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Abstract

We consider a class of Lipschitz vector fielfls2 — R" whose values lie in a suitable cone and
we show that the trajectories of the systef= S(x) admit a parametrization that is invertible and
Lipschitz with its inverse. As a consequence, everin W11(2) admits a representative that is
absolutely continuous on almost every trajectory’cf S(x). If S is an arbritrary Lipschitz field the
same property does hold locally at evarguch thatS(x) # 0.
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1. Introduction

The results that we present here are motivated by the following problens2 Lt an
open bounded subset®&f, S: 2 — R" be a Lipschitz vector field such that the trajectories
of x' = S(x) leave2 in a finite time andv in C1(£2) be equal to 0 in the boundafy?
of £2 and be such that its gradie®Rt(x) is orthogonal toS(x) for everyx in £2. It then
follows immediately that vanishes orf2. In fact letxg € £2 andx : t1, 12 — $2 be the
maximal solution of

x'=8(x), x(0) = xo; (A)

our assumption implies that(rz) = lim,_,,, x(¢) belongs tod 2. We have
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0
v(x0) =v(x(0)) — v(x(2)) = /(v ox) (t)dt

7]

0 0
=/Vv(x(t)) X' (1) dt:/Vv(x(t))»S(x(t))dt:O, (*)

2 7]

proving the claim. We point out that the same conclusion does not hold if the trajectories
of (A) do not leaves? in a finite time; let for instance(x, y) = x2+ y2 — 1, 2 = {(x, y):
x24+y2 <1}, S(x,y) = (—y,x): in this caseVv(x, y) is orthogonal taS(x, y) andv =0

onas2 butv <0 ong2.

Here we extend the above vanishing property in the case whésea function in
W&’l(ﬂ). This result turns out to be an important tool in establishing the validity of a
comparison principle for the minimizers of integral functionals in our paper [7].

In this situation the previous reasoning cannot be directly applied. The main problem
is that, if x is a trajectory of (A), the composed functiarno x may not be absolutely
continuous. This can be regarded as a particular case of the problem of the composition of
Sobolev functions. The known results on this topic [6] do not apply to our caseisla
nonzero constant field the problem can be easily solved since a classical result shows that,
once we fix a hyperplang that is transversal t§, there exists a representativewthat
is equal to zero o §2 and absolutely continuous on almost every trajectory thraugh
In Section 3 we consider the class of vector fields whose values lie in a suitable cone
(cone propertysee Definition 2.6), allowing the trajectories of (A) to leaven a finite
time. The problem is reduced to the case whgiis constant by showing that if we fix
a hyperplandT that is transversal to the cone containing the values$ tiien we can
parametrize2 by means of a functiow (¢, £), whose&-sections are the trajectories of
(A), that is a bi-Lipschitz homeomorphism. This allows us to look at the composition of
with the trajectories of (A) as thie-sections ob o W (¢, £). The change of variables formula
for Sobolev functions shows that there exists a representative@f that is absolutely
continuous on almost every section. However this is not enough since) bye(need to
evaluatev at the endpoints of the trajectories. For this purpose we slightly modify the proof
of the aforementioned classical result to show that actually there exists a represeritative
of v such thatv* o ¥ is absolutely continuous on almost every section and, furiier,
vanishes ord£2. We point out that, in order to obtain the lipschitzianity &f !, it is
essential to assume thene propertyas we show in Example 3.4.

Finally, in Section 4, we consider an arbitrary Lipschitz fi§ld2 — R” and we prove
that if S(x) is nonzero then the previous mepconstructed upon a hyperplafkthrough
X is orthogonal toS(x) is injective and has a Lipschitz inverse in a neighbourhood of
(0,%) € R x IT. As a consequence, if is in W11(£2) andr is a positive real number,
there exists a representativé of v such that for every in a neighbourhood af in 17,
except a set ofn — 1)-Hausdorff measure zero, the functior> v*(x¢ (7)) is absolutely
continuous o0, t], wherex; is the solution oft’ = S(x), x(0) = &.
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2. Notation and preliminary results

Notation. If A is asubset oR” we denote ch (respectivelyg A) the closure (respectively,
the boundary) ofA. Given two vectorg andb in R” andr > 0 we denote by - b the usual
scalar productifiR”, by |a| the euclidean norm af and byB(a, r) the ball centered in of
radiusr; by diamA) we denote the diameter df, i.e., diamA) = sup{|x2 —x1|: x1, x2 ¢
A} and by dista, A) the distance ofi to A. The standard orthonormal basis Rf is
e1,...,en. If f:X — Yisafunction andV is a subset ok (respectivelyZ is a subset of
Y) the image ofW (respectively, the inverse image @) through f is denoted byf (W)
(respectivelyf ~1(2)).

By C*™(£2) (respectively,C°(£2)) we denote the space of infinitely differentiable
functions in 2 (respectively, infinitely differentiable functions with compact support
in 2) and, forg > 1 and A open inR”", L(A) (respectively, W17 (A), W&’q(A)) is
the usual space of the Lebesgue functions (respectively, the first order Sobolev spaces)
of exponeniy; for f in W19(2) (respectively, differentiable it2) the weak derivative
(respectively, classical derivative) ¢f with respect tay; is denoted byf,; (respectively,
D,, f) and its gradient by f. For a functionf of one variable the classical derivative is
often denoted by’. The composition of the functiong andg (whenever it is defined) is
denoted byf o g, the inverse off is denoted byf 1.

Let £2 be an open bounded subsetRif. A classical result [8, Theorem 1.41] states
that a function inW&’q (£2) admits a representative that is absolutely continuous on almost
all line segments that are parallel to the coordinate axes. A slight modification of its proof
yields the following generalization to the composition of Sobolev functions with invertible,
Lipschitz mappings.

Proposition 2.1. Let v be a function inW&’q(Q), E, F be open inR" and F be a subset
of 2. Let A :cl E — cl F be Lipschitz, invertible and its inverse be Lipschitz. Assume that,
for almost every: in R" 1,

AQPEN{(,&): 1eR}) Caf. (2.1)

There exists a representativé of v in W&"’(Q) such that* vanishes o £2 and the map
t — (v* o A)(t,&) is absolutely continuous for almost eveyy Moreover, the classical
partial derivative ofv* o A and the weak derivative af o A, with respect to the first
variablez, agree almost everywhere ¢h

Remark 2.2. It is well known [9, Theorem 2.2.2] that the composed mapA belongs

to W4 (E), even without assuming (2.1). Assumption (2.1) is fulfilled if, for instarice,
andF coincide with$2; in this case, however, the claim follows easily from Theorem 1.41
of [8] itself. We will apply Proposition 2.1 in the proof of Theorem 3.5 where thefsist

a proper subset ab.
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If E is an open subset @ for & in the projection off onto the lask — 1 coordinates
we denote by (§) the&-section ofE, i.e.,

E¢) ={teR: (1,§) € E}.

Remark 2.3. Proposition 2.1, in the case whereis the identity map, yields [8, Theo-
rem 1.41].

Definition 2.4 (the flux @). Let S: 2 — R” be Lipschitz. Letx in £2, I; be the maximal
interval of definition of the maximal solution of

x'=S(x), x(0)=x, (2.2)
and® (t, x) be its value at. ThedomainD of @ is defined by

D={t. %) eRx Q: tel}

We recall that for every, 7, x such that the pairés, x) and(z, @ (s, x)) are inD then
D(t, P(s,x)) = D(t +5,x). We will often denote by (¢) the pointd (¢, £).

Remark 2.5. It is well known, see for instance [5, Theorem 3.1.1], thais open andb
is locally Lipschitz; actually® is Lipschitz if the solutions to (2.2) leawe in a uniformly
bounded time.

Definition 2.6 (the cone property). We say that the vector fi§ld2 — R” satisfies the
cone propertyif S is Lipschitz in£2 and there exist a vectarin R” and« > 0 such that
S(x) -u >« foreveryx in 2.

Remark 2.7. When £2 is bounded,S being Lipschitz, this condition implies that there
exists a positivgg such that the vecta§(x) belongs to the confy e R”: y - u > 8]y|} for
everyx.

The following result is straightforward.

Proposition 2.8. Let S: 2 — R” be a vector field satisfying the cone propeiyn 2 and
x: Iz =111(%), t2(0)[ — 2 (—oo < 11(x) < 12(x) < +00) be the maximal solution of the
autonomous syste(@.2). Then for every in I; the following inequalities hold

x()—X%X)-u>ar ift>0,
(x()—Xx)-u<ar ift<O.
Moreover, if$2 is bounded there exigt > 0 depending only oif2 such that|r1 ()| < T

and |r2(x)| < T'; moreover, the limitdim,_ ,,z) x (@), lim;—, ) x(¢) exist and belong to
the boundary of?2.
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3. Lipschitz fieldsthat satisfy the cone property

In this sections? is an open bounded subset®f, the functions: 2 — R" is assumed
to satisfy the cone property and the veatds as in Definition 2.6. We fix a hyperplaié
that is orthogonal ta and such thaf2 N IT # . We set

Ap={(t.§) eRx IT: (1,§) € D}

and we introduce the parametrizatiépy of the trajectories of the system = S(x) that
intersect/T by

Yn:Ag CRxIT— 2, (1,§)>¥nt,§)=2(,§);
¥ is the restriction ofb to R x IT. When no ambiguity may occur we will often write
instead of¥;; and A instead ofA ;.

Lemma 3.1. For everyx in §2 the functiory — @ (z, x) - u is strictly increasing on'x.

Proof. The derivative with respect toof the map — @ (z, x) -u is given byS(® (¢, x)) -u
and is thus greater than the strictly positive conséant

Theorem 3.2. The domaim ;7 of W7 is openinR x IT and the imaged = ¥ (A7) of Ag
through¥; is open inR”. The map/; is Lipschitz, invertible and its inverse is Lipschitz.

Remark 3.3. In the proof of this result the continuity a¥;; and its invertibility follow
easily from the properties of the flux ¢f. However, the fact that the invers&*&g1 is
Lipschitz is not trivial at all; moreover, as we show in the following example this conclusion
cannot be obtained if the fielfl, instead of satisfying the cone property, is just such that
the trajectories of the associated dynamical system I€airea finite time.

Example 3.4. Let 2 = {(x,y) e R% x >0, x2+ y2 < 1}, S(x, y) = (—y,x) and IT be
thex-axis. For every €10, 1[ we have
¥(t, x) = (X cost, x sing),
and thus the inverse map is given by
W, y) = (1, ), X (3, ),
where

t(x,y) = arctar(y/x), X(x,y) =4/x24y2.

Clearlyx(x, y) is Lipschitz whereas(x, y) is not. Here the solutions &', y') = S(x, y)
leave the domain in a finite time (namely in a time less thgrhoweverS does not satisfy
the cone property ofp.

Proof of Theorem 3.2. We subdivide the proof into several steps.

(a) The map? is injective andA, B are open.
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Itis not restrictive to assume that= e, and that the hyperplan@ is defined by
T ={(x1,...,x,) €R" x, =0}.

The setA is open sinceD is open. Let(s, v), (¢, &) in A be such that (s, v) =¥ (1, &).
Then

Q(s,v) =P(1,§), (3.1)

and therefore by applying the m@p(—s, -) on both sides of the latter equality we obtain
v=a&(0,v) =& (¢t — s, v). Taking the scalar product with, on each side of the equalities
we getd(t —s,&) - e, = 0= @ (0, &); the strict monotonicity of the map — @(z, &)
then implies that = s. It follows from (3.1) thatv = & and ¥ is injective. Clearly, by
Remark 2.5 and Proposition 2.8, the m&yis Lipschitz: thenvariance of domain theorem
[4, Theorem 3.30] then implies that the get= ¥ (A) is open.

We are now concerned with the proof of the Lipschitz continuity of the inverge: drfi
what follows(s, v), (¢, £) are inA and we set

y:ll/(s’]))’ Z:w(t,é)
Our goal is to prove the existence of a constauepending only o2 andS satisfying
max{|t — s|, [ — v|} < Blz — yl. (3.2)

In the next steps (b) and (c) we state some intermediate results towards this scope.

(b) If s andr have opposite signs then
alt —s[ <[z —yl, (3.3)
otherwise there exists a positive constantlepending only o2 and S such that
alt —s| < Kmin{ls|, [t]}1§ — v|+ |z — yl. (3.4)

Moreover, denoting by.¢ the Lipschitz constant @, we have
& —vI<Lo(lt —sl+1z—yl). (3.5)

Since the derivative of the map—> @ (z, x) is S(® (¢, x)) then we have
s t
y=v+/S(lI/(r, v))dr, z=$+/5(l1/(r,§))dr.
0 0
Assume that andz have opposite signs, for instance that 0 < ¢. Then
t s
z—y=(&—-v,0+ / S(w(r,&))dr — / S(¥(r,v))dr,
0 0
whence, taking the scalar product withon both sides of the equality,
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N

13
/S(llf(r,g))-endr—/S(lI/(r, v))-endrz(z—y)-en. (3.6)
0 0
Since
¢ ¢
/S(llf(r,g))-endr>/adr=ott,
0 0
0 0
/S(W(r, v))'endr>/adr=—as,

then (3.6) yields
lz=ylZ2@—=y)-enzalt —s)=alt —s|,

which proves (3.3). Assume thatandr have the same sign and without restriction that
0< s <t. Then(s, v) and(s, &) belong toA for everys in [0, t] and thus we can write

N 13
z—y=(E—-v,0+ / S(w(r, &) —S(¥@r,v)dr+ / S(w(r,&))dr;
0 K
taking again the scalar product wigh on both sides of the latter equality, we obtain

1 N

/S(q/(r, £)) epdr= —/[S(llf(r, £) —S(¥r,v)] - endr+(z—y)-en.
s 0

We recall thatS(y) - e, > « for everyy in £2; thus denoting by (respectivelyLy) the
Lipschitz constant of (respectively?), we obtain

alt —s| < LsLwls|l§ — v+ |z —yl,
proving (3.4). By definition we have

v=>®(=s,y), §=D(—1,2);
the Lipschitz continuity ofp yields

€ —v| < Lo (1t —s|+z—yl).
proving (3.5).
(c) There exist two constanfg andC depending only o2 and S such that

max{|t — s|, 1§ = v|} < Clz —yl,
for everys, t satisfying

min{|s|, ||} < T1.
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Sett = min{|s|, |¢|}; the inequalities (3.3) and (3.4) together with (3.5) yield

KtLgp 1
|t —s| < (It—SI+|z—y|)+E|z—y|

KtLg KtLe +1

= [t —s|+ ——z—yl,
o
so that
KLyt KtLe +1
It—SI(l— )< |z =yl
o o

Choosing O< T1 < a/(K L) andt < Ty we obtainjt — s| < C1]z — y| for some constant
C; depending only o2 andS. Now (3.5) givegé — v| < Ly (C1+ 1)|z — y|, proving the
claim.

(d) The inverse o is Lipschitz.

If s andr have opposite signs the application of (3.3) together with (3.5) yields

1
|§—v|<L¢(a+l>|Z—y|,

proving the validity of (3.2). Assume now, without restriction, thandr are both positive.
Remark first that by Proposition 2.8 for every¢) in A we have

W (1,8) - en| = | (@1, 6) — D0, 6)) - e4| = alt]. (3.7)

Therefore, if we seA = a Ty the inequalityl¥ (¢, &) - ¢,| < A implies that|z| < Ty. Fork
in Z we set

he=kA,  Me={(x1,...,x) €R" x, =i}
We definedy by ¥y (¢, &) = @ (¢, (&, hy)) for everyg in IT; notice thatdg = ¥. Asin (3.7)
Proposition 2.8 implies that

| Wk (2. &) - en — hie| = alt]. (3.8)

We may assume that- e, < z-e,: letm in N be such that,, <y -e, < hp4+1. Remark
thatm is bounded above by a constant depending only2candS: in fact, from the latter
inequality we deduce thatA < y-e, = y-e, — ¥ - ¢, for everyy in IT N 2 and therefore
m is bounded above by the consté@atliams2)/A. By the continuity and the monotonicity
of the maps — ¥ (¢, §) - e, andr — ¥ (¢, v) - ¢,, there exist

s0=0<s1 < - <sp <5 =8p+1,

to=0<ty < <ty <t=tps1,

such that

W(Sk7v)'en:hka lI’(U(’E)en:hk (k=07"'7m)a
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so that¥ (s, v) = (p*, hy) and W (1, &) = (g%, hy) for somepk, gF in R"~1; notice that
0K ¥ (s,v) - ep —hm < A, pP°=v andg® = &. The properties of the flu® allow us to
write that, fork in {0, ..., m},

W (sk11,v) = D(sk41, V) = D (sp41 — sk, P sk, v)) = P (skr1 — Sk, ¥ 5k, v))

= D (sk+1— Sk, (Pis hi)) = Wk (Sk41 — Sk, Pi)-

Since|V (sk4+1, V) -en — hi| < A then| Wy (sk+1— Sk, Pr) -en — hi| < A, hence (3.8) implies
thatsy1 — s < T1; analogously, fok in {0, ..., m — 1}, we obtain that; 1 — f; < T (the
casek = m is excluded here sincg,+1 — t,, =t — t,, may be greater thaffi). Starting
with k = m we are therefore led to the following situation:

y= l1/0(5m+l’ PO) =Yy (Sm-i-l — Sm,» Pm), 0< Sm+1 — Sm < 11,

= lI’O(tm+l’ qo) =¥y (tm—i-l —Im, Pm), 0< tm+1 — tm-
We point out here that the previous steps (b) and (c) do obviously apply waes (s, v)
andz = ¥ (¢,&) (kin {0, ..., m}). It follows from step (c) that

lg" — p" I < Clz =yl (3.9)
If m =0 we obtainé — v| < C|z — y|. Otherwise we write that

mfl)

Pm =¥ 1(Sm — Sm—1, P . 0<spy —sm-1 < T,

q" =Yp_1(tm — tm—1, 61"171), 0<tyy —t—1 < T1,
so that again step (c) yieldg” 1 — p"~1| < C|¢™ — p™| and (3.9) gives

m—=1 _

lg P < CPlz -yl
Hence, aftem + 1 steps we obtain
| —vI<C"Fz -yl

Finally we use (3.4) to deduce that

K
It —s| < <; min{|s|, [¢|}C™ T + 1>|z —yl.

Now m, s, t are bounded above by constants depending onls2and S: the conclusion
follows. O

We apply now Proposition 2.1 with = ¥7. We recall that, fog in I1, we denote by
111(§), t2(§)[ the maximal interval of the solutiar: to x’ = S(x), x(0) = &.

Theorem 3.5. Let £2 be an open bounded subsetRif and v be a function inW&’q(.Q).
There exists a representativé of v in W&’q(ﬂ) such that the map
1 v (xz (1)) (3.10)

is absolutely continuous for almost evéryn IT and
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v (xz (12(8))) = v* (xz (12(8))) = 0. (3.11)

Moreover, the classical partial derivative with respect tof v* o x¢ is

Dy (v* o xg) (1) = Vu(xe (1)) - S(xe (1)), (3.12)

for almost everyz, &) in A.

Proof. We setA =Y, E= A, F =W¥(A). Remark first that for every in IT we have
E€) =111(8), 12(8)[ and thatW (11(£), &), ¥ (12(£), &) belong tod 2. We can thus apply
Proposition 2.1: there exists a representativef v in W% (s2) vanishing ord £2 (so that
VW (11(8), &) = v (W (12(8), £)) = 0) and satisfying (3.10) and (3.12) O

We are now in the position to extend to Sobolev functions the result that we proved for
smooth functions in the introduction.

Theorem 3.6. Let £2 be an open bounded subset®f and v be a positive function in
W&"’(Q). Assume that there exists a vector figld2 — R" satisfying the cone property
such thatS - Vv < 0 a.e. onf2. Thenv =0a.e. ons2.

Proof. Let N = {x € £2: v(x) > 0} and assume tha is non negligible. Let the vector
be as in Definition 2.6 anfl be a hyperplane that is orthogonaltand whose intersection
with N is non negligible (for th&n — 1)-Hausdorff measure ii7); let ¥ = ¥ be the
map defined above. By Theorem 3.5 there exists a representaidfe such that the map
t = v* o xg(¢) is absolutely continuous for almost evéryits derivative being

Vo(xs (1) - S(xe (1)) = Vo(¥(1,8)) - S(¥ (2, 8))  ae.inl@), 28)],
andv* (xg (r1(¢))) = 0. Therefore, for almost evetyin IT N N we have

0
0 < v* (&) = v* (x(0) — v* (xe (1(6))) = / V(W (t.£)) - S(P (1. &) dr,
11(8)
and therefore then(— 1)-dimensional integral of* on IT N N is given by

0

/u*(g)dgz / { /W(W(r,g)).s(wu,g))dt,dg

IINN IINN “11(§)
:/Vv(ll/(t,é))«S(d/(t,é))dtds,
Ay

wherewe sefl; = {(t,€) e RxIT: £ € N, t <0} andv = 0 outof$2. Theorem 3.2 allows
us to apply the change of variables formula for Sobolev functions [9, Theorem 2.2.2]:
denoting byJ, -1 the Jacobian of the inverse &f we are thus led to the inequalities
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0< / v¥(E)dE = / Vo(x) - S(x)|[Jy-1(x)|dx <0,

NN W (A7)

a contradiction. It follows thaw is negligible. O

Remark 3.7. This result plays an important role in the proof of @amparison principle
for the minimizers of integral functionals in [7, Theorem 3.14].

4. Thegeneral case

We give now a local version of Theorem 3.2 for a wider class of vector fields2Lis¢
an open subset @&”, S: 2 — R" be Lipschitz. For every in £2 such thatS(x) # 0 we
setlT, to be the hyperplane throughthat is orthogonal t& (x). If D denotes the domain
of the flux of the autonomous system associatef],twe setd, = D N (R x I1,) and¥,
to be the restriction of the flu® to A,, i.e.,

U Ay > R, (1,8 > W (t,8) =D, 8).

We first show thatS does satisfy the cone property in a neighbourhood of a point where it
does not vanish.

Lemma4.l. Let S:R" — R" be Lipschitz and € R" be such thafS(x) # 0. There exist
o >0, o > 0such that

Vx,yeB(x,p) Sx)-S(y)=a. (4.1)
Moreover, wherjS| is bounded below by a strictly positive constant, the constarssd
o depend only or$.

Proof. We haveS(x) - S(y) = (S(x) — S(») - S(») + [S(»)[% now |S(x) — S(y)| <
L|x — y|, whereL is the Lipschitz constant &f. Letr > 0 andm > 0 be a lower bound of
|S| on B(X, r). Forx, y in B(x,r) we haveS(x) - S(y) > |S(y)|% — L|x — y|: itis enough
to sete = m?/2 andp = min{r, n%/(4L)}. O

Lemma 4.2. Let S:R" — R”" be Lipschitzx € R"” be such thatS(x) # 0 and letp > 0.
There exis > 0, R > 0 such that

V(t,€) € B(x,R) x [Tz |W:(t,&) —X| < p/2. (4.2)

Moreover, whenS| is bounded, the two constaritsand R depend only om.

Proof. We set¥ = ¥; andwritethatv (1, &) —x =W (¢, &) —W(t, )+ ¥ (¢, x)—¥ (0, X).
Letw(t) =¥ (t,&) — ¥(t, x). We have
|/ ()| =[S(¥ (@, &) = S(W(t,%)| < LW (.6 — ¥, )| =Llo®)

and from Gronwall's lemma we obtajm (1)| < |0 (0)|eL!l = |& — x|eLll; moreover,

9
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t

/S(cb(s,i)) ds
0

Fix ¢ > 0 and letM = sup{|S(® (s, ¥))|; |s| < t}:then|¥ (1, &) — x| < |& — x|el + M|z

for every|z| < t. By continuity the right-hand side of the above inequality is smaller than
p/2if (¢, &) belongs to a suitable neighbourhdedrl’, T[ x B(x, R) (T < t) of (0, x); if S

is bounded above we choose= sup(|S(x)|; x € R"} and therl” depends onlyop. O

|W (@, %) —w0,%)| =13 —x|=

We state now the local version of Theorems 3.2 and 3.5 for arbitrary Lipschitz fields.

Theorem 4.3. Let S:R" — R" be Lipschitz andc in R” be such thatS(x) # 0. Then
there exist two strictly positive real numbeRsand 7 such that the mag; restricted to
1-T, T[ x B(x, R) is Lipschitz, injective and its left inverse is Lipschitz. Moreover, when
|S| is bounded and bounded below by a strictly positive constant, ghand 7 depend
only onS.

Proof. Letp,a, T, R be asin Lemmas 4.1 and 4.2. ket S(x); by Lemma 4.1 we have
S(x)-u >« for everyx in B(x, p). We consider a Lipschitz vector fielfithat coincides
with S on the ballB(x, p/2) and that satisfies (x) - u > min{e, 1} for everyx in R”;

it is enough to sefS(x) = A(x)S(x) + (1 — A(x))u, wherex is a smooth function with
compact support irB(x, p), values in[0, 1] and equal to 1 inB(x, p/2). Let @ be the
flux associated t& and ¥ ; be its restriction taR x IT;z. By Theorem 3.2 the mag';
is Lipschitz, injective and its inverse is Lipschitz. Uet < 7 and|§ — x| < R, by (4.2)
we deduce tha§(®(z, £)) = S(®(t, £)); by uniqueness we havg(r, &) = @ (¢, £) which
proves thaW; (¢, &) = Wi (t, £). It follows that the restriction o® to -7, T[ x B(x, R)
is Lipschitz, injective and its inverse is LipschitzC

We recall that ifx is in £2 we denote byl; the maximal interval of definition of the
solution tox’ = S(x), x(0) = x.

Theorem 4.4. Let v € Wh(£2), S:2 — R”" be Lipschitz andxg in £2 be such that
S(xo) # 0. For every0 < t < suply, there exists a representativé of v and Rp > 0 such
that for almost everg in B(xo, Ro) N 1y, the map — v*(x¢ (1)) is absolutely continuous
on|[oO, t].

Proof. Itis notrestrictive to assume that there exist two real numberg0< M such that

m < |S(x)| < M for everyx in 2. In fact, letI” be the curve™ = {® (¢, xg), 0< ¢ < t}.
SinceS(xg) # 0 ands is Lipschitz thenS does not vanishes afi. By continuity there exist

¢ > 0 andm > 0 such thatS(x)| > m for everyx in W, whereW = {x € 2: dist(x, I')

< ¢}. Moreover, there exists > 0 such that, for every in B(xg,r), T belongs tol,
and®(z, x) € W for everyt € [0, t]. By [3, Section 3.1.1] there exists a Lipschitz field
S:R" — R" such thats = S on W, |S| is bounded and irf: | S| = infw |S|. We fix T, R, p

ando as in Lemmas 4.1 and 4.2; our assumption implies that these constants do not depend
on the choice okg. In many parts of the proof we writ¢ instead of,,. We subdivide

the proof into several steps.
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(a) There exist a representatiwe’ of v and a subseVy of I1,, of (n — 1)-Hausdorff
measurel such that for everg in B(xg, R) N Iy, \ No the mapr — v* (¥ (1, §)) is
absolutely continuous ipn-7, T .

By Theorem 4.3w = v o ¥ belongs tow1(E) where E =1—T, T'[ x(B(xo, R) N
M,,). By Theorem 1.41 in [9] there exists a representativec W1-1(E) of w and a
negligible subsedo of T, such that, for ever§ € B(xg, R) NIy, \ No, the functiory —
w*(t, &) is absolutely continuous in-7, T[ . The functionv* defined byv* = w* o w1
onv¥ (E), v* = v otherwise, fulfills (a).

(b) There existRp < R such that

V& € B(xo, Ro) N [Ty, 310(5) €10, T[: ¥ (10(5), &) € Ha(T/2.x0);

moreoverf(§) is unique.
Letx1=@(T/2, xo) andIT, H;E be the open half-planes defined by

I, = {x eR": (x —x1) - S(x1) < O},

I} ={xeR" (x —x1)- S(x1) > 0}.
By Lemma 4.1 we have§(x) - S(x1) = « on B(xg, p). Proposition 2.8 implies that
xo=®(=T/2,x1) € I and thatxy = &(T,xp) = &(T/2,x1) € I‘[jl. Let U be a
neighbourhood af, contained irﬂ;;. By continuity there exist®g such thatb (T, &) e U
for every& in B(xo, Ro) N I1y,. For every suclt the paths — @(, ) joins & € I1,;
to @(7,&) e R" \ cl/1,;; a connection argument yields the existenceof) such that
@(t0(£), &) belongs to the boundary @1, i.e., to/1y,. The uniqueness a§(§) follows
immediately from Proposition 2.8.

(c) The map

B(x0, Ro) N [Tyy — My, &> ¥ (10(§), &)

is Lipschitz, injective and its inverse is Lipschitz.

The injectivity follows by the uniqueness of the solutions of the Cauchy problem. Since
the inverse map can be represented in a similar way by considering the-fig¢)dnstead
of S itis enough to prove the mapis Lipschitz. Lett, & in B(xg, Ro) NI, and assume
thatro(§2) > t0(§1). Since(@ (10(82), &2) — P (10(§1), £1)) - S(x1) = O then

t0(§2)
/ S(@(s, 52)) -S(x1)ds

to(§1)
to(§1)

=(f2—481)-S(x1) + / (S(2(s,61)) — S(@(5,82))) - S(x1) ds;
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since® is Lipschitz,S is bounded and(x) - S(x1) > « > 0 there exists > 0 such that
alto(&2) —to(&1)| < Cl&2 — &1], which proves the claim.

(d) End of the proof.

Let m in N be such thatm + 1)T/2 > . For everyk in {0,...,m} we setx; =
@ (kT/2, x0) and

W R x Ty, — 2, (6,6 > & (1, £5).

We remark thatlg = ¥. The claims (b) and (c) applied to the pointinstead ofcg imply
that there exist®; such that, for everg e B(xx, Ry) N ITy, ¥ (1 (£%), £%) belongs to
M., for somer. (%) € [0, T] and the magE* — Wi (1 (€%), &%) is Lipschitz, injective
and its inverse is Lipschitz. By choosi®} small enough we may assume that for every
we have

Vek € BOo, Ri) N I, [ (10(EY), &%) — x| < Resa

We setTy (&) =11(§) + - - - + 1 (&); it follows that for everyé in B(xg, Ro) N Iy, andt in
1T (&) — T, Ty (§) + T[ we have

D(1,8) = Wi (1 = Te(§), D(Ti(£), ). (4.3)

By (c) there existVy C Iy, and Nyy1 C Ty, of (n — 1)-Hausdorff measure zero and
vy, U/t-i-l equal tov a.e. such that the map— v; (¥ (¢, £%)) is absolutely continuous on
1-T, T[ for every&k in B(xx, Ri) N ITy, \ Ni. Since the inverse &f > Wy (1 (£%), £X) is
Lipschitz the inverse image V.1 has(n — 1)-Hausdorff measure zero and therefore it
is not restrictive to assume that

VeK € Bu, R NI \ Nie - Wi (1(8%), €%) ¢ Niga.

It follows from (4.3) that for every in B(xo, Ro) N ITy, \ No the mapt — v (P (1, §))

is absolutely continuous o}T (&) — T, Tx (&) + T[. Let Ex = W (1-T, T x B(xx, Ry)),
(%) be a partition of the unity ofE¢), and sev* =3} vy . For everyk the function

t— (P (1, &)) is the composition of two Lipschitz functions and its support is contained
in 1Tk (§) — T, T (&) + T[; moreover, the map— v (P (z,&)) is absolutely continuous
on the same interval. It follows that fulfills the requirements of the claim.c
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