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Gradient Maximum Principle for Minima
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Abstract. We state a maximum principle for the gradient of the minima
of integral functionals

I (u)G�
Ω

[ f (∇ u)Cg(u)] dx, on ūCW 1,1
0 (Ω ),

just assuming that I is strictly convex. We do not require that f, g be
smooth, nor that they satisfy growth conditions. As an application, we
prove a Lipschitz regularity result for constrained minima.

Key Words. Comparison principle, gradient maximum principle,
Lipschitz regularity, maximum principle.

1. Introduction

Most of the results on the regularity of the minima of integral func-
tionals have as a starting point the Euler equation of the functional in con-
sideration. This requires the Lagrangian to be smooth and, together with
its derivatives, satisfy some growth conditions. Giaquinta and Giusti (Ref.
1) and more recently Cellina (Refs. 2, 3) have tried to study the regularity
for minima working directly with the functional instead of using the Euler
equation.

A classical tool to give an estimate of the gradient of regular solutions
to quasilinear elliptic equations is the maximum principle for the gradient
(Ref. 4, Theorem 15.1). This can be proved by showing that the derivatives
of the solutions satisfy an elliptic equation obtained by differentiating the
original one and by using the maximum principle for subsolutions�super-
solutions. In particular, this result can be applied to the regular minima of
integral functionals that satisfy the Euler equation.
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In the case where the Lagrangian is nonsmooth and does not satisfy
any growth assumption, a maximum principle for the gradient does still
hold for the minima of functionals of the gradient among the Lipschitz
functions (with prescribed boundary data); a survey on the subject is given
in Ref. 5. In this situation, the proof is not based on the study of the associ-
ated Euler equation, but exploits just the minimality property.

In Section 4 of this paper, we extend the techniques that are involved
in the latter result for the minima of integral functionals I of the form

I (u)G. �
Ω

[ f (∇ u)Cg(u)] dx

among the functions u in ūCW 1,1
0 (Ω ). We prove that, if I is strictly convex

and τ is in �n, then each minimum w of I satisfies

ess sup
Ω∩ (−τCΩ)

[w(xCτ )Aw(x)]⁄ sup
∂(Ω∩ (−τCΩ))

[w(xCτ )Aw(x)]C,

where the latter supremum is intended in the sense of the Sobolev functions,
without requiring that f, g be smooth or that they satisfy growth conditions.

We look at the variations of the form w(xCτ )Aw(x) as the difference
of two minima of the same functional; we then apply a maximum principle
to relate these expressions to the boundary data. Here, neither w(x) nor
w(xCτ ) are known to be subsolutions or supersolutions to a partial
differential equation: the classical maximum principle (Ref. 4, Theorem
10.9) cannot be applied. This motivates a comparison principle for submin-
ima�superminima for the wider class of strictly convex functionals of the
form

I (u)G�
Ω

L(x, ∇ u) dx.

In Section 5, we apply the main result to establish that the minima of
a strictly convex functional I that lie between two Lipschitz functions (with
the same boundary data) are Lipschitz. As a consequence, we prove that
that minima of I whose gradient belongs to a prescribed convex set are the
minima of I in the set of functions that lie between two suitable functions,
extending (in the autonomous case) a result of Ref. 6. Some applications of
this result for constrained minima to the study of the existence and regu-
larity for the minima of I will be presented in a forthcoming paper (Ref. 7).

2. Notation

If A is an open bounded subset of �n, n¤1, we denote by Ar its closure
and by ∂A its boundary. For 0⁄k⁄+S, we denote by C

k (A) [resp.
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C
k
c (A)] the space of the k-times continuously differentiable functions in A

[resp. with compact support in A]. Lip(A) is the space of Lipschitz functions
in A, that we consider to be extended in Ar ; we recall that the Lipschitz
functions are differentiable almost everywhere. For u in LS(A), we denote
by ess supA u the essential supremum of u in A and by ��u��LS(A) the usual
norm of u in LS(A). If u is in W 1,r(A), the weak derivative of u with respect
to the i th variable is denoted by uxi and its gradient by ∇ u; the directional
derivative of u with respect a vector τ ∈ �n is Dτu. If uG(u1, . . . , un ) is in
W 1,r(A; �n), its divergence is denoted by div u. For ū in Lip(A), we set

Lip(A, ū)G{u ∈ Lip(A): uGū on ∂Ω}.

If L: AB�B�n→� ∪ {+S}, if (x, z, p)>L(x, z, p) is differentiable with
respect to z [resp. to pG( p1, . . . , pn )], we denote by Lz [resp. Lpi , iG
1, . . . , n] the partial derivative of L with respect to z [resp. pi ] and by Lx

[resp. Lp ] the gradient of L with respect to x [resp. p]. In the case where
L(x, z, p) is convex in z [resp. p], ∂zL(x̄, z̄, p̄) [resp. ∂pL] is the subdifferential
of the map z>L(x̄, z, p̄) in z̄ [resp. p>L(x̄, z̄, p) in p̄] in the usual sense of
convex analysis. Given two vectors a and b in �n, we denote by a · b their
usual scalar product in �n and by �a� the Euclidean norm of a.

In what follows, Ω is an open bounded subset of �n and L is a function

L: ΩB�B�n→� ∪ {+S},

(x, z, p)>L(x, z, p),

such that x>L(x, z(x), p(x)) is measurable for every measurable z: Ω→�

and p: Ω→�n; this condition is fulfilled if, for instance, L is a normal inte-
grand (see Ref. 8). We define the functional I on W 1,1(Ω) by

∀ u ∈ W 1,1(Ω ), I (u)G�
Ω

L(x, u(x), ∇ u(x)) dx.

We assume always that there exist a in � and b in L1(Ω ) such that

L(x, z, p)¤a�p�Cb(x), for every (x, z, p);

this implies that

I (u)H−S, for every u in W 1,1(Ω ).

3. Subminima/Superminima and Inequalities on ∂Ω

We recall here the basic definitions and results that we will use in the
next sections of the paper. For u, û in W 1,1(Ω), we set

u ∧ ûGmin{u, û}, u ∨ ûGmax{u, û},
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and the positive part of u is

u+Gu ∨ 0;

we recall that these functions still belong to W 1,1(Ω). Following Ref. 4,
Section 8.1, we give first a precise meaning to the equalities on the boundary
of a bounded set for Sololev functions.

Definition 3.1. For u in W 1,1(Ω), we say that u⁄0 on ∂Ω if
u+∈ W 1,1

0 (Ω ). For u, û in W 1,1(Ω), by u⁄û on ∂Ω, we mean that uAû⁄0 on
∂Ω.

Some of the well-known properties that we list here will be used in the
sequel.

Proposition 3.1. Let u, û ∈ W 1,1(Ω). The following statements hold:

(i) if u ∈ C
0(Ω̄) and u(x)⁄0 for every x in ∂Ω, then u⁄0 on ∂Ω;

(ii) if u⁄û on ∂Ω, then u ∧ û ∈ uCW 1,1
0 (Ω ) and u ∨ û ∈ ûCW 1,1

0 (Ω );
(iii) if u⁄0 a.e. on Ω, then u⁄0 on ∂A for every open subset A of Ω;
(iv) if (ψn)n ∈ � is a sequence in Lip(Ω) converging to u in W 1,1(Ω) such

that ψn(x)⁄0 for every x in ∂Ω and n in �, then u⁄0 on ∂Ω.

Proof.

(i) It is straightforward that u+ is continuous and equal to 0 on ∂Ω,
then (uAû)+ belongs to W 1,1

0 (Ω ).
(ii) Since uAû⁄0 on ∂Ω, then (uAû)+ belongs to W 1,1

0 (Ω ); the
identities

u ∧ ûAuG−(uAû)+, u ∨ ûAûG(uAû)+

yield the claim.
(iii) If u⁄0 a.e. on Ω, then u+ is equal to 0 a.e. and thus

u+∈ W 1,1
0 (A) for every open subset A of Ω.

(iv) Let (ψn )n ∈ � be a sequence in Lip(Ω) converging to u in W 1,1(Ω)
and such that

ψn (x)⁄0, for every x in Ω.

Then, ψ+
n converges to u+ in W 1,1(Ω) and

ψ+
n(x)G0, for every x in ∂Ω.

By Ref. 9, Theorem 9.17, the functions ψ+
n belong to W 1,1

0 (Ω ), proving that
u+ belongs to W 1,1

0 (Ω ). �
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Definition 3.2. A convex subset X of W 1,1(Ω) is said to be a convex
sublattice if

∀ u, û ∈ X, u ∨ û ∈ X, u ∧ û ∈ X.

Example 3.1. Let ū, l1, l2 ∈ Lip(Ω), and let C be a convex subset of �n.
The function spaces Lip(Ω), Lip(Ω, ū), W 1,q(Ω), ūCW 1,q

0 (Ω ) and the sets
{u ∈ W 1,1(Ω ): ∇ u ∈ C a.e.}, {u ∈ W 1,1(Ω): l1⁄u⁄ l2 a.e.} are convex sub-
lattices of W 1,1(Ω).

Definition 3.3. Let X be a convex sublattice of W 1,1(Ω). A function u
in W 1,1(Ω) is said to be a subminimum [resp. superminimum] for I in X if
u belongs to X, I (u) is finite, and

I (u)⁄I (û), for every û in X∩ (uCW 1,1
0 (Ω )) s.t. û⁄u [resp. û¤u],

a.e. on Ω. Moreover, the function u is a minimum for I in X whenever

I (u)⁄I (û), for every û in X∩ (uCW 1,1
0 (Ω )).

Remark 3.1. The notion of subminimum�superminimum was intro-
duced by Giusti in Ref. 5 for functionals depending on only the gradient.
We introduce the definition of subminimum�superminimum in a convex
sublattice, since we consider the minima of the functional I in different sets
of functions with given boundary data. We point out that, following our
definition, a function u is a minimum for I in W 1,q(Ω) if

I (u)⁄I (û), for every û in uCW 1,q
0 (Ω ).

Definition 3.4. We say that u ∈ W 1,q(Ω), 1⁄q⁄+S, is a subsolution
[resp. supersolution] of the weak Euler equation associated to I in W 1,q(Ω)
if there exist k in Lq′(Ω, �n) and h in Lq′(Ω )[q′Gq�(qA1) is the conjugate
of q] such that k(x) ∈∂ pL(x, u(x), ∇ u(x)) a.e. and h(x) ∈∂ zL(x, u(x), ∇ u(x))
a.e. satisfying

∀ η ∈ W1,q
0 (Ω ), η ¤0 a.e., �

Ω
k · ∇ η dx⁄0 [resp. ¤0].

Remark 3.2. When L is of class C
1, u is a subsolution of the (weak)

Euler equation

div Lp (x, û, ∇ û)ALz (x, û, ∇ û)G0
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if

div Lp (x, û, ∇ û)ALz (x, û, ∇ û)¤0;

i.e.,

∀ η ∈ W 1,q
0 (Ω ), η ¤0 a.e.,

�
Ω

Lp (x, u, ∇ u) · ∇ ηCLz (x, u, ∇ u)η dx⁄0.

We show now that the notion of subminimum generalizes that of
subsolution.

Proposition 3.2.

(i) Assume that u is a subsolution [resp. supersolution] of the Euler
equation associated to I in W 1,q(Ω). Then, u is a subminimum
[resp. superminimum] for I in W 1,q(Ω).

(ii) Assume that L is of class C
1 and that there exists CH0 such that

�L(x, z, p) �⁄C (1C�z�qC�p�q ), (1a)

�Lz (x, z, p) �C�Lp (x, z, p) �⁄C (1C�z�qA1C�p�qA1), (1b)

and let u be a subminimum [resp. superminimum] for I in W 1,q(Ω).
Then, u is a subsolution [resp. supersolution] of the Euler equation

div Lp (x, û, ∇ û)ALz (x, û, ∇ û)G0.

Proof.

(i) Let u be a subsolution to the Euler equation associated to I, and
let û in uCW 1,q

0 (Ω ) be such that û⁄a.e. on Ω. Then, ûGuAη for some
positive η in W 1,q

0 (Ω ) and thus, if k and h are as in Definition 3.4, by
convexity we obtain

I (û)AI (u)GI (uAη)AI (u)¤�
Ω

[k(−∇ η)Ch(−η)] dx¤0,

showing that u is a subminimum for I in W1,q(Ω).

(ii) Let u be a subminimum for I in W 1,q(Ω), and let ϕ in C
S
c (Ω) be

such that ϕ¤0: for every negative λ , the quotient [I (uCλϕ )AI (u)]�λ is
negative. As in the standard proofs of the validity of the Euler equation for
minima (see for instance Ref. 10, Section 8.2.3), the growth assumptions (1)
imply that the function x>Lp (x, u(x), ∇ u(x)) belongs to Lq'

(Ω, �n ), that
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function x>Lz (x, u(x), ∇ u(x)) belongs to Lq′
(Ω ), and that

lim
λ→0

�
Ω

{[L(x, uCλϕ , ∇ uCλ ∇ ϕ )AL(x, u, ∇ u)]�λ } dx

G�
Ω

[Lp (x, u, ∇ u) · ∇ ϕCLz (x, u, ∇ u)ϕ] dx,

proving that the latter integral in the above formula is negative; a classical
density argument yields the conclusion. �

4. Comparison and Maximum Principles for Subminima/Superminima

Most of the results of this section generalize those obtained for the
minima of integral functionals of the gradient among Lipschitz functions.
The basic ideas recall the translation method used in the proof of Lemma
10.0 of Ref. 11.

In what follows, we say that the functional I is strictly convex if it is
strictly convex in its effective domain, i.e., if

I (λuC(1Aλ )û)Fλ I (u)C(1Aλ )I (û),

for every 0FλF1 and u, û in W 1,1(Ω) such that I (u) and I (û) are finite. We
point out that I is strictly convex if, for instance,

L(x, z, p)Gf (x, p)Cg(x, z)

and either f is strictly convex in p or g is strictly convex in z.

Theorem 4.1. Comparison Principle for Subminima�Superminima. Let
X be a convex sublattice of W 1,1(Ω), and let the functional I be strictly
convex. Let u be a subminimum, and let û be a superminimum for I in X
such that u⁄û on ∂Ω. Then, u⁄û a.e. on Ω.

Proof. Since by Proposition 3.1 (ii) the function u ∧ û belongs to
(uCW1,1

0 (Ω ))∩X, and since

u ∧ û⁄u, a.e. on Ω,

then

I (u)⁄I (u ∧ û),
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so that, denoting by {uHû} [resp. {u⁄û}] the set {x ∈Ω : u(x)Hû(x)} [resp.
{x ∈Ω : u(x)⁄û(x)}], we obtain

�
{u⁄û}

L(x, u, ∇ u) dxC�
{uHû}

L(x, u, ∇ u) dx

⁄�
{u⁄û}

L(x, u, ∇ u) dxC�
{uHû}

L(x, û, ∇ û) dx,

and therefore,

�
{uHû}

L(x, u, ∇ u) dx⁄�
{uHû}

L(x, û, ∇ û) dx.

Analogously, u ∨ û belongs to (ûCW 1,1
0 (Ω ))∩X and

u ∨ û¤û, a.e. on Ω;

it follows that

I (û)⁄I (u ∨ û),

whence

�
{uHû}

L(x, û, ∇ û) dx⁄�
{uHû}

L(x, u, ∇ u) dx;

therefore, we obtain the equality

�
{uHû}

L(x, û, ∇ û) dxG�
{uHû}

L(x, u, ∇ u) dx. (2)

If ûFu on a nonnegligible set, then u ∨ û≠û; by strict convexity, we obtain

I ((1�2)(u ∨ û)C(1�2)û)F(1�2)I (u ∨ û)C(1�2)I (û). (3)

Again by Proposition 3.1(ii), the function u ∨ û belongs to ûCW 1,1
0 (Ω ); thus,

(1�2)(u ∨ û)C(1�2)û is in (ûCW 1,1
0 (Ω ))∩X and is greater than û a.e. on Ω.

It follows that

I (û)⁄I ((1�2)(u ∨ û)C(1�2)û),

so that by (3) we obtain

I (û)F(1�2)I (u ∨ û)C(1�2)I (û),

or equivalently,

�
{uHû}

L(x, û, ∇ û) dxF�
{uHû}

L(x, u, ∇ u) dx,
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contradicting (2). It follows that

u⁄û, a.e. on Ω. �

Remark 4.1. Proposition 3.2 shows that the subsolution�super-
solutions of the Euler equation associated to I in W 1,q(Ω) are subminima�
superminima for I in W 1,q(Ω). Therefore, the conclusion of Theorem 4.1
still holds when u is a subsolution and V is a supersolution; thus, in the case
where I is strictly convex, it generalizes the classical comparison principle
(Ref. 4, Theorem 10.7). In this case, when u or û is a minimum, the con-
clusion of Theorem 4.1 can be obtained also under some alternative assump-
tions on the Lagrangian (Ref. 12).

In what follows, we will assume that the Lagrangian L is the sum of
two functions, more precisely that

L(x, z, p)Gf (x, p)Cg(x, z),

and that X is a convex sublattice of W 1,1(Ω). This is motivated by the fol-
lowing lemma that is a crucial step to prove the next weak maximum
principle.

Lemma 4.1. Let L(x, z, p)Gf (x, p)Cg(x, z), and assume that the func-
tion z>g(x, z) is convex for almost every x in Ω. Let X be a convex sub-
lattice of W 1,1(Ω), and let û be a superminimum for I in X. Then, for every
real positive α , the function ûCα is a superminimum for I in αCX.

Proof. Let ω in X be such that

ûCα⁄ω, a.e. on Ω, and ω∈ ûCαCW 1,1
0 (Ω ).

Then,

û⁄ωAα , a.e., and ωAα ∈ (ûCW 1,1
0 (Ω ))∩X.

Since û is a superminimum for I in X and

∇ (ωAα )G∇ ω,

then

I (û)G�
Ω

f (x, ∇ û)Cg(x, û) dx

⁄I (ωAα )

G�
Ω

f (x, ∇ ω)Cg(x, ωAα ) dx;
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therefore, since

∇ (ûCα )G∇ û,

we have

0⁄�
Ω

f (x, ∇ ω) dxA�
Ω

f (x, ∇ (ûCα )) dx

C�
Ω

g(x, ωAα ) dxA�
Ω

g(x, û) dx. (4)

Now, for αH0, the convexity assumption on g yields

[g(x, ûCα )Ag(x, û)]�α⁄ [g(x, ω)Ag(x, ωAα )]�α ,

so that

g(x, ωAα )Ag(x, û)⁄g(x, ω)Ag(x, ûCα ).

The inequality (4) then implies

0⁄�
Ω

f (x, ∇ ω) dxA�
Ω

f (x, ∇ (ûCα )) dx

C�
Ω

g(x, ω) dxA�
Ω

g(x, ω) dxA�
Ω

g(x, ûCα ) dx

GI (ω)AI (ûCα ),

proving the claim. �

Remark 4.2. The last result holds without any convexity assumption
on f.

Example 4.1. The conclusion of Lemma 4.1 does not hold in general
if A is strictly negative. In fact, let

ΩG]0, 1[, g(z)Gz2, f ( p)G0.

Then, the function

û(x)Gx

is a supersolution, but ûA1 is not a supersolution of the equation

Dx f (w′ )Agz (w)G0.
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Definition 4.1. Let u ∈ W 1,1(Ω). The supremum sup∂Ω u of u in ∂Ω is
defined by

sup
∂Ω

Ginf{γ ∈ �: u⁄γ in ∂Ω}.

Remark 4.3. Again, we notice that, if u ∈ C
0(Ω̄)∩W 1,1(Ω), then

sup∂Ω u is the usual pointwise supremum of u in ∂Ω.

Theorem 4.2. Maximum Principle for Subminima Superminima. Let
X be a convex sublattice of W 1,1(Ω), let L(x, z, p)Gf (x, p)Cg(x, z), and let
I be strictly convex. Let u be a subminimum, and let û be a superminimum
for I in X. Then,

ess sup
Ω

(uAû)⁄sup
∂Ω

(uAû)+.

Proof. Let

αGsup
∂Ω

(uAû)+.

For every (H0, we have

uAû⁄αC(, on ∂Ω.

By Lemma 4.1, the function ûCαC( is a superminimum for I in X. The
comparison principle (Theorem 4.1) then implies that

u⁄ûCαC(, a.e. on Ω,

proving the claim. �

Example 4.2. The assumptions of Theorem 4.2 do not imply that

ess sup
Ω

(uAû)⁄sup
∂Ω

(uAû).

For instance, let

ΩG]0, 1[, g(z)Gz2, f ( p)G0.

Then,

u(x)G−(xA1)2

is a subsolution and

û(x)Gx

is a supersolution of the equation

Dx f (w′ )Agz(w)G0.
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However,

uAûG−1, on ∂Ω,

but

ess sup
Ω

(uAû)G−3�4H−1.

Corollary 4.1. Let X be a convex sublattice of W 1,1(Ω), let L(x, z, p)G
f (x, p)Cg(x, z), and let I be strictly convex. Let u, û be two minima for I in
X. Then,

��uAû��LS(Ω)Gsup
∂Ω

�uAû�.

Proof. The functions u and û are both subminima and superminima
for I in X; Theorem 4.2 yields the first part of the claim. Again by Theorem
4.2, we have

ess sup
Ω

(uAû)⁄sup
∂Ω

(uAû)+,

ess sup
Ω

(ûAu)⁄sup
∂Ω

(ûAu)+.

Since both of the right-hand sides of the previous inequalities are bounded
by sup∂Ω �uAû�, it follows that

��uAû��LS(Ω)⁄sup
∂Ω

�uAû�.

Moreover, since

�uAû�⁄ ��uAû��LS(Ω) , a.e. on Ω,

the opposite inequality follows from Proposition 3.1(iii). �

Remark 4.4. We recall again that the minima of the claim in Corollary
4.1 may have different boundary data; therefore, they are not forced to
coincide, even if the functional is strictly convex.

For every τ in �n and u in W 1,1(Ω), we introduce the set Ωτ and the
function uτ in W 1,1(Ωτ ) defined by

ΩτG−τCΩG{−τCx: x ∈Ω },

∀ y ∈Ω τ , uτ (y)Gu(yCτ ).

For every open subset A of Ω, we define the functional

∀ u ∈ W 1,1(A), IA (u)G�
A

L(x, u, ∇ u) dx,
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and for every sublattice X of W 1,1(Ω), we define X(A) to be the set of the
restrictions to A of the functions in X; the restriction of u ∈ W 1,1(Ω) to A will
still be denoted by u. We will use the obvious fact that, if w is a minimum for
I in X [i.e., I (w)⁄I (u) for every u ∈ (wCW 1,1

0 (Ω ))∩X], then the restriction
of w to A is a minimum for IA in X(A).

Theorem 4.3. Extended Maximum Principle for the Gradient. Let X
be a convex sublattice of W 1,1(Ω), let L(x, z, p)Gf ( p)Cg(z), and let I be
strictly convex. Let w be a minimum for I in X, and let τ ∈ �n. Then,

ess sup
Ω∩Ωτ

(wτAw)⁄ sup
∂(Ω∩Ωτ )

(wτAw)+,

��wτAw��LS(Ω∩Ωτ
)G sup

∂(Ω∩Ωτ )
�wτAw�.

Proof. The function w is a minimum for IΩ∩Ωτ in X(Ω∩Ωτ ). More-
over, the fact that L is the sum of two functions which do not depend on x
implies that wτ is a minimum for the functional

Iτ (û)G�
Ωτ

f (∇ û)Cg(û) dx

in the lattice

XτG{uτ : u ∈ X};

i.e.

Iτ (wτ )⁄Iτ (û), for every û in Xτ such that ûAwτ ∈ W 1,1
0 (Ωτ ).

In fact, let n ∈ Xτ be such that ûAwτ ∈ W 1,1
0 (Ωτ ), and let u ∈ X be such that

ûGuτ . Then, uAw ∈ W 1,1
0 (Ω ), so that

I (w)⁄I (u);

therefore,

Iτ (wτ )G�
Ωτ

f (∇ wτ )Cg(wτ ) dx

G�
Ω

f (∇ w)Cg(w) dx

GI (w)⁄I (u)

GIτ (û).

It follows that the restriction of wτ to Ω∩τ τ is a minimum for IΩ∩Ωτ in
X(Ω∩Ωτ ). Now, w and wτ are both subminima and superminima for
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IΩ∩Ωτ in X(Ω∩Ωτ ). Since the functional IΩ∩Ωτ is strictly convex, the appli-
cation of Theorem 4.2 and Corollary 4.1 yields the conclusion. �

Corollary 4.2. Gradient Maximum Principle for Minima. Let X be a
convex sublattice of W 1,1(Ω), let L(x, z, p)Gf ( p)Cg(z), and let I be strictly
convex. Let w be a minimum for I in X, and assume that w ∈ C

1(Ω̄). Then,

��∇ w��LS(Ω)G��∇ w��LS(∂Ω) .

Proof. We still denote by w an extension of class C
1 of w to �n. Let

x0∈Ω be such that

��∇ w��LS(Ω)G�∇ w(x0) �,

and let τ in �n, �τ �G1, be such that

�∇ w(x0) �G�Dτw(x0) �.

Let (λ n)n ∈ � be a sequence in � \{0} converging to 0; by Theorem 4.3, for
every n ∈ �, there exist xn , yn in Ω̄ such that

ynAxnGλ nτ , xn ∈∂Ω or yn ∈∂Ω ,

and

�w(x0Cλ nτ )Aw(x0) �⁄ �w(yn )Aw(xn ) �.

Now, for every n ∈ �, there exists zn in the segment joining xn with yn that
satisfy the equality

w(yn)Aw(xn)GDτw(zn)λ n ;

therefore, we obtain

�[w(x0Cλ nτ )Aw(x0)]�λ n �⁄ �Dτw(zn) �.

We may assume that zn converges to a point x* ∈∂Ω : passing to the limit
in the latter inequality, we obtain

��∇ w��LS(Ω)G�Dτw(x0) �

⁄ �Dτw(x*) �

⁄ ��∇ w��LS(∂(Ω) ,

proving the claim. �

Remark 4.5. In the case where L is smooth and w ∈ C
2(Ω ) satisfies the

Euler equation, Corollary 4.2 is a consequence of the classical maximum
principle for the gradient (Ref. 4, Theorem 15.1) for the solutions of class
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C
2 of elliptic differential equations. We point out here that we allow L to

be extended valued and do not require the smoothness of either the
Lagrangian or the minimum; moreover, we do not a priori know whether
the minimum is a solutions to a Euler equation. Theorem 4.3 seems then to
be an extended version of a maximum principle for the gradient.

The next example shows that the conclusion of Corollary 4.2 does not
hold in general if L depends also on x.

Example 4.3. Let

ΩG]A1, 1[, L(x, z, p)Gf ( p)Cg(x, z),

where

f ( p)Gp2, g(x, z)G2 cosh(1)xzCz2.

Let X be the lattice of the absolutely continuous functions u satisfying

u(−1)G1�e, u(1)G−1�e.

The function

w(x)Gsinh(x)Ax cosh(1)

belongs to X and is a solution of the Euler equation

u″AuGcosh(1)x,

associated to the strictly convex functional

I (u)G�
1

−1

L(x, u, u′ ) dx.

It follows by convexity that w is a minimum for I in X. However,

��w′ ��LS(−1, 1)H0Gmax{w′(−1), w′ (1)}.

5. Some Applications

In this section, we apply Theorem 4.3 to prove a regularity result for
constrained minima of I in a Sobolev space.

Theorem 5.1. Lipschitz Regularity for Constrained Minima. Let
L(x, z, p)Gf ( p)Cg(z), and assume that the functional I is strictly convex.
Let ū ∈ Lip(Ω), and let l1, l2 be two functions in Lip(Ω, ū). Assume that w is
a minimum for I in ūCW 1,q

0 (Ω ), 1⁄q⁄S, and that l1⁄w⁄ l2, a.e. on Ω.
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Then, w is Lipschitz and

��∇ w��LS(Ω)⁄max{��∇ l1��LS(Ω) , ��∇ l2��LS(Ω)}.

To prove Theorem 5.1, we need the following technical lemma.

Lemma 5.1. Let ū ∈ Lip(Ω), τ ∈ �n, and let l1, l2 be two functions in
Lip(Ω, ū). Assume that w ∈ ūCW 1,1

0 (Ω ) is such that l1⁄w⁄ l2, a.e. on Ω.
Then,

sup
∂(Ω∩Ωτ )

(wτAw)⁄max�max
Ω∩Ωτ

(l1
τAl1), max

Ω∩Ωτ

(l2
τAl2)�; (5)

therefore,

sup
∂(Ω∩Ωτ )

�wτAw�⁄max{��l1
τAl1��LS(Ω∩Ωτ ), ��l2

τAl2
τ ��LS(Ω∩Ωτ )}. (6)

Proof. We show first that (5) holds true if w ∈ Lip(Ω). Let x ∈
∂(Ω )∩Ωτ ): either x ∈∂Ω and

wτ (x)Aw(x)Gwτ (x)Al2(x)⁄ l2
τ (x)Al2(x),

or x ∈∂Ω τ , so that

xG−τCy, for some y ∈∂Ω ,

and

wτ (x)Aw(x)Gw(y)Aw−τ ( y)

Gl1(y)Aw−τ (y)

⁄ l1(y)Al1
−τ (y)

Gl1
τ (x)Al1(x),

proving the claim. In the general case, since

l2Aw¤0, on Ω,

and since l2Aw belongs to W1,1
0 (Ω ), there exists a sequence (ϕn )n ∈ � of posi-

tive functions in W 1,S
0 (Ω ) converging to l2Aw in W 1,1(Ω); moreover, since

l2Aw⁄ l2Al1, on Ω,

we may assume that

ϕn⁄ l2Al1, on Ω.

Therefore, for every n in �, the Lipschitz function l2Aϕn satisfies the
inequalities

l1⁄ l2Aϕn⁄ l2, on Ω;
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the first part of the proof then implies that, for every x in ∂(Ω∩Ωτ ), we
have

(l2Aϕn )τ (x)A(l2Aϕn )(x)⁄α ,

where α is the right-hand side of the inequality (5). Now, the sequence
((l2Aϕn )τA(l2Aϕn ))n ∈ � converges to wτAw in W 1,1(Ω∩Ωτ ); (5) follows
from Proposition 3.1(iv). The application of (5) with Aτ instead of τ gives
(6). �

Proof of Theorem 5.1. Theorem 4.3 states that, for every τ in �n,

��wτAw��LS(Ω∩Ωτ )G sup
∂(Ω∩Ωτ )

�wτAw�.

Since l1 and l2 are Lipschitz, for every x in ∂Ω we have

�l 1
τ (x)Al1(x) �⁄K �τ �,

�l2
τ (x)Al2(x) �⁄K �τ �,

where

KGmax{��∇ l1��LS(Ω) , ��∇ l2��LS(Ω)};

therefore, by Lemma 5.1,

��wτAw��LS(Ω∩Ωτ )⁄K �τ �.

It then follows that, for every x ∈Ω , τ ∈ �n, and λ ∈ � sufficiently small (in
such a way that Ω∩Ωλτ ≠∅ ), we have

�[w(xCλτ )Aw(x)]�λ �⁄K �τ �;

thus, the classical partial derivative Dτw(x) of w with respect to τ at x,
whenever it exists, satisfies the inequality

�Dτw(x) �⁄K �τ �.

We recall that, since w ∈ W 1,1(Ω), then for every τ ∈ �n the partial derivative
Dτw(x) exists for almost every x ∈Ω and it coincides with ϕw(x) · τ (Ref.
13). Therefore, if (τ k )k ∈ � is a countable dense set in the unitary sphere of
�n, then for almost every x in Ω the partial derivatives Dτ kw(x) exist and
moreover

�Dτ kw(x) �⁄L �τ k �GK, for every k ∈ �.

Fix such an x and assume that ∇ w(x)≠0; let (τ n(k))k ∈ � be a subsequence of
(τ k )k ∈ � such that

lim
k→+S

τ n(k)G∇ w(x)�� ∇ w(x) �.
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Then,

�∇ w(x) �G lim
k→+S

�∇ w(x) · τ n(k)�

G lim
k→+S

�Dτ n(k)
w(x) �,

so that

�∇ w(x) �⁄K,

and therefore,

��∇ w��LS(Ω)⁄K.

Since w ∈ ŪCW 1,1
0 (Ω ) and ū ∈ Lip(Ω), it follows that w ∈ ūCW 1,S

0 (Ω ),
proving the claim. �

We now state a result on the equivalence of two variational problems.
Let C be a convex compact subset of �n containing the origin in its interior,
and let ū in Lip(�an) be such that ∇ ū ∈ C, a.e. Let l1, l2 in Lip(Ω, ū) be such
that

�
Ω

l1 dxGmin��
Ω

u dx: u ∈ Lip(Ω, ū), ∇ u ∈ C a.e. on Ω� ,

�
Ω

l1 dxGmax��
Ω

u dx:u ∈ Lip(Ω, ū), ∇ u ∈ C a.e. on Ω� .

Remark that, if u in Lip(Ω, ū) is such that ∇ u ∈ C, a.e. on Ω, then l1⁄u⁄ l2

in Ω. We introduce the sets

K CG{u ∈ Lip(Ω, ū): ∇ u ∈ C, a.e. on (Ω},

K l1, l2G{u ∈ ūCW 1,1
0 (Ω ): l1⁄u⁄ l2, a.e. on Ω},

and we consider the problems

(PC ) min{I (u): u ∈ K C},

(Pl2, l2) min{I (u): u ∈ K l1, l2}.

We notice that problem (PC ) does always admit a solution, whereas in order
to ensure that problem (Pl1, l2) admits a solution we need some extra assump-
tions, e.g., some standard growth conditions. The equivalence of problems
(PC ) and (PC ) and (Pl1, l2)was studied by Brezis–Sibony in Ref. 14 (in the
case of the elasto-plastic torsion functional) and for a more general
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class of functionals and constraints by Treu–Vornicescu in Ref. 6. In par-
ticular, Theorem 3.3 in Ref. 6 requires that the integrand be of the form

L(x, z, p)Gf ( p)Cg(x, z)

and that g be sufficiently smooth. Our previous results allow us to prove,
using a different technique, the equivalence of the two problems for a non-
smooth class of functionals whose Lagrangians are of the form f ( p)Cg(z).

Theorem 5.2. Equivalence of Two Variational Problems. Let
L(x, z, p)Gf ( p)Cg(z), and assume that the functional I is strictly convex.
Let ū in Lip(�n) be such that ∇ ū ∈ C, a.e., and assume that problem (Pl1, l2)
has a solution. Then, problems (PC ) and (Pl1, l2) have the same (unique)
minimum.

Proof. Let wC be the minimum of I in K C , and let w be the minimum

of I in K l1, l2 . Since K C is a subset of K l1, l2 , then

I (w)⁄I (wC ).

By Theorem 5.1, the function w is Lipschitz; we claim that

∇ w ∈ C, a.e.

In fact, we may extend the functions l1, l2 to �n by setting

l i(x)Gū(x), for x ∈ �n \Ω,

in such a way that

∇ l i ∈ C, a.e. in �n, iG1, 2.

It then follows by Lemma 2.1 in Ref. 6 that, for every τ ∈ �n,

l i (xCτ )Al i (x)⁄γC°(τ ),

where γC°(τ ), is the Minkowski function of the polar C° of the set C; see
for instance Ref. 15. Since γC°(τ ) is positive, then Lemma 5.1 yields

(wτAw)+⁄γC°(τ ), on ∂(Ω∩Ωτ ).

Theorem 4.3 implies that

wτAw⁄γC°(τ ), on Ω∩Ωτ .

Lemma 2.1 in Ref. 6 then yields that

∇ w ∈ C, a.e. on Ω.

Thus, w ∈ K C and therefore,

I (w)¤I (wC ),
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proving that

I (w)GI (wC ).

The strict convexity of I yields wGwC . �

Remark 5.1. Theorem 5.1 and Theorem 5.2 could be proved also
through a nontrivial modification of the proof of Theorem 3.1 in Ref. 6.
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