En+1 = ‖ηn+1‖ℓ1 6
γ(1 + γ)

1− ρ

(
1 +

1
K + 1− k

)
‖ηn‖ℓ1 = µEn.

In particular, sinceµ < 1, we haveEn+1 6 R∗, which completes the induction step.
It follows thatEn+1 6 µEn for all n > n0.

A surprising superlinear convergence promotingℓτ -minimization for τ < 1

The linear rate (2.72) can be improved significantly, by a very simple modification of
the rule of updating the weight:

wn+1
j =

(
(xn+1

j )2 + ǫ2n+1

)− 2−τ
2
, j = 1, . . . ,N, for any 0< τ < 1.

This corresponds to the substitution of the functionJ with

Jτ (z,w, ǫ) :=
τ

2




N∑

j=1

z2
jwj +

N∑

j=1


ǫ2wj +

2− τ

τ

1

w
τ

2−τ

j




 , z ∈ R

N , w ∈ R
N
+ , ǫ ∈ R+.

Surprisingly the rate of local convergence of this modified algorithm is superlinear;
the rate is larger for smallerτ , increasing to approach a quadratic regime asτ → 0.
More precisely the local errorEn := ‖xn − x∗‖τ

ℓN
τ

satisfies

En+1 6 µ(γ, τ)E2−τ
n , (2.78)

whereµ(γ, τ) < 1 for γ > 0 sufficiently small. The validity of (2.78) is restricted to
xn in a (small) ball centered atx∗. In particular, ifx0 is close enough tox∗ then (2.78)
ensures the convergence of the algorithm to thek-sparse solutionx∗.

Numerical results

In this section we present numerical experiments that illustrate that the bounds derived
in the theoretical analysis do manifest themselves in practice.
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We start with numerical results that confirm the linear rate of convergence of our itera-
tively re-weighted least square algorithm forℓ1-minimization, and its robust recovery
of sparse vectors. In the experiments we used a matrixA of dimensionsm × N
and GaussianN (0,1/m) i.i.d. entries. We already mentioned that such matrices are
known to possess (with high probability) the RIP property with optimal bounds. In
Figure 2.1 we depict the approximation error to the unique sparsest solution shown
in Figure 2.2, and the instantaneous rate of convergence. The numerical results both
confirm the expected linear rate of convergence and the robust reconstruction of the
sparse vector.
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Figure 2.1An experiment, with a matrixA of size 250×1500 with GaussianN (0, 1
250)

i.i.d. entries, in which recovery is sought of the 45-sparsevectorx∗ represented in
Figure 2.2 from its imagey = Ax. Left: plot of log10(‖xn − x∗‖ℓ1) as a function of
n, where thexn are generated by Algorithm 1, withǫn defined adaptively, as in (2.36).
Note that the scale in the ordinate axis does not report the logarithm 0,−1,−2, . . . ,
but the corresponding accuracies 100,10−1,10−2, . . . for ‖xn −x∗‖ℓ1. The graph also
plots ǫn as a function ofn. Right: plot of the ratios‖xn − xn+1‖ℓ1/‖xn − xn−1‖ℓ1,
and(εn − εn+1)/(ǫn−1 − ǫn) for the same examples.

Next, we compare the linear convergence achieved withℓ1-minimization with the
superlinear convergence obtained by the iteratively re-weighted least square algorithm
promotingℓτ -minimization.

In Figure 2.3 we are interested in the comparison of the rate of convergence when
our algorithm is used for different choices of 0< τ 6 1. For τ = 1, .8, .6 and
.56, the figure shows the error, as a function of the iteration stepn, for the iterative
algorithm, with different fixed values ofτ . For τ = 1, the rate is linear, as in Figure
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Figure 2.2The sparse vector used in the example illustrated in Figure 2.1. This vector
has dimension 1500, but only 45 non-zero entries.

2.1. For the smaller valuesτ = .8, .6 and.56 the iterations initially follow the same
linear rate; once they are sufficiently close to the sparse solution, the convergence rate
speeds up dramatically, suggesting we have entered the region of validity of (2.78). For
smaller values ofτ numerical experiments do not always lead to convergence: insome
cases the algorithm never get to the neighborhood of the solution where convergence is
ensured. However, in this case a combination of initial iterations with theℓ1-inspired
IRLS (for which we always have convergence) and later iterations with ℓτ -inspired
IRLS for smallerτ allow again for a very fast convergence to the sparsest solution;
this is illustrated in Figure 2.3 for the caseτ = .5.
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Figure 2.3 We show the decay of logarithmic error, as a function of the number of
iterations of the algorithm for different values ofτ (1, 0.8, 0.6, 0.56). We show also
the results of an experiment in which the initial 10 iterations are performed withτ = 1
and the remaining iterations withτ = 0.5.
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Enhanced recovery in compressed sensing and relationship with other work

In this section, we shortly report a phenomenon of enhancingof rate of recovery as
depicted in Figure 2.4. As shown there, the IRLS with weightsthat gradually moved
from anℓ1- to anℓτ -minimization goal produce a higher experimentally determined
probability of successful recovery as a function ofk.
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Figure 2.4 The (experimentally determined) probability of successful recovery of a
sparse 250-dimensional vectorx, with sparsityk, from its imagey = Ax, as a func-
tion of k. In these experiments the matrixA is 50× 250 dimensional, with i.i.d.
GaussianN (0, 1

50) entries. The matrix is generated once; then, for each sparsity value
k shown in the plot, 500 attempts were made, for randomly generatedk-sparse vec-
torsx. Two different IRLS algorithms were compared, one with weights inspired by
ℓ1-minimization and the other with weights that gradually moved from anℓ1- to an
ℓτ -minimization goal, with finalτ = 0.5.

Some open problems

1. In practice this algorithm appears very robust and its convergence is either linear
or even superlinear when properly tuned as previously indicated. However, such guar-
antees of rate of convergence are valid only in a neighborhood of a solution which is
presently very difficult to estimate. This lack of knowledgedoes not allow us yet to
estimate properly the complexity of this method.

2. Forτ < 1 the algorithm seems converging properly whenτ is not too small, but
when, say,τ < 0.5, then the algorithm tends to fail to reach the region of guaranteed
convergence. It is an open problem to characterize very sharply such phase transition,
and heuristic methods of avoidance of local minima are also of great interest.

3. While error guarantees of the type (1.5) are given, it is open whether (1.6) and
(1.13) can hold for this algorithm.
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2.1.3 Extensions to the Minimization Functionals with Total Variation Terms

In concrete applications, e.g., for image processing, one might be interested to recover
at best a digital image provided only partial linear or nonlinear measurements, possibly
corrupted by noise. Given the observation that natural and man-made images can be
characterized by a relatively small number of edges and extensive relatively uniform
parts, one may want to help the reconstruction by imposing that the interesting solution
is the one which matches the given data and has also a few discontinuities localized on
sets of lower dimension.

In the context ofcompressed sensingas described in the previous sections, we have
already clarified that the minimization ofℓ1-norms occupies a fundamental role for the
promotion of sparse solutions. This understanding furnishes an important interpreta-
tion of total variation minimization, i.e., the minimization of theL1-norm of deriva-
tives [68], as a regularization technique for image restoration. The problem can be
modelled as follows; letΩ ⊂ R

d, for d = 1,2 be a bounded open set with Lipschitz
boundary, andH = L2(Ω). Foru ∈ L1

loc(Ω)

V (u,Ω) := sup

{∫

Ω
udivϕ dx : ϕ ∈

[
C1

c (Ω)
]d
, ‖ϕ‖∞ ≤ 1

}

is the variation ofu. Further,u ∈ BV (Ω), the space of bounded variation functions
[1,38], if and only ifV (u,Ω) < ∞. In this case, we denote|D(u)|(Ω) = V (u,Ω). If
u ∈ W 1,1(Ω) (the Sobolev space ofL1-functions withL1-distributional derivatives),
then|D(u)|(Ω) =

∫
Ω |∇u| dx. We consider as in [16,77] the minimization inBV (Ω)

of the functional
J (u) := ‖Ku− g‖2

2 + 2α |D(u)| (Ω), (2.79)

whereK : L2(Ω) → L2(Ω) is a bounded linear operator,g ∈ L2(Ω) is a datum, and
α > 0 is a fixedregularization parameter. Several numerical strategies to perform
efficiently total variation minimization have been proposed in the literature. How-
ever, we will discuss in the following only how to adapt an iteratively reweighted least
square algorithm to this particular situation. For simplicity, we would like to work on
a discrete setting and we refer to the course presented by Antonin Chambolle for more
details related to the continuous setting [16,43].

Let us fix the main notations. Since we are interested in a discrete setting we define
thediscreted-orthotopeΩ = {x1

1 < . . . < x1
N1
} × . . . × {xd

1 < . . . < xd
Nd

} ⊂ R
d,

d ∈ N and the considered function spaces areH = R
N1×N2×...×Nd , whereNi ∈ N for

i = 1, . . . , d. Foru ∈ H we writeu = u(xi)i∈I with

I :=

d∏

k=1

{1, . . . ,Nk}

and
u(xi) = u(x1

i1
, . . . , xd

id
)
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whereik ∈ {1, . . . , Nk} and(xi)i∈I ∈ Ω. Then we endowH with the norm

‖u‖H = ‖u‖2 =

(
∑

i∈I
|u(xi)|2

)1/2

=

(
∑

x∈Ω

|u(x)|2
)1/2

.

We define the scalar product ofu, v ∈ H as

〈u, v〉H =
∑

i∈I
u(xi)v(xi)

and the scalar product ofp, q ∈ Hd as

〈p, q〉Hd =
∑

i∈I
〈p(xi), q(xi)〉Rd

with 〈y, z〉Rd =
∑d

j=1 yjzj for everyy = (y1, . . . , yd) ∈ R
d andz = (z1, . . . , zd) ∈

R
d. We will consider also other norms, in particular

‖u‖p =

(
∑

i∈I
|u(xi)|p

)1/p

, 1 ≤ p <∞,

and
‖u‖∞ = sup

i∈I
|u(xi)|.

We denote the discrete gradient∇u by

(∇u)(xi) = ((∇u)1(xi), . . . , (∇u)d(xi))

with

(∇u)j(xi) =

{
u(x1

i1
, . . . , xj

ij+1, . . . , x
d
id

) − u(x1
i1
, . . . , xj

ij
, . . . , xd

id
) if ij < Nj

0 if ij = Nj

for all j = 1, . . . , d and for alli = (i1, . . . , id) ∈ I.
Letϕ : R → R, we define forω ∈ Hd

ϕ(|ω|)(Ω) =
∑

i∈I
ϕ(|ω(xi)|) =

∑

x∈Ω

ϕ(|ω(x)|),

where|y| =
√
y2

1 + . . . + y2
d. In particular we define thetotal variationof u by setting

ϕ(s) = s andω = ∇u, i.e.,

|∇u|(Ω) :=
∑

i∈I
|∇u(xi)| =

∑

x∈Ω

|∇u(x)|.
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For an operatorK we denoteK∗ its adjoint. Further we introduce thediscrete diver-
gencediv : Hd → H defined, in analogy with the continuous setting, bydiv = −∇∗

(∇∗ is the adjoint of the gradient∇). The discrete divergence operator is explicitly
given by

(div p)(xi) =





p1(x1
i1
, . . . , xd

id
) − p1(x1

i1−1, . . . , x
d
id

) if 1 < i1 < N1

p1(x1
i1
, . . . , xd

id
) if i1 = 1

−p1(x1
i1−1, . . . , x

d
id

) if i1 = N1

+ . . .+





pd(x1
i1
, . . . , xd

id
) − pd(x1

i1
, . . . , xd

id−1) if 1 < id < Nd

pd(x1
i1
, . . . , xd

id
) if id = 1

−pd(x1
i1
, . . . , xd

id−1) if id = Nd,

for everyp = (p1, . . . , pd) ∈ Hd and for alli = (i1, . . . , id) ∈ I. (Note that if we
considered discrete domainsΩ which are not discreted-orthotopes, then the definitions
of gradient and divergence operators should be adjusted accordingly.) We will use the
symbol 1 to indicate the constant vector with entry values 1 and 1D to indicate the
characteristic function of the domainD ⊂ Ω. We are interested in the minimization of
the functional

J (u) := ‖Ku− g‖2
2 + 2α |∇(u)| (Ω), (2.80)

whereK ∈ L(H) is a linear operator,g ∈ H is a datum, andα > 0 is a fixed constant.
In order to guarantee the existence of minimizers for (2.80)we assume that:

(C) J is coercive inH, i.e., there exists a constantC > 0 such that{J ≤ C} :=
{u ∈ H : J (u) ≤ C} is bounded inH.

It is well known that if 1/∈ ker(K) then condition (C) is satisfied, see [77, Proposition
3.1], and we will assume this condition in the following.

Similarly to (2.34) for the minimization of theℓ1-norm, we consider the augmented
functional

J (u,w) := ‖Ku− g‖2
2 + α

(
∑

x∈Ω

w(x)|∇u(x)|2 +
1

w(x)

)
. (2.81)

We used again the notationJ with the clear understanding that when applied to one
variable only refers to (2.80), otherwise to (2.81). Then, as the IRLS method for com-
pressed sensing, we consider the following
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Algorithm 2. We initialize by takingw0 := 1. We also set 1> ǫ > 0. We then
recursively define forn = 0,1, . . . ,

un+1 := arg min
u∈H

J (u,wn) (2.82)

and
wn+1 := arg min

max(ε,min(w,1/ε))
J (un+1, w). (2.83)

Note that, by considering the Euler-Lagrange equations, (2.82) is equivalent to the
solution of the following linear second order partial difference equation

div (wn∇u) − 2
α
K∗(Ku− g) = 0, (2.84)

which can be solved, e.g., by a preconditioned conjugate gradient method. Note that
ε ≤ wn ≤ 1/ε and therefore the equation can be recasted into a symmetric positive
definite linear system. Moreover, as perhaps already expected, the solution to (2.83) is
explicitly computed by

wn+1 = max

(
ε,min

(
1

|∇un+1| ,1/ε
))

.

For the sake of the analysis of the convergence of this algorithm, let us introduce the
following function:

ϕε(z) =





1
2ε
z2 +

ε

2
0 ≤ z ≤ ε

z ε ≤ z ≤ 1/ε

ε

2
z2 +

1
2ε

z ≥ 1/ε.

Note that
ϕε(z) ≥ |z|,

and
|z| = lim

ε→0
ϕε(z).

We consider the following functional:

Jε(u) := ‖Ku− g‖2
2 + 2αϕε(|∇(u)|)(Ω), (2.85)

Which is clearly approximatingJ from above, i.e.,

Jε(u) ≥ J (u), and lim
ε→0

Jε(u) = J (u). (2.86)
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Moreover, sinceJε is convex and smooth, by taking the Euler-Lagrange equations, we
have thatuε is a minimizer forJε if and only if

div

(
ϕ′

ε(|∇u)|
|∇u| ∇u

)
− 2
α
K∗(Ku− g) = 0, (2.87)

We have the following result of convergence of the algorithm.

Theorem 2.12 The sequence(un)n∈N has subsequences that converge to a minimizer
uε := u∞ of Jε. If the minimizer was unique, then the full sequence would converge
to it.

Proof. Observe that

J (un, wn) − J (un+1, wn+1) =
(
J (un, wn) − J (un+1, wn)

)
︸ ︷︷ ︸

An

+
(
J (un+1, wn) − J (un+1, wn+1)

)
︸ ︷︷ ︸

Bn

≥ 0.

ThereforeJ (un, wn) is a nonincreasing sequence and moreover it is bounded from
below, since

inf
εh≤w≤1/εh

(
∑

x∈Ω

w(x)|∇u(x)|2 +
1

w(x)

)
≥ 0.

This implies thatJ (un, wn) converges. Moreover, we can write

Bn =
∑

x∈Ω

c(wn(x), |∇un+1(x)|) − c(wn+1(x), |∇un+1(x)|),

wherec(t, z) := tz2 + 1
t . By Taylor’s formula, we have

c(wn, z) = c(wn+1, z) +
∂c

∂t
(wn+1, z)(wn − wn+1) +

1
2
∂2c

∂t2
(ξ, z)|wn − wn+1|2,

for ξ ∈ conv(wn, wn+1). By definition ofwn+1, and taking into account thatε ≤
wn+1 ≤ 1

ε , we have

∂c

∂t
(wn+1, |∇un+1(x)|)(wn − wn+1) ≥ 0,

and ∂2c
∂t2 (t, z) = 2

t3 ≥ 2ε3, for anyt ≤ 1/ε. This implies that

J (un, wn) − J (un+1, wn+1) ≥ Bn ≥ ε3
∑

x∈Ω

|wn(x) − wn+1(x)|2,
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and sinceJ (un, wn) is convergent, we have

‖wn − wn+1‖2 → 0, (2.88)

for n → ∞. Sinceun+1 is a minimizer ofJ (u,wn) it solves the following system of
variational equations

∑

x∈Ω

(
wn∇un+1(x) · ∇ϕ(x) +

2
α

(Kun+1 − g)(x)Kϕ(x)

)
(2.89)

for all ϕ ∈ H. Therefore we can write

∑

x∈Ω

(
wn+1∇un+1(x) · ∇ϕ(x) +

2
α

(Kun+1 − g)(x)Kϕ(x)

)

=
∑

x∈Ω

(wn+1 − wn)∇un+1(x) · ∇ϕ(x),

and
∣∣∣∣∣
∑

x∈Ω

(
wn+1∇un+1(x) · ∇ϕ(x) +

2
α

(Kun+1 − g)(x)Kϕ(x)

)∣∣∣∣∣

≤ C‖wn+1 −wn‖2‖∇un+1‖2‖∇ϕ‖2.

(Remind that every norm is equivalent in finite dimensions!)By monotonicity of

(J (un+1, wn+1))n, and sincewn+1 = ϕ′
ε(|∇un+1|)
|∇un+1| , we have

J (u0, w0) ≥ J (un+1, wn+1) = Jε(u
n+1) ≥ J (un+1) ≥ c1|∇u|(Ω) ≥ c2‖∇un+1‖2.

Moreover, sinceJε(u
n+1) ≥ J (un+1) andJ is coercive, by condition (C), we have

that ‖un+1‖2 and ‖∇un+1‖2 are bounded uniformly with respect ton. Therefore,
using (2.88), we can conclude that

∣∣∣∣∣
∑

x∈Ω

(
wn+1∇un+1(x) · ∇ϕ(x) +

2
α

(Kun+1 − g)(x)Kϕ(x)

)∣∣∣∣∣

≤ ‖wn+1 − wn‖2‖∇un+1‖2‖∇ϕ‖2 → 0,

for n → ∞, and there exists a subsequence(u(nk))k that converges inH to a func-

tion u∞. Sincewn+1 = ϕ′
ε(|∇un+1|)
|∇un+1| , and by taking the limit forn → ∞, we obtain

that in fact

div

(
ϕ′

ε(|∇u∞|)
|∇u∞| ∇u∞

)
− 2
α
K∗(Ku∞ − g) = 0, (2.90)

The latter are the Euler-Lagrange equations associated to the functionalJε and there-
foreu∞ is a minimizer ofJε.
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It is left as a – not simple – exercise the proof of the following result. One has to
make use of the monotonicity of the approximation (2.86), ofthe coerciveness ofJ
(property (C)), and of the continuity ofJε. See also [25] for more general tools from
so-calledΓ-convergencefor achieving such variational limits.

Proposition 2.13 Let us assume that(εh)h is a sequence of positive numbers mono-
tonically converging to zero. The accumulation points of the sequence(uεh

)h of mini-
mizers ofJεh

are minimizers ofJ .

Let us note a few differences between Algorithm 1 and Algorithm 2. In Algorithm
1 we have been able to establish a rule of up-dating the parameter ǫ according to the
iterations. This was not done for Algorithm 2, where we consider the limit forε → 0
only at the end. It is an interesting open question how can we simultaneously address
a choice of a decreasing sequence(εn)n during the iterations and show directly the
convergence of a minimizer ofJ .

Figure 2.5Fragments of the frescoes.

A relevant application

In this section we would like to report the surprising applicative results from the
work [43], where the IRLS for total variation minimization has been used for vector-
valued functions.

On March 11, 1944, the famous Eremitani Church in Padua (Italy) was destroyed
in an Allied bombing along with the inestimable frescoes by Andrea Mantegnaet
al. contained in the Ovetari Chapel. In the last 60 years, several attempts have been
made to restore the fresco fragments (Figure 2.5) by traditional methods, but without
much success. An efficient pattern recognition algorithm was used to map the original
position and orientation of the fragments, based on comparisons with an old gray level
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image of the fresco prior to the damage. This innovative technique allowed for the
partial reconstruction of the frescoes. In Figure 2.6 we show a sample of the results
due to this computer-assisted restoration.

Figure 2.6On the left the scene “St. James Led to Martyrdom” with a few fragments
localized by the computer assisted recollocation. On the right, we point out a particular
of the scene.

Unfortunately, the surface covered by the colored fragments is only 77m2, while
the original area was of several hundreds. This means that wecould reconstruct so far
only a fraction (less than 8%) of this inestimable artwork. In particular the original
color of the blanks is not known. This begs the question of whether it is possible
to estimatemathematicallythe original colors of the frescoes by making use of the
potential information given by the available fragments andthe gray level of the pictures
taken before the damage.

50 100 150 200 250

50

100

150

200

250

Figure 2.7 Estimate of the nonlinear curveL from a distribution of points with coor-
dinates given by the linear combinationξ1r+ ξ2g+ ξ3b of the(r, g, b) color fragments
(abscissa) and by the corresponding underlying gray level of the original photographs
dated to 1920 (ordinate).
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We get our inspiration from physics: it is common experiencethat in an inho-
mogeneous material heat diffuses anisotropically from heat sources; the mathemati-
cal (partial differential) equations that govern this phenomenon are well-known. In
turn similar equations (see (2.84)) can be used to diffuse the color (instead of the
heat) from the ‘color-sources’, which are the placed fragments, keeping into account
the inhomogeneity due to the gradients provided by the knowngray levels. We de-
scribe formally the model as follows. A color image can be modeled as a function
u : Ω ⊂ R

2 → R
3
+, so that, to each “point”x ∈ Ω of the image, one associates

the vectoru(x) = (r(x), g(x), b(x)) ∈ R
3
+ of the color represented by the differ-

ent channels, for instance, red, green, and blue. The gray level of an image can be
described as non-linear projection of the colorsL(r, g, b) := L(ξ1r + ξ2g + ξ3b),
(r, g, b) ∈ R

3
+, whereξ1, ξ2, ξ3 > 0, ξ1 + ξ2 + ξ3 = 1, andL : R → R is a suitable

non-negative increasing function. For example Figure 2.7.describes the typical shape
of anL function, which is estimated by fitting a distribution of data from the real color
fragments, see Figure 2.6. However, it is always possible tore-equalize the grey level
in such a wayL(ξ) = ξ. In this case the functionL is simply a linear projection. The

Figure 2.8 The first column illustrates two different data for the recolorization prob-
lem. The second column illustrates the corresponding recolorized solution.
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recolorization is modeled as the minimum (color image) solution of the functional

J (u) = µ

∫

Ω\D
|u(x) − ū(x)|2dx+

∫

D
|L(u(x)) − v̄(x)|2dx+

∫

Ω

3∑

ℓ=1

|∇uℓ(x)|dx,

(2.91)
where we want to reconstruct the vector valued functionu := (u1, u2, u3) : Ω ⊂ R

2 →
R

3 (for RGB images) from a given observed couple of color/gray level functions(ū, v̄).
The observed function̄u is assumed to represent correct information,e.g., the given
colors, onΩ\D, andv̄ the result of thenonlinear projectionL : R

3 → R, e.g., the
gray level, onD. Note also that we consider the total variation of each of thethree
color components. In caseL is linear (e.g., after re-equalization of the gray level),
the functionalJ , suitably discretized, can be recasted into the form (2.80). Hence
the method previously described can be applied. See Figure 2.8 for a sample of the
mathematical recolorization in the real-life problem.

2.1.4 Iterative Hard Thresholding

In this section we address the following

Algorithm 3. We initialize by takingx0 = 0. We iterate

xn+1 = Hk(x
n +A∗(y −Axn)), (2.92)

where
Hk(x) = x[k], (2.93)

is the operator which returns the bestk-term approximation tox, see (1.2).

Note that ifx∗ is k-sparse andAx∗ = y, thenx∗ is a fixed point of

x∗ = Hk(x
∗ +A∗(y −Ax∗)).

This algorithm can be seen as a minimizing method for the functional

J (x) = ‖y −Ax‖2
ℓN

2
+ 2α‖x‖ℓN

0
, (2.94)

for a suitableα = α(k) > 0 or equivalently for the solution of the optimization
problem

min
x

‖y −Ax‖2
ℓN

2
subject to‖x‖ℓN

0
≤ k.

Actually, it was shown [6] that if‖A‖ < 1 then this algorithm converges to a local
minimizer of (2.94). We would like to analyze this algorithmfollowing [7] in the
caseA satisfies the RIP. We start with a few technical lemmas which shed light on
fundamental properties of RIP matrices and sparse approximations, as established in
[73].
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Lemma 2.14 For all index setsΛ ⊂ {1, . . . ,N} and allA for which the RIP holds
with orderk = |Λ|, we have

‖A∗
Λy‖ℓN

2
≤ (1 + δk)‖y‖ℓN

2
, (2.95)

(1− δk)
2‖xΛ‖ℓN

2
≤ ‖A∗

ΛAΛxΛ‖ℓN
2
≤ (1 + δk)

2‖xΛ‖ℓN
2

(2.96)

and
‖(I −A∗

ΛAΛ)xΛ‖ℓN
2
≤ δ2

k‖xΛ‖ℓN
2
. (2.97)

Furthermore, for two disjoint setsΛ1 andΛ2 and allA for which the RIP holds with
order k = |Λ1 ∪ Λ2|,

‖A∗
Λ1
AΛ2xΛ2‖ℓN

2
≤ δ2

k‖xΛ‖ℓN
2
. (2.98)

Proof. The proof of (2.95)-(2.97) is straightforward and it is leftto the reader. For
(2.98), just note thatA∗

Λ1
AΛ2 is a submatrix ofA∗

Λ1∪Λ2
AΛ1∪Λ2 − I, and therefore

‖A∗
Λ1
AΛ2‖ ≤ ‖I −A∗

Λ1∪Λ2
AΛ1∪Λ2‖. One concludes by (2.97).

Lemma 2.15 Suppose the matrixA satisfies the RIP of orderk with constantδk > 0.
Then for all vectorsx, the following bound holds

‖Ax‖ℓN
2
≤ (1 + δk)

(
‖x‖ℓN

2
+

‖x‖ℓN
1

k1/2

)
. (2.99)

Proof. In this proof we considerRN as a Banach space endowed with several different
norms. In particular, the statement of the lemma can be regarded as a result about the
operator norm ofA as a map between two Banach spaces. For a setI ⊂ {1,2, . . . ,N},
we considerBℓI

2
the ℓ2-norm unit ball of vectors supported inI and we define the

convex set

S = conv




⋃

|I|≤k

BℓI
2



 ⊂ R

N .

The setS can be consider the unit ball of a norm‖ · ‖S on R
N , and the upper bound

of the RIP property a statement about the norm ofA betweenS := (RN , ‖ · ‖S) and
ℓN2 := (ℓN2 , ‖ · ‖ℓN

2
), i.e., (with a slight abuse of notation)

‖A‖S→ℓN
2

= max
x∈S

‖Ax‖ℓN
2
≤ (1 + δk).

Let us define a second convex body,

K =

{
x : ‖x‖ℓN

2
+

‖x‖ℓN
1

k1/2
≤ 1

}
⊂ R

N ,
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and we consider, analogously (and with the same abuse of notation), the operator norm

‖A‖K→ℓN
2

= max
x∈K

‖Ax‖ℓN
2
.

The content of the lemma is the claim that

‖A‖K→ℓN
2
≤ ‖A‖S→ℓN

2
.

To establish this point it is sufficient to check thatK ⊂ S. To do that we do prove the
reverse inclusion of the polar sets, i.e.,

S◦ ⊂ K◦.

Remind that the polar set ofΩ ⊂ R
N is

Ω◦ := {y : sup
x∈Ω

〈x, y〉 ≤ 1}.

If Ω is convex thanΩ◦◦ = Ω. Moreover, the norm associated to a convex bodyΩ can
also be expressed by

‖x‖Ω = sup
y∈Ω◦

〈x, y〉.

In particular, the norm with unit ballS◦ is easily calculated as

‖x‖S◦ = max
|I|≤k

‖xI‖2.

Now, consider a vectorx in the unit ballS◦ and letI be the support of thek-best
approximation ofx. We must have

‖xIc‖∞ ≤ 1√
k
,

otherwise|xi| > 1√
k

for all i ∈ I, but then‖x‖S◦ ≥ ‖xI‖2 > 1, a contradiction.
Therefore, we can write

x = xI + xIc ∈ BℓN
2

+
1√
k
BℓN

∞
.

But the set on the right-hand side is preciselyK◦ since

sup
y∈K◦

〈x, y〉 = ‖x‖K = ‖x‖ℓN
2

+
‖x‖ℓN

1

k1/2

= sup
y∈B

ℓN
2

〈x, y〉 + sup
z∈ 1

k1/2 B
ℓN
∞

〈x, z〉 = sup
y∈B

ℓN
2

+ 1

k1/2 B
ℓN
∞

〈x, y〉.

In summaryS◦ ⊂ K◦.
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Lemma 2.16 For anyx we denotex[k] = x− x[k]. Let

y = Ax+ e = Ax[k] +Ax[k] + e = Ax[k] + ẽ.

If A has the RIP of orderk, then the norm of the error̃e can be bounded by

‖ẽ‖ℓN
2
≤ (1 + δk)

(
σk(x)ℓN

2
+
σk(x)ℓN

1√
k

)
+ ‖e‖ℓN

2
. (2.100)

Proof. Decomposex = x[k] + x[k] and ẽ = Ax[k] + e. To compute the norm of the
error term, we simply apply the triangle inequality and Lemma 2.15.

After this collection of technical results, we are able to establish a first convergence
result.

Theorem 2.17 Given a noisy observationy = Ax+ e, wherex is k-sparse. IfA has
the RIP or order3k and constantδ2

3k < 1√
32

, then, at iterationn, Algorithm 2 will
recover an approximationxn satisfying

‖x− xn‖ℓN
2
≤ 2−n‖x‖ℓN

2
+ 5‖e‖ℓN

2
. (2.101)

Furthermore, after at most

n∗ =

⌈
log2

(
‖x‖ℓN

2

‖e‖ℓN
2

)⌉
(2.102)

iterations, the algorithm estimatesx with accuracy

‖x− xn∗‖ℓN
2
≤ 6‖e‖ℓN

2
. (2.103)

Proof. Let us denotezn := xn +A∗(y −Axn), rn = x− xn, andBn := supp(rn)).
By triangle inequality we can write

‖x− xn+1‖ℓN
2
≤ ‖xBn+1 − zn

Bn+1‖ℓN
2

+ ‖xn+1
Bn+1 − zn

Bn+1‖ℓN
2
.

By application ofHk, xn+1 = Hk(z
n). This implies‖xn+1

Bn+1 − zn
Bn+1‖ℓN

2
≤ ‖xBn+1 −

zn
Bn+1‖ℓN

2
, and

‖x− xn+1‖ℓN
2
≤ 2‖xBn+1 − zn

Bn+1‖ℓN
2
.

We can also write

zn
Bn+1 = xn

Bn+1 +A∗
Bn+1Ar

n +A∗
Bn+1e.

We then have

‖x− xn+1‖ℓN
2

≤ 2‖xBn+1 − xn
Bn+1 −A∗

Bn+1Ar
n −A∗

Bn+1e‖ℓN
2

≤ 2‖(I −A∗
Bn+1ABn+1)rn‖ℓN

2
+ 2‖A∗

Bn+1ABn\Bn+1rn‖ℓN
2

+ 2‖A∗
Bn+1e‖ℓN

2
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Note that|Bn| ≤ 2k and that|Bn+1 ∪ Bn| ≤ 3k. By an application of the bounds in
Lemma 2.14, and by using the fact thatδ2k ≤ δ3k (note that a 2k-sparse vector is also
3k-sparse)

‖rn+1‖ℓN
2
≤ 2δ2

2k‖rn
Bn+1‖ℓN

2
+ 2δ2

3k‖rn
Bn\Bn+1‖ℓN

2
+ 2(1 + δ2k)‖e‖ℓN

2

Moreover‖rn
Bn+1‖ℓN

2
+ ‖rn

Bn\Bn+1‖ℓN
2
≤

√
2‖rn‖ℓN

2
. Therefore we have the bound

‖rn+1‖ℓN
2
≤ 2

√
2δ2

3k‖rn‖ℓN
2

+ 2(1 + δ3k)‖e‖ℓN
2
.

By assumptionδ2
3k <

1√
32

and 2
√

2δ2
3k <

1
2. (Note that here we could simply choose

any valueδ2
3k <

1√
8

and obtain a slightly different estimate!) The we get the recursion

‖rn+1‖ℓN
2
≤ 2−1‖rn‖ℓN

2
+ 2.17‖e‖ℓN

2
,

which iterated (note thatx0 = 0 and 2.17
∑∞

n=0 2−n ≤ 4.34) gives

‖rn+1‖ℓN
2
≤ 2−n‖x‖ℓN

2
+ 4.34‖e‖ℓN

2
.

This is precisely the bound we were looking for. The rest of the statements of the
theorem are left as an exercise.

We have also the following result.

Corollary 2.18 Given a noisy observationy = Ax+e, wherex is an arbitrary vector.
If A has the RIP or order3k and constantδ2

3k <
1
32, then, at iterationn, Algorithm 2

will recover an approximationxn satisfying

‖x− xn‖ℓN
2
≤ 2−n‖x‖ℓN

2
+ 6

(
σk(x)ℓN

2
+
σk(x)ℓN

1√
k

+ ‖e‖ℓN
2

)
. (2.104)

Furthermore, after at most

n∗ =

⌈
log2

(
‖x‖ℓN

2

‖e‖ℓN
2

)⌉
(2.105)

iterations, the algorithm estimatesx with accuracy

‖x− xn∗‖ℓN
2
≤ 7

(
σk(x)ℓN

2
+
σk(x)ℓN

1√
k

+ ‖e‖ℓN
2

)
. (2.106)

Proof. We first note

‖x− xn‖ℓN
2
≤ σk(x)ℓN

2
+ ‖x[k] − xn‖ℓN

2
.

The proof now follows by bounding‖x[k]−xn‖ℓN
2

. For this we simply apply Theorem
2.17 tox[k] with ẽ instead ofe, and use Lemma 2.16 to bound‖ẽ‖ℓN

2
. The rest is left

as an exercise.
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A brief discussion

This algorithm has error reduction guarantee from the very beginning of the iteration,
and it is robust to noise, i.e., an estimate of the type (1.13)holds. Moreover, each
iteration costs mainly as much as an application ofA∗A. At first glance this algorithm
is greatly superior with respect to IRLS; however, we have tostress that IRLS can
converge superlinearly and a fine analysis of its complexityis widely open.

3 Numerical Methods for Sparse Recovery

In the previous chapters we put most of the emphasis on finite dimensional linear
problems (also of relatively small size) where the model matrix A has the RIP or the
NSP. This setting is suitable for applications in coding/decoding or compressed acqui-
sition problems, hence from human-made problems coming from technology, while it
does not fit many possible applications where we are interested to recover quantities
from partial real-life measurements. In this case we may need to work with large di-
mensional problems (even infinite dimensional) where the model linear (or nonlinear)
operator which defines the measurements has not such nice properties as the RIP and
NSP. A typical example of such situation is the one reported in the previous chapter
related to the color recovery from a real-life restoration problem.

Here and later we are concerned with the more general settingand the efficient
minimization of functionals of the type:

J (u) := ‖Ku− y‖2
Y + 2‖(〈u, ψ̃λ〉)λ∈I‖ℓ1,α(I), (3.107)

whereK : X → Y is a bounded linear operator acting between two separable Hilbert
spacesX andY , y ∈ Y is a given measurement, andΨ := {ψλ}λ∈I is a prescribed
countable basis forX with associated dual̃Ψ := {ψ̃λ}λ∈I . For 1 ≤ p < ∞, the

sequence norm‖u‖ℓp,α(I) :=
(∑

λ∈I |uλ|pαλ

)1/p
is the usual norm for weightedp-

summable sequences, with weightα = (αλ)λ∈I ∈ R
I
+, such thatαλ ≥ ᾱ > 0.

Associated to the basis, we are given the synthesis mapF : ℓ2(I) → X defined by

Fu :=
∑

λ∈I
uλψλ, u ∈ ℓ2(I). (3.108)

We can re-formulate equivalently the functional in terms ofsequences inℓ2(I) as
follows:

J (u) := Jα(u) = ‖(K ◦ F )u − y‖2
Y + 2‖u‖ℓ1,α(I). (3.109)

For ease of notation let us writeA := K ◦ F . Such a functional turns out to be very
useful in many practical problems, where one cannot observedirectly the quantities
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of most interest; instead their values have to be inferred from their effect on observ-
able quantities. When this relationship between the observabley and the interesting
quantityu is (approximately) linear the situation can be modeled mathematically by
the equation

y = Ku , (3.110)

If K is a “nice” (e.g., well-conditioned), easily invertible operator, and if the datay
are free of noise, then this is a well-known task which can be addressed with standard
numerical analysis methods. Often, however, the mappingK is not invertible or ill-
conditioned. Moreover, typically (3.110) is only an idealized version in which noise
has been neglected; a more accurate model is

y = Ku + e , (3.111)

in which the data are corrupted by an (unknown) noisee. In order to deal with this
type of reconstruction problem aregularizationmechanism is required [37]. Regular-
ization techniques try, as much as possible, to take advantage of (often vague) prior
knowledge one may have about the nature ofu, which is embedded into the model.
The approach modelled by the functionalJ in (3.107) is indeed tailored to the case
whenu can be represented by asparseexpansion, i.e., whenu can be represented by
a series expansion (3.108) with respect to an orthonormal basis (or a frame [27]) that
has only a small number of large coefficients. The previous chapters should convince
the reader that imposing an additionalℓ1-norm term as in (3.108) has indeed the effect
of sparsifying possible solutions. Hence, we model the sparsity constraint by a regu-
larizing ℓ1−term in the functional to be minimized; of course, we could consider also
a minimization of the type (2.94), but that has the disadvantage of being nonconvex
and not being necessarily robust to noise, when no RIP conditions are imposed on the
model operatorA.

In the following we will not use anymore the bold formu for a sequence inℓ2(I),
since here and later we will exclusively work with the spaceℓ2(I).

3.1 Iterative Soft-Thresholding in Hilbert Spaces

Several authors have proposed independently an iterative soft-thresholding algorithm
to approximate minimizersu∗ := u∗α of the functional in (3.108), see [35, 41, 70, 71].
More precisely,u∗ is the limit of sequencesu(n) defined recursively by

u(n+1) = Sα

[
u(n) +A∗y −A∗Au(n)

]
, (3.112)
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starting from an arbitraryu(0), whereSα is the soft-thresholding operation defined by
Sα(u)λ = Sαλ

(uλ) with

Sτ (x) =





x− τ x > τ

0 |x| ≤ τ

x+ τ x < −τ
. (3.113)

This is our starting point and the reference iteration on which we want to work out
several innovations. Strong convergence of this algorithmwas proved in [28], under
the assumption that‖A‖ < 1 (actually, convergence can be shown also for‖A‖ <

√
2

[21]; nevertheless, the condition‖A‖ < 1 is by no means a restriction, since it can
always be met by a suitable rescaling of the functionalJ , in particular ofK, y, andα).
Soft-thresholding plays a role in this problem because it leads to the unique minimizer
of a functional combiningℓ2 andℓ1−norms, i.e., (see Lemma 3.1)

Sα(a) = arg min
u∈ℓ2(I)

(
‖u− a‖2 + 2‖u‖1,α

)
. (3.114)

We will call the iteration (3.112) theiterative soft-thresholding algorithmor thethresh-
olded Landweber iteration(ISTA).

In this section we would like to provide the analysis of the convergence of this
algorithm. Due to the lack of assumptions such as the RIP or the NSP, the methods we
use comes exclusively from convex analysis and we cannot take advantage of relatively
simple estimates as we did for the convergence analysis of Algorithms 1,3.

3.1.1 The Surrogate Functional

The first relevant observation is that the algorithm can be recasted into an iterated min-
imization of a properly augmented functional, which we callthesurrogate functional
of J , and it is defined by

J S(u, a) := ‖Au− y‖2
Y + 2‖u‖ℓ1,α(I) + ‖u− a‖2

ℓ2(I) − ‖Au−Aa‖2
Y . (3.115)

Assume here and later that‖A‖ < 1. Observe that

‖u− a‖2
ℓ2(I) − ‖Au−Aa‖2

Y ≥ C‖u− a‖2
ℓ2(I), (3.116)

for C = (1− ‖A‖2) > 0. Hence

J (u) = J S(u, u) ≤ J S(u, a), (3.117)

and
J S(u, a) − J S(u, u) ≥ C‖u− a‖2

ℓ2(I). (3.118)

In particular,J S is strictly convex with respect tou and it has a unique minimizer
with respect tou oncea is fixed. We have the following technical lemmas.
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Lemma 3.1 The soft-thresholding operator is the solution of the following optimiza-
tion problem:

Sα(a) = arg min
u∈ℓ2(I)

(
‖u− a‖2 + 2‖u‖1,α

)
.

Proof. By componentwise optimization, we can reduce the problem toa scalar prob-
lem, i.e., we need to show that

Sαλ
(aλ) = argmin

x
(x− aλ)2 + 2αλ|x|,

which is shown by a simple direct computation. Letx∗ be the minimizer. It is clear that
sgn(x∗) sgn(aλ) ≥ 0 otherwise the function is increased.. Hence we need to optimize
(x−aλ)2+2αλ sgn(aλ)x which has minimum at̄x = (aλ−sgn(aλ)αλ). If |aλ| > αλ

thanx∗ = x̄. Otherwisesgn(x̄) sgn(aλ) < 0 andx̄ cannot be the minimizer, and we
have to choosex∗ = 0.

Lemma 3.2 We can express the optimization ofJ S(u, a) with respect tou explicitly
by

Sα(a+A∗(y −Aa)) = arg min
u∈ℓ2(I)

J S(u, a).

Proof. By developing the norm squares in (3.115) it is a straightforward computation
to show

J S(u, a) = ‖u− (a+A∗(y −Aa))‖2
ℓ2(I) + 2‖u‖1,α + Φ(a,A, y),

whereΦ(a,A, y) is a function which does not depend onu. The statement follows
now from an application of Lemma 3.1 and by the observation that the addition of
constants to a functional does not modify its minimizer.

3.1.2 The Algorithm and Preliminary Convergence Properties

By Lemma 3.2 we achieve

Algorithm 4. We initialize by taking anyu(0) ∈ ℓ2(I). We iterate

u(n+1) = Sα

[
u(n) +A∗y −A∗Au(n)

]

= arg min
u∈ℓ2(I)

J S(u, u(n)).
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Lemma 3.3 The sequenceJ (u(n)) is nondecreasing. Moreover(u(n))n is bounded
in ℓ2(I) and

lim
n→∞

‖u(n+1) − u(n)‖2
ℓ2(I) = 0. (3.119)

Proof. Let us consider the estimates

J (u(n)) = J S(u(n), u(n))

≥ J S(u(n+1), u(n))

≥ J S(u(n+1), u(n+1)) = J (u(n+1)),

Hence, the sequenceJ (u(n)) is nondecreasing, and

J (u(0)) ≥ J (u(n)) ≥ 2ᾱ‖u(n)‖ℓ1(I) ≥ 2ᾱ‖u(n)‖ℓ2(I).

Therefore,(u(n))n is bounded inℓ2(I). By (3.192), we have

J (u(n)) − J (u(n)) ≥ C‖u(n) − u(n+1)‖2
ℓ2(I).

SinceJ (u(n)) ≥ 0 is a decreasing sequence and is bounded below, it also converges,
and

lim
n→∞

‖u(n+1) − u(n)‖2
ℓ2(I) = 0.

This lemma already gives strong hints that the algorithm converges. In particular,
two successive iterations become closer and closer (3.119), and by the uniform bound-
edness of(u(n))n, we know already that there are weakly converging subsequences.
However, in order to conclude the convergence of the full sequence to a minimizer of
J we need more technical work.

3.1.3 Weak Convergence of the Algorithm

As as simple exercise we state the following

Lemma 3.4 The operatorSα is nonexpansive, i.e.,

‖Sα(u) − Sα(a)‖ℓ2(I) ≤ ‖u− a‖ℓ2(I), (3.120)

for all u, a ∈ ℓ2(I).

Proof. Sketch: reason again componentwise and distinguish cases whetheruλ and/or
aλ are smaller or larger than the threshold±αλ.

Moreover, we can characterize minimizers ofJ in the following way.
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Proposition 3.5 Define

Γ(u) = Sα [u+A∗y −A∗Au] .

Then the set of minimizers ofJ coincides with the setFix(Γ) of fixed points ofΓ. In
particular, sinceJ is a coercive functional, it has minimizers, and thereforeΓ has
fixed points.

Proof. Assume thatu is the minimizer ofJ S(·, a). Let us now observe, first of all,
that

J S(u+ h, a) = J S(u, a) + 2〈h, u − a−A∗(y −Aa)〉
+

∑

λ∈I
2αλ(|uλ + hλ| − |uλ|) + ‖h‖2

ℓ2(I).

We define nowI0 = {uλ = 0} andI1 = I \ I0. Since, by Lemma 3.2 we have
u = Sα(a+A∗(y −Aa)), and substituting it foru, we then have

J S(u+ h, a) − J S(u, a) = ‖h‖2
ℓ2(I) +

∑

λ∈I0

[2αλ|hλ| − 2hλ(aλ −A∗(y −Aaλ)]

+
∑

λ∈I1

[2αλ|uλ + hλ| − 2αλ|uλ| + hλ(−2αλ sgn(uλ))] .

If λ ∈ I0 then|aλ−A∗(y−Aaλ)| ≤ αλ, so that 2αλ|hλ|−2hλ(aλ−A∗(y−Aaλ) ≥ 0.
If λ ∈ I1, we distinguish two cases: ifuλ > 0, then

2αλ|uλ + hλ| − 2αλ|uλ| + hλ(−2αλ sgn(uλ)) = 2αλ[|uλ + hλ| − (uλ + hλ)] ≥ 0.

If uλ < 0, then

2αλ|uλ + hλ| − 2αλ|uλ| + hλ(−2αλ sgn(uλ)) = 2αλ[|uλ + hλ| + (uλ + hλ)] ≥ 0.

It follows
J S(u+ h, a) − J S(u, a) ≥ ‖h‖2

ℓ2(I). (3.121)

Let us assume now that
u = Sα [u+A∗y −A∗Au] .

Thenu is the minimizer ofJ S(·, u), and therefore

J S(u+ h, u) ≥ J S(u, u) + ‖h‖2
ℓ2(I).

Observing now thatJ (u) = JS(u, u) and thatJ S(u+h, u) = J (u+h)+‖h‖2
ℓ2(I)−

‖Ah‖2
Y , we conclude thatJ (u + h) ≥ J (u) + ‖Ah‖2

Y for every f . Henceu is
a minimizer ofJ . Vice versa, ifu is a minimizer ofJ , then it is a minimizer of
J S(·, u), and hence a fixed point ofΓ.
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We need now to recall an important and well-known result related to iterations of
nonexpansive maps [61]. We report it without proof; a simplified version of it can be
also found in the Appendix B of [28].

Theorem 3.6 (Opial’s Theorem) Let the mappingΓ from ℓ2(I) to itself satisfy the
following conditions:

(i) Γ is nonexpansive, i.e.,‖Γ(u) − Γ(a)‖ℓ2(I) ≤ ‖u− a‖ℓ2(I), for all u, a ∈ ℓ2(I);

(ii) Γ is asymptotically regular, i.e.,‖Γn+1(u) − Γn(u)‖ℓ2(I) → 0 for n→ ∞;

(iii) the setFix(Γ) of its fixed points is not empty.

Then, for allu, the sequence(Γn(u))n converges weakly to a fixed point inFix(Γ).

Eventually we have the weak convergence of the algorithm.

Theorem 3.7 For any initial choiceu(0) ∈ ℓ2(I), Algorithm 4 produces a sequence
(u(n))n which converges weakly to a minimizer ofJ .

Proof. It is sufficient to observe that, due to our previous results,Lemma 3.4, Lemma
3.3, and Proposition 3.5, and the assumption‖A‖ < 1, the mapΓ(u) = Sα [u+A∗y −A∗Au]
fulfills the requirements of Opial’s Theorem.

3.1.4 Strong Convergence of the Algorithm

In this section we shall prove the convergence of the successive iteratesu(n) not only in
the weak topology, but also in norm. Let us start by introducing some useful notations:

u∗ = w − lim
n
u(n), ξ(n) = u(n) − u∗, h = u∗ +A∗(y −Au∗).

We split again the proof into several intermediate lemmas.

Lemma 3.8 We have
‖Aξ(n)‖2

Y → 0,

for n→ ∞.

Proof. Since

ξ(n+1) − ξ(n) = Sα(h+ (I −A∗A)ξ(n)) − Sα(h) − ξ(n),

and‖ξ(n+1) − ξ(n)‖ℓ2(I) = ‖u(n+1) − u(n)‖ℓ2(I) → 0 for n→ ∞, we have

‖Sα(h+ (I −A∗A)ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I) → 0, (3.122)

for n→ ∞, and hence, also

max(0, ‖ξn‖ℓ2(I) − ‖Sα(h+ (I −A∗A)ξ(n)) − Sα(h)‖ℓ2(I)) → 0, (3.123)
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for n→ ∞. SinceSα is nonexpansive we have

‖Sα(h+ (I −A∗A)ξ(n)) − Sα(h)‖ℓ2(I) ≤ ‖(I −A∗A)ξ(n)‖ℓ2(I) ≤ ‖ξ(n))‖ℓ2(I);

therefore the “max” in (3.123) can be dropped, and it follows that

‖ξn‖ℓ2(I) − ‖(I −A∗A)ξ(n)‖ℓ2(I) → 0, (3.124)

for n→ ∞. Because

‖ξn‖ℓ2(I) + ‖(I −A∗A)ξ(n)‖ℓ2(I) ≤ 2‖ξn‖ℓ2(I) = 2‖u(n) − u∗‖ℓ2(I) ≤ C,

(Remind thatu(n) is uniformly bounded by Lemma 3.3.), we obtain

‖ξn‖2
ℓ2(I) − ‖(I −A∗A)ξ(n)‖2

ℓ2(I) → 0,

for n→ ∞ by (3.124). The inequality

‖ξn‖2
ℓ2(I) − ‖(I −A∗A)ξ(n)‖2

ℓ2(I) = 2‖Aξ(n)‖2
Y − ‖A∗Aξ(n)‖2

ℓ2(I) ≥ ‖Aξ(n)‖2
Y ,

then implies the statement.

The previous lemma allows us to derive the following fundamental property.

Lemma 3.9 For h given as above,‖Sα(h + ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I) → 0, for
n→ ∞.

Proof. We have

‖Sα(h+ ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I)

≤ ‖Sα(h+ (I −A∗A)ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I)

+ ‖Sα(h+ ξ(n)) − Sα(h+ (I −A∗A)ξ(n)‖ℓ2(I)

≤ ‖Sα(h+ (I −A∗A)ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I) + ‖A∗Aξ(n)‖ℓ2(I).

Both terms tend to 0, the first because of (3.122) and the second because of Lemma
3.8.

Lemma 3.10 If for somea ∈ ℓ2(I) and some sequence(vn)n, w − limn v
n = 0, and

limn ‖Sα(a+ v(n)) − Sα(a) − v(n)‖ℓ2(I) = 0, then‖vn‖ℓ2(I) → 0, for n→ ∞.

Proof. Let us define a finite setI0 ⊂ I such that
∑

λ∈I\I0
|aλ|2 ≤

(
ᾱ
4

)2
, where

ᾱ = infλ αλ. Because this is a finite set
∑

λ∈I0
|vn

λ |2 → 0 for n → ∞, and hence
we can concentrate on

∑
λ∈I\I0

|vn
λ |2 only. For eachn, we splitI1 = I \ I0 into two

subsets:I1,n = {λ ∈ I1 : ||vn
λ + aλ| < αλ} andĨ1,n = I1 \ I1,n. If λ ∈ I1,n then
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Sαλ
(aλ + v

(n)
λ ) = Sαλ

(aλ) = 0 (since|aλ| ≤ ᾱ
4 ≤ αλ), so that|Sαλ

(aλ + vn
λ) −

Sαλ
(aλ) − vn

λ | = |vn
λ |. It follows

∑

λ∈I1,n

|vn
λ |2 ≤

∑

λ∈I
|Sαλ

(aλ + vn
λ) − Sαλ

(aλ) − vn
λ |2 → 0,

for n → ∞. It remains to prove that
∑

λ∈Ĩ1,n
|vn

λ |2 → 0 asn → ∞. If λ ∈ I1 and

|aλ + vn
λ | ≥ αλ, then|vn

λ | ≥ |aλ + vn
λ | − |aλ| ≥ αλ − ᾱ

4 >
ᾱ
4 ≥ |aλ|, so thataλ + vn

λ

andvn
λ have the same sign. In particular,αλ − ᾱ

4 > |aλ| impliesαλ − |aλ| ≥ ᾱ
4 . It

follows that

|vn
λ − Sαλ

(aλ + vn
λ) + Sαλ

(aλ)| = |vn
λ − Sαλ

(aλ + vn
λ)|

= |vn
λ − (aλ + vn

λ) + αλ sgn(vn
λ)|

≥ αλ − |aλ| ≥
ᾱ

4
.

This implies that

∑

λ∈Ĩ1,n

|Sαλ
(aλ + vn

λ) − Sαλ
(aλ) − vn

λ |2 ≥
( ᾱ

4

)2
|Ĩ1,n|.

But,
∑

λ∈Ĩ1,n
|Sαλ

(aλ + vn
λ)−Sαλ

(aλ)− vn
λ |2 ≥

(
ᾱ
4

)2 → 0 for n→ ∞ and therefore

Ĩ1,n must be empty forn large enough.

The combination of Lemma 3.8 and Lemma 3.9, together with theweak convergence
Theorem 3.7 allows us to have norm convergence.

Theorem 3.11 For any initial choiceu(0) ∈ ℓ2(I), Algorithm 4 produces a sequence
(u(n))n which converges strongly to a minimizeru∗ of J .

3.2 Principles of Acceleration

Recently, also the qualitative convergence properties of iterative soft-thresholding have
been investigated. Note first that the aforementioned condition or ‖A‖ < 1 (or even
‖A‖ <

√
2) does not guarantee contractivity of the iteration operator I − A∗A, since

A∗A may not be boundedly invertible. The insertion ofSα does not improve the
situation sinceSα is nonexpansive, but also noncontractive. Hence, for any minimizer
u∗ (which is also a fixed point of (3.112)), the estimate

‖u∗ − u(n+1)‖ℓ2(I) ≤
∥∥(I −A∗A)(u∗ − u(n))

∥∥
ℓ2(I)

≤ ‖I −A∗A‖‖u∗ − u(n)‖ℓ2(I)

(3.125)
does not give rise to a linear error reduction. However, under additional assumptions
on the operatorA or on minimizersu∗, linear convergence of (3.112) can be easily
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ensured. In particular, ifA fulfills the so-calledfinite basis injectivity(FBI) condition
(see [10] where this terminology is introduced), i.e., for any finite setΛ ⊂ I, the
restrictionAΛ is injective,then (3.112) converges linearly to a minimizer u∗ of J . The
following simple argument shows indeed that the FBI condition implies linear error
reduction as soon as‖A‖ < 1. In that case, we have strong convergence (Theorem
3.11) of theu(n) to a finitely supported limit sequenceu∗. We can therefore find a
finite index setΛ ⊂ I such that all iteratesu(n) andu∗ are supported inΛ. By the
FBI condition,AΛ is injective and henceA∗A|Λ×Λ is boundedly invertible, so that
I −A∗

ΛAΛ is a contraction onℓ2(Λ). Using

u
(n+1)
Λ = Sα

(
u

(n)
Λ +A∗

Λ(v −AΛu
(n)
Λ )
)

and an analogous argument as in (3.125), it follows that‖u∗ − u(n+1)‖ℓ2(I) ≤ γ‖u∗ −
u(n)‖ℓ2(I), whereγ = max{|1 − ‖(A∗A|Λ×Λ)−1‖−1|, |‖A∗A|Λ×Λ‖ − 1|} ∈ (0,1).
Typical examples whereA = K◦F fulfills the FBI condition arise whenK is injective
andΨ is either a Riesz basis forX or a so-called FBI frame, i.e., each finite subsystem
of Ψ is linearly independent. However, depending onΛ, the matrixA∗A|Λ×Λ can be
arbitrarily badly conditioned, resulting in a constant error reductionγ, arbitrarily close
to 1.

However, it is possible to show that for several FBI operators K and for certain
choices ofΨ, the matrixA∗A can be preconditioned by a matrixD−1/2, resulting in the
matrixD−1/2A∗AD−1/2, in such a way that any restriction(D−1/2A∗AD−1/2)Λ×Λ

turns out to be well-conditioned as soon asΛ ⊂ I is a small set, but independently of
its “location” within I. Let us remark that, in particular, we do not claim to be able
to have full well-conditioned matrices (as it happens in well-posed problems [23, 24]
by simple diagonal preconditioning), but that only small arbitrary finite dimensional
submatrices are indeed well-conditioned. Let us say that one can promote a “local”
well-conditioning of the matrices.

Typically one considers injective (non local) compact operatorsK with Schwartz
kernel having certain polynomial decay properties of the derivatives, i.e.,

Ku(x) =

∫

Ω
Φ(x, ξ)u(ξ)dξ, x ∈ Ω̃,

for Ω̃,Ω ⊂ R
d, u ∈ X := Ht(Ω), and

|∂α
x ∂

β
ξ Φ(x, ξ)| ≤ cα,β|x− ξ|−(d+2t+|α|+|β|), t ∈ R, and multi-indexesα, β ∈ N

d.

Moreover, for the proper choice of the discrete matrixA∗A := F ∗K∗KF , one uses
multiscale basesΨ, such as wavelets, which do make a good job in this situation.We
refer the reader to [22] for more details.
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‖Kx − y‖2

‖x‖1

‖Kx − y‖2

‖x‖1

(a) (b)

Figure 3.1 The path, in the‖x‖1 vs. ‖Kx − y‖2 plane, followed by the iteratesu(n)

of three different iterative algorithms. The operatorK and the datay are taken from a
seismic tomography problem [53]. The boxes (in both (a) and (b)) correspond to the
thresholded Landweber algorithm. In this example, iterative thresholded Landweber
(3.112) first overshoots theℓ1 norm of the limit (represented by the fat dot), and then
requires a large number of iterations to reduce‖u(n)‖1 again (500 are shown in this fig-
ure). In (a) the crosses correspond to the path followed by the iterates of the projected
Landweber iteration (which is given as in (3.126) forβ(n) = 1); in (b) the triangles
correspond to the projected steepest descent iteration (3.126); in both cases, only 15
iterates are shown. The discrepancy decreases more quicklyfor projected steepest de-
scent than for the projected Landweber algorithm. The solidline corresponds to the
limit trade-off curve, generated byu∗(ᾱ) for decreasing values of̄α > 0. The vertical
axes uses a logarithmic scale for clarity.
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3.2.1 From the Projected Gradient Method to the Iterative Soft-Thresholding
with Decreasing Thresholding Parameter

With such a “local” well-conditioning, it should also be clear that iterating on small
setsΛ will also improve the convergence rate. Unfortunately, theiterative soft-thresholding
does not act initially on small sets (see also Figure 3.4 and Figure 3.5), but it rather
starts iterating on relatively large sets, slowly shrinking to the size of the support of
the limit u∗.

Let us take a closer look at the characteristic dynamics of Algorithm 4 in Figure
3.1. Let us assume for simplicity here thatαλ = ᾱ > 0 for all λ ∈ I. As this plot of
the discrepancyD(u(n)) = ‖Ku(n) − y‖2

Y = ‖Au(n) − y‖2
Y versus‖u(n)‖1 shows,

the algorithm converges initially relatively fast, then itovershoots the value‖u∗‖1 and
it takes very long to re-correct back. In other words, starting from u(0) = 0, the
algorithm generates a path{u(n); n ∈ N} that is initially fully contained in theℓ1-ball
BR := Bℓ1(I)(R) := {u ∈ ℓ2(Λ); ‖u‖1 ≤ R}, with R := ‖u∗‖1. Then it gets out of
the ball to slowly inch back to it in the limit.

The way to avoid this long “external” detour was proposed in [29] by forcing the
successive iterates to remain within the ballBR. One method to achieve this is to
substitute for the thresholding operations the projectionPBR

, where, for any closed
convex setC, and anyu, we definePC(u) to be the unique point inC for which the
ℓ2−distance tou is minimal. With a slight abuse of notation, we shall denotePBR

by
PR; this will not cause confusion, because it will be clear fromthe context whether the
subscript ofP is a set or a positive number.

Furthermore, modifying the iterations by introducing an adaptive “descent parame-
ter” β(n) > 0 in each iteration, definingu(n+1) by

u(n+1) = PR

[
u(n) + β(n)A∗(y −Au(n))

]
, (3.126)

does lead, in numerical simulations, to much faster convergence. The typical dynam-
ics of this modified algorithm are illustrated in Figure 3.1(b), which clearly shows the
larger steps and faster convergence (when compared with theprojected Landweber
iteration in Fig. 3.1(a) which is forβ(n) = 1). We shall refer to this modified algo-
rithm as theprojected gradient iterationor theprojected steepest descent(PSD). The
motivation of the faster convergence behavior is the fact that we never leave the target
ℓ1-ball, and we tend not to iterate on large index sets. On the basis of this intuition we
find even more promising results for an ‘interior’ algorithmin which we still project
on ℓ1-balls, but now with a slowly increasing radius, i.e.

u(n+1) = PR(n)

(
u(n) + β(n)A∗(y −Au(n))

)
and R(n+1) = (n+ 1)R/N

(3.127)
whereN is the prescribed maximum number of iterations (the origin is chosen as
the starting point of this iteration). The better performance of this algorithm can be
explained by the fact that the projectionPR(u) onto anℓ1-ball of radiusR do coincide
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10 20

‖Kx − y‖2

‖x‖1

Figure 3.2Trade-off curve and its approximation with algorithm (3.127) in 200 steps.

with a thresholdingPR(u) = Sα(u;R)(u) for a suitable thresholding parameterα =
α(u;R) depending onu andR, which is larger for smallerR.

Lemma 3.12 For any fixeda ∈ ℓ2(I) and forτ > 0, ‖Sτ (a)‖1 is a piecewise linear,
continuous, decreasing function ofτ ; moreover, ifa ∈ ℓ1(Λ) then‖S0(a)‖ℓ1(I) =
‖a‖ℓ1(I) and‖Sτ (a)‖ℓ1(I) = 0 for τ ≥ maxλ |aλ|.

Proof. ‖Sτ (a)‖ℓ1(I) =
∑

λ |Sτ (aλ)| =
∑

λ Sτ (|aλ|) =
∑

|aλ|>τ (|aλ| − τ); the sum
in the right hand side is finite forτ > 0.

A schematic illustration is given in Figure 3.3.

Lemma 3.13 If ‖a‖ℓ1(I) > R, then theℓ2(I) projection ofa on theℓ1-ball with radius
R is given byPR(a) = Sµ(a) whereµ (depending ona andR) is chosen such that
‖Sµ(a)‖ℓ1(I) = R. If ‖a‖ℓ1(I) ≤ R thenPR(a) = S0(a) = a.

Proof. Suppose‖a‖ℓ1(I) > R. Because, by Lemma 3.12,‖Sµ(a)‖ℓ1(I) is continu-
ous inµ and‖Sµ(a)‖ℓ1(I) = 0 for sufficiently largeµ, we can chooseµ such that
‖Sµ(a)‖ℓ1(I) = R. (See Figure 3.3.) On the other hand,u∗ = Sµ(a) is the unique
minimizer of‖u− a‖2

ℓ2(I) + 2µ‖u‖ℓ1(I) (see Lemma 3.1), i.e.,

‖u∗ − a‖2
ℓ2(I) + 2µ‖u∗‖ℓ1(I) < ‖u− a‖2

ℓ2(I) + 2µ‖u‖ℓ1(I)

for all u 6= i∗. Since‖u∗‖ℓ1(I) = R, it follows that

∀u ∈ BR, u 6= u∗ : ‖u∗ − a‖2 < ‖u− a‖2

Henceu∗ is closer toa than any otheru inBR. In other words,PR(a) = u∗ = Sµ(a).
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τ

‖Sτ (a)‖1

‖a‖1

τ

R

maxi |ai |

Figure 3.3 For a given vectora ∈ ℓ2, ‖Sτ (a)‖1 is a piecewise linear continuous and
decreasing function ofτ (strictly decreasing forτ < maxi |ai|) . The knots are located
at {|ai|, i : 1 . . . m} and 0. Findingτ such that‖Sτ (a)‖ℓ1(I) = R ultimately comes
down to a linear interpolation. The figure is made for the finite dimensional case.

This in particular implies that the algorithm (3.127) iterates initially on very small
sets which inflate by growing during the process and approachthe size of the support of
the target minimizeru∗. Unlike the thresholded Landweber iteration and the projected
steepest descent [28, 29], unfortunately there is no proof yet of convergence of this
‘interior’ algorithm, being a very interesting open problem.

However, we can provide an algorithm which mimics the behavior of (3.127), i.e., it
starts with large thresholding parametersα(n) and geometrically reduces them during
the iterations to a target limitα > 0, for which the convergence is guaranteed:

u(n+1) = Sα(n)

[
u(n) +A∗y −A∗Au(n)

]
. (3.128)

For matricesA for which the restrictionsA∗A|Λ×Λ are uniformly well-conditioned
with respect toΛ of small size, our analysis provides also a prescribed linear rate of
convergence of the iteration (3.128).

3.2.2 Sample of Analysis of Acceleration Methods

Technical lemmas

We are particularly interested in computing approximations with the smallest possi-
ble number of nonzero entries. As a benchmark, we recall thatthe most economical
approximations of a given vectorv ∈ ℓ2(I) are provided again by thebestk-term
approximationsv[k], defined by discarding inv all but thek ∈ N0 largest coefficients
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in absolute value. The error of bestN -term approximation is defined as

σk(v)ℓ2 := ‖v − v[k]‖ℓ2(I). (3.129)

The subspace of allℓ2 vectors with bestk-term approximation rates > 0, i.e.,
σk(v)ℓ2 . k−s for some decay rates > 0, is commonly referred to as theweakℓτ
spaceℓwτ (I), for τ = (s+ 1

2)−1, which, endowed with

|v|ℓw
τ (I) := sup

k∈N0

(k + 1)sσk(v)ℓ2, (3.130)

becomes the quasi-Banach space(ℓwτ (I), | · |ℓw
τ (I)). Moreover, for any 0< ǫ ≤ 2− τ ,

we have the continuous embeddingℓτ (I) →֒ ℓwτ (I) →֒ ℓτ+ǫ(I), justifying whyℓwτ (I)
is called weakℓτ (I).

When it comes to the concrete computations of good approximations with a small
number of active coefficients, one frequently utilizes certain thresholding procedures.
Here small entries of a given vector are simply discarded, whereas the large entries
may be slightly modified. In this paper, we shall make use ofsoft-thresholdingthat we
already introduced in (3.113). It is well-known, see [28], thatSα is non-expansive for
anyα ∈ R

I
+,

‖Sα(v) − Sα(w)‖ℓ2(I) ≤ ‖v − w‖ℓ2(I), for all v,w ∈ ℓ2(I). (3.131)

Moreover, for any fixedx ∈ R, the mappingτ 7→ Sτ (x) is Lipschitz continuous with

|Sτ (x) − Sτ ′(x)| ≤ |τ − τ ′|, for all τ, τ ′ ≥ 0. (3.132)

We readily infer the following technical estimate.

Lemma 3.14 Assumev ∈ ℓ2(I), α, β ∈ R
I
+ such thatᾱ = infλ αλ = infλ βλ = β̄ >

0, and defineΛᾱ(v) :=
{
λ ∈ I : |vλ| > ᾱ

}
. Then

‖Sα(v) − Sβ(v)‖ℓ2(I) ≤
(
#Λᾱ(v)

)1/2
max

λ∈Λᾱ(v)
|αλ − βλ|. (3.133)

Proof. By (3.132) we have the estimate

‖Sα(v) − Sβ(v)‖ℓ2(I) =

(
∑

λ∈I
|Sαλ

(vλ) − Sβλ
(vλ)|2

)1/2

=




∑

λ∈{µ∈I:|vµ|>min{αµ,βµ}}
|Sαλ

(vλ) − Sβλ
(vλ)|2




1/2

=




∑

λ∈Λᾱ(v)

|Sαλ
(vλ) − Sβλ

(vλ)|2



1/2

≤
(
#Λᾱ(v)

)1/2
max

λ∈Λᾱ(v)
|αλ − βλ|
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Let v ∈ ℓwτ (I), it is well-known [31,§7]

#Λᾱ(v) ≤ C|v|τℓw
τ (I)ᾱ

−τ , (3.134)

and, forαλ = ᾱ for all λ ∈ I, we have

‖v − Sα(v)‖ℓ2(I) ≤ C|v|τ/2
ℓw
τ (I)ᾱ

1−τ/2, (3.135)

where the constants are given byC = C(τ) > 0. Letv ∈ ℓ0(I) := ∩τ>0ℓ
w
τ (I), and

|v|ℓ0 := # supp(v) <∞. Then we have the straightforward estimate

#Λᾱ(v) ≤ |v|ℓ0 (3.136)

and, forαλ = ᾱ for all λ ∈ I, we have

‖v − Sα(v)‖ℓ2(I) ≤ |v|1/2
ℓ0
ᾱ, (3.137)

which is easily shown by a direct computation. In the sequel,we shall also use the
following support size estimate.

Lemma 3.15 Let v ∈ ℓwτ (I) andw ∈ ℓ2(I) with ‖v − w‖ℓ2(I) ≤ ǫ. Assumeα =

(αλ)λ∈I ∈ R
I
+ and infλ αλ = ᾱ > 0. Then it holds

# suppSα(w) ≤ #Λᾱ(w) ≤ 4ǫ2

ᾱ2 + 4C|v|τℓw
τ (I)ᾱ

−τ , (3.138)

whereC = C(τ) > 0. In particular if v ∈ ℓ0(I) then the estimate is refined

# suppSα(w) ≤ #Λᾱ(w) ≤ 4ǫ2

ᾱ2 + |v|ℓ0(I). (3.139)

Proof. We consider two setsI1 = {λ ∈ I : |wλ| ≥ ᾱ, and|vλ| > ᾱ/2}, and
I2 = {λ ∈ I : |wλ| ≥ ᾱ, and|vλ| ≤ ᾱ/2}. Then from (3.134)

#I1 ≤ #{λ ∈ I : |vλ| > ᾱ/2} ≤ 2τC|v|τℓw
τ (I)ᾱ

−τ ≤ 4C|v|τℓw
τ (I)ᾱ

−τ ,

and

(ᾱ/2)2(#I2) ≤
∑

λ∈I2

|vλ − wλ|2 ≤ ε2.

These estimates imply (3.138), and similarly one gets (3.139).
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Decreasing iterative soft-thresholding

For threshold parametersα,α(n) ∈ R
I
+, whereα(n) ≥ α, i.e.,α(n)

λ ≥ αλ for all λ ∈ Λ,
andᾱ = infλ∈I αλ > 0, we consider the iteration

Algorithm 5.

u(0) = 0, u(n+1) = Sα(n)

(
u(n) +A∗(y −Au(n))

)
, n = 0,1, . . . (3.140)

which we call thedecreasing iterative soft-thresholding algorithm(D-ISTA).

Theorem 3.16 Let ‖A‖ <
√

2 and letū := (I − A∗A)u∗ + A∗y ∈ ℓwτ (I) for some

0 < τ < 2. Moreover, letL = L(α) :=
4‖u∗‖2

ℓ2(I)

ᾱ2 + 4C‖ū‖τ
ℓw
τ (I)ᾱ

−τ , and as-
sume that forS∗ := suppu∗ and all finite subsetsΛ ⊂ I with at most#Λ ≤ 2L
elements, the operator(I − A∗A)|(S∗∪Λ)×(S∗∪Λ) is contractive onℓ2(S

∗ ∪ Λ), i.e.,
‖(I −A∗A)|S∗∪Λ×S∗∪Λw‖ℓ2(S∗∪Λ) ≤ γ0‖w‖ℓ2(S∗∪Λ), for all w ∈ ℓ2(S

∗ ∪ Λ), or

‖(I −A∗A)|S∗∪Λ×S∗∪Λ‖ ≤ γ0, (3.141)

where0 < γ0 < 1. Then, for anyγ0 < γ < 1, the iteratesu(n) from (3.140)fulfill
# suppu(n) ≤ L and they converge tou∗ at a linear rate

‖u∗ − u(n)‖ℓ2(I) ≤ γn‖u∗‖ℓ2(I) =: ǫn (3.142)

whenever theα(n) are chosen according to

αλ ≤ α
(n)
λ ≤ αλ + (γ − γ0)L

−1/2ǫn, for all λ ∈ Λ. (3.143)

Proof. We develop the proof by induction. For the initial iterate, we haveu(0) =
0, so that# suppu(0) ≤ L and (3.142) is trivially true. Assume as an induction
hypothesis thatS(n) := supp(u(n)) is such that#S(n) ≤ L, and‖u∗ − u(n)‖ℓ2(I) ≤
ǫn. Abbreviatingw(n) := u(n) + A∗(y − Au(n)), by ‖A∗A‖ ≤ 2 and the induction
hypothesis, it follows that

‖ū− w(n)‖ℓ2(I) =
∥∥(I −A∗A)(u∗ − u(n))

∥∥
ℓ2(I)

≤ ‖u∗ − u(n)‖ℓ2(I) ≤ ǫn. (3.144)

Hence, using (3.138), we obtain the estimate

#S(n+1) = # suppSα(n)(w(n)) ≤ Λᾱ(w(n)) ≤ 4ǫ2n
ᾱ2 +4C|ū|τℓw

τ (I)ᾱ
−τ ≤ L. (3.145)
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Since also#S(n) ≤ L by induction hypothesis, the setΛ(n) := S(n) ∪ S(n+1) has
at most 2L elements, so that, by assumption,(I −A∗A)|S∪Λ(n)×S∪Λ(n) is contractive
with contraction constantγ0. Using the identities

u∗
S∪Λ(n) = Sα(ūS∪Λ(n))

= Sα(u∗
S∪Λ(n) +A∗

S∪Λ(n)(y −AS∪Λ(n)u∗S∪Λ(n))),

and

u
(n+1)
S∪Λ(n) = Sα(n)(w

(n)

S∪Λ(n))

= Sα(n)(u
(n)

S∪Λ(n) +A∗
S∪Λ(n)(y −AS∪Λ(n)u

(n)

S∪Λ(n))),

it follows from (3.131), (3.133), (3.125), andα(n) ≥ α that

‖u∗ − u(n+1)‖ℓ2(I)

= ‖(u∗ − u(n+1))S∪Λ(n)‖ℓ2(S∪Λ(n))

=
∥∥Sα(ūS∪Λ(n)) − Sα(n)(w

(n)

S∪Λ(n))
∥∥

ℓ2(S∪Λ(n))

≤
∥∥Sα(ūS∪Λ(n)) − Sα(w

(n)

S∪Λ(n))
∥∥

ℓ2(S∪Λ(n))
+
∥∥Sα(w

(n)

S∪Λ(n)) − Sα(n)(w
(n)

S∪Λ(n))
∥∥

ℓ2(S∪Λ(n))

≤
∥∥(I −A∗A|S∪Λ(n)×S∪Λ(n))(u∗ − u(n))S∪Λ(n)

∥∥
ℓ2(S∪Λ(n))

+
(
#Λᾱ(w(n))

)1/2(
max

λ∈Λᾱ(w(n))
|αλ − α

(n)
λ |
)

≤ γ0ǫn +
(
#Λᾱ(w(n))

)1/2(
max

λ∈Λᾱ(w(n))
|αλ − α

(n)
λ |
)
.

Using (3.145) we obtain‖u−u(n+1)‖ℓ2(I) ≤ γ0ǫn+
√
L
(

maxλ∈Λᾱ(w(n)) |α
(n)
λ −αλ|

)
,

and, since theα(n) are chosen according to (3.143), the claim follows.

Note that assumption (3.141) in finite dimension essentially coincides with the re-
quest that the matrixA satisfies the RIP (see Lemma 2.14). With these results at hand
and those related to RIP matrices in finite dimension, we are in the situation of estimat-
ing the relevant parameters in order to apply Theorem 3.16 when we are dealing with a
compressed sensing problem. We proceed to a numerical comparison of the algorithm
D-ISTA in (3.140) and the iterative soft-thresholding ISTA. In Figure 3.4 we show the
behavior of the algorithms in the computation of a sparse minimizeru∗ for A being a
500× 2500 matrix with i.i.d. Gaussian entries,α = 10−3, γ0 = 0.1 andγ = 0.95. In
Figure 3.5 we show the behavior of the algorithms in the same situation but for param-
etersα = 10−4, γ0 = 0.01 andγ = 0.998. In both the cases, related to small values
of α (we reiterate that a small range ofα is the most crucial situation for the efficiency
of iterative algorithms, see Section 3.2.2), ISTA tends to iterate initially on vectors
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with a large number of nonzero entries, while D-ISTA inflatesslowly the support size
of the iterations to eventually converge to the right support of u∗. The iteration on an
inflating support allows D-ISTA to take advantage of the local well-conditioning of the
matrixA from the very beginning of the iterations. This effect results in acontrolled
linear rate of convergence which is much steeper than the oneof ISTA. In particular in
Figure 3.5 after 1500 D-ISTA has correctly detected the support of the minimizeru∗

and reached already an accuracy of 10−0.5, whereas it is clear that the convergence of
ISTA is simply dramatically slow.

0 10 20 30 40 50 60 70 80 90 100
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Dynamics of the algorithms

||un||
1

lo
g 10

(|
| A

 u
n  −

y 
|| 22 )

 

 

0 500 1000 1500 2000 2500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Sparse minimizer u* and approximations due to the algorithms

 

 

0 200 400 600 800 1000 1200 1400 1600 1800
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
Error with respect to the minimizer of J

Number of iterations

lo
g 10

(|
|u

n  −
 u

* || 2)

 

 

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5
Dynamics of the support sizes of the approximations to u* due to the algorithms

Number of iterations

lo
g 10

(|
un | 0)

 

 

ISTA
D−ISTA

ISTA
D−ISTA

ISTA
D−ISTA

|u*|
0

ISTA
D−ISTA

u*

Figure 3.4 We show the behavior of the algorithms ISTA and D-ISTA in the compu-
tation of a sparse minimizeru∗ for A being a 500× 2500 matrix with i.i.d. Gaussian
entries,α = 10−3, γ0 = 0.1 andγ = 0.95. In the top left figure we presents the dy-
namics of the algorithms in the plane‖u‖ℓ1 − log(‖Au− y‖2

2). On the bottom left, we
show the absolute error to the precomputed minimizeru∗ with respect to the number
of iterations. On the bottom right we show how the size of the supports of the itera-
tions grow with the number of iterations. The figure on the topright shows the vector
u∗, and the approximations due to the algorithms. In this case both the algorithms
approximate with very high accuracy the minimizeru∗ after 1800 iterations.
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Figure 3.5 We show the behavior of the algorithms ISTA and D-ISTA in the compu-
tation of a sparse minimizeru∗ for A being a 500× 2500 matrix with i.i.d. Gaussian
entries,α = 10−4, γ0 = 0.01 andγ = 0.998. In the top left figure we presents the dy-
namics of the algorithms in the plane‖u‖ℓ1 − log(‖Au− y‖2

2). On the bottom left, we
show the absolute error to the precomputed minimizeru∗ with respect to the number of
iterations. On the bottom right we show how the size of the supports of the iterations
grow with the number of iterations. The figure on the top rightshows the vectoru∗,
and the approximations due to the algorithms. In this case D-ISTA detects the right
support ofu∗ after 1500 iterations, whereas ISTA keeps dramatically farbehind.

Related work

There exist by now several iterative methods that can be usedfor the minimization
problem (3.109) infinite dimensions. We shall account a few of the most recently
analyzed and discussed:

(a) theGPSR-algorithm(gradient projection for sparse reconstruction), anotheriter-
ative projection method, in the auxiliary variablesx, y ≥ 0 with u = x− y [39].

(b) theℓ1 − ℓs algorithm, an interior point method using preconditioned conjugate
gra- dient substeps (this method solves a linear system in each outer iteration
step) [51].

(c) FISTA (fast iterative soft-thresholding algorithm) is a variation of the iterative
soft-thresholding [5]. Define the operatorΓ(u) = Sα(u + A∗(y − Au)). The
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FISTA is defined as the iteration, starting foru(0) = 0,

u(n+1) = Γ

(
u(n) +

t(n) − 1

t(n+1)

(
u(n) − u(n−1)

))
,

wheret(n+1) =
1+
√

1+4(t(n))2

2 andt(0) = 1.

As is addressed in the recent paper [54] which accounts a verydetailed comparison
of these different algorithms, they do perform quite well when the regularization pa-
rameterα is sufficiently large, with a small advantage for GPSR. Whenα gets quite
small all the algorithms, except for FISTA, deteriorate significantly their performances.
Moreover, local conditioning properties of the linear operatorA seem particularly af-
fecting the performances of iterative algorithms.

While these methods are particularly suited for finite dimensional problems, it would
be interesting to produce an effective strategy, for any range of the parameterα, for
a large class of infinite dimensional problems. In the recentpaper [22] the following
ingredients are combined for this scope:

• multiscale preconditioningallows for a local well-conditioning of the matrix
A and therefore reproduces at infinite dimension the conditions of best perfor-
mances for iterative algorithms;

• adaptivity combined with adecreasing thresholding strategyallow for a con-
trolled inflation of the support size of the iterations, promoting the minimal com-
putational cost in terms of number of algebraic equations, as well as the exploita-
tion from the very beginning of the iteration of the local well-conditioning of the
matrixA.

In [66] the authors propose as well an adaptive method similar to [22] where, instead of
the soft-thresholding, acoarsening function, i.e., a compressed hard-thresholding pro-
cedure, is implemented. The emphasis in the latter contribution is on the regularization
properties of such an adaptive method which does not disposeof a reference energy
functional (3.107), and it will be the object of the lecturespresented by R. Ramlau, G.
Teschke, and M. Zhariy.

3.3 Domain Decomposition Methods forℓ1-Minimization

Besides the elegant mathematics needed for the convergenceproof, one of the ma-
jor features of Algorithm 4 is its simplicity, also in terms of implementation. Indeed
thresholding methods combined with wavelets have been often presented, e.g., in im-
age processing, as a possible good alternative to total variation minimization which
requires instead, as we already discussed in the previous sections, the solution of a
degenerate partial differential equation. As pointed out in the previous sections, in
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general iterative soft-thresholding can converge very slowly.

In particular, it is practically not possible to use such an algorithm when the di-
mension of the problem is really large, unless we provide allthe modifications we
accounted above. And still for certain very large scale problems, this might not be
enough. For that we need to consider further dimensionalityreduction techniques. In
this section we introduce a sequential domain decomposition method for the linear
inverse problem with sparsity constraints modelled by (3.109). The goal is to join
the simplicity of Algorithm 4 with a dimension reduction technique provided by a de-
composition which will improve the convergence and the complexity of the algorithm
without increasing the sophistication of the algorithm.

For simplicity, we start by decomposing the “domain” of the sequencesI into two
disjoint setsI1,I2 so thatI = I1∪I2. The extension to decompositions into multiple
subsetsI = I1 ∪ · · · ∪ IN follows from an analysis similar to the basic caseN = 2
Associated to a decompositionC = {I1,I2} we define theextension operatorsEi :
ℓ2(Ii) → ℓ2(I), (Eiv)λ = vλ, if λ ∈ Ii, (Eiv)λ = 0, otherwise,i = 1,2. The adjoint
operator, which we call therestriction operator, is denoted byRi := E∗

i . With these
operators we may define the functionalJ (u1, u2), J : ℓ2(I1)× ℓ2(I2) → R, given by

J (u1, u2) := J (E1u1 + E2u2).

For the sequenceui we use the notationuλ,i in order to denote its components. We

want to formulate and to analyze the following algorithm: Pick an initialE1u
(0)
1 +

E2u
(0)
2 := u(0) ∈ ℓ1(I), for exampleu(0) = 0, and iterate





u
(n+1)
1 = arg minv1∈ℓ2(I1) J (v1, u

(n)
2 )

u
(n+1)
2 = arg minv2∈ℓ2(I2) J (u

(n+1)
1 , v2)

u(n+1) := E1u
(n+1)
1 + E2u

(n+1)
2 .

(3.146)

Let us observe that‖E1u1 + E2u2‖ℓ1(I) := ‖u1‖ℓ1(I1) + ‖u2‖ℓ1(I2), hence

arg min
v1∈ℓ2(I1)

J (v1, u
(n)
2 ) = arg min

v1∈ℓ2(I1)
‖(g −AE2u

(n)
2 ) −AE1v1‖2

Y + τ‖v1‖1.

A similar formulation holds forarg minv2∈ℓ2(I2) J (u
(n+1)
1 , v2). This means that the

solution of the local problems onIi is of the samekind as the original problem
arg minu∈ℓ2(I) J (u), but the dimension for each has been reduced. Unfortunately

the functionalsJ (u, u
(n)
2 ) andJ (u

(n+1)
1 , v) do not need to have a unique minimizer.

Therefore the formulation as in (3.162) is not in principle well defined. In the follow-
ing we will consider a particular choice of the minimizers and in particular we will
implement Algorithm 4 in order to solve each local problem. This choice leads to the
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following algorithm.

Algorithm 6. Pick an initialE1u
(0)
1 + E2u

(0)
2 := u(0) ∈ ℓ1(I), for example

u(0) = 0, and iterate









u
(n+1,0)
1 = u

(n,L)
1

u
(n+1,ℓ+1)
1 = Sα

(
u

(n+1,ℓ)
1 +R1A

∗((y −AE2u
(n,M)
2 ) −AE1u

(n+1,ℓ)
1 )

)

ℓ = 0, . . . , L− 1



u
(n+1,0)
2 = u

(n,M)
2

u
(n+1,ℓ+1)
2 = Sα

(
u

(n+1,ℓ)
2 +R2A

∗((y −AE1u
(n+1,L)
1 ) −AE2u

(n+1,ℓ)
2 )

)

ℓ = 0, . . . ,M − 1

u(n+1) := E1u
(n+1,L)
1 + E2u

(n+1,M)
2 .

(3.147)

Of course, forL = M = ∞ the previous algorithm realizes a particular instance of
(3.162). However, in practice we will never execute an infinite number of inner iter-
ations and therefore it is important to analyze the convergence of the algorithm when
L,M ∈ N are finite.

At this point the question is whether algorithm (3.147) really converges to a mini-
mizer of the original functionalJ . This is the scope of the following sections. Only
for ease of notation, we assume now that the thresholding parameterα > 0 is a scalar,
henceSα(u) acts on (u) with the same thresholdingSα(uλ) for each vector component
uλ.

3.3.1 Weak Convergence of the Sequential Algorithm

A main tool in the analysis of non-smooth functionals and their minima is the concept
of subdifferential. We introduce it already in the presentation of the homotopy method
in Section 2.1.1. Recall that for a convex functionalF on some Banach spaceV its
subdifferential∂F (x) at a pointx ∈ V with F (x) <∞ is defined as the set

∂F (x) = {x∗ ∈ V ∗, x∗(z − x) + F (x) ≤ F (z) for all z ∈ V },
whereV ∗ denotes the dual space ofV . It is obvious from this definition that 0∈
∂F (x) if and only if x is a minimizer ofF .

Example 3.17 Let V = ℓ1(I) andF (x) := ‖x‖1 is theℓ1 norm. We have

∂‖ · ‖1(x) = {ξ ∈ ℓ∞(I) : ξλ ∈ ∂| · |(xλ), λ ∈ I} (3.148)

where∂| · |(z) = {sgn(z)} if z 6= 0 and∂| · |(0) = [−1,1].
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By observing that∂(‖A · −y‖2
Y )(u) = {2A∗(Au− y)} and by an application of [36,

Proposition 5.2] combined with the example above, we obtainthe following charac-
terizations of the subdifferentials ofJ andJ S .

Lemma 3.18 i) The subdifferential ofJ at u is given by

∂J (u) = 2A∗(Au− y) + 2α∂‖ · ‖1(u)

= {ξ ∈ ℓ∞(I) : ξλ ∈ [2A∗(Au− y)]λ + 2α∂| · |(uλ)}.

ii) The subdifferential ofJ S with respect to the sole componentu is given by

∂uJ S(u, a) = −2(a+A∗(y −Aa)) + 2u+ 2α∂‖ · ‖1(u)

= {ξ ∈ ℓ∞(I) : ξλ ∈ [−2(a +A∗(y −Aa))]λ + 2uλ + 2α∂| · |(uλ)}.

In light of Lemma 3.2 we can reformulate Algorithm 5 by









u
(n+1,0)
1 = u

(n,L)
1

u
(n+1,ℓ+1)
1 = arg minu1∈ℓ2(I1) J S(E1u1 + E2u

(n,M)
2 , E1u

(n+1,ℓ)
1 + E2u

(n,M)
2 )

ℓ = 0, . . . , L− 1



u
(n+1,0)
2 = u

(n,M)
2

u
(n+1,ℓ+1)
2 = arg minu2∈ℓ2(I2) J S(E1u

(n+1,L)
1 + E2u2, E1u

(n+1,L)
1 + E2u

(n+1,ℓ)
2 )

ℓ = 0, . . . ,M − 1

u(n+1) := E1u
(n+1,L)
1 + E2u

(n+1,M)
2 .

(3.149)
Before we actually start proving the weak convergence of thealgorithm in (3.210) we
recall the following definition [67].

Definition 3.19 LetV be a topological space andA = (An)n∈N a sequence of subsets
of V . The subsetA ⊆ V is called thelimit of the sequenceA, and we writeA =
limnAn, if

A = {a ∈ V : ∃an ∈ An, a = lim
n
an}.

The following observation will be useful for us, see, e.g., [67, Proposition 8.7].

Lemma 3.20 Assume thatΓ is a convex function onRM and (xn)n∈N ⊂ R
M a con-

vergent sequence with limitx such thatΓ(xn),Γ(x) < ∞. Then the subdifferentials
satisfy

lim
n→∞

∂Γ(xn) ⊆ ∂Γ(x).

In other words, the subdifferential∂Γ of a convex function is anouter semicontinuous
set-valued function.
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Theorem 3.21 (Weak convergence)The algorithm in(3.210)produces a sequence
(u(n))n∈N in ℓ2(I) whose weak accumulation points are minimizers of the functional
J . In particular, the set of the weak accumulation points is non-empty and ifu(∞) is
a weak accumulation point then

u(∞) = Sα(u(∞) +A∗(g −Au(∞))).

Proof. Let us first observe that by (3.191)

J (u(n)) = J S(u(n), u(n)) = J S(E1u
(n,L)
1 + E2u

(n,M)
2 , E1u

(n,L)
1 + E2u

(n,M)
2 )

= J S(E1u
(n,L)
1 + E2u

(n,M)
2 , E1u

(n+1,0)
1 + E2u

(n,M)
2 ).

By definition ofu(n+1,1)
1 and its minimal properties in (3.210) we have

J S(E1u
(n,L)
1 + E2u

(n,M)
2 , E1u

(n+1,0)
1 + E2u

(n,M)
2 )

≥ J S(E1u
(n+1,1)
1 + E2u

(n,M)
2 , E1u

(n+1,0)
1 + E2u

(n,M)
2 ).

Again, an application of (3.191) gives

J S(E1u
(n+1,1)
1 + E2u

(n,M)
2 , E1u

(n+1,0)
1 + E2u

(n,M)
2 )

≥ J S(E1u
(n+1,1)
1 + E2u

(n,M)
2 , E1u

(n+1,1)
1 + E2u

(n,M)
2 )

Putting in line these inequalities we obtain

J (u(n)) ≥ J S(E1u
(n+1,1)
1 + E2u

(n,M)
2 , E1u

(n+1,1)
1 + E2u

(n,M)
2 ).

In particular, from (3.192) we have

J (u(n))−J S(E1u
(n+1,1)
1 +E2u

(n,M)
2 , E1u

(n+1,1)
1 +E2u

(n,M)
2 ) ≥ C‖u(n+1,1)

1 −u(n+1,0)
1 ‖2

ℓ2(I1)
.

By induction we obtain

J (u(n)) ≥ J S(E1u
(n+1,1)
1 + E2u

(n,M)
2 , E1u

(n+1,1)
1 + E2u

(n,M)
2 ) ≥ . . .

≥ J S(E1u
(n+1,L)
1 + E2u

(n,M)
2 , E1u

(n+1,L)
1 + E2u

(n,M)
2 )

= J (E1u
(n+1,L)
1 + E2u

(n,M)
2 ),

and

J (u(n)) − J (E1u
(n+1,L)
1 + E2u

(n,M)
2 ) ≥ C

L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2

ℓ2(I1)
.
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By definition ofu(n+1,1)
2 and its minimal properties we have

J S(E1u
(n+1,L)
1 + E2u

(n,M)
2 , E1u

(n+1,L)
1 + E2u

(n,M)
2 )

≥ J S(E1u
(n+1,L)
1 + E2u

(n+1,1)
2 , E1u

(n+1,L)
1 + E2u

(n+1,0)
2 ).

By similar arguments as above we find

J (u(n)) ≥ J S(E1u
(n+1,L)
1 +E2u

(n+1,M)
2 , E1u

(n+1,L)
1 +E2u

(n+1,M)
2 ) = J (u(n+1)),

(3.150)
and

J (u(n)) − J (u(n+1))

≥ C

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2

ℓ2(I1)
+

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖2

ℓ2(I2)

)
.

(3.151)

From (3.193) we haveJ (u(0)) ≥ J (u(n)) ≥ 2α‖u(n)‖ℓ1(I) ≥ 2α‖u(n)‖ℓ2(I). This

means that(u(n))n∈N is uniformly bounded inℓ2(I), hence there exists a weakly con-
vergent subsequence(u(nj))j∈N. Let us denoteu(∞) the weak limit of the subse-
quence. For simplicity, we rename such subsequence by(u(n))n∈N. Moreover, since
the sequence(J (u(n)))n∈N is monotonically decreasing and bounded from below by
0, it is also convergent. From (3.194) and the latter convergence we deduce

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2

ℓ2(I1)
+

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖2

ℓ2(I2)

)
→ 0, n→ ∞.

(3.152)
In particular, by the standard inequality(a2 + b2) ≥ 1

2(a + b)2 for a, b > 0 and the
triangle inequality, we have also

‖u(n) − u(n+1)‖ℓ2(I) → 0, n→ ∞. (3.153)

We would like now to show that

0 ∈ lim
n→∞

∂J (u(n)) ⊂ ∂J (u(∞)).

To this end, and in light of Lemma 3.18, we reason componentwise. By definition of
u

(n+1,L)
1 we have

0 ∈ [−2(u
(n+1,L−1)
1 +R1A

∗((y −AE2u
(n,M)
2 ) −AE1u

(n+1,L−1)
1 ))]λ

+ 2u(n+1,L)
λ,1 + 2α∂| · |(u(n+1,L)

λ,1 ),
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for λ ∈ I1, and by definition ofu(n+1,M)
2 we have

0 ∈ [−2(u
(n+1,M−1)
2 +R2A

∗((y −AE1u
(n+1,L)
1 ) −AE2u

(n+1,M−1)
2 ))]λ

+ 2u(n+1,M)
λ,2 + 2α∂| · |(u(n+1,M)

λ,2 ),

for λ ∈ I2. Let us compute∂J (u(n+1))λ,

∂J (u(n+1))λ = [−2A∗(y −AE1u
(n+1,L)
1 −AE2u

(n+1,M)
2 )]λ + 2α∂| · |(u(n+1,K)

λ,i ),
(3.154)

whereλ ∈ Ii andK = L,M for i = 1,2 respectively. We would like to find a
ξ
(n+1)
λ ∈ ∂J (u(n+1))λ such thatξ(n+1)

λ → 0 for n→ ∞. By (3.154) we have that for
λ ∈ I1

0 = [−2(u
(n+1,L−1)
1 +R1A

∗((y−AE2u
(n,M)
2 )−AE1u

(n+1,L−1)
1 ))]λ+2u(n+1,L)

λ,1 +2αξ(n+1)
λ,1 ,

for a ξ(n+1)
λ,1 ∈ ∂| · |(u(n+1,L)

λ,1 ), and, by (3.154), forλ ∈ I2

0 = [−2(u
(n+1,M−1)
2 +R2A

∗((y−AE1u
(n+1,L)
1 )−AE2u

(n+1,M−1)
2 ))]λ+2u(n+1,M)

λ,2 +2αξ(n+1)
λ,2 ,

for a ξ(n+1)
λ,2 ∈ ∂| · |(u(n+1,M)

λ,2 ). Thus by adding zero from (3.154) as represented by
the previous two formulas, we can choose

ξ
(n+1)
λ = 2(u

(n+1,L)
λ,1 − u

(n+1,L−1)
λ,1 ) + [R1A

∗AE1(u
(n+1,L)
1 − u

(n+1,L−1)
1 )]λ

+ [R1A
∗AE2(u

(n+1,M)
2 − u

(n,M)
1 )]λ,

if λ ∈ I1 and

ξ
(n+1)
λ = 2(u

(n+1,M)
λ,2 − u

(n+1,M−1)
λ,2 ) + [R2A

∗AE1(u
(n+1,M)
2 − u

(n+1,M−1)
1 )]λ,

if λ ∈ I2. For both these choices, from (3.195) and (3.196), and by continuity ofA, we
haveξ(n+1)

λ → 0 for n → ∞. By continuity ofA, weak convergence ofu(n) (which
implies componentwise convergence), and Lemma 3.20 we obtain

0 ∈ lim
n→∞

∂J (u(n))λ ⊂ ∂J (u(∞)λ, ∀λ ∈ I.

It follows from Lemma 3.18 that 0∈ ∂J (u(∞). By the properties of the subdifferen-
tial we have thatu(∞) is a minimizer ofJ . Of course, the reasoning above holds for
any weakly convergent subsequence and therefore all weak accumulation points of the
original sequence(u(n))n are minimizers ofJ .

Similarly, by taking now the limit forn → ∞ in (3.154) and (3.154), and by using
(3.195) we obtain

0 ∈ [−2(R1u
(∞)+R1A

∗((y−AE2R2u
(∞))−AE1R1u

(∞)))]λ+2u(∞)
λ +2α∂|·|(u(∞)

λ ),
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for λ ∈ I1 and

0 ∈ [−2(R2u
(∞)+R2A

∗((y−AE1R1u
(∞)−AE2R2u

(∞))]λ+2u(∞)
λ +2α∂|·|(u(∞)

λ ).

for λ ∈ I2. In other words, we have

0 ∈ ∂uJ S(u(∞), u(∞)).

An application of Lemma 3.18 and Proposition 3.5 imply

u(∞) = Sα(u(∞) +A∗(y −Au(∞))).

Remark 3.22 1. Becauseu(∞) = Sα(u(∞) + A∗(y − Au(∞))), we could infer the
minimality of u(∞) by invoking Proposition 3.5. In the previous proof we wantedto
present an alternative argument based on differential inclusions.

2. Since(u(n))n∈N is bounded and (3.195) holds, also(un,ℓ
i )n,ℓ are bounded for

i = 1,2.

3.3.2 Strong Convergence of the Sequential Algorithm

In this section we want to show that the convergence of a subsequence(unj )j to any
accumulation pointu(∞) holds not only in the weak topology, but also in the Hilbert
spaceℓ2(I) norm. Let us define

η(n+1) := u
(n+1,L)
1 − u

(∞)
1 , η(n+1/2) := u

(n+1,L−1)
1 − u

(∞)
1 ,

µ(n+1) := u
(n+1,M)
2 − u

(∞)
2 , µ(n+1/2) := u

(n+1,M−1)
2 − u

(∞)
2 ,

whereu(∞)
i := Riu

(∞). From Theorem 3.35 we also have

u
(∞)
i = Sα(u

(∞)
i +RiT

∗(g − TE1u
(∞)
1 − TE2u

(∞)
2 )︸ ︷︷ ︸

:=hi

), i = 1,2.

Let us also denoteh := E1h1 + E2h2 andξ(n) := E1η
(n+1/2) + E2µ

(n+1/2).

For the proof of strong convergence we need the following technical lemmas. Their
strategy of their proofs is similar to that of Lemma 3.8 and Lemma 3.9.

Lemma 3.23 ‖Aξ(n)‖2
Y → 0 for n→ ∞.
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Proof. Since

η(n+1) − η(n+1/2) = Sα(h1 + (I −R1A
∗AE1)η

(n+1/2)

− R1A
∗AE2µ

(n)) − Sα(h1) − η(n+1/2),

µ(n+1) − µ(n+1/2) = Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2)

− R2A
∗AE1η

(n+1)) − Sα(h2) − µ(n+1/2),

and ‖η(n+1) − η(n+1/2)‖ℓ2(I1) = ‖u(n+1,L)
1 − u

(n+1,L−1)
1 ‖ℓ2(I1) → 0, ‖µ(n+1) −

µ(n+1/2)‖ℓ2(I1) = ‖u(n+1,M)
2 − u

(n+1,M−1)
2 ‖ℓ2(I2) → 0 by (3.195), we have

‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)) − Sα(h1) − η(n+1/2)‖ℓ2(I1)

≥
∣∣∣‖Sα(h1 + (I −R1A

∗AE1)η
(n+1/2) −R1A

∗AE2µ
(n))

−Sα(h1)‖ℓ2(I1) − ‖η(n+1/2)‖ℓ2(I1)

∣∣∣→ 0, (3.155)

and

‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2) − µ(n+1/2)‖ℓ2(I2)

≥
∣∣∣‖Sα(h2 + (I −R2A

∗AE2)µ
(n+1/2) −R2A

∗AE1η
(n+1))

−Sα(h2)‖ℓ2(I2) − ‖µ(n+1/2)‖ℓ2(I2)

∣∣∣→ 0. (3.156)

By nonexpansiveness ofSα we have the estimates

‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2)‖ℓ2(I2)

≤ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)‖ℓ2(I2)

≤ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1/2)‖ℓ2(I2)

+ ‖R2A
∗AE1(η

(n+1/2)) − η(n+1))‖ℓ2(I2)︸ ︷︷ ︸
:=ε(n)

.

Similarly, we have

‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)) − Sα(h1)‖ℓ2(I1)

≤ ‖(I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)‖ℓ2(I1)

≤ ‖(I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n+1/2)‖ℓ2(I1)

+ ‖R1A
∗AE2(µ

(n+1/2) − µ(n))‖ℓ2(I1)︸ ︷︷ ︸
δ(n)

.
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Combining the previous inequalities, we obtain the estimates

‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n) − Sα(h1)‖2
ℓ2(I1)

+ ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1) − Sα(h2)‖2
ℓ2(I2)

≤ ‖(I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)‖2
ℓ2(I1)

+ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)‖2
ℓ2(I2)

=
(
‖(I −R1A

∗AE1)η
(n+1/2) −R1A

∗AE2µ
(n+1/2)‖ℓ2(I1)

+ ‖R1A
∗AE2(µ

(n+1/2) − µ(n))‖ℓ2(I1)

)2

+
(
‖(I −R2A

∗AE2)µ
(n+1/2) −R2A

∗AE1η
(n+1/2)‖ℓ2(I2)

+ ‖R2A
∗AE1(η

(n+1/2)) − η(n+1))‖ℓ2(I2)

)2

≤ ‖(I −A∗A)ξ(n)‖2
ℓ2(I) + ((ε(n))2 + (δ(n))2 + C ′(ε(n) + δ(n)))

≤ ‖ξ(n)‖2
ℓ2(I) + ((ε(n))2 + (δ(n))2 + C ′(ε(n) + δ(n)))

The constantC ′ > 0 is due to the boundedness ofu(n,ℓ). Certainly, by (3.195), for
everyε > 0 there existsn0 such that forn > n0 we have(ε(n))2 +(δ(n))2 +C ′(ε(n) +
δ(n))) ≤ ε. Therefore, if

‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n) − Sα(h1)‖2
ℓ2(I1)

+ ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1) − Sα(h2)‖2
ℓ2(I2)

≥ ‖ξ(n)‖2
ℓ2(I),

then

0 ≤ ‖(I −R1A
∗AE1)µ

(n+1/2) −R1A
∗AE2µ

(n)‖2
ℓ2(I1)

+ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)‖2
ℓ2(I) − ‖ξ(n)‖2

ℓ2(I)

≤ (ε(n))2 + (δ(n))2 + C ′(ε(n) + δ(n))) ≤ ε

If, instead, we have

‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)) − Sα(h1)‖2
ℓ2(I1)

+ ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2)‖2
ℓ2(I2)

< ‖ξ(n)‖2
ℓ2(I),
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then by (3.155) and (3.156)

‖ξ(n)‖2
ℓ2(I) −

(
‖(I −R1A

∗AE1)µ
(n+1/2) −R1A

∗AE2µ
(n))‖2

ℓ2(I1)

+ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1))‖2
ℓ2(I2)

)

≤ ‖ξ(n)‖2
ℓ2(I)

− ‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)) − Sα(h1)‖2
ℓ2(I1)

− ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2)‖2
ℓ2(I2)

=
∣∣∣‖ξ(n)‖2

ℓ2(I)

− ‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)) − Sα(h1)‖2
ℓ2(I1)

− ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2)‖2
ℓ2(I2)

∣∣∣

≤
∣∣∣‖η(n+1/2)‖2

ℓ2(I1)

− ‖Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n)) − Sα(h1)‖2
ℓ2(I1)

∣∣∣

+
∣∣∣‖µ(n+1/2)‖2

ℓ2(I2)

− ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2)‖2
ℓ2(I2)

∣∣∣ ≤ ε

for n large enough. This implies

lim
n→∞

[
‖ξ(n)‖2

ℓ2(I) −
(
‖(I −R1A

∗AE1)µ
(n+1/2) −R1A

∗AE2µ
(n)‖2

ℓ2(I1)

+ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)‖2
ℓ2(I2)

)]
= 0

Observe now that

‖(I −R1A
∗AE1)µ

(n+1/2) −R1A
∗AE2µ

(n)‖2
ℓ2(I1)

+ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)‖2
ℓ2(I2)

≤ (‖(I −R1A
∗AE1)µ

(n+1/2) −R1A
∗AE2µ

(n+1/2)‖ℓ2(I1) + δ(n))2

+ (‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1/2)‖ℓ2(I2) + ε(n))2

≤ ‖(I −A∗A)ξ(n)‖2
ℓ2(I) +

(
(ε(n))2 + (δ(n))2 + 2C ′(ε(n) + δ(n))

)
,
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for a suitable constantC ′ > 0 as above. Therefore we have

‖ξ(n)‖2
ℓ2(I) −

(
‖(I −R1A

∗AE1)µ
(n+1/2) −R1A

∗AE2µ
(n))‖2

ℓ2(I1)

+ ‖(I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1))‖2
ℓ2(I2)

)

≥ ‖ξ(n)‖2
ℓ2(I) − ‖(I −A∗A)ξ(n)‖2

ℓ2(I) −
(
(ε(n))2 + (δ(n))2 + 2C ′(ε(n) + δ(n))

)

= 2‖Aξ(n)‖2
Y − ‖A∗Aξ(n)‖2

ℓ2(I) −
(
(ε(n))2 + (δ(n))2 + 2C ′(ε(n) + δ(n))

)

≥ ‖Aξ(n)‖2
Y −

(
(ε(n))2 + (δ(n))2 + 2C ′(ε(n) + δ(n))

)
.

This implies‖Aξ(n)‖2
Y → 0 for n→ ∞.

Lemma 3.24 For h = E1h1 + E2h2, ‖Sα(h + ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I) → 0, for
n→ ∞.

Proof. We have

Sα(h+ ξ(n) −A∗Aξ(n))

= E1

(
Sα(h1 + (I −R1A

∗AE1)η
(n+1/2) −R1A

∗AE2µ
(n+1/2))

)

+ E2

(
Sα(h2 + (I −R2A

∗AE2)µ
(n+1/2) −R2A

∗AE1η
(n+1/2))

)

Therefore, we can write

Sα(h+ ξ(n) −A∗Aξ(n))

= E1

[
Sα(h1 + (I −R1A

∗AE1)η
(n+1/2) −R1A

∗AE2µ
(n))

+ Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n+1/2))

− Sα(h1 + (I −R1A
∗AE1)η

(n+1/2) −R1A
∗AE2µ

(n))
]

+ E2

[
Sα(h2 + (I −R2A

∗AE2)µ
(n+1/2) −R2A

∗AE1η
(n+1))

+ Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1/2))

− Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1))
]
.

By using the nonexpansiveness ofSα, the boundedness of the operatorsEi, Ri, A
∗A,
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and the triangle inequality we obtain,

‖Sα(h+ ξ(n)) − Sα(h) − ξ(n)‖ℓ2(I)

≤ ‖Sα(h+ ξ(n) −A∗Aξ(n)) − Sα(h) − ξ(n)‖ℓ2(I)

+ ‖Sα(h+ ξ(n)) − Sα(h+ ξ(n) −A∗Aξ(n))‖ℓ2(I)

≤


‖Sα(h1 + (I −R1A

∗AE1)η
(n+1/2) −R1A

∗AE2µ
(n)) − Sα(h1) − η(n+1/2)‖ℓ2(I1)︸ ︷︷ ︸

:=A(n)

+ ‖Sα(h2 + (I −R2A
∗AE2)µ

(n+1/2) −R2A
∗AE1η

(n+1)) − Sα(h2) − µ(n+1/2)‖ℓ2(I2)︸ ︷︷ ︸
:=B(n)

+ ‖µ(n+1/2) − µ(n)‖ℓ2(I2) + ‖η(n+1) − η(n+1/2)‖ℓ2(I1)︸ ︷︷ ︸
:=C(n)

+ ‖A∗Aξ(n)‖ℓ2(I)︸ ︷︷ ︸
:=D(n)


 .

The quantitiesA(n), B(n) vanish forn → ∞ because of (3.155) and (3.156). The
quantityC(n) vanishes forn → ∞ because of (3.195), andD(n) vanishesn → ∞
thanks to Lemma 3.23.

By combining the previous technical achievements, we can now state the strong
convergence.

Theorem 3.25 (Strong convergence)Algorithm 5 produces a sequence(u(n))n∈N in
ℓ2(I) whose strong accumulation points are minimizers of the functional J . In par-
ticular, the set of strong accumulation points is non-empty.

Proof. Let u(∞) be a weak accumulation point and let(u(nj))j∈N be a subsequence
weakly convergent tou(∞). Let us denote the latter sequence(u(n))n∈N again. With
the notation used in this section, by Theorem 3.35 and (3.195) we have thatξ(n) =
E1η

(n+1/2)+E2µ
(n+1/2) weakly converges to zero. By Lemma 3.24 we havelimn→∞ ‖Sα(h+

ξ(n))−Sα(h)−ξ(n)‖ℓ2(I) = 0. From Lemma 3.10 we conclude thatξ(n) = E1η
(n+1/2)+

E2µ
(n+1/2) converges to zero strongly. Again by (3.195) we have that(u(n))n∈N con-

verges tou(∞) strongly.
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3.3.3 A Parallel Domain Decomposition Method

The most natural modification to (3.147) in order to obtain a parallelizable algorithm
is to substitute the termu(n+1,L) with R1u

(n) in the second inner iterations. This
makes the inner iterations onI1 andI2 mutually independent, hence executable by
two processors at the same time. We obtain the following algorithm: Pick an initial
u(0) ∈ ℓ1(I), for exampleu(0) = 0, and iterate









u
(n+1,0)
1 = R1u

(n)

u
(n+1,ℓ+1)
1 = Sα

(
u

(n+1,ℓ)
1 +R1A

∗((g −AE2R2u
(n)) −AE1u

(n+1,ℓ)
1 )

)

ℓ = 0, . . . , L− 1



u
(n+1,0)
2 = R2u

(n)

u
(n+1,ℓ+1)
2 = Sα

(
u

(n+1,ℓ)
2 +R2A

∗((g −AE1R1u
(n)) −AE2u

(n+1,ℓ)
2 )

)

ℓ = 0, . . . ,M − 1

u(n+1) := E1u
(n+1,L)
1 + E2u

(n+1,M)
2 .

(3.157)
The behavior of this algorithm is somehow bizzare. Indeed, the algorithm usually
alternates between the two subsequences given byu(2n) and its consecutive iteration
u(2n+1). These two sequences are complementary, in the sense that they encode in-
dependent patterns of the solution. In particular, foru(∞) = u′ + u′′, u(2n) ≈ u′

and u(2n+1) ≈ u′′ for n not too large. During the iterations and forn large the
two subsequences slowly approach to each other, merging thecomplementary fea-
tures and shaping the final limit which usually coincides with the wanted minimal
solution, see Figure 3.6. Unfortunately, this “oscillatory behavior” makes impossible
to prove monotonicity of the sequence(J (u(n)))n∈N and we have no proof of con-
vergence. However, since the subsequences are early indicating different features of
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Figure 3.6On the left we showu(2n), in the centeru(2n+1), and on the rightu(∞). The
two consecutive iterations contain different features which will appear in the solution.

the final limit, we may modify the algorithm by substitutingu(n+1) := E1u
(n+1,L)
1 +

E2u
(n+1,M)
2 with u(n+1) :=

(E1u
(n+1,L)
1 +E2u

(n+1,M)
2 )+u(n)

2 that is the average of the cur-
rent iteration and the previous one. This enforces an early merging of complementary
features and leads to the following algorithm:
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Algorithm 7. Pick an initialu(0) ∈ ℓ1(I), for exampleu(0) = 0, and iterate








u
(n+1,0)
1 = R1u

(n)

u
(n+1,ℓ+1)
1 = Sα

(
u

(n+1,ℓ)
1 +R1A

∗((g −AE2R2u
(n)) −AE1u

(n+1,ℓ)
1 )

)

ℓ = 0, . . . , L− 1



u
(n+1,0)
2 = R2u

(n)

u
(n+1,ℓ+1)
2 = Sα

(
u

(n+1,ℓ)
2 +R2A

∗((g −AE1R1u
(n)) −AE2u

(n+1,ℓ)
2 )

)

ℓ = 0, . . . ,M − 1

u(n+1) :=
(E1u

(n+1,L)
1 +E2u

(n+1,M)
2 )+u(n)

2 .
(3.158)

The proof of strong convergence of this algorithm is very similar to the one of
Algorithm 6. For the details, we refer the reader to [42].

3.4 Domain Decomposition Methods for Total Variation Minimization

We would like to continue our parallel discussion ofℓ1-minimization as well as total
variation minimization as we did in Section 2.1.3. In particular, we would like to show
that also for total variation minimization it is possible toformulate domain decom-
position methods. Several numerical strategies to performefficiently total variation
minimization have been proposed in the literature as well. Without claiming of be-
ing exhaustive, we list a few of the relevant methods, ordered by their chronological
appearance:

(i) the linearization approach of Vogel et al. [32] and of Chambolle and Lions [16]
by iteratively re-weighted least squares, see also Section2.1.3;

(ii) the primal-dual approach of Chan et al. [17];
(iii) variational approximation via locally quadratic functionals as in the work of

Vese et al. [2,77];
(iv) iterative thresholding algorithms based on projections onto convex sets as in the

work of Chambolle [14] as well as in the work of Combettes and Wajs [21];
(v) iterative minimization of the Bregman distance as in thework of Osher et al. [65]

(also notice the very recent Bregman split approach [48]);
(vi) graph cuts [15, 26] for the minimization of (2.79) withT = I (the identity

operator) and an anisotropic total variation;
(vii) the approach proposed by Nesterov [59] and its modifications by Weiss et

al. [78].
These approaches differ significantly, and they provide a convincing view of the

interest this problem has been able to generate and of its applicative impact. How-
ever, because of their iterative-sequential formulation,none of the mentioned methods
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is able to address in real-time, or at least in an acceptable computational time, ex-
tremely large problems, such as 4D imaging (spatial plus temporal dimensions) from
functional magnetic-resonance in nuclear medical imaging, astronomical imaging or
global terrestrial seismic tomography. For such large scale simulations we need to
address methods which allow us to reduce the problem to a finite sequence of sub-
problems of a more manageable size, perhaps computable by one of the methods listed
above. With this aim we introduced subspace correction and domain decomposition
methods both forℓ1-norm and total variation minimizations [42, 44, 69]. We address
the interested reader to the broad literature included in [44] for an introduction to do-
main decompositions methods both for PDEs and convex minimization.

Difficulty of the problem

Due to the nonsmoothness and nonadditivity of the total variation with respect to a
nonoverlapping domain decomposition (note that the total variation of a function on
the whole domain equals the sum of the total variations on thesubdomains plus the size
of the jumps at the interfaces [44, formula (3.4)]; this is one of the main differences
to the situation we already encountered withℓ1-minimization), one encounters addi-
tional difficulties in showing convergence of such decomposition strategies to global
minimizers. In particular, we stress very clearly that well-known approaches as in
[13, 18, 75, 76] are not directly applicable to this problem,because either they do ad-
dress additive problems (as the one ofℓ1-minimization) or smooth convex minimiza-
tions, which isnot the case of total variation minimization. Moreover the interesting
solutions may be discontinuous, e.g., along curves in 2D. These discontinuities may
cross the interfaces of the domain decomposition patches. Hence, the crucial diffi-
culty is the correct numerical treatment of interfaces, with the preservation of cross-
ing discontinuities and the correct matching where the solution is continuous instead,
see [44, Section 7.1.1].

The work [44] was particularly addressed tononoverlappingdomain decomposi-
tions Ω1 ∪ Ω2 ⊂ Ω ⊂ Ω̄1 ∪ Ω̄2 andΩ1 ∩ Ω2 = ∅. Associated to the decomposition
defineVi = {u ∈ L2(Ω) : supp(u) ⊂ Ωi}, for i = 1,2; note thatL2(Ω) = V1 ⊕ V2.
With this splitting we wanted to minimizeJ by suitable instances of the following
alternating algorithm: Pick an initialV1 ⊕ V2 ∋ u

(0)
1 + u

(0)
2 := u(0), for example

u(0) = 0, and iterate




u
(n+1)
1 ≈ arg minv1∈V1 J (v1 + u

(n)
2 )

u
(n+1)
2 ≈ arg minv2∈V2 J (u

(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2 .

In [44] an implementation of this algorithm is proposed, it is guaranteed to converge,
and to decrease the objective energyJ monotonically. One could prove its conver-
gence to minimizers ofJ only under technical conditions on the interfaces of the sub-
domains. However, in numerical experiments, the algorithmseems always converging
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robustly to the expected minimizer. This discrepancy between theoretical analysis and
numerical evidences motivated the investigation onoverlappingdomain decomposi-
tions. The hope is that the redundancy given by overlapping patches and the avoidance
of boundary interfaces could allow for a technically easiertheoretical analysis.

The approach, results, and technical issues

In this section we show how to adapt Algorithm 5 and Algorithm6 to the case of an
overlappingdomain decompositions for total variation minimization. The setting of an
overlapping domain decomposition eventually provides us with a framework in which
one can successfully prove its convergence to minimizers ofJ , both in its sequential
and parallel forms. Let us stress that to our knowledge this is the first method which
addresses a domain decomposition strategy for total variation minimization with a
formal theoretical justification of convergence. It is important to mention that there
are other very recent attempts of addressing domain decomposition methods for total
variation minimization with successful numerical results[57].

The analysis is performed for a discrete approximation of the continuous functional
(2.79), for ease again denotedJ in (2.80). Essentially we approximate functionsu by
their sampling on a regular grid and their gradientDu by finite differences∇u. It is
well-known that such a discrete approximationΓ-converges to the continuous func-
tional (see [9]). In particular, discrete minimizers of (2.80), interpolated by piecewise
linear functions, converge in weak-∗-topology ofBV to minimizers of the functional
(2.79) in the continuous setting. Of course, when dealing with numerical solutions,
only the discrete approach matters together with its approximation properties to the
continuous problem. However, the need of working in the discrete setting is not
only practical, it is also topological. In fact bounded setsin BV are (only) weakly-
∗-compact, and this property is fundamental for showing thatcertain sequences have
converging subsequences. Unfortunately, the weak-∗-topology ofBV is “too weak”
for our purpose of proving convergence of the domain decomposition algorithm; for
instance, the trace on boundary sets isnot a continuous operator with respect to this
topology. This difficulty can be avoided, for instance, byΓ-approximating the func-
tional (2.79) by means of quadratic functionals (as in [2, 16, 77]) and working with
the topology ofW 1,2(Ω), the Sobolev space ofL2-functions withL2-distributional
first derivatives. However, this strategy changes the singular nature of the problem
which makes it both interesting and difficult. Hence, the discrete approach has the
virtues of being practical for numerical implementations,of correctly approximating
the continuous setting, and of retaining the major featureswhich makes the problem
interesting. Note further that in the discrete setting where topological issues are not
a concern anymore, also the dimensiond can be arbitrary, contrary to the continuous
setting where the dimensiond has to be linked to boundedness properties of the opera-
tor T , see [77, property H2, pag. 134]. For ease of presentation, and in order to avoid
unnecessary technicalities, we limit our analysis to splitting the problem into two sub-
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domainsΩ1 andΩ2. This is by no means a restriction. The generalization to multiple
domains comes quite natural in our specific setting, see also[44, Remark 5.3]. When
dealing with discrete subdomainsΩi, for technical reasons, we will require a certain
splitting property for the total variation, i.e.,

|∇u|(Ω) = |∇u|Ω1|(Ω1)+c1(u|(Ω2\Ω1)∪Γ1
), |∇u|(Ω) = |∇u|Ω2|(Ω2)+c2(u|(Ω1\Ω2)∪Γ2

),
(3.159)

wherec1 andc2 are suitable functions which depend only on the restrictionsu|(Ω2\Ω1)∪Γ1

andu|(Ω1\Ω2)∪Γ2
respectively, see (3.166) (symbols and notations are clarified once for

all in the following section). Note that this formula is the discrete analogous of [44, for-
mula (3.4)] in the continuous setting. The simplest examples of discrete domains with
such a property are discreted-dimensional rectangles (d-orthotopes). Hence, for ease
of presentation, we will assume to work withd-orthotope domains, also noting that
such decompositions are already sufficient for any practical use in image processing,
and stressing that the results can be generalized also to subdomains with different
shapes as long as (3.159) is satisfied.

Additional notations

Additionally to the notations already introduced in Section 2.1.3 for the total variation
minimization setting, we consider also the closed convex set

K :=
{

div p : p ∈ Hd, |p(x)|∞ ≤ 1 for all x ∈ Ω
}
,

where|p(x)|∞ = max
{
|p1(x)|, . . . , |pd(x)|

}
, and denotePK(u) = argminv∈K ‖u−

v‖2 theorthogonal projection ontoK.

3.4.1 The Overlapping Domain Decomposition Algorithm

As before we are interested in the minimization of the functional

J (u) := ‖Ku− g‖2
2 + 2α |∇(u)| (Ω), (3.160)

whereK ∈ L(H) is a linear operator,g ∈ H is a datum, andα > 0 is a fixed constant.
and we assume that 1/∈ ker(K).

Now, instead of minimizing (3.160) on the whole domain we decomposeΩ into two
overlapping subdomainsΩ1 andΩ2 such thatΩ = Ω1 ∪Ω2, Ω1 ∩Ω2 6= ∅, and (3.159)
is fulfilled. For consistency of the definitions of gradient and divergence, we assume
that also the subdomainsΩi are discreted-orthotopes as well asΩ, stressing that this
is by no means a restriction, but only for ease of presentation. Due to this domain
decompositionH is split into two closed subspacesVj = {u ∈ H : supp(u) ⊂ Ωj},
for j = 1,2. Note thatH = V1 + V2 is not a direct sum ofV1 andV2, but just a linear
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sum of subspaces. Thus anyu ∈ H has a nonunique representation

u(x) =





u1(x) x ∈ Ω1 \ Ω2

u1(x) + u2(x) x ∈ Ω1 ∩ Ω2

u2(x) x ∈ Ω2 \ Ω1

, ui ∈ Vi, i = 1,2. (3.161)

We denote byΓ1 the interface betweenΩ1 andΩ2\Ω1 and byΓ2 the interface between
Ω2 andΩ1 \ Ω2 (the interfaces are naturally defined in the discrete setting).

We introduce the trace operator of the restriction to a boundary Γi

Tr |Γi : Vi → R
Γi , i = 1,2

with Tr |Γi vi = vi |Γi , the restriction ofvi on Γi. Note thatRΓi is as usual the set
of maps fromΓi to R. The trace operator is clearly a linear and continuous operator.
We additionally fix abounded uniform partition of unity(BUPU){χ1, χ2} ⊂ H such
that

(a) Tr |Γi χi = 0 for i = 1,2,

(b) χ1 + χ2 = 1,

(c) suppχi ⊂ Ωi for i = 1,2,

(d) max{‖χ1‖∞, ‖χ2‖∞} = κ <∞.

We would like to solve
argminu∈H J (u)

by picking an initialV1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈ H, e.g.,ũ(0)

i = 0, i = 1,2, and
iterate 




u
(n+1)
1 ≈ argmin v1∈V1

Tr|Γ1
v1=0

J (v1 + ũ
(n)
2 )

u
(n+1)
2 ≈ argmin v2∈V2

Tr|Γ2
v2=0

J (u
(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1).

(3.162)

Note that we are minimizing over functionsvi ∈ Vi for i = 1,2 which vanish on the in-
terior boundaries, i.e.,Tr |Γi vi = 0. Moreoveru(n) is the sum of the local minimizers

u
(n)
1 andu(n)

2 , which are not uniquely determined on the overlapping part.Therefore
we introduced a suitable correction byχ1 andχ2 in order to force the subminimizing
sequences(u(n)

1 )n∈N and (u
(n)
2 )n∈N to keep uniformly bounded. This issue will be

explained in detail below, see Lemma 3.36. From the definition of χi, i = 1,2, it is
clear that

u
(n+1)
1 + u

(n+1)
2 = u(n+1) = (χ1 + χ2)u

(n+1) = ũ
(n+1)
1 + ũ

(n+1)
2 .
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Note that in generalu(n)
1 6= ũ

(n)
1 andu(n)

2 6= ũ
(n)
2 . In (3.162) we use ”≈” (the ap-

proximation symbol) because in practice we never perform the exact minimization. In
the following section we discuss how to realize the approximation to the individual
subspace minimizations.

3.4.2 Local Minimization by Lagrange Multipliers

Let us consider, for example, the subspace minimization onΩ1

argmin v1∈V1
Tr|Γ1

v1=0
J (v1+u2) = argmin v1∈V1

Tr|Γ1
v1=0

‖Kv1 − (g −Ku2)‖2
2+2α |∇(v1 + u2 |Ω1)| (Ω).

(3.163)
First of all, observe that{u ∈ H : Tr |Γ1 u = Tr |Γ1 u2, J (u) ≤ C} ⊂ {J ≤ C},
hence the former set is also bounded by assumption (C) and theminimization problem
(3.163) has solutions.

It is useful to us to consider again a surrogate functionalJ s
1 of J : Assumea, u1 ∈

V1, u2 ∈ V2, and define

J s
1 (u1 + u2, a) := J (u1 + u2) + ‖u1 − a‖2

2 − ‖K(u1 − a)‖2
2. (3.164)

A straightforward computation shows that

J s
1 (u1+u2, a) = ‖u1−(a+(K∗(g−Ku2−Ka)) |Ω1)‖2

2+2α |∇(u1 + u2)| (Ω)+Φ(a, g, u2),

whereΦ is a function ofa, g, u2 only. Note that now the variableu1 is not anymore
effected by the action ofK. Consequently, we want to realize an approximate solution
to (3.163) by using the following algorithm: Foru(0)

1 = ũ
(0)
1 ∈ V1,

u
(ℓ+1)
1 = argmin u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 + u2, u

(ℓ)
1 ), ℓ ≥ 0. (3.165)

Additionally in (3.165) we can restrict the total variationonΩ1 only, since we have

|∇(u1 + u2)| (Ω) = |∇(u1 + u2) |Ω1| (Ω1) + c1(u2|(Ω2\Ω1)∪Γ1
). (3.166)

where we used (3.159) and the assumption thatu1 vanishes on the interior boundary
Γ1. Hence (3.165) is equivalent to

argmin u1∈V1
Tr|Γ1

u1=0
J s

1 (u1+u2, u
(ℓ)
1 ) = argmin u1∈V1

Tr|Γ1
u1=0

‖u1 − z1‖2
2+2α |∇(u1 + u2) |Ω1| (Ω1),

wherez1 = u
(ℓ)
1 + (K∗(g −Ku2 −Ku

(ℓ)
1 )) |Ω1. Similarly the same arguments work

for the second subproblem.
Before proving the convergence of this algorithm, we need toclarify first how to

practically computeu(ℓ+1)
1 for ũ(ℓ)

1 given. To this end we need to introduce further
notions and to recall some useful results.
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Generalized Lagrange multipliers for nonsmooth objectivefunctions

We consider the following problem

argminx∈V {F (x) : Gx = b}, (3.167)

whereG : V → V is a linear operator onV . We have the following useful result.

Theorem 3.26 [49, Theorem 2.1.4, p. 305] LetN = {G∗λ : λ ∈ V } = Range(G∗).
Then,x0 ∈ {x ∈ V : G(x) = b} solves the constrained minimization problem(3.167)
if and only if

0 ∈ ∂F (x0) +N.

We want to exploit Theorem 3.26 in order to produce an algorithmic solution to
each iteration step (3.165), which practically stems from the solution of a problem of
this type

argmin u1∈V1
Tr|Γ1

u1=0
‖u1 − z1‖2

2 + 2α |∇(u1 + u2 |Ω1)| (Ω1).

It is well-known how to solve this problem ifu2 ≡ 0 in Ω̄1 and the trace condition is
not imposed. For the general case we propose the following solution strategy. In what
follows all the involved quantities are restricted toΩ1, e.g.,u1 = u1 |Ω1, u2 = u2 |Ω1.

Theorem 3.27 (Oblique thresholding) For u2 ∈ V2 and for z1 ∈ V1 the following
statements are equivalent:

(i) u∗1 = argmin u1∈V1
Tr|Γ1

u1=0
‖u1 − z1‖2

2 + 2α |∇(u1 + u2)| (Ω1);

(ii) there existsη ∈ Range(Tr |Γ1)
∗ = {η ∈ V1 with supp(η) = Γ1} such that0 ∈

u∗1 − (z1 − η) + α∂V1 |∇(· + u2)| (Ω1)(u
∗
1);

(iii) there existsη ∈ V1 with supp(η) = Γ1 such thatu∗1 = (I−PαK)(z1 +u2−η)−
u2 ∈ V1 andTr |Γ1 u

∗
1 = 0;

(iv) there existsη ∈ V1 with supp(η) = Γ1 such thatTr |Γ1 η = Tr |Γ1 z1 + Tr |Γ1

PαK(η−(z1+u2)) or equivalentlyη = (Tr |Γ1)
∗ Tr |Γ1 (z1 + PαK(η − (z1 + u2))).

We call the solution operation provided by this theorem anoblique thresholding, in
analogy to the terminology forℓ1-minimization (see Lemma 3.1), because it performs
a thresholding of the derivatives, i.e., it sets to zero mostof the derivatives ofu =
u1 + u2 ≈ z1 onΩ1, providedu2 which is a fixed vector inV2.

Proof. Let us show the equivalence between (i) and (ii). The problemin (i) can be
reformulated as

u∗1 = argminu1∈V1
{F (u1) := ‖u1 − z1‖2

2 + 2α |∇(u1 + u2)| (Ω1),Tr |Γ1 u1 = 0}.
(3.168)
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Recall thatTr |Γ1: V1 → R
Γ1 is a surjective map with closed range. This means

that (Tr |Γ1)
∗ is injective and thatRange(Tr |Γ1)

∗ = {η ∈ V1 with supp(η) = Γ1}
is closed. Using Theorem 3.26 the optimality ofu∗1 is equivalent to the existence of
η ∈ Range(Tr |Γ1)

∗ such that

0 ∈ ∂V1F (u∗1) + 2η. (3.169)

Due to the continuity of‖u1 − z1‖2
2 in V1, we have, by [36, Proposition 5.6], that

∂V1F (u∗1) = 2(u∗1 − z1) + 2α∂V1 |∇(· + u2)| (Ω1)(u
∗
1). (3.170)

Thus, the optimality ofu∗1 is equivalent to

0 ∈ u∗1 − z1 + η + α∂V1 |∇(· + u2)| (Ω1)(u
∗
1). (3.171)

This concludes the equivalence of (i) and (ii). Let us show now that (iii) is equivalent
to (ii). The condition in (iii) can be rewritten as

ξ∗ = (I − PαK)(z1 + u2 − η), ξ∗ = u∗1 + u2.

Since |∇(·)| ≥ 0 is 1-homogeneous and lower-semicontinuous, by [44, Example
4.2.2], the latter is equivalent to

0 ∈ ξ∗ − (z1 + u2 − η) + α∂V1 |∇(·)| (Ω1)(ξ
∗),

and equivalent to (ii). Note that in particular we have∂V1 |∇(·)| (Ω1)(ξ
∗) = ∂V1 |∇(· + u2)| (Ω1)(u

∗
1),

which is easily shown by a direct computation from the definition of subdifferential.
We prove now the equivalence between (iii) and (iv). We have

u∗1 = (I − PαK)(z1 + u2 − η) − u2 ∈ V1, η ∈ V1 with supp(η) = Γ1,Tr |Γ1 u
∗
1 = 0

= z1 − η − PαK(z1 + u2 − η).

By applyingTr |Γ1 to both sides of the latter equality we get

0 = Tr |Γ1 z1 − Tr |Γ1 η − Tr |Γ1 PαK(z1 + u2 − η).

By observing that−Tr |Γ1 PαK(ξ) = Tr |Γ1 PαK(−ξ), we obtain the fixed point
equation

Tr |Γ1 η = Tr |Γ1 z1 + Tr |Γ1 PαK(η − (z1 + u2)). (3.172)

Conversely, since all the considered quantities in

(I − PαK)(z1 + u2 − η) − u2

are inV1, the whole expression is an element inV1 and henceu∗1 as defined in (iii) is
an element inV1 andTr |Γ1 u

∗
1 = 0. This shows the equivalence between (iii) and

(iv) and therewith finishes the proof.
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We wonder now whether any of the conditions in Theorem 3.27 isindeed practically
satisfied. In particular, we want to show thatη ∈ V1 as in (iii) or (iv) of the previous
theorem is provided as the limit of the following iterative algorithm:

η(0) ∈ V1, supp η(0) = Γ1 η(m+1) = (Tr |Γ1)
∗ Tr |Γ1

(
z1 + PαK(η(m) − (z1 + u2))

)
, m ≥ 0

(3.173)

Proposition 3.28 The following statements are equivalent:

(i) there existsη ∈ V1 such thatη = (Tr |Γ1)
∗ Tr |Γ1 (z1 + PαK(η − (z1 + u2)))

(which is in turn the condition (iv) of Theorem 3.27)

(ii) the iteration (3.173) converges to anyη ∈ V1 that satisfies (3.172).

For the proof of this Proposition we need to recall some well-known notions and
results.

Definition 3.29 A nonexpansive mapT : H → H is strongly nonexpansive if for
(un − vn)n bounded and‖T (un) − T (vn)‖2 − ‖un − vn‖2 → 0 we have

un − vn − (T (un) − T (vn)) → 0, n→ ∞.

Proposition 3.30 (Corollaries 1.3, 1.4, and 1.5 [11])Let T : H → H be a strongly
nonexpansive map. Thenfix T = {u ∈ H : T (u) = u} 6= ∅ if and only if (T nu)n
converges to a fixed pointu0 ∈ fixT for any choice ofu ∈ H.

Proof. (Proposition 3.28) Projections onto convex sets are strongly nonexpansive [4,
Corollary 4.2.3]. Moreover, the composition of strongly nonexpansive maps is strongly
nonexpansive [11, Lemma 2.1]. By an application of Proposition 3.30 we immediately
have the result, since any map of the typeT (ξ) = Q(ξ) + ξ0 is strongly nonexpansive
wheneverQ is (this is a simple observation from the definition of strongly nonex-
pansive maps). Indeed, we are looking for fixed points ofη = (Tr |Γ1)

∗ Tr |Γ1 (z1 +
PαK(η−(z1+u2))) or, equivalently, ofξ = (Tr |Γ1)

∗ Tr |Γ1 PαK︸ ︷︷ ︸
:=Q

(ξ)−((Tr |Γ1)
∗ Tr |Γ1 u2)︸ ︷︷ ︸
:=ξ0

,

whereξ = (Tr |Γ1)
∗ Tr |Γ1 (η − (z1 + u2)).

Convergence of the subspace minimization

From the results of the previous section it follows that the iteration (3.165) can be
explicitly computed by

u
(ℓ+1)
1 = Sα(u

(ℓ)
1 +K∗(g −Ku2 −Ku

(ℓ)
1 ) + u2 − η(ℓ)) − u2, (3.174)



Numerical methods for sparse recovery 93

whereSα := I − PαK andη(ℓ) ∈ V1 is any solution of the fixed point equation

η = (Tr |Γ1)
∗ Tr |Γ1

(
(u

(ℓ)
1 K∗(g −Ku2 −Ku

(ℓ)
1 ))

− PαK(u
(ℓ)
1 +K∗(g −Ku2 −Ku

(ℓ)
1 + u2 − η))

)
.

The computation ofη(ℓ) can be implemented by the algorithm (3.173).

Proposition 3.31 Assumeu2 ∈ V2 and ‖K‖ < 1. Then the iteration(3.174)con-

verges to a solutionu∗1 ∈ V1 of (3.163)for any initial choice ofu(0)
1 ∈ V1.

The proof of this proposition is similar to the one of Theorem3.7 and it is omitted.
Let us conclude this section mentioning that all the resultspresented here hold sym-

metrically for the minimization onV2, and that the notations should be just adjusted
accordingly.

3.4.3 Convergence of the Sequential Alternating Subspace Minimization

In this section we want to prove the convergence of the algorithm (3.162) to minimizers
of J . In order to do that, we need a characterization of solutionsof the minimization
problem (2.80) as the one provided in [77, Proposition 4.1] for the continuous set-
ting. We specify the arguments in [77, Proposition 4.1] for our discrete setting and we
highlight the significant differences with respect to the continuous one.

Characterization of solutions

We make the following assumptions:

(Aϕ) ϕ : R → R is a convex function, nondecreasing inR
+ such that

(i) ϕ(0) = 0.

(ii) There existc > 0 andb ≥ 0 such thatcz − b ≤ ϕ(z) ≤ cz + b, for all
z ∈ R

+.

The particular example we have in mind is simplyϕ(s) = s, but we keep a more gen-
eral notation for uniformity with respect to the continuousversion in [77, Proposition
4.1]. In this section we are concerned with the following more general minimization
problem

argminu∈H{Jϕ(u) := ‖Ku− g‖2
2 + 2αϕ(|∇u|)(Ω)} (3.175)

whereg ∈ H is a datum,α > 0 is a fixed constant (in particular forϕ(s) = s).
To characterize the solution of the minimization problem (3.175) we use duality

results from [36]. Therefore we recall the definition of theconjugate (or Legendre
transform)of a function (for example see [36, Def. 4.1, pag. 17]):
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Definition 3.32 Let V andV ∗ be two vector spaces placed in the duality by a bilinear
pairing denoted by〈·, ·〉 andφ : V → R be a convex function. Theconjugate function
(or Legendre transform)φ∗ : V ∗ → R is defined by

φ∗(u∗) = sup
u∈V

{〈u, u∗〉 − φ(u)}.

Proposition 3.33 Let ζ, u ∈ H. If the assumption(Aϕ) is fulfilled, thenζ ∈ ∂Jϕ(u)

if and only if there existsM = (M0, M̄) ∈ H × Hd, |M̄(x)|
2α ≤ c1 ∈ [0,+∞) for all

x ∈ Ω such that

〈M̄ (x), (∇u)(x)〉Rd + 2αϕ(|(∇u)(x)|) + 2αϕ∗
1

( |M̄(x)|
2α

)
= 0 for all x ∈ Ω

(3.176)

K∗M0 − div M̄ + ζ = 0 (3.177)

−M0 = 2(Ku− g), (3.178)

whereϕ∗
1 is the conjugate function ofϕ1 defined byϕ1(s) = ϕ(|s|), for s ∈ R.

If additionally ϕ is differentiable and|(∇u)(x)| 6= 0 for x ∈ Ω, then we can
computeM̄ as

M̄(x) = −2α
ϕ′(|(∇u)(x)|)
|(∇u)(x)| (∇u)(x). (3.179)

Remark 3.34 (i) For ϕ(s) = s the functionϕ1 from Proposition 3.33 turns out to
beϕ1(s) = |s|. Its conjugate functionϕ∗

1 is then given by

ϕ∗
1(s

∗) = sup
s∈R

{〈s∗, s〉 − |s|} =

{
0 for |s∗| ≤ 1

∞ else
.

Hence condition (3.176) specifies as follows

〈M̄ (x), (∇u)(x)〉Rd + 2α|(∇u)(x)| = 0

and, directly from the proof of Proposition 3.33 in the Appendix, |M̄(x)| ≤ 2α
for all x ∈ Ω.

(ii) We want to highlight a few important differences with respect to the continuous
case. Due to our definition of the gradient and its relationship with the divergence
operator− div = ∇∗ no boundary conditions are needed. Therefore condition
(10) of [77, Proposition 4.1] has no discrete correspondentin our setting. The
continuous total variation of a function can be decomposed into an absolute con-
tinuous part with respect to the Lebesgue measure and a singular part, whereas
no singular part appears in the discrete setting. Thereforecondition (6) and (7)
of [77, Proposition 4.1] have not a discrete correspondent either.
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(iii) An interesting consequence of Proposition 3.33 is that the mapSα = (I −PαK)
is bounded, i.e.,‖Sα(zk)‖2 → ∞ if and only if ‖zk‖2 → ∞, for k → ∞. In
fact, since

Sα(z) = arg min
u∈H

‖u− z‖2
2 + 2α|∇u|(Ω),

from (3.177) and (3.178), we immediately obtain

Sα(z) = z − 1
2

div M̄,

andM̄ is uniformly bounded.

Proof. (Proposition 3.33.) It is clear thatζ ∈ ∂Jϕ(u) if and only ifu = argminv∈H{Jϕ(v)−
〈ζ, v〉H}, and let us consider the following variational problem:

inf
v∈H

{Jϕ(v) − 〈ζ, v〉H} = inf
v∈H

{‖Kv − g‖2
2 + 2αϕ(|∇v|)(Ω) − 〈ζ, v〉H} (P)

We denote such an infimum byinf(P). Now we compute (P∗) the dual of (P). Let
F : H → R, G : H×Hd → R, G1 : H → R, G2 : Hd → R, such that

F(v) = −〈ζ, v〉H
G1(w0) = ‖w0 − g‖2

2

G2(w̄) = 2αϕ(|w̄|)(Ω)

G(w) = G1(w0) + G2(w̄)

with w = (w0, w̄) ∈ H × Hd. Then the dual problem of (P) is given by (cf. [36, p
60])

sup
p∗∈H×Hd

{−F∗(M ∗p∗) − G∗(−p∗)} (P∗)

whereM : H → H×Hd is defined by

M v = (Kv, (∇v)1, . . . , (∇v)d)
and M ∗ is its adjoint. We denote the supremum in (P∗) by sup(P∗). Using the
definition of the conjugate function we computeF∗ andG∗. In particular

F∗(M ∗p∗) = sup
v∈H

{〈M ∗p∗, v〉H−F(v)} = sup
v∈H

〈M ∗p∗+ζ, v〉H =

{
0 M ∗p∗ + ζ = 0

∞ otherwise

wherep∗ = (p∗0, p̄
∗) and

G∗(p∗) = sup
w∈H×Hd

{〈p∗, w〉H×Hd − G(w)}

= sup
w=(w0,w̄)∈H×Hd

{〈p∗0, w0〉H + 〈p̄∗, w̄〉Hd − G1(w0) − G2(w̄)}

= sup
w0∈H

{〈p∗0, w0〉H − G1(w0)} + sup
w̄∈Hd

{〈p̄∗, w̄〉Hd − G2(w̄)}

= G∗
1(p∗0) + G∗

2(p̄∗)
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We have that

G∗
1(p∗0) =

〈
p∗0
4

+ g, p∗0

〉

H
and (see [36])

G∗
2(p̄∗) = 2αϕ∗

1

( |p̄∗|
2α

)
(Ω)

if |p̄∗(x)|
2α ∈ Domϕ∗

1, whereϕ∗
1 is the conjugate function ofϕ1 defined by

ϕ1(s) := ϕ(|s|) s ∈ R.

For ease we include in below the explicit computation of these conjugate functions.
So we can write (P∗) in the following way

sup
p∗∈K

{
−
〈−p∗0

4
+ g,−p∗0

〉

H
− 2αϕ∗

1

( |p̄∗|
2α

)
(Ω)

}
(4.180)

where

K =

{
p∗ ∈ H ×Hd :

|p̄∗(x)|
2α

∈ Domϕ∗
1 for all x ∈ Ω,M ∗p∗ + ζ = 0

}
.

The functionϕ1 also fulfills assumption (Aϕ)(ii) (i.e., there existsc1 > 0, b ≥ 0 such
that c1z − b ≤ ϕ1(z) ≤ c1z + b, for all z ∈ R

+). The conjugate function ofϕ1 is
given byϕ∗

1(s) = supz∈R{〈s, z〉 − ϕ1(z)}. Using the previous inequalities and that
ϕ1 is even (i.e.,ϕ1(z) = ϕ1(−z) for all z ∈ R) we have

(sup
z∈R

{〈s, z〉−c1|z|+b} ≥) sup
z∈R

{〈s, z〉−ϕ1(z)} ≥ sup
z∈R

{〈s, z〉−c1|z|−b} =

{
−b if |s| ≤ c1

∞ else
.

(4.181)
In particular, one can see thats ∈ Domϕ∗

1 if and only if |s| ≤ c1.
FromM ∗p∗ + ζ = 0 we obtain

〈M ∗p∗, ω〉H + 〈ζ, ω〉H = 〈p∗,Mω〉Hd+1 + 〈ζ, ω〉H = 〈p∗0,Kω〉H + 〈p̄∗,∇ω〉Hd + 〈ζ, ω〉H = 0

for all ω ∈ H. Then, since〈p̄∗,∇ω〉Hd = 〈− div p̄∗, ω〉H (see Section 2.1.3), we have

K∗p∗0 − div p̄∗ + ζ = 0.

Hence we can writeK in the following way

K =

{
p∗ = (p∗0, p̄

∗) ∈ H ×Hd :
|p̄∗(x)|

2α
≤ c1 for all x ∈ Ω,K∗p∗0 − div p̄∗ + ζ = 0

}
.

We now apply the duality results from [36, Theorem III.4.1],since the functional in
(P) is convex, continuous with respect toM v in H ×Hd, andinf(P) is finite. Then
inf(P)= sup(P∗)∈ R and (P∗) has a solutionM = (M0, M̄ ) ∈ K.
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Let us assume thatu is a solution of (P) andM is a solution of (P∗). Frominf(P)=
sup(P∗) we get

‖Ku−g‖2
2+2αϕ(|∇u|)(Ω)−〈ζ, u〉H = −

〈−M0

4
+ g,−M0

〉

H
−2αϕ∗

1

( |M̄ |
2α

)
(Ω)

(4.182)
whereM = (M0, M̄ ) ∈ H × Hd, |M̄(x)|

2α ≤ c1 andK∗M0 − div M̄ + ζ = 0, which
verifies the direct implication of (3.177). In particular

−〈ζ, u〉H = 〈K∗M0, u〉H − 〈div M̄ , u〉H = 〈M0,Ku〉H + 〈M̄,∇u〉Hd ,

and

‖Ku−g‖2
2+〈M0,Ku〉H+〈M̄,∇u〉Hd+2αϕ(|∇u|)(Ω)+

〈−M0

4
+ g,−M0

〉

H
+2αϕ∗

1

( |M̄ |
2α

)
(Ω) =

(4.183)
Let us write (4.183) again in the following form

∑

x∈Ω

|(Ku− g)(x)|2 +
∑

x∈Ω

M0(x)(Ku)(x) +
∑

x∈Ω

d∑

j=1

M̄ j(x)(∇u)j(x) +
∑

x∈Ω

2αϕ(|(∇u)(x)|)

+
∑

x∈Ω

(−M0(x)

4
+ g(x)

)
(−M0(x)) +

∑

x∈Ω

2αϕ∗
1

( |M̄(x)|
2α

)
= 0.

(4.184)

Now we have

1. 2αϕ(|(∇u)(x)|)+∑d
j=1 M̄

j(x)(∇u)j(x)+2αϕ∗
1

(
|M̄(x)|

2α

)
≥ 2αϕ(|(∇u)(x)|)−

∑d
j=1 |M̄ j(x)||(∇u)j(x)| + 2αϕ∗

1

(
|M̄(x)|

2α

)
≥ 0 by the definition ofϕ∗

1, since

2αϕ∗
1

(
|M̄(x)|

2α

)
= supS∈Rd{〈M̄ j(x), S〉Rd−2αϕ(|S|)} = supS∈Rd{〈|M̄ j(x)|, |S|〉Rd−

2αϕ(|S|)} .

2. |(Ku−g)(x)|2+M0(x)(Ku)(x)+
(
−M0(x)

4 + g(x))(−M0(x)
)

= (((Ku)(x)−

g(x)))2+M0(x)((Ku)(x)−g(x))+
(

M0(x)
2

)2
=
(
((Ku)(x) − g(x)) + M0(x)

2

)2
≥

0.

Hence condition (4.183) reduces to

2αϕ(|(∇u)(x)|) +
d∑

j=1

M̄ j(x)(∇u)j(x) + 2αϕ∗
1

( |M̄(x)|
2α

)
= 0 for all x ∈ Ω

(4.185)

−M0(x) = 2((Ku)(x) − g(x)) for all x ∈ Ω. (4.186)
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Conversely, if such anM = (M0, M̄) ∈ H×Hd with |M̄(x)|
2α ≤ c1 exists which ful-

fills conditions (3.176)-(3.178), it is clear from previousconsiderations that equation
(4.182) holds. Let us denote the functional on the left side of (4.182) by

P (u) := ‖Ku− g‖2
2 + 2αϕ(|∇u|)(Ω) − 〈ζ, u〉H

and the functional on the right side of (4.182) by

P ∗(M) := −
〈−M0

4
+ g,−M0

〉

H
− 2αϕ∗

1

( |M̄ |
2α

)
(Ω).

We know that the functionalP is the functional of (P) andP ∗ is the functional of
(P∗). Henceinf P = inf(P) andsupP ∗ = sup(P∗). SinceP is convex, continuous
with respect toMu in H×Hd, andinf(P) is finite we know from duality results [36,
Theorem III.4.1] thatinf(P)= sup(P∗)∈ R. We assume thatM is no solution of (P∗),
i.e., P ∗(M) < sup(P∗), andu is no solution of (P), i.e, P (u) > inf(P). Then we
have that

P (u) > inf (P) = sup (P∗) > P ∗(M).

Thus (4.182) is valid if and only ifM is a solution of (P∗) andu is a solution of (P)
which amounts to saying thatζ ∈ ∂Jϕ(u).

If additionally ϕ is differentiable and|(∇u)(x)| 6= 0 for x ∈ Ω, we show that we
can computeM̄(x) explicitly. From equation (3.176) (resp. (4.185)) we have

2αϕ∗
1

( | − M̄(x)|
2α

)
= −〈M̄ (x), (∇u)(x)〉Rd − 2αϕ(|(∇u)(x)|). (4.187)

From the definition of conjugate function we have

2αϕ∗
1

( | − M̄(x)|
2α

)
= 2α sup

t∈R

{〈 | − M̄(x)|
2α

, t

〉
− ϕ1(t)

}

= 2α sup
t≥0

{〈 | − M̄(x)|
2α

, t

〉
− ϕ1(t)

}

= 2α sup
t≥0

sup
S∈Rd

|S|=t

{〈−M̄(x)

2α
, S

〉

Rd

− ϕ1(|S|)
}

= sup
S∈Rd

{〈
−M̄(x), S

〉
Rd − 2αϕ(|S|)(Ω)

}
.

(4.188)

Now, if |(∇u)(x)| 6= 0 for x ∈ Ω, then it follows from (4.187) that the supremum is
taken on inS = |(∇u)(x)| and we have

∇S(−〈M̄ (x), S〉Rd − 2αϕ(|S|)(Ω)) = 0
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which implies

M̄ j(x) = −2α
ϕ′(|(∇u)(x)|)
|(∇u)(x)| (∇u)j(x) j = 1, . . . , d,

and verifies (3.179). This finishes the proof.

Computation of conjugate functions. Let us compute the conjugate function of
the convex functionG1(w0) = ‖w0 − g‖2

2. From Definition 3.32 we have

G∗
1(p∗0) = sup

w0∈H
{〈w0, p

∗
0〉H − G1(w0)} = sup

w0∈H
{〈w0, p

∗
0〉H − 〈w0 − g,w0 − g〉H}.

We setH(w0) := 〈w0, p
∗
0〉H − 〈w0 − g,w0 − g〉H. To get the maximum ofH we

compute the Gâteaux-differential atw0 of H,

H ′(w0) = p∗0 − 2(w0 − g) = 0

and we set it to zeroH ′(w0) = 0, sinceH ′′(w0) < 0, and we getw0 = p0
2 + g. Thus

we have that

sup
w0∈H

H(w0) =

〈
p∗0
4

+ g, p∗0

〉

H
= G∗

1(p∗0)

Now we are going to compute the conjugate function ofG2(w̄) = 2αϕ(|w̄|)(Ω).

Associated to our notations we define the spaceH+
0 = R

+
0

N1×...×Nd . From Definition
3.32 we have

G∗
2(p̄∗) = sup

w̄∈Hd

{〈w̄, p̄∗〉Hd − 2αϕ(|w̄|)(Ω)}

= sup
t∈H+

0

sup
w̄∈Hd

|w̄(x)|=t(x)

{〈w̄, p̄∗〉Hd − 2αϕ(|w̄|)(Ω)}

= sup
t∈H+

0

{〈t, |p̄∗|〉H − 2αϕ(t)(Ω)}.

If ϕ were an even function then

sup
t∈H+

0

{〈t, |p̄∗|〉H − 2αϕ(t)(Ω)} = sup
t∈H

{〈t, |p̄∗|〉H − 2αϕ(t)(Ω)}

= 2α sup
t∈H

{〈
t,
|p̄∗|
2α

〉

H
− ϕ(t)(Ω)

}

= 2αϕ∗
( |p̄∗|

2α

)
(Ω)

whereϕ∗ is the conjugate function ofϕ.
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Unfortunatelyϕ is not even in general. To overcome this difficulty we have to
choose a function which is equal toϕ(s) for s ≥ 0 and does not change the supremum
for s < 0. For instance, one can chooseϕ1(s) = ϕ(|s|) for s ∈ R. Then we have

sup
t∈H+

0

{〈t, |p̄∗|〉H − 2αϕ(t)(Ω)} = sup
t∈H

{〈t, |p̄∗|〉H − 2αϕ1(t)(Ω)}

= 2α sup
t∈H

{〈
t,
|p̄∗|
2α

〉

H
− ϕ1(t)(Ω)

}

= 2αϕ∗
1

( |p̄∗|
2α

)
(Ω)

whereϕ∗
1 is the conjugate function ofϕ1. Note that one can also chooseϕ1(s) = ϕ(s)

for s ≥ 0 andϕ1(s) = ∞ for s < 0.

Convergence properties

We return to the sequential algorithm (3.162). Let us explicitly express the algorithm
as follows:

Algorithm 7. Pick an initialV1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈ H, for example,

ũ
(0)
i = 0, i = 1,2, and iterate









u
(n+1,0)
1 = ũ

(n)
1

u
(n+1,ℓ+1)
1 = argmin u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 + ũ

(n)
2 , u

(n+1,ℓ)
1 )

ℓ = 0, . . . , L− 1



u
(n+1,0)
2 = ũ

(n)
2

u
(n+1,m+1)
2 = argmin u2∈V2

Tr|Γ2
u2=0

J s
2 (u

(n+1,L)
1 + u2, u

(n+1,m)
2 )

m = 0, . . . ,M − 1

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1).

(3.189)

Note that we do prescribe a finite numberL andM of inner iterations for each sub-
space respectively and thatu(n+1) = ũ

(n+1)
1 + ũ

(n+1)
2 , with u(n+1)

i 6= ũ
(n+1)
i , i = 1,2,

in general. In this section we want to prove its convergence for any choice ofL andM .

Observe that, fora ∈ Vi and‖K‖ < 1,

‖ui − a‖2
2 − ‖Kui −Ka‖2

2 ≥ C‖ui − a‖2
2, (3.190)
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for C = (1− ‖K‖2) > 0. Hence

J (u) = J s
i (u, ui) ≤ J s

i (u, a), (3.191)

and
J s

i (u, a) − J s
i (u, ui) ≥ C‖ui − a‖2

2. (3.192)

Proposition 3.35 (Convergence properties)Let us assume that‖K‖ < 1. The algo-
rithm in (3.210) produces a sequence(u(n))n∈N in H with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unlessu(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖2 = 0;

(iii) the sequence(u(n))n∈N has subsequences which converge inH.

Proof. Let us first observe that

J (u(n)) = J s
1 (ũ

(n)
1 + ũ

(n)
2 , ũ

(n)
1 ) = J s

1 (ũ
(n)
1 + ũ

(n)
2 , u

(n+1,0)
1 ).

By definition ofu(n+1,1)
1 and the minimal properties ofu(n+1,1)

1 in (3.210) we have

J s
1 (ũ

(n)
1 + ũ

(n)
2 , u

(n+1,0)
1 ) ≥ J s

1 (u
(n+1,1)
1 + ũ

(n)
2 , u

(n+1,0)
1 ).

From (3.191) we have

J s
1 (u

(n+1,1)
1 + ũ

(n)
2 , u

(n+1,0)
1 ) ≥ J s

1 (u
(n+1,1)
1 + ũ

(n)
2 , u

(n+1,1)
1 ) = J (u

(n+1,1)
1 + ũ

(n)
2 ).

Putting in line these inequalities we obtain

J (u(n)) ≥ J (u
(n+1,1)
1 + ũ

(n)
2 ).

In particular, from (3.192) we have

J (u(n)) − J (u
(n+1,1)
1 + ũ

(n)
2 ) ≥ C‖u(n+1,1)

1 − u
(n+1,0)
1 ‖2

2.

After L steps we conclude the estimate

J (u(n)) ≥ J (u
(n+1,L)
1 + ũ

(n)
2 ),

and

J (u(n)) − J (u
(n+1,L)
1 + ũ

(n)
2 ) ≥ C

L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2

2.

By definition ofu(n+1,1)
2 and its minimal properties we have

J (u
(n+1,L)
1 + ũ

(n)
2 ) ≥ J s

2 (u
(n+1,L)
1 + u

(n+1,1)
2 , u

(n+1,0)
2 ).
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By similar arguments as above we finally find the decreasing estimate

J (u(n)) ≥ J (u
(n+1,L)
1 + u

(n+1,M)
2 ) = J (u(n+1)) = J (ũ

(n+1)
1 + ũ

(n+1)
2 ), (3.193)

and
J (u(n)) − J (u(n+1))

≥ C

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2

2 +
M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖2

2

)
, (3.194)

which verifies(i).
From (3.193) we haveJ (u(0)) ≥ J (u(n)). By the coerciveness condition (C)(u(n))n∈N

is uniformly bounded inH, hence there exists a convergent subsequence(u(nk))k∈N

and hence(iii) holds. Let us denoteu(∞) the limit of the subsequence. For sim-
plicity, we rename such a subsequence by(u(n))n∈N. Moreover, since the sequence
(J (u(n)))n∈N is monotonically decreasing and bounded from below by 0, it is also
convergent. From (3.194) and the latter convergence we deduce

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2

2 +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖2

2

)
→ 0, n→ ∞.

(3.195)
In particular, by the standard inequality(a2 + b2) ≥ 1

2(a + b)2 for a, b > 0 and the
triangle inequality, we have also

‖u(n) − u(n+1)‖2 → 0, n→ ∞. (3.196)

This gives(ii) and completes the proof.

The use of the partition of unity{χ1, χ2} allows not only to guarantee the boundedness

of (u(n))n∈N, but also of the sequences(ũ
(n)
1 )n∈N and(ũ

(n)
2 )n∈N.

Lemma 3.36 The sequences(ũ(n)
1 )n∈N and(ũ

(n)
2 )n∈N produced by the algorithm(3.210)

are bounded, i.e., there exists a constantC̃ > 0 such that‖ũ(n)
i ‖2 ≤ C̃ for i = 1,2.

Proof. From the boundedness of(u(n))n∈N we have

‖ũ(n)
i ‖2 = ‖χiu

(n)‖2 ≤ κ‖u(n)‖2 ≤ C̃ for i = 1,2.

From Remark 3.34 (iii) we can also show the following auxiliary lemma.

Lemma 3.37 The sequences(η(n,L)
1 )n and (η

(n,M)
2 )n are bounded.
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Proof. From previous considerations we know that

u
(n,L)
1 = Sα(z

(n,L−1)
1 + ũ

(n−1)
2 − η

(n,L)
1 ) − ũ

(n−1)
2

u
(n,M)
2 = Sα(z

(n,M−1)
2 + u

(n,L)
1 − η

(n,M)
2 ) − u

(n,L)
1 .

Assume(η
(n,L)
1 )n were unbounded, then by Remark 3.34 (iii), alsoSα(z

(n,L−1)
1 +

ũ
(n−1)
2 − η

(n,L)
1 ) would be unbounded. Since(ũ(n)

2 )n and(u
(n,L)
1 )n are bounded by

Lemma 3.36 and formula (3.195), we have a contradiction. Thus (η
(n,L)
1 )n has to be

bounded. With the same argument we can show that(η
(n,M)
2 )n is bounded.

We can eventually show the convergence of the algorithm to minimizers ofJ .

Theorem 3.38 (Convergence to minimizers)Assume‖K‖ < 1. Then accumulation
points of the sequence(u(n))n∈N produced by algorithm (3.210) are minimizers ofJ .
If J has a unique minimizer then the sequence(u(n))n∈N converges to it.

Proof. Let us denoteu(∞) the limit of a subsequence. For simplicity, we rename such
a subsequence by(u(n))n∈N. From Lemma 3.36 we know that(ũ(n)

1 )n∈N, (ũ
(n)
2 )n∈N

and consequently(u(n,L)
1 )n∈N,(u(n,M)

2 )n∈N are bounded. So the limitu(∞) can be
written as

u(∞) = u
(∞)
1 + u

(∞)
2 = ũ

(∞)
1 + ũ

(∞)
2 (3.197)

whereu(∞)
1 is the limit of (u(n,L)

1 )n∈N, u(∞)
2 is the limit of (u(n,M)

2 )n∈N, andũ(∞)
i is

the limit of (ũ
(n)
i )n∈N for i = 1,2. Now we show that̃u(∞)

2 = u
(∞)
2 . By using the

triangle inequality, from (3.195) it directly follows that

‖u(n+1,M)
2 − ũ

(n)
2 ‖2 → 0, n→ ∞. (3.198)

Moreover, sinceχ2 ∈ V2 is a fixed vector which is independent ofn, we obtain from
Proposition 3.35(ii) that

‖χ2(u
(n) − u(n+1))‖2 → 0, n→ ∞,

and hence
‖ũ(n)

2 − ũ
(n+1)
2 ‖2 → 0, n→ ∞. (3.199)

Putting (3.198) and (3.199) together and noting that

‖u(n+1,M)
2 − ũ

(n)
2 ‖2 + ‖ũ(n)

2 − ũ
(n+1)
2 ‖2 ≥ ‖u(n+1,M)

2 − ũ
(n+1)
2 ‖2

we have
‖u(n+1,M)

2 − ũ
(n+1)
2 ‖2 → 0, n→ ∞, (3.200)
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which means that the sequences(u
(n,M)
2 )n∈N and(ũ

(n)
2 )n∈N have the same limit, i.e.,

ũ
(∞)
2 = u

(∞)
2 , which we denote byu(∞)

2 . Then from (3.200) and (3.197) it directly

follows thatũ(∞)
1 = u

(∞)
1 .

As in the proof of the oblique thresholding theorem we set

F1(u
(n+1,L)
1 ) := ‖u(n+1,L)

1 − z
(n+1,L)
1 ‖2

2 + 2α|∇(u
(n+1,L)
1 + ũ

(n)
2

∣∣∣
Ω1

)|(Ω1)

where

z
(n+1,L)
1 := u

(n+1,L−1)
1 + (K∗(g −Kũ

(n)
2 −Ku

(n+1,L−1)
1 ))

∣∣∣
Ω1

.

The optimality condition foru(n+1,L)
1 is

0 ∈ ∂V1F1(u
(n+1,L)
1 ) + 2η(n+1,L)

1

where

η
(n+1,L)
1 = (Tr |Γ1)

∗ Tr |Γ1

(
(z

(n+1,L)
1 ) + PαK(η

(n+1,L)
1 − z

(n+1,L)
1 − ũ

(n)
2 )
)
.

In order to use the characterization of elements in the subdifferential of |∇u|(Ω),
i.e., Proposition 3.33, we have to rewrite the minimizationproblem forF1. More
precisely, we define

F̂1(ξ
(n+1,L)
1 ) := ‖ξ(n+1,L)

1 − ũ
(n)
2

∣∣∣
Ω1

− z
(n+1,L)
1 ‖2

2 + 2α|∇(ξ
(n+1,L)
1 )|(Ω1)

for ξ(n+1,L)
1 ∈ V1 with Tr |Γ1 ξ

(n+1,L)
1 = ũ

(n)
2 . Then the optimality condition for

ξ
(n+1,L)
1 is

0 ∈ ∂F̂1(ξ
(n+1,L)
1 ) + 2η(n+1,L)

1 (3.201)

Note that indeedξ(n+1,L)
1 is optimal if and only ifu(n+1,L)

1 = ξ
(n+1,L)
1 − ũ

(n)
2

∣∣∣
Ω1

is

optimal.
Analogously we define

F̂2(ξ
(n+1,M)
2 ) := ‖ξ(n+1,M)

2 − u
(n+1,L)
1

∣∣∣
Ω2

− z
(n+1)
2 ‖2

2 + 2α|∇(ξ
(n+1,M)
2 )|(Ω2)

for ξ(n+1,M)
2 ∈ V2 with Tr |Γ2 ξ

(n+1,M)
2 = u

(n+1,L)
1 , and the optimality condition for

ξ
(n+1,M)
2 is

0 ∈ ∂F̂2(ξ
(n+1,M)
2 ) + 2η(n+1,M)

2 (3.202)

where

η
(n+1,M)
2 = (Tr |Γ2)

∗ Tr |Γ2

(
(z

(n+1,M)
2 ) + PαK(η

(n+1,M)
2 − z

(n+1,M)
2 − u

(n+1,L)
1 )

)
.
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Let us recall that now we are considering functionals as in Proposition 3.33 with
ϕ(s) = s, K = I, andΩ = Ωi, i = 1,2. From Proposition 3.33 and Remark

3.34 we get thatξ(n+1,L)
1 , and consequentlyu(n+1,L)

1 is optimal, i.e., −2η(n+1,L)
1 ∈

∂F̂1(ξ
(n+1,L)
1 ), if and only if there exists anM (n+1)

1 = (M
(n+1)
0,1 , M̄

(n+1)
1 ) ∈ V1 × V d

1

with |M̄ (n+1)
1 (x)| ≤ 2α for all x ∈ Ω1 such that

〈M̄ (n+1)
1 (x), (∇(u

(n+1,L)
1 + ũ

(n)
2 ))(x)〉Rd + 2αϕ(|(∇(u

(n+1,L)
1 + ũ

(n)
2 ))(x)|) = 0

(3.203)

−2(u
(n+1,L)
1 (x) − z

(n+1,L)
1 (x)) − div M̄

(n+1)
1 (x) − 2η(n+1,L)

1 (x) = 0.
(3.204)

for all x ∈ Ω1. Analogously we get thatξ(n+1,M)
2 , and consequentlyu(n+1,M)

2 is

optimal, i.e., −2η(n+1,M)
2 ∈ ∂F̂2(ξ

(n+1,M)
2 ), if and only if there exists anM (n+1)

2 =

(M
(n+1)
0,2 , M̄

(n+1)
2 ) ∈ V2 × V d

2 with |M̄ (n+1)
2 (x)| ≤ 2α for all x ∈ Ω2 such that

〈M̄ (n+1)
2 (x), (∇(u

(n+1,L)
1 + u

(n+1,M)
2 ))(x)〉Rd + 2αϕ(|(∇(u

(n+1,L)
1 + ũ

(n+1,M)
2 ))(x)|) = 0

(3.205)

−2(u
(n+1,M)
2 (x) − z

(n+1,M)
2 (x)) − div M̄

(n+1)
2 (x) − 2η(n+1,M)

2 (x) = 0,
(3.206)

for all x ∈ Ω2. Since(M̄
(n)
1 (x))n∈N is bounded for allx ∈ Ω1 and(M̄

(n)
2 (x))n∈N

is bounded for allx ∈ Ω2, there exist convergent subsequences(M̄
(nk)
1 (x))k∈N

and (M̄
(nk)
2 (x))k∈N . Let us denoteM̄ (∞)

1 (x) and M̄ (∞)
2 (x) the respective limits

of the sequences. For simplicity we rename such sequences by(M̄
(n)
1 (x))n∈N and

(M̄
(n)
2 (x))n∈N .

Note that, by Lemma 3.37 (or simply from (3.204) and (3.206))the sequences
(η

(n,L)
1 )n∈N and (η

(n,M)
2 )n∈N are also bounded. Hence there exist convergent sub-

sequences which we denote, for simplicity, again by(η
(n,L)
1 )n∈N and (η

(n,M)
2 )n∈N

with limits η(∞)
i , i = 1,2. By taking in (3.203)-(3.206) the limits forn → ∞ we

obtain

〈M̄ (∞)
1 (x), (∇(u

(∞)
1 + u

(∞)
2 ))(x)〉Rd + 2αϕ(|(∇(u

(∞)
1 + u

(∞)
2 ))(x)|) = 0 for all x ∈ Ω1

−2(u
(∞)
1 (x) − z

(∞)
1 (x)) − div M̄

(∞)
1 (x) − 2η(∞)

1 (x) = 0 for all x ∈ Ω1

〈M̄ (∞)
2 (x), (∇(u

(∞)
1 + u

(∞)
2 ))(x)〉Rd + 2αϕ(|(∇(u

(∞)
1 + u

(∞)
2 ))(x)|) = 0 for all x ∈ Ω2

−2(u
(∞)
2 (x) − z

(∞)
2 (x)) − div M̄

(∞)
2 (x) − 2η(∞)

2 (x) = 0 for all x ∈ Ω2
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Sincesupp η
(∞)
1 = Γ1 andsuppη

(∞)
2 = Γ2 we have

〈M̄ (∞)
1 (x), (∇(u(∞))(x)〉Rd + 2αϕ(|(∇(u(∞))(x)|) = 0 for all x ∈ Ω1

−2K∗((Ku(∞))(x) − g(∞)(x)) − div M̄
(∞)
1 (x) = 0 for all x ∈ Ω1 \ Γ1

(3.207)

〈M̄ (∞)
2 (x), (∇(u(∞))(x)〉Rd + 2αϕ(|(∇(u(∞))(x)|) = 0 for all x ∈ Ω2

−2K∗((Ku(∞))(x) − g(∞)(x)) − div M̄
(∞)
2 (x) = 0 for all x ∈ Ω2 \ Γ2.

(3.208)

Observe now that from Proposition 3.33 we also have that 0∈ J (u(∞)) if and only

if there existsM (∞) = (M
(∞)
0 , M̄ (∞)) with |M̄ (∞)

0 (x)| ≤ 2α for all x ∈ Ω such that

〈M̄ (∞)(x), (∇(u(∞))(x)〉Rd + 2αϕ(|(∇(u(∞))(x)|) = 0 for all x ∈ Ω

−2K∗((Ku(∞))(x) − g(∞)(x)) − div M̄ (∞)(x) = 0 for all x ∈ Ω.
(3.209)

Note thatM̄ (∞)
j (x), j = 1,2, for x ∈ Ω1 ∩ Ω2 satisfies both (3.207) and (3.208).

Hence let us choose

M (∞)(x) =

{
M

(∞)
1 (x) if x ∈ Ω1 \ Γ1

M
(∞)
2 (x) if x ∈ (Ω2 \ Ω1) ∪ Γ1

.

With this choice ofM (∞) equations (3.207) - (3.209) are valid and henceu(∞) is
optimal inΩ.

Remark 3.39 (i) If ∇u(∞)(x) 6= 0 for x ∈ Ωj, j = 1,2, thenM̄ (∞)
j is given as in

equation (3.179) by

M̄
(∞)
j (x) = −2α

(∇u(∞) |Ωj )(x)

|(∇u(∞) |Ωj )(x)|
.

(ii) The boundedness of the sequences(ũ
(n)
1 )n∈N and(ũ

(n)
2 )n∈N has been technically

used for showing the existence of an optimal decompositionu(∞) = u
(∞)
1 +u

(∞)
2

in the proof of Theorem 3.38. Their boundedness is guaranteed as in Lemma 3.36
by the use of the partition of the unity{χ1, χ2}. Let us emphasize that there is

no way of obtaining the boundedness of the local sequences(u
(n,L)
1 )n∈N and

(u
(n,M)
2 )n∈N otherwise. In Figure 3.12 we show that the local sequences can

become unbounded in case we do not modify them by means of the partition of
the unity.
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(iii) Note that for deriving the optimality condition (3.209) for u(∞) we combined the
respective conditions (3.207) and (3.208) foru

(∞)
1 andu(∞)

2 . In doing that, we
strongly took advantage of the overlapping property of the subdomains, hence
avoiding a fine analysis ofη(∞)

1 andη(∞)
2 on the interfacesΓ1 andΓ2. This is

the major advantage of this analysis with respect to the one provided in [44] for
nonoverlapping domain decompositions.

3.4.4 A Parallel Algorithm

The parallel version of the previous algorithm (3.210) reads as follows:

Algorithm 9. Pick an initialV1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈ H, for example,

ũ
(0)
i = 0, i = 1,2, and iterate









u
(n+1,0)
1 = ũ

(n)
1

u
(n+1,ℓ+1)
1 = argmin u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 + ũ

(n)
2 , u

(n+1,ℓ)
1 )

ℓ = 0, . . . , L− 1



u
(n+1,0)
2 = ũ

(n)
2

u
(n+1,m+1)
2 = argmin u2∈V2

Tr|Γ2
u2=0

J s
2 (u

(n+1,L)
1 + u2, u

(n+1,m)
2 )

m = 0, . . . ,M − 1

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1).

(3.210)
As for ℓ1-minimization also for this version the parallel algorithmis shown to con-

verge in a similar way as its sequential counterpart.

3.4.5 Applications and Numerics

In this section we shall present the application of the sequential algorithm (3.162)
for the minimization ofJ in one and two dimensions. In particular, we show how to
implement the dual method of Chambolle [14] in order to compute the orthogonal pro-
jectionPαK(g) in the oblique thresholding, and we give a detailed explanation of the
domain decompositions used in the numerics. Furthermore wepresent numerical ex-
amples for imageinpainting, i.e., the recovery of missing parts of images by minimal
total variation interpolation, and compressed sensing, inthe nonadaptive compressed
acquisition of images for a classical toy problem inspired by magnetic resonance imag-
ing (MRI) [55]. The numerical examples of this section and respective Matlab codes
can be found at [79].
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Computation of PαK(g)

To solve the subiterations in (3.162) we compute the minimizer by means of oblique
thresholding. More precisely, let us denoteu2 = ũ

(n)
2 , u1 = u

(n+1,ℓ+1)
1 , andz1 =

u
(n+1,ℓ)
1 +K∗(g−Ku2 −Ku

(n+1,ℓ)
1 ). We shall compute the minimizeru1 of the first

subminimization problem by

u1 = (I − PαK)(z1 + u2 − η) − u2 ∈ V1

for anη ∈ V1 with suppη = Γ1 which fulfills

Tr |Γ1 (η) = Tr |Γ1 (z1 + PαK(η − z1 − u2)) .

Hence the elementη ∈ V1 is a limit of the corresponding fixed point iteration

η(0) ∈ V1, supp η(0) = Γ1, η(m+1) = (Tr |Γ1)
∗ Tr |Γ1

(
z1 + PαK(η(m) − z1 − u2)

)
, m ≥ 0.

(3.211)
HereK is defined as in Section 3.4, i.e.,

K =
{

div p : p ∈ Hd, |p(x)|∞ ≤ 1 ∀x ∈ Ω
}
.

To compute the projection ontoαK in the oblique thresholding we use an algorithm
proposed by Chambolle in [14]. His algorithm is based on considerations of the
convex conjugate of the total variation and on exploiting the corresponding optimality
condition. It amounts to computePαK(g) approximately byαdiv p(n), wherep(n) is
thenth iterate of the following semi-implicit gradient descent algorithm:

Chooseτ > 0, letp(0) = 0 and, for anyn ≥ 0, iterate

p(n+1)(x) =
p(n)(x) + τ(∇(div p(n) − g/α))(x)

1 + τ
∣∣(∇(div p(n) − g/α))(x)

∣∣ .

For τ > 0 sufficiently small, i.e.,τ < 1/8, the iterationαdiv p(n) was shown to
converge toPαK(g) asn → ∞ (compare [14, Theorem 3.1]). Let us stress that
we propose here this algorithm just for the ease of its presentation; its choice for the
approximation of projections is of course by no means a restriction and one may want
to implement other recent, and perhaps faster strategies, e.g., [15,26,48,65,78].

Domain decompositions

In one dimension the domainΩ = [a, b] is split into two overlapping intervals. Let
|Ω1 ∩ Ω2| =: G be the size of the overlap ofΩ1 andΩ2. Then we set|Ω1| =: n1 =⌈

N+G
2

⌉
, Ω1 = [a, n1] andΩ2 = [n1 −G+ 1, b]. The interfacesΓ1 andΓ2 are located
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in i = n1 + 1 andn1−G respectively (cf. Figure 3.8). The auxiliary functionsχ1 and
χ2 can be chosen in the following way (cf. Figure 3.7):

χ1(xi) =

{
1 xi ∈ Ω1 \ Ω2

1− 1
G(i− (n1 −G+ 1)) xi ∈ Ω1 ∩ Ω2

χ2(xi) =

{
1 xi ∈ Ω2 \ Ω1
1
G(i− (n1 −G+ 1)) xi ∈ Ω1 ∩ Ω2

.

Note thatχ1(xi) + χ2(xi) = 1 for all xi ∈ Ω (i.e for all i = 1, . . . ,N ).

10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

 

 

chi1
chi2

Figure 3.7Auxiliary functionsχ1 andχ2 for an overlapping domain decomposition with two
subdomains.

In two dimensions the domainΩ = [a, b] × [c, d] is split in an analogous way with
respect to its rows. In particular we haveΩ1 = [a, n1] × [c, d] andΩ2 = [n1 − G +
1, b] × [c, d], compare Figure 3.9. The splitting in more than two domains is done
similarly:

SetΩ = Ω1 ∪ . . . ∪ ΩN , the domainΩ decomposed intoN domainsΩi,
i = 1, . . . ,N , whereΩi andΩi+1 are overlapping fori = 1, . . . ,N − 1.
Let |Ωi ∩ Ωi+1| =: G equidistant for everyi = 1, . . . ,N − 1. Sets =
⌈N1/N⌉. Then

Ω1 = [1, s +
G

2
] × [c, d]

for i = 2 : N − 1

Ωi = [(i− 1)s − G

2
+ 1, is +

G

2
] × [c, d]

end

ΩN = [(N − 1)s − G

2
+ 1,N1] × [c, d].
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The auxiliary functionsχi can be chosen in an analogous way as in the one dimen-
sional case:

χi(xi1, yi2) =





1
G(i1 − ((i− 1)s−G/2 + 1)) (xi1, yi2) ∈ Ωi−1 ∩ Ωi

1 (xi1, yi2) ∈ Ωi \ (Ωi−1 ∪ Ωi+1)

1− 1
G(i1 − (is −G/2 + 1)) (xi1, yi2) ∈ Ωi ∩ Ωi+1

for i = 1, . . . ,N with Ω0 = ΩN+1 = ∅.

Ω2

Γ2
d d

Γ1

Ω1

Figure 3.8Overlapping domain decomposition in 1D.

a = x1

Ω1 \ Ω2

xn1−G ——- ——- Γ2 ——- ——-

Ω1 ∩ Ω2

xn1+1 ——- ——- Γ1 ——- ——-

Ω2 \ Ω1

b = xN

Figure 3.9Decomposition of the image in two domainsΩ1 andΩ2.

To compute the fixed pointη of (3.172) in an efficient way we make the following
considerations, which allow to restrict the computation from Ω1 to a relatively small
stripe around the interface. The fixed pointη is actually supported onΓ1 only, i.e.,
η(x) = 0 in Ω1 \ Γ1. Hence, we restrict the fixed point iteration forη to a relatively
small stripeΩ̂1 ⊂ Ω1 Analogously, one implements the minimizations ofη2 on Ω̂2.

Numerical experiments

In the following we present numerical examples for the sequential algorithm (3.210)
in two particular applications: signal interpolation/image inpainting, and compressed
sensing [79].
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Figure 3.10 We present a numerical experiment related to the interpolation of a 1D signal
by total variation minimization. The original signal is only provided outside of the green
subinterval. The initial datumg is shown in (a). As expected, the minimizeru(∞) is the
constant vector 1, as shown in (b). In (c) and (d) we display the rates of decay of the relative
error and of the value ofJ respectively, for applications of the algorithm (3.210) with different
sizes G=1,5,10,20,30 of the overlapping region of two subintervals.
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Figure 3.11 We show a second example of total variation interpolation in1D. The initial
datumg is shown in (a). As expected, a minimizeru(∞) is (nearly) a piecewise linear function,
as shown in (b). In (c) and (d) we display the rates of decay of the relative error and of the value
of J respectively, for applications of the algorithm (3.210) with different sizes G=1,5,10,20,30
of the overlapping region of two subintervals.
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In Figure 3.10 and Figure 3.11 we show a partially corrupted 1D signal on an in-
terval Ω of 100 sampling points, with a loss of information on an interval D ⊂ Ω.
The domainD of the missing signal points is marked with green. These signal points
are reconstructed by total variation interpolation, i.e.,minimizing the functionalJ in
(2.80) withα = 0.4 andKu = 1Ω\D · u, where 1Ω\D is the indicator function of
Ω \ D. A minimizer u(∞) of J is precomputed with an algorithm working on the
whole intervalΩ without any decomposition. We show also the decay of relative error
and of the value of the energyJ for applications of algorithm (3.210) on two subdo-
mains and with different overlap sizesG = 1,5,10,20,30. The fixed pointsη’s are
computed on a small interval̂Ωi, i = 1,2, of size 2. These results confirm the behav-
ior of the algorithm (3.210) as predicted by the theory; the algorithm monotonically
decreasesJ and computes a minimizer, independently of the size of the overlapping
region. A larger overlapping region does not necessarily imply a slower convergence.
In these figures we do compare the speed in terms of CPU time. InFigure 3.12 we
also illustrate the effect of implementing the BUPU within the domain decomposition
algorithm. In this case, with datumg as in Figure 3.11, we choseα = 1 and an overlap
of sizeG = 10. The fixed pointsη’s are computed on a small intervalΩ̂i, i = 1,2
respectively, of size 6. Figure 3.13 shows an example of the domain decomposition
algorithm (3.210) for total variation inpainting. As for the 1D example in Figures
3.10-3.12 the operatorK is a multiplier, i.e.,Ku = 1Ω\D · u, whereΩ denotes the
rectangular image domain andD ⊂ Ω the missing domain in which the original image
content got lost. The regularization parameterα is fixed at the value 10−2. In Figure
3.13 the missing domainD is the black writing which covers parts of the image. Here,
the image domain of size 449× 570 pixels is split into five overlapping subdomains
with an overlap sizeG = 28× 570. Further, the fixed pointsη’s are computed on a
small stripeΩ̂i, i = 1, . . . ,5 respectively, of size 6× 570 pixels. Finally, in Figure
3.14 we illustrate the successful application of our domaindecomposition algorithm
(3.210) for a compressed sensing problem. Here, we considera medical-type image
(the so-calledLogan-Shepp phantom) and its reconstruction from only partial Fourier
data. In this case the linear operatorK = S ◦F , whereF denotes the 2D Fourier ma-
trix andS is adownsampling operatorwhich selects only a few frequencies as output.
We minimizeJ with α set at 0.4× 10−2. In the application of algorithm (3.210) the
image domain of size 256× 256 pixels is split into four overlapping subdomains with
an overlap sizeG = 20× 256. The fixed pointsη’s are computed in a small stripêΩi,
i = 1, . . . ,4 respectively, of size 6× 256 pixels.
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Figure 3.12Here we present two numerical experiments related to the interpolation of a 1D
signal by total variation minimization. The original signal is only provided outside of the green
subinterval. On the left we show an application of algorithm(3.210) when no correction with
the partition of unity is provided. In this case, the sequence of the local iterationsu(n)

1 , u
(n)
2

is unbounded. On the right we show an application of algorithm (3.210) with the use of the
partition of unity which enforces the uniform boundedness of the local iterationsu(n)
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2 .
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Initial Picture

(a)

146 iterations  

(b)

Figure 3.13This figure shows an application of algorithm (3.210) for image inpainting. In
this simulation the problem was split into five subproblems on overlapping subdomains.
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Figure 3.14 We show an application of algorithm (3.210) in a classical compressed sens-
ing problem for recovering piecewise constant medical-type images from given partial Fourier
data. In this simulation the problem was split via decomposition into four overlapping subdo-
mains. On the top-left figure, we show the sampling data of theimage in the Fourier domain.
On the top-right the back-projection provided by the sampled frequency data together with
the highlighted partition of the physical domain into four subdomains is shown. The bottom
figures present intermediate iterations of the algorithm, i.e.,u(26) andu(125).
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