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QJ What does the modeFRONTIER support?

Which of the following are supported by modeFRONTIER?
Continuous Nonlinear Program
Continuous Linear Program
Integer Linear Program
Integer Nonlinear Program
Mixed Integer Linear Program
Mixed Integer Nonlinear Program
Multiple Objective Continuous Nonlinear Program
Multiple Objective Mixed Integer Nonlinear Program



% Scheduler Properties

l 2 DOE Sequence 7]
Scheduler based on the user's sequence defined in the DOE table. The complete
independence between the DOE rows allows the cancurrent evaluation of the different
designs.

[ Optimization Wizard

5 Sehedulers ®

| & DoE Seguence \
@ MACK

85 Basic Optimizers ®

2 SIMPLEX
2 B-BFGS
@ Levenherg-Marquardt
@ MOGA-N
@ ARMOGA

B2 Advanced Optimizers (]

& MOSA

& NSGA
@ MOGT

& FMOGA
& MOPSO
@ FGIMPLEX

E Evolution Strategies @

@ 1P1-ES
@ DES
& MMES

g Sequential Guadratic Programmi... @

@ NLPQLP
& NBI-NLPGLP

Run Options |RSM Options ] MORDO Options

= Run Options

Mum. of Concurrent Design Evaluations
Save Errar Design in DB

Evaluate Repeated Desions

Save Repeated Design in DB

Evaluate Unfeasible Designs

Clear Design Dir on Exit

=]/ == =

=

Ever b

Cancel l [ Help

modeFRONTIER Optimization Algorithms

Available Algorithms:

Schedulers
 DOE Sequence
e  MACK Multivariate Adaptive Crossvalidating Kriging

Basic Optimizers

e SIMPLEX Single-objective derivative-free optimizer
« B-BFGS Single objective Bounded BFGS algorithm
» Levenberg-Marquardt

e MOGAII Multi Objective Genetic Algorithm

e ARMOGA Adaptive Range MOGA

Advanced Schedulers

e MOSA Multi Objective Simulated Annealing Algorithm
« NSGAII Non-dominated Sorting Genetic algorithm

e MOGT Game Theory coupled with Simplex algorithm
« F-MOGAII Fast Multi Objective Genetic Algorithm

e MOPSO Multi Objective Particle Swarm Optimizer

e F-SIMPLEX Fast Single-objective derivative-free optimizer

Evolution Strategy Schedulers

« 1P1-ES
« DES Derandomised Evolution Strategy
e MMES Multi-membered evolution strategy

Sequential Quadratic programming

e NLPQLP Robust implementation of a sequential
quadratic programming algorithm.
Multi-objective scheduler based on the NBI -
Normal-Boundary Intersection method

e NLPQLP-NBI



QJ Comparison Between Methods
o

Convergence rate : higher for gradient-based methods (SQP, BFGS),
SIMPLEX and MOGT

Accuracy : better for gradient-based methods

Robustness : much higher for probabilistic methods (GA, ES),

good for Simplex

Multi-objective: MOGA-Il, NSGA-II, F-MOGA-IlI, MOSA, MOGT,

MOPSO, NBI-NLPQLP and MMES



QJ Difficulties of Numerical Optimization

o

There is a huge difference between mathematical optimization and
optimization in the real-world applications

Ideal function in
G the mathematical
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&ﬁ' Difficulties of Numerical Optimization

AW

oy U1

7.
8. Algorithm efficient in solving one problem may not be efficient in solving

9.

. Most optimization algorithms have difficulty dealing with discontinuous

functions.

. The functions may be unknown (black-boxes) or very complex

Computational time increases as the number of design variables increases.

Optimization techniques have no stored experience or intuition on which
to draw.

. Most algorithms will get stuck at local optimal points.

If the analysis program is not theoretically precise, the results may be
misleading.

Convergence to optimal solution depends on chosen initial solution.

a different optimization problem (problem-dependent)

Many analysis/simulation programs were not written with automated
design in mind.

10. Time consuming functions
1...



J

Optimization methods descriptions

- NBI
- SIMPLEX
- Evolution Strategies



Q/ 5.2 Normal Boundary Intersection (NBI-NLPQLP)
A

NBI-NLPQLP = Normal Boundary Intersection + NLPQLP

Multi-objective scheduler based on the NBI method, developed by I. Das
and J. E. Dennis.

The NBI method applies to any smooth multi-objective problem, reducing it
to many single-objective constrained subproblems (the “NBI
subproblems”).

So the NBI method has to be coupled with a single-objective solver in order
to solve these subproblems: NLPQLP is used.



q, NBI-NLPQLP

« The NBI subproblems are characterized by the introduction of one new
variable and N constraints, with respect to the original multi-objective
problem (N = number of objectives).

Algorithm scheme:
1. Evaluation of DOE designs.
2. Each objective function is solved separately, as a single-objective
problem (starting from most favorable DOE) - setting of internal
parameters.
3. Allthe NBI subproblems are solved successively.



o

Number of Pareto
Points (Sub-problems):
larger values imply a
better resolution of the
Pareto frontier (but
request more and more
design evaluations).

)/ NLPQLP-NBI Panel

= NE-NLPQLP 7]
multi-ohjective scheduler based on the MBI - Mormal-Boundary Intersection method of |
Das and J. E. Dennis (1898) coupled with the MLPGLP algorithm.

Main features:
1y Applies to any general multi-ohjective problem.
23 Finds several optimal points evenly distributed in the Pareto set.
3 Uses MLPGLP to solve the constrained MBI subproblems.
43 Bounds of variahles and linear constraints remain satisfied.
21 Allowes concurrent evaluation of function values for gradient approximations.

The entries of the DOE table are used as the stating points for the initial search for
single-objective alobal minima.

=l Parameters

Maximum Mumber of lterations per ... [1,9999]|500

Approximate Derivatives With Central Differences w
| 1w PN RTR Y

Lumberof Pareto Paoints (Subprobl (289991110 I

=l Advanced Parameters

Final Termination Accuracy [1.0E-10,1.0]/1.0E-5

Finite Difference Relative Perurbation[0.0,1.0](1.0E-7

Finite Difference Minimum Perturbation Policy |Constant W
Caonstant Minimum Perurbation  [0.0,1.0E12](1.0E-7



q/ NLPQLP-NBI - Example
Y

Example: DEB problem

DEB problem

minﬁ = I 12¢
minf, = (1+a2)/z

101

I € [0.1, 1} , T9 {U, 5}

g1 = m+921 26 ul
g = —rp+9r 2> 1




Q! NLPQLP-NBI Example

Example: Problem DEB

Problem CEB
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Q! NBI-NLPQLP

Note:

since the single-objective solver of the NBI-NLPQLP scheduler is a gradient
based method, NBI-NLPQLP is an accurate and fast converging algorithm.

The drawback is the low robustness of the algorithm, as expected for all the
classical (gradient-based) methods.

The problem to be solved has to be smooth and well scaled.

Furthermore the Pareto curve has to be sufficiently regular.



Q/ Nelder-Mead SIMPLEX - method
4

e SIMPLEX is a geometric figure with n+1 vertices in an n-dimensional space
(e.g. in a 2D space is a triangle, in a 3D space is a tetrahedral)

e It does not use the gradient of the function (robust algorithm)

e Minimization of the target function is achieved using heuristic operators:
reflection, reflection and expansion, contraction.



Q’l SIMPLEX
o

Example: hills problem

max [ — exp (—(m2 + yg)/l[]) (sin(z + y) + cos(z — y))
r, y € [—m ]



PN

)/ SIMPLEX

o

,-:f i '| smplsan all emmoe Tixa ke
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R eflection

x, = (1 + a)x, - ax,

Xog = L Zn: X ; centroid
Ni=1,izh

o = ||x — x0|| a > 0
lxs = xo

Expansion
X, = YVx, + (1_ 7)x0

_ ||xz — x0||

o =
I, = xo]

Contraction
x. = Bx, + (1~ B)x,
5 = e = x|

||xh - x0||




q, SIMPLEX Panel

Final Termination
Parameters:

 Max. Num. lterations

 Final Accuracy

Constraint Penalty

* Automatic

= SIMPLEX & 7]

Scheduler based on a modified single ahjective SIMPLEX algarithim.

Main features:
13 Oheys boundary constraints on continuous variables.

4 Allowes user defined discretization (hase).
3 Enfarces user defined constraints by objective function penalization.
43 The n+1 independent paints ofthe initial simplex can he evaluated concurrently.

The first n+1 {n=number of variahles) entries in the DOE table are used as the initial
simplex for the local optimization problem.

=l Parameters

Maximum Mumber of terations [1,9994] 400

\ 4

=l Acvanced Parameters
Final Termination Accurac 1.0E-10.1.01/1.0E-5
— > Laonstraint Penalty Palicy Alutomatic A"

(Recommended)

» User Defined




)y Comparison between BFGS and Simplex

o

Function to optimise : TEST 1

BFGS
Simplex

quadratic constraints
B2 quadratic constraints
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Evolutionary Strategies



QJ Definition
o

“In computer science, evolution strategy (ES) is
an optimization technique based on ideas of

adaptation and evolution. It belongs to a
more general class of evolutionary
computation”

( Wikipedia - April 2007 )



Q/ History
o

o Evolution Strategy were first used at the Technical University of
Berlin

e During the search for the optimal shapes of bodies in a flow, the
classical attempts with the coordinate and the well-known
gradient-based strategies were unsuccessful

« The idea was conceived of proceeding strategically

« Ingo Rechenberg and Schwefel proposed the idea of trying
random changes in the parameters defining the shape, following
the example of natural mutations

e Thus, ES were invented to solve technical optimization problems
where no analytical objective functions are usually available



DARWIN in the wind tunnel!

The first real-case
application of
Evolution Strategy
methods used by
Prof. Rechenberg




QJ The first experiment
o

Number of possible adjustments

51° = 345 025 251



o

Werkes — Proust an elne Belannie:
Jodeite de Cricy (ving seincr Roman-
figuren) ist nicht nur nichl Sle, sondern
genou das Gegenteil von Thnen® — so-
wie vom qualvollen Kampf um dic end-
gliltige Edition deér  Recherche®, den
Prousi unter Schmerzen und Atemnot
vom Beit aus fibren mubte, srbelts-
fihig - nur durch RKoffeintabletten, ge-
trieben von Todesangst und von Furchl,
die Vertffentlichung des Werkes nicht
mehr @ erleben oder den .endlosen
Wiilzer® (Proust) fbechoupt nicht voll-
enden xu kinnen,

Ale sich nach Erscheinen der ersten
Riinde unerwarteier Erfolg elnatellte —
fiir den swelten Band erhlell Proust
1918 den Prix Goncourt —, lebte der
Moribunde fir kurze Zelt noch elnmal
auf. Er ging wieder aus, meisténs nachts;
und dinlerte im Hotel Ritz, wo er folén-
bleich, mit fiebrigen Augen erschien, in
elnem hocheleganten, ober deranglerton
Abendanzug, sus dessen Jackett wiir-

W History in a Magazine

FORSCHUNG

AERDDYNAMIK

Zickzack nach Darwin

Dm- Eingebung und olimals ouch
gliucklichem Zufall verdanken
Generationen von Flugzeuglechnikern
mkunftweisétnde Lisungen. Aber gin
Student der Technischen Universitit in
West-Berlin - miichte den Fortschriit
kalkulabel machen: Er fand fir das
Houlette-Spiel der Fiugaougingenioure
eln System.

Zahllogse aufwendige Versuchsreihen
in mistshausgrofen Windkaniilen, deren
Bau Millionen Dollar kosiet und In
denen  Mammui-Fligelelider Jeichte
Brise shenso wie heulenden Orkan oder
mehrfach schallsehnelle Luftstrime er-
yougen kinnen, sind bel den groden
Flugzeugfirmen nblig, um fir ein neuves

Stuelent Rechenberg, Lehear Wille®: Roulate in der Hodhschule

(OER SPIEGEL

18t November 1964

Zigzag after DARWIN



QJ Biological Evolution
o

ES belongs to the family of
evolutionary algorithms (EAS)
together with Genetic Algorithms
(GAs).

EAs are direct global search
methods based the model of
organic evolution.
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q&/ Nature’s Way of Optimization

Protoplasm



PN

q&/ Nature’s Way of Optimization

fish
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q&/ Nature’s Way of Optimization

3

Life peeks out of the
water and spreads over
the country




B Nature’s Way of Optimization

4

Our ancestors climb
the treetops




QJ Nature’s Way of Optimization
o

5

And finally... Human
being



QJ Glossary: Terms and Operators
o

Terms:

Gene: design parameter

Individual: design

Elite: preferred design

Fitness: objective function
Population: set of individuals
Archive: set of saved good individuals

Operators:

Selection
Reproduction
Mutation



Q/ Evolutionary Strategy General Scheme
o

Initial population

Evaluate individuals

Selection of the best individual(s)
Recombination

Mutation

Evaluate individuals

Return to step 3 until convergence is reached
End

® N VAW



(1+1)-ES, one offspring with archive



w (1 + 1)-ES in modeFRONTIER 4

(&

o

= Evalution Strateqgy ﬁ

Scheduler based on (mu+lambda)-Evolution Strategy and {mu lambda)-Evolution Strategy.

Main features are:
1) Self-adaptive refinement of step-sizes.
2) Handles user defined constraints by means of Pareto ranking.
3) Supports mixed discrete and continuous optimization.
4} Diversity and spread of solutions is guaranteed without use of sharing parameters.
) Allows concurrent evaluation of independent individuals.

The first (mu) entries in the DOE table are used as the problem's initial population.

= Parameters

FMumber of Generations [1.5000] 100

MMumber of Offsprings [1,100&1

= Advanced Parameters

Initial Stepsize (% of Range) [0o1.001|01

Minimal Stepsize (% of Range) [0.0,1.000.01

Selection Type +

Fecombination Off w
Fandom Generator Seed [0.9599]1

= Category Parameters

Categorize Generations ||:|

To set (1+1)-ES:

1. Set 1 point in the DOE
table

2. Set the number of
offsprings equal to 1

3. Set the selection type
equal to +

4. Switch off the
recombination



Evolution Strategy
with more than one
offspring (no archive)



W (1, 6)- ESin modeFRONTIER 4

(&

o

= Evolution Strategy ﬁ
Scheduler based on {(mu+lambda)-Evolution Strategy and {(mu,lambdal-Evolution Strategy.

Main features are:
1) Selt-adaptive refinement of step-sizes. .
2y Handles user defined constraints by means of Pareto ranking. TO Set (1 ’6)_ES
3) Supports mixed discrete and continuous optimization.
47 Diversity and spread of solutions is guaranteed without use of sharing parameters.
5 Allows concurrent evaluation of independent individuals.

1. Set 1 point in the DOE

The first (mu) entries in the DOE table are used as the problem’s initial population.

= Parameters table
" |Mumber of Generations [1.,5000](100
Mumber of Offsprings [1.100}|& 2 Set the number Of
= Advanced Parameters Offsprings equa| to 6
Initial Stepsize (% of Range) [0.0,1.010.1 )
Minimal Stepsize (% of Range) [0.0,1.0]/0.01 3. Set the selection ’[ype
Selection Type ) ~
Fecombination Off ot equal tO ;
Random Generator Seed [O,9949] 1

= Category Parameters 4 SW|tCh Off the
Categorize Generations ||:| I’ecombina’[ion




Evolution Strategy with
more parents and more
offspring (no archive)



W (2, 7)- ESin modeFRONTIER 4

(&

o

= Evalution Strategy ﬁ
Scheduler based on {mu+lambda)-Evolution Strategy and (mu lambda)-Evolution Strategy.

Main features are:
1) Selfadaptive refinement of step-sizes.

2) Handles user defined constraints by means of Pareto ranking. _ .
3) Supports mixed discrete and continuous optimization. TO Set (2’7) ES

4 Diversity and spread of solutions is guaranteed without use of sharing parameters.
31 Allows concurrent evaluation of independent individuals.

The first {(mu) entries in the DOE table are used as the problem's initial population. 1 - Set 2 pOInt In the DOE

: = Parameters table
" Mumber of Generations [1.,5000]

100
Number of Offsprings [1,1nn]| 2. Set the number of
= Advanced Parameters Offsprings equa| tO 7

Initial Stepsize (% of Range) [0.0,1.000.1 )

Minimal Stepsize (% of Range) [0.0,1.0]0.01 3. Set the selection type
Selection Type . W

Fecombination Off w equal tO ’

Fandom Generator Seed [0,999] 1 4 SWltCh Off the

=l Category Parameters

Categorize Generations (m recombination




Evolution Strategy
with mixing of
variables
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Nested Evolution Strategy



w (2 /2, 8)- ES in modeFRONTIER 4

(&

o

= Evalution Strategy =
Scheduler based on (mu+lambda)-Evolution Strategy and (mu lambda)-Evolution Strategy.
Main features are:
1) Selfadaptive refinement of step-sizes.
21 Handles user defined constraints by means of Pareto ranking.
3 Supports mixed discrete and continuous optimization.
4) Diversity and spread of solutions is guaranteed without use of sharing parameters.
4 Allows concurrent evaluation of independent individuals.
The first (mu) entries in the DOE table are used as the problem's initial populatian.
: = Farameters
" |Number of Generations [1,500001100
Mumber of Offsprings [1100&
= Advanced Parameters
Initial Stepsize (% of Range) [0.01.00/0.1
Minimal Stepsize (% of Range) [0.0,1.000.01
Selection Type . w
Recombination Intarmediate e
Random Generator Seed [0,998]1
= Category Parameters
Categorize Generations ||:|

To set (2/2,8)-ES:

1. Set 2 point in the DOE
table
2. Set the number of
offsprings equal to 8
3. Set the selection type
equal to
4. Switch on the

intermediate
recombination



Q/ ES notations
o

« Different notations specify how the population of the next
generation is formed out of a set of best individuals of the old
population

« Different strategies:
- (4 , A)-ES, the archive size is equal to zero. The u best out of
A offspring completly replace the old population
- (U + A)-ES, the archive size is equal to u (this represents a
kind of elitism). The u best out of A offspring and p from the
old pupulation are selected

- (W/p + A)-ES, the archive size is equal to w/p. Only u/p best
individual contribute to bild up the offspring



QJ Parent selection
4

e Selection plays a crucial role on performance and convergence

e Using plus-selection (archive size greater than zero) is
usually recommended for combinatorial optimization problems

e Parents can be selected in different ways:
- every individual has the same probability to be selected

- with a probability that is proportional to the fithess




QJ Survivor selection
o

e Another kind of selection is applied after creating A children from
the u parents by mutation and recombination

« Deterministically chops off the bad results

« Selection of the best results basis either on:

e The set of children only: (u,A)-ES. This selection can
“forget” some good results

» The set of parents and children: (u+A)-ES. This selection is a
kind of elitist strategy



Q/ Mutation and Recombination
o

e Mutation and recombination operators in ESs are problem-
specifically desighed

« Depending on the search space and objective function, the
recombination and/or the mutation of the strategy parameters
may occur differently

e Mutation represents the main source of variation

« Recombination is applied whenever possible and useful. It uses p
or more parental individuals to generate a single recombinant.



Q/ Mutation with continuous variables
o

e Mutation is based on a normal distribution, a
random variation of the genes

« The standard deviation of the normal .50 T
distribution changes during the 010}
generations (adaptation) |

o Usually the standard deviation decreases =
continuously

« Each design variable is assigned a standard
deviation for generating an appropriate PR
mutation step

« In CMA-ES the shape of mutation distribution is

generated according to a covariance matrix C
that is adapted during evolution




Q/ Mutation with discrete variables
o

Examples of mutation with discrete variables:

random positions random positions
parent parent |l|2.4|5|6|7|8|9|
by inversion . by insertion
oftspring  [I2[GISIEBI7ISI9] (fin-2-0pi) oftspring  [1[2[4[S[eTBI7[8I9] ~(or-0p)
random positions random positions
parent [1]2]3 . 5l6[7]8]9] parent [1[2]3]4]5]6]|7[8]9]

1]5]6[2I8]%17[8]9] by shifting

offspring | | |2|3|8a5:|5 |6|7 by 2-exchange offspring




QJ Recombination
4

« The main goal of recombination is the conservation of common
components of the parents

e Recombination transfers the beneficial similarities to the next
generation

« Recombination damps the effect of malicious components of the
parents’ genes (genetic repair effect).

Recombination using
continuous variables



q! Recombination with discrete variables
A

e One-point crossover is the most classical operator for recombination

e Two parents are chosen and some portion of the genetic material is
exchanged between the parent variables vectors.

e The point of the crossing site is randomly chosen and the binary strings are
cut at that point.

 The two heads are then swapped and rejoined with the two tails. From the
resulting individuals one is randomly selected to be the new individual.

0101001101010010100010110

107101 010100101001 11010701

\)

o10100110101 0010101010101

101010101001 01001 1FJEI1 o110




Q/ How to select the best strategy?
A

on we compare the sum over all f of

which the reverse is true?” To address t

P(d¥|f,m,a;) to the sum over all f of F
result of this paper: P(dY |f,m,a)1is 11

. This comparison constitutes a major
of a When we average over all cost functions:

nd a,,

=Y P(d%|f.m,az).
f

Theorem 1 For any pair of algorith

2 P(dyf
A proof of this result is found in Appe An immediate corollary of this result is that for
%(«dm )|f,m, a) is independent

The No Free Lunch Theorem for Optlmlzatlé .
nancemeasure s unimnporiant

This theorem exphmtly demonstra.tes tha.t what an algorithm gains in performance on
one class of problems it necessarily pays for on the remaining problems; that is the only way
that all algorithms can have the same f-averaged performance.

*D. H. Wolpert, W.G. Macready



q! Hints
o

« Larger offspring population sizes (L) take longer to converge,
but can find better solutions

e Intermediate recombination on object variables helps to overcome
premature convergence problems

« Using large values for initial perturbation ones will
increase the time to converge but the method results to be more
robust

e On the contrary, using smaller ones will increase the probability of
premature convergence



Q/ Application of ES
A

o ES methods are recommended for:
- Scalable to high-dimensional optimization problems
Problems well-suited for evolutionary improvement of designs
0/1 problems
Continuous, discrete and binary variables
Large number of constraints
e Advantages:

- Always converge to a good enough solution in successive, self-
contained stages

- No gradients are necessary
- Robustness against noisy objective functions.
- Parallelization
e Shortcomings
- Slow convergence



J

Few words on the convergence of
multiobjective algorithms
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q, Difference in Single Objective GA and Multi-Objective GA
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MOGA applied to trade-off SOGA applied to trade-off SOGA applied to MO Problem

problem problem without trade-off



qg! Desirable Features in Multi-objective

Approach to Pareto Front

Wide coverage of Pareto front
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4
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