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Abstract

We consider a class of Lipschitz vector fieldsS :Ω → R
n whose values lie in a suitable cone a

we show that the trajectories of the systemx′ = S(x) admit a parametrization that is invertible a
Lipschitz with its inverse. As a consequence, everyv in W1,1(Ω) admits a representative that
absolutely continuous on almost every trajectory ofx′ = S(x). If S is an arbritrary Lipschitz field the
same property does hold locally at everyx such thatS(x) �= 0.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The results that we present here are motivated by the following problem. LetΩ be an
open bounded subset ofR

n, S :Ω → R
n be a Lipschitz vector field such that the trajector

of x ′ = S(x) leaveΩ in a finite time andv in C1(Ω) be equal to 0 in the boundary∂Ω
of Ω and be such that its gradient∇v(x) is orthogonal toS(x) for everyx in Ω . It then
follows immediately thatv vanishes onΩ . In fact letx0 ∈ Ω andx : ]t1, t2[→ Ω be the
maximal solution of

x ′ = S(x), x(0)= x0; (A)

our assumption implies thatx(t2)= limt→t2 x(t) belongs to∂Ω . We have
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v(x0)= v
(
x(0)

) − v
(
x(t2)

) =
0∫

t2

(v ◦ x)′(t) dt

=
0∫

t2

∇v
(
x(t)

) · x ′(t) dt =
0∫

t2

∇v
(
x(t)

) · S(
x(t)

)
dt = 0, (∗)

proving the claim. We point out that the same conclusion does not hold if the trajec
of (A) do not leaveΩ in a finite time; let for instancev(x, y)= x2 + y2 − 1,Ω = {(x, y):
x2 + y2 < 1}, S(x, y)= (−y, x): in this case∇v(x, y) is orthogonal toS(x, y) andv = 0
on ∂Ω butv < 0 onΩ .

Here we extend the above vanishing property in the case wherev is a function in
W

1,1
0 (Ω). This result turns out to be an important tool in establishing the validity

comparison principle for the minimizers of integral functionals in our paper [7].
In this situation the previous reasoning cannot be directly applied. The main pro

is that, if x is a trajectory of (A), the composed functionv ◦ x may not be absolutel
continuous. This can be regarded as a particular case of the problem of the compos
Sobolev functions. The known results on this topic [6] do not apply to our case. IfS is a
nonzero constant field the problem can be easily solved since a classical result sho
once we fix a hyperplaneΠ that is transversal toS, there exists a representative ofv that
is equal to zero on∂Ω and absolutely continuous on almost every trajectory throughΠ .
In Section 3 we consider the class of vector fields whose values lie in a suitable
(cone property, see Definition 2.6), allowing the trajectories of (A) to leaveΩ in a finite
time. The problem is reduced to the case whereS is constant by showing that if we fi
a hyperplaneΠ that is transversal to the cone containing the values ofS then we can
parametrizeΩ by means of a functionΨ (t, ξ), whoseξ -sections are the trajectories
(A), that is a bi-Lipschitz homeomorphism. This allows us to look at the compositionv
with the trajectories of (A) as theξ -sections ofv ◦Ψ (t, ξ). The change of variables formu
for Sobolev functions shows that there exists a representative ofv ◦ Ψ that is absolutely
continuous on almost every section. However this is not enough since by (∗) we need to
evaluatev at the endpoints of the trajectories. For this purpose we slightly modify the p
of the aforementioned classical result to show that actually there exists a representav∗
of v such thatv∗ ◦ Ψ is absolutely continuous on almost every section and, furthev∗
vanishes on∂Ω . We point out that, in order to obtain the lipschitzianity ofΨ−1, it is
essential to assume thecone propertyas we show in Example 3.4.

Finally, in Section 4, we consider an arbitrary Lipschitz fieldS :Ω → R
n and we prove

that if S(x̄) is nonzero then the previous mapΨ constructed upon a hyperplaneΠ through
x̄ is orthogonal toS(x̄) is injective and has a Lipschitz inverse in a neighbourhoo
(0, x̄) ∈ R × Π . As a consequence, ifv is in W1,1(Ω) andτ is a positive real numbe
there exists a representativev∗ of v such that for everyξ in a neighbourhood of̄x in Π ,
except a set of(n − 1)-Hausdorff measure zero, the functiont �→ v∗(xξ (t)) is absolutely
continuous on[0, τ ], wherexξ is the solution ofx ′ = S(x), x(0)= ξ .



C. Mariconda, G. Treu / J. Math. Anal. Appl. 281 (2003) 171–185 173

,

f

le
ort

paces)

is
s

es
most
proof
ible,

t
that,

l
t

,
.41
2. Notation and preliminary results

Notation. If A is a subset ofRn we denote clA (respectively,∂A) the closure (respectively
the boundary) ofA. Given two vectorsa andb in R

n andr > 0 we denote bya ·b the usual
scalar product inRn, by |a| the euclidean norm ofa and byB(a, r) the ball centered ina of
radiusr; by diam(A) we denote the diameter ofA, i.e., diam(A)= sup{|x2−x1|: x1, x2 ∈
A} and by dist(a,A) the distance ofa to A. The standard orthonormal basis ofR

n is
e1, . . . , en. If f :X → Y is a function andW is a subset ofX (respectively,Z is a subset o
Y ) the image ofW (respectively, the inverse image ofZ) throughf is denoted byf (W)

(respectively,f−1(Z)).
By C∞(Ω) (respectively,C∞

c (Ω)) we denote the space of infinitely differentiab
functions in Ω (respectively, infinitely differentiable functions with compact supp
in Ω) and, for q � 1 andA open in R

n, Lq(A) (respectively,W1,q (A), W1,q
0 (A)) is

the usual space of the Lebesgue functions (respectively, the first order Sobolev s
of exponentq ; for f in W1,q(Ω) (respectively, differentiable inΩ) the weak derivative
(respectively, classical derivative) off with respect toxi is denoted byfxi (respectively,
Dxi f ) and its gradient by∇f . For a functionf of one variable the classical derivative
often denoted byf ′. The composition of the functionsf andg (whenever it is defined) i
denoted byf ◦ g, the inverse off is denoted byf−1.

Let Ω be an open bounded subset ofR
n. A classical result [8, Theorem 1.41] stat

that a function inW1,q
0 (Ω) admits a representative that is absolutely continuous on al

all line segments that are parallel to the coordinate axes. A slight modification of its
yields the following generalization to the composition of Sobolev functions with invert
Lipschitz mappings.

Proposition 2.1. Let v be a function inW1,q
0 (Ω), E, F be open inRn andF be a subse

ofΩ . LetΛ : clE → clF be Lipschitz, invertible and its inverse be Lipschitz. Assume
for almost everyξ in R

n−1,

Λ
(
∂E ∩ {

(t, ξ): t ∈ R
}) ⊂ ∂Ω. (2.1)

There exists a representativev∗ of v in W
1,q
0 (Ω) such thatv∗ vanishes on∂Ω and the map

t �→ (v∗ ◦ Λ)(t, ξ) is absolutely continuous for almost everyξ . Moreover, the classica
partial derivative ofv∗ ◦ Λ and the weak derivative ofv ◦ Λ, with respect to the firs
variablet , agree almost everywhere onE.

Remark 2.2. It is well known [9, Theorem 2.2.2] that the composed mapv ◦ Λ belongs
to W1,q (E), even without assuming (2.1). Assumption (2.1) is fulfilled if, for instanceE

andF coincide withΩ ; in this case, however, the claim follows easily from Theorem 1
of [8] itself. We will apply Proposition 2.1 in the proof of Theorem 3.5 where the setF is
a proper subset ofΩ .
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If E is an open subset ofRn for ξ in the projection ofE onto the lastn− 1 coordinates
we denote byE(ξ) theξ -section ofE, i.e.,

E(ξ) = {
t ∈ R: (t, ξ) ∈ E

}
.

Remark 2.3. Proposition 2.1, in the case whereΛ is the identity map, yields [8, Theo
rem 1.41].

Definition 2.4 (the fluxΦ). Let S :Ω → R
n be Lipschitz. Letx̄ in Ω , Ix̄ be the maxima

interval of definition of the maximal solution of

x ′ = S(x), x(0)= x̄, (2.2)

andΦ(t, x̄) be its value att . ThedomainD of Φ is defined by

D = {
(t, x̄) ∈ R ×Ω : t ∈ Ix̄

}
.

We recall that for everys, t, x such that the pairs(s, x) and(t,Φ(s, x)) are inD then
Φ(t,Φ(s, x))=Φ(t + s, x). We will often denote byxξ (t) the pointΦ(t, ξ).

Remark 2.5. It is well known, see for instance [5, Theorem 3.1.1], thatD is open andΦ
is locally Lipschitz; actuallyΦ is Lipschitz if the solutions to (2.2) leaveΩ in a uniformly
bounded time.

Definition 2.6 (the cone property). We say that the vector fieldS :Ω → R
n satisfies the

cone propertyif S is Lipschitz inΩ and there exist a vectoru in R
n andα > 0 such that

S(x) · u� α for everyx in Ω .

Remark 2.7. WhenΩ is bounded,S being Lipschitz, this condition implies that the
exists a positiveβ such that the vectorS(x) belongs to the cone{y ∈ R

n: y · u� β|y|} for
everyx.

The following result is straightforward.

Proposition 2.8. LetS :Ω → R
n be a vector field satisfying the cone property,x̄ in Ω and

x : Ix̄ =]t1(x̄), t2(x̄)[→ Ω (−∞ � t1(x̄) � t2(x̄) � +∞) be the maximal solution of th
autonomous system(2.2). Then for everyt in Ix̄ the following inequalities hold:{

(x(t)− x̄) · u� αt if t � 0,

(x(t)− x̄) · u� αt if t � 0.

Moreover, ifΩ is bounded there existT > 0 depending only onΩ such that|t1(x̄)| � T

and |t2(x̄)| � T ; moreover, the limitslimt→t2(x̄) x(t), limt→t1(x̄) x(t) exist and belong to
the boundary ofΩ .
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3. Lipschitz fields that satisfy the cone property

In this sectionΩ is an open bounded subset ofR
n, the functionS :Ω → R

n is assumed
to satisfy the cone property and the vectoru is as in Definition 2.6. We fix a hyperplaneΠ
that is orthogonal tou and such thatΩ ∩Π �= ∅. We set

AΠ = {
(t, ξ) ∈ R ×Π : (t, ξ) ∈ D

}
and we introduce the parametrizationΨΠ of the trajectories of the systemx ′ = S(x) that
intersectΠ by

ΨΠ :AΠ ⊂ R ×Π →Ω, (t, ξ) �→ ΨΠ(t, ξ)=Φ(t, ξ);
Ψ is the restriction ofΦ to R ×Π . When no ambiguity may occur we will often writeΨ
instead ofΨΠ andA instead ofAΠ .

Lemma 3.1. For everyx̄ in Ω the functiont �→Φ(t, x̄) · u is strictly increasing onIx̄ .

Proof. The derivative with respect tot of the mapt �→Φ(t, x̄) ·u is given byS(Φ(t, x̄)) ·u
and is thus greater than the strictly positive constantα. ✷
Theorem 3.2. The domainAΠ ofΨΠ is open inR×Π and the imageB = ΨΠ(AΠ) ofAΠ

throughΨΠ is open inR
n. The mapΨΠ is Lipschitz, invertible and its inverse is Lipschi

Remark 3.3. In the proof of this result the continuity ofΨΠ and its invertibility follow
easily from the properties of the flux ofS. However, the fact that the inverseΨ−1

Π is
Lipschitz is not trivial at all; moreover,as we show in the following example this conclu
cannot be obtained if the fieldS, instead of satisfying the cone property, is just such
the trajectories of the associated dynamical system leaveΩ in a finite time.

Example 3.4. Let Ω = {(x, y) ∈ R
2: x > 0, x2 + y2 < 1}, S(x, y) = (−y, x) andΠ be

thex-axis. For everȳx ∈]0,1[ we have

Ψ (t, x̄) = (x̄ cost, x̄ sint),

and thus the inverse map is given by

Ψ−1(x, y)= (
t (x, y), x̄(x, y)

)
,

where

t (x, y)= arctan(y/x), x̄(x, y)=
√
x2 + y2.

Clearly x̄(x, y) is Lipschitz whereast (x, y) is not. Here the solutions to(x ′, y ′)= S(x, y)

leave the domain in a finite time (namely in a time less thanπ ), howeverS does not satisfy
the cone property onΩ .

Proof of Theorem 3.2. We subdivide the proof into several steps.

(a) The mapΨ is injective andA, B are open.
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It is not restrictive to assume thatu= en and that the hyperplaneΠ is defined by

Π = {
(x1, . . . , xn) ∈ R

n: xn = 0
}
.

The setA is open sinceD is open. Let(s, ν), (t, ξ) in A be such thatΨ (s, ν) = Ψ (t, ξ).
Then

Φ(s, ν) =Φ(t, ξ), (3.1)

and therefore by applying the mapΦ(−s, ·) on both sides of the latter equality we obta
ν =Φ(0, ν) =Φ(t − s, ν). Taking the scalar product withen on each side of the equalitie
we getΦ(t − s, ξ) · en = 0 = Φ(0, ξ); the strict monotonicity of the mapτ �→ Φ(τ, ξ)

then implies thatt = s. It follows from (3.1) thatν = ξ andΨ is injective. Clearly, by
Remark 2.5 and Proposition 2.8, the mapΨ is Lipschitz: theinvariance of domain theorem
[4, Theorem 3.30] then implies that the setB = Ψ (A) is open.

We are now concerned with the proof of the Lipschitz continuity of the inverse ofΨ : in
what follows(s, ν), (t, ξ) are inA and we set

y = Ψ (s, ν), z = Ψ (t, ξ).

Our goal is to prove the existence of a constantβ depending only onΩ andS satisfying

max
{|t − s|, |ξ − ν|} � β|z− y|. (3.2)

In the next steps (b) and (c) we state some intermediate results towards this scope.

(b) If s andt have opposite signs then

α|t − s| � |z− y|, (3.3)

otherwise there exists a positive constantK depending only onΩ andS such that

α|t − s| � K min
{|s|, |t|}|ξ − ν| + |z− y|. (3.4)

Moreover, denoting byLΦ the Lipschitz constant ofΦ, we have

|ξ − ν| � LΦ

(|t − s| + |z− y|). (3.5)

Since the derivative of the mapt �→Φ(t, x) is S(Φ(t, x)) then we have

y = ν +
s∫

0

S
(
Ψ (r, ν)

)
dr, z = ξ +

t∫
0

S
(
Ψ (r, ξ)

)
dr.

Assume thats andt have opposite signs, for instance thats � 0� t . Then

z− y = (ξ − ν,0)+
t∫

0

S
(
Ψ (r, ξ)

)
dr −

s∫
0

S
(
Ψ (r, ν)

)
dr,

whence, taking the scalar product withen on both sides of the equality,
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hat
t∫
0

S
(
Ψ (r, ξ)

) · en dr −
s∫

0

S
(
Ψ (r, ν)

) · en dr = (z− y) · en. (3.6)

Since
t∫

0

S
(
Ψ (r, ξ)

) · en dr �
t∫

0

α dr = αt,

0∫
s

S
(
Ψ (r, ν)

) · en dr �
0∫

s

α dr = −αs,

then (3.6) yields

|z− y| � (z− y) · en � α(t − s)= α|t − s|,
which proves (3.3). Assume thats and t have the same sign and without restriction t
0 � s � t . Then(s, ν) and(s, ξ) belong toA for everys in [0, t] and thus we can write

z− y = (ξ − ν,0)+
s∫

0

S
(
Ψ (r, ξ)

) − S
(
Ψ (r, ν)

)
dr +

t∫
s

S
(
Ψ (r, ξ)

)
dr;

taking again the scalar product withen on both sides of the latter equality, we obtain

t∫
s

S
(
Ψ (r, ξ)

) · en dr = −
s∫

0

[
S
(
Ψ (r, ξ)

) − S
(
Ψ (r, ν)

)] · en dr + (z− y) · en.

We recall thatS(y) · en � α for everyy in Ω ; thus denoting byLS (respectively,LΨ ) the
Lipschitz constant ofS (respectively,Ψ ), we obtain

α|t − s| �LSLΨ |s||ξ − ν| + |z− y|,
proving (3.4). By definition we have

ν =Φ(−s, y), ξ =Φ(−t, z);
the Lipschitz continuity ofΦ yields

|ξ − ν| � LΦ

(|t − s| + |z− y|),
proving (3.5).

(c) There exist two constantsT1 andC depending only onΩ andS such that

max
{|t − s|, |ξ − ν|} � C|z− y|,

for everys, t satisfying

min
{|s|, |t|} � T1.
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Setτ = min{|s|, |t|}; the inequalities (3.3) and (3.4) together with (3.5) yield

|t − s| � KτLΦ

α

(|t − s| + |z− y|) + 1

α
|z− y|

= KτLΦ

α
|t − s| + KτLΦ + 1

α
|z− y|,

so that

|t − s|
(

1− KLΦτ

α

)
� KτLΦ + 1

α
|z− y|.

Choosing 0< T1 < α/(KLΦ) andτ � T1 we obtain|t − s| � C1|z− y| for some constan
C1 depending only onΩ andS. Now (3.5) gives|ξ − ν| � LΦ(C1 + 1)|z− y|, proving the
claim.

(d) The inverse ofΨ is Lipschitz.

If s andt have opposite signs the application of (3.3) together with (3.5) yields

|ξ − ν| � LΦ

(
1

α
+ 1

)
|z− y|,

proving the validity of (3.2). Assume now, without restriction, thats andt are both positive
Remark first that by Proposition 2.8 for every(t, ξ) in A we have∣∣Ψ (t, ξ) · en

∣∣ = ∣∣(Φ(t, ξ)−Φ(0, ξ)
) · en

∣∣ � α|t|. (3.7)

Therefore, if we set∆ = αT1 the inequality|Ψ (t, ξ) · en| � ∆ implies that|t| � T1. Fork
in Z we set

hk = k∆, Πk = {
(x1, . . . , xn) ∈ R

n: xn = hk
}
.

We defineΨk byΨk(t, ξ) =Φ(t, (ξ, hk)) for everyξ in Π ; notice thatΨ0 = Ψ . As in (3.7)
Proposition 2.8 implies that∣∣Ψk(t, ξ) · en − hk

∣∣ � α|t|. (3.8)

We may assume thaty · en � z · en: let m in N be such thathm � y · en < hm+1. Remark
thatm is bounded above by a constant depending only onΩ andS: in fact, from the latter
inequality we deduce thatm∆� y · en = y · en − ȳ · en for everyȳ in Π ∩Ω and therefore
m is bounded above by the constant(2 diamΩ)/∆. By the continuity and the monotonicit
of the mapst �→Ψ (t, ξ) · en andt �→ Ψ (t, ν) · en, there exist

s0 = 0< s1 < · · ·< sm � s = sm+1,

t0 = 0< t1 < · · ·< tm < t = tm+1,

such that

Ψ (sk, ν) · en = hk, Ψ (tk, ξ) · en = hk (k = 0, . . . ,m),
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so thatΨ (sk, ν) = (pk,hk) andΨ (tk, ξ) = (qk, hk) for somepk, qk in R
n−1; notice that

0 � Ψ (s, ν) · en − hm � ∆, p0 = ν andq0 = ξ . The properties of the fluxΦ allow us to
write that, fork in {0, . . . ,m},

Ψ (sk+1, ν)=Φ(sk+1, ν)=Φ
(
sk+1 − sk,Φ(sk, ν)

) =Φ
(
sk+1 − sk,Ψ (sk, ν)

)
=Φ

(
sk+1 − sk, (pk,hk)

) = Ψk(sk+1 − sk,pk).

Since|Ψ (sk+1, ν) ·en−hk| � ∆ then|Ψk(sk+1−sk,pk) ·en−hk| � ∆, hence (3.8) implies
thatsk+1 − sk � T1; analogously, fork in {0, . . . ,m−1}, we obtain thattk+1 − tk � T1 (the
casek = m is excluded here sincetm+1 − tm = t − tm may be greater thanT1). Starting
with k =m we are therefore led to the following situation:

y = Ψ0(sm+1,p
0) = Ψm(sm+1 − sm,p

m), 0 � sm+1 − sm � T1,

z = Ψ0(tm+1, q
0)= Ψm(tm+1 − tm,p

m), 0 � tm+1 − tm.

We point out here that the previous steps (b) and (c) do obviously apply wheny = Ψk(s, ν)

andz = Ψk(t, ξ) (k in {0, . . . ,m}). It follows from step (c) that

|qm − pm| � C|z− y|. (3.9)

If m= 0 we obtain|ξ − ν| � C|z− y|. Otherwise we write that

pm = Ψm−1(sm − sm−1,p
m−1), 0 � sm − sm−1 � T1,

qm = Ψm−1(tm − tm−1, q
m−1), 0 � tm − tm−1 � T1,

so that again step (c) yields|qm−1 − pm−1| � C|qm − pm| and (3.9) gives

|qm−1 −pm−1| � C2|z− y|.
Hence, afterm+ 1 steps we obtain

|ξ − ν| � Cm+1|z− y|.
Finally we use (3.4) to deduce that

|t − s| �
(
K

α
min

{|s|, |t|}Cm+1 + 1

)
|z− y|.

Now m,s, t are bounded above by constants depending only onΩ andS: the conclusion
follows. ✷

We apply now Proposition 2.1 withΛ = ΨΠ . We recall that, forξ in Π , we denote by
]t1(ξ), t2(ξ)[ the maximal interval of the solutionxξ to x ′ = S(x), x(0)= ξ .

Theorem 3.5. LetΩ be an open bounded subset ofR
n andv be a function inW1,q

0 (Ω).

There exists a representativev∗ of v in W
1,q
0 (Ω) such that the map

t �→ v∗(xξ (t)) (3.10)

is absolutely continuous for almost everyξ in Π and
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ed for

y

n

.2.2]:
v∗(xξ (t1(ξ))) = v∗(xξ (t2(ξ))) = 0. (3.11)

Moreover, the classical partial derivative with respect tot of v∗ ◦ xξ is

Dt(v
∗ ◦ xξ )(t) = ∇v

(
xξ (t)

) · S(
xξ (t)

)
, (3.12)

for almost every(t, ξ) in A.

Proof. We setΛ = ΨΠ , E = A, F = ΨΠ(A). Remark first that for everyξ in Π we have
E(ξ) =]t1(ξ), t2(ξ)[ and thatΨ (t1(ξ), ξ), Ψ (t2(ξ), ξ) belong to∂Ω . We can thus apply
Proposition 2.1: there exists a representativev∗ of v in W

1,q
0 (Ω) vanishing on∂Ω (so that

v∗(Ψ (t1(ξ), ξ)) = v∗(Ψ (t2(ξ), ξ)) = 0) and satisfying (3.10) and (3.12).✷
We are now in the position to extend to Sobolev functions the result that we prov

smooth functions in the introduction.

Theorem 3.6. Let Ω be an open bounded subset ofR
n and v be a positive function in

W
1,q
0 (Ω). Assume that there exists a vector fieldS :Ω → R

n satisfying the cone propert
such thatS · ∇v � 0 a.e. onΩ . Thenv = 0 a.e. onΩ .

Proof. Let N = {x ∈ Ω : v(x) > 0} and assume thatN is non negligible. Let the vectoru
be as in Definition 2.6 andΠ be a hyperplane that is orthogonal tou and whose intersectio
with N is non negligible (for the(n − 1)-Hausdorff measure inΠ ); let Ψ = ΨΠ be the
map defined above. By Theorem 3.5 there exists a representativev∗ of v such that the map
t �→ v∗ ◦ xξ (t) is absolutely continuous for almost everyξ , its derivative being

∇v
(
xξ (t)

) · S(
xξ (t)

) = ∇v
(
Ψ (t, ξ)

) · S(
Ψ (t, ξ)

)
a.e. in]t1(ξ), t2(ξ)[,

andv∗(xξ (t1(ξ))) = 0. Therefore, for almost everyξ in Π ∩N we have

0< v∗(ξ) = v∗(xξ (0)) − v∗(xξ (t1(ξ))) =
0∫

t1(ξ)

∇v
(
Ψ (t, ξ)

) · S(
Ψ (t, ξ)

)
dt,

and therefore the (n− 1)-dimensional integral ofv∗ onΠ ∩N is given by

∫
Π∩N

v∗(ξ) dξ =
∫

Π∩N

{ 0∫
t1(ξ)

∇v
(
Ψ (t, ξ)

) · S(
Ψ (t, ξ)

)
dt

}
dξ

=
∫
A1

∇v
(
Ψ (t, ξ)

) · S(
Ψ (t, ξ)

)
dt dξ,

where we setA1 = {(t, ξ) ∈ R×Π : ξ ∈N, t � 0} andv = 0 out ofΩ . Theorem 3.2 allows
us to apply the change of variables formula for Sobolev functions [9, Theorem 2
denoting byJΨ−1 the Jacobian of the inverse ofΨ we are thus led to the inequalities
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∫
Π∩N

v∗(ξ) dξ =
∫

Ψ (A1)

∇v(x) · S(x)∣∣JΨ−1(x)
∣∣dx � 0,

a contradiction. It follows thatN is negligible. ✷
Remark 3.7. This result plays an important role in the proof of ourcomparison principle
for the minimizers of integral functionals in [7, Theorem 3.14].

4. The general case

We give now a local version of Theorem 3.2 for a wider class of vector fields. LetΩ be
an open subset ofRn, S :Ω → R

n be Lipschitz. For everyx in Ω such thatS(x) �= 0 we
setΠx to be the hyperplane throughx that is orthogonal toS(x). If D denotes the domai
of the flux of the autonomous system associated toS, we setAx = D ∩ (R ×Πx) andΨx

to be the restriction of the fluxΦ to Ax , i.e.,

Ψx :Ax → R
n, (t, ξ) �→Ψx(t, ξ)=Φ(t, ξ).

We first show thatS does satisfy the cone property in a neighbourhood of a point whe
does not vanish.

Lemma 4.1. Let S :Rn → R
n be Lipschitz and̄x ∈ R

n be such thatS(x̄) �= 0. There exist
ρ > 0, α > 0 such that

∀x, y ∈B(x̄, ρ) S(x) · S(y)� α. (4.1)

Moreover, when|S| is bounded below by a strictly positive constant, the constantsρ and
α depend only onS.

Proof. We haveS(x) · S(y) = (S(x) − S(y)) · S(y) + |S(y)|2; now |S(x) − S(y)| �
L|x − y|, whereL is the Lipschitz constant ofS. Let r > 0 andm> 0 be a lower bound o
|S| onB(x̄, r). Forx, y in B(x̄, r) we haveS(x) · S(y)� |S(y)|2 −L|x − y|: it is enough
to setα =m2/2 andρ = min{r,m2/(4L)}. ✷
Lemma 4.2. Let S :Rn → R

n be Lipschitz,x̄ ∈ R
n be such thatS(x̄) �= 0 and letρ > 0.

There existT > 0, R > 0 such that

∀(t, ξ) ∈B(x̄,R)×Πx̄

∣∣Ψx̄(t, ξ)− x̄
∣∣ � ρ/2. (4.2)

Moreover, when|S| is bounded, the two constantsT andR depend only onρ.

Proof. We setΨ = Ψx̄ and write thatΨ (t, ξ)− x̄ = Ψ (t, ξ)−Ψ(t, x̄)+Ψ (t, x̄)−Ψ(0, x̄).
Let ω(t) = Ψ (t, ξ)−Ψ (t, x̄). We have∣∣ω′(t)

∣∣ = ∣∣S(
Ψ (t, ξ)

) − S
(
Ψ (t, x̄)

)∣∣ � L
∣∣Ψ (t, ξ)−Ψ (t, x̄)

∣∣ = L
∣∣ω(t)∣∣,

and from Gronwall’s lemma we obtain|ω(t)| � |ω(0)|eL|t | = |ξ − x̄|eL|t |; moreover,
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∣∣Ψ (t, x̄)−Ψ (0, x̄)
∣∣ = ∣∣Φ(t, x̄)− x̄

∣∣ =
∣∣∣∣∣

t∫
0

S
(
Φ(s, x̄)

)
ds

∣∣∣∣∣.
Fix τ > 0 and letM = sup{|S(Φ(s, x̄))|; |s| � τ }: then|Ψ (t, ξ)− x̄| � |ξ − x̄|eL|t | +M|t|
for every|t| � τ . By continuity the right-hand side of the above inequality is smaller t
ρ/2 if (t, ξ) belongs to a suitable neighbourhood]−T ,T [×B(x̄,R) (T < τ ) of (0, x̄); if S
is bounded above we chooseM = sup{|S(x)|; x ∈ R

n} and thenT depends only onρ. ✷
We state now the local version of Theorems 3.2 and 3.5 for arbitrary Lipschitz fie

Theorem 4.3. Let S :Rn → R
n be Lipschitz and̄x in R

n be such thatS(x̄) �= 0. Then
there exist two strictly positive real numbersR andT such that the mapΨx̄ restricted to
]−T ,T [×B(x̄,R) is Lipschitz, injective and its left inverse is Lipschitz. Moreover, w
|S| is bounded and bounded below by a strictly positive constant, thenR andT depend
only onS.

Proof. Let ρ,α,T ,R be as in Lemmas 4.1 and 4.2. Letu= S(x̄); by Lemma 4.1 we hav
S(x) · u � α for everyx in B(x̄, ρ). We consider a Lipschitz vector fieldS that coincides
with S on the ballB(x̄, ρ/2) and that satisfiesS(x) · u � min{α,1} for everyx in R

n;
it is enough to setS(x) = λ(x)S(x) + (1 − λ(x))u, whereλ is a smooth function with
compact support inB(x̄, ρ), values in[0,1] and equal to 1 inB(x̄, ρ/2). Let Φ be the
flux associated toS andΨ x̄ be its restriction toR × Πx̄ . By Theorem 3.2 the mapΨ x̄

is Lipschitz, injective and its inverse is Lipschitz. Let|t| < T and |ξ − x̄| < R, by (4.2)
we deduce thatS(Φ(t, ξ)) = S(Φ(t, ξ)); by uniqueness we haveΦ(t, ξ) = Φ(t, ξ) which
proves thatΨ x̄(t, ξ) = Ψx̄(t, ξ). It follows that the restriction ofΨ to ]−T ,T [×B(x̄,R)

is Lipschitz, injective and its inverse is Lipschitz.✷
We recall that ifx̄ is in Ω we denote byIx̄ the maximal interval of definition of th

solution tox ′ = S(x), x(0)= x̄.

Theorem 4.4. Let v ∈ W1,1(Ω), S :Ω → R
n be Lipschitz andx0 in Ω be such that

S(x0) �= 0. For every0< τ < supIx0 there exists a representativev∗ of v andR0 > 0 such
that for almost everyξ in B(x0,R0)∩Πx0 the mapt �→ v∗(xξ (t)) is absolutely continuou
on [0, τ ].

Proof. It is not restrictive to assume that there exist two real numbers 0<m� M such that
m � |S(x)| � M for everyx in Ω . In fact, letΓ be the curveΓ = {Φ(t, x0), 0 � t � τ }.
SinceS(x0) �= 0 andS is Lipschitz thenS does not vanishes onΓ . By continuity there exis
ε > 0 andm> 0 such that|S(x)| � m for everyx in W , whereW = {x ∈ Ω : dist(x,Γ )

< ε}. Moreover, there existsr > 0 such that, for everyx in B(x0, r), τ belongs toIx
andΦ(t, x) ∈ W for every t ∈ [0, τ ]. By [3, Section 3.1.1] there exists a Lipschitz fie
S :Rn → R

n such thatS = S onW , |S| is bounded and infRn |S| = infW |S|. We fixT ,R,ρ
andα as in Lemmas 4.1 and 4.2; our assumption implies that these constants do not
on the choice ofx0. In many parts of the proof we writeΨ instead ofΨx0. We subdivide
the proof into several steps.
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(a) There exist a representativev∗ of v and a subsetN0 of Πx0 of (n − 1)-Hausdorff
measure0 such that for everyξ in B(x0,R) ∩ Πx0 \ N0 the mapt �→ v∗(Ψ (t, ξ)) is
absolutely continuous in]−T ,T [ .

By Theorem 4.3,w = v ◦ Ψ belongs toW1,1(E) whereE =]−T ,T [×(B(x0,R) ∩
Πx0). By Theorem 1.41 in [9] there exists a representativew∗ ∈ W1,1(E) of w and a
negligible subsetN0 of Πx0 such that, for everyξ ∈B(x0,R)∩Πx0 \N0, the functiont �→
w∗(t, ξ) is absolutely continuous in]−T ,T [ . The functionv∗ defined byv∗ = w∗ ◦ Ψ−1

onΨ (E), v∗ = v otherwise, fulfills (a).

(b) There existsR0 � R such that

∀ξ ∈ B(x0,R0)∩Πx0 ∃t0(ξ) ∈]0, T [: Ψ
(
t0(ξ), ξ

) ∈ ΠΦ(T/2,x0);
moreover,t0(ξ) is unique.

Let x1 =Φ(T/2, x0) andΠ−
x1

, Π+
x1

be the open half-planes defined by

Π−
x1

= {
x ∈ R

n: (x − x1) · S(x1) < 0
}
,

Π+
x1

= {
x ∈ R

n: (x − x1) · S(x1) > 0
}
.

By Lemma 4.1 we haveS(x) · S(x1) � α on B(x0, ρ). Proposition 2.8 implies tha
x0 = Φ(−T/2, x1) ∈ Π−

x1
and thatx2 = Φ(T ,x0) = Φ(T/2, x1) ∈ Π+

x1
. Let U be a

neighbourhoodofx2 contained inΠ+
x1

. By continuity there existsR0 such thatΦ(T , ξ) ∈ U

for every ξ in B(x0,R0) ∩ Πx0. For every suchξ the patht �→ Φ(t, ξ) joins ξ ∈ Π−
x1

to Φ(T , ξ) ∈ R
n \ clΠ−

x1
; a connection argument yields the existence oft0(ξ) such that

Φ(t0(ξ), ξ) belongs to the boundary ofΠ−
x1

, i.e., toΠx1. The uniqueness oft0(ξ) follows
immediately from Proposition 2.8.

(c) The map

B(x0,R0)∩Πx0 → Πx1, ξ �→ Ψ
(
t0(ξ), ξ

)
is Lipschitz, injective and its inverse is Lipschitz.

The injectivity follows by the uniqueness of the solutions of the Cauchy problem. S
the inverse map can be represented in a similar way by considering the field (−S) instead
of S it is enough to prove the mapt0 is Lipschitz. Letξ1, ξ2 in B(x0,R0)∩Πx0 and assume
that t0(ξ2)� t0(ξ1). Since(Φ(t0(ξ2), ξ2)−Φ(t0(ξ1), ξ1)) · S(x1)= 0 then

t0(ξ2)∫
t0(ξ1)

S
(
Φ(s, ξ2)

) · S(x1) ds

= (ξ2 − ξ1) · S(x1)+
t0(ξ1)∫ (

S
(
Φ(s, ξ1)

) − S
(
Φ(s, ξ2)

)) · S(x1) ds;

0
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sinceΦ is Lipschitz,S is bounded andS(x) · S(x1) � α > 0 there existsC > 0 such that
α|t0(ξ2)− t0(ξ1)| � C|ξ2 − ξ1|, which proves the claim.

(d) End of the proof.

Let m in N be such that(m + 1)T /2 � τ . For everyk in {0, . . . ,m} we setxk =
Φ(kT/2, x0) and

Ψk :R ×Πxk →Ω, (t, ξk) �→ Φ(t, ξk).

We remark thatΨ0 = Ψ . The claims (b) and (c) applied to the pointxk instead ofx0 imply
that there existsRk such that, for everyξk ∈ B(xk,Rk) ∩ Πk, Ψk(tk(ξ

k), ξk) belongs to
Πxk+1 for sometk(ξk) ∈ [0, T ] and the mapξk �→ Ψk(tk(ξ

k), ξk) is Lipschitz, injective
and its inverse is Lipschitz. By choosingRk small enough we may assume that for everk

we have

∀ξk ∈ B(xk,Rk)∩Πxk

∣∣Ψk

(
tk(ξ

k), ξk
) − xk+1

∣∣ � Rk+1.

We setTk(ξ) = t1(ξ)+ · · · + tk(ξ); it follows that for everyξ in B(x0,R0) ∩Πx0 andt in
]Tk(ξ)− T ,Tk(ξ)+ T [ we have

Φ(t, ξ) = Ψk

(
t − Tk(ξ),Φ(Tk(ξ), ξ)

)
. (4.3)

By (c) there existNk ⊂ Πxk andNk+1 ⊂ Πxk+1 of (n − 1)-Hausdorff measure zero an
v∗
k , v

∗
k+1 equal tov a.e. such that the mapt �→ v∗

k (Ψk(t, ξ
k)) is absolutely continuous o

]−T ,T [ for everyξk in B(xk,Rk)∩Πxk \Nk . Since the inverse ofξk �→ Ψk(tk(ξ
k), ξk) is

Lipschitz the inverse image ofNk+1 has(n − 1)-Hausdorff measure zero and therefor
is not restrictive to assume that

∀ξk ∈ B(xk,Rk)∩Πxk \Nk Ψk

(
tk(ξ

k), ξk
)
/∈Nk+1.

It follows from (4.3) that for everyξ in B(x0,R0) ∩ Πx0 \ N0 the mapt �→ v∗
k (Φ(t, ξ))

is absolutely continuous on]Tk(ξ) − T ,Tk(ξ) + T [ . Let Ek = Ψk(]−T ,T [×B(xk,Rk)),
(ϑk)k be a partition of the unity of(Ek)k and setv∗ = ∑m

k=0ϑkv
∗
k . For everyk the function

t �→ ϑk(Φ(t, ξ)) is the composition of two Lipschitz functions and its support is conta
in ]Tk(ξ) − T ,Tk(ξ) + T [ ; moreover, the mapt �→ v∗

k (Φ(t, ξ)) is absolutely continuou
on the same interval. It follows thatv∗ fulfills the requirements of the claim.✷
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