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Abstract

We give, in a non-smooth setting, some conditions under which (some of) the minimizers of∫
Ω f (∇u(x)) dx + g(x,u(x)) dx among the functions in W1,1(Ω) that lie between two Lipschitz func-

tions are Lipschitz. We weaken the usual strict convexity assumption in showing that, if just the faces of
the epigraph of a convex function f : Rn → R are bounded and the boundary datum u0 satisfies a general-
ization of the Bounded Slope Condition introduced by A. Cellina then the minima of

∫
Ω f (∇u(x)) dx on

u0 + W
1,1
0 (Ω), whenever they exist, are Lipschitz. A relaxation result follows.
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1. Introduction

Few months ago we had the opportunity to read the paper [4] of Arrigo Cellina. One of
the main novelties contained in that paper was a new kind of Bounded Slope Condition. The
classical (BSC) of constant K , introduced by Hartman and Stampacchia prescribes, for a real
valued function defined on an open bounded subset Ω of R

n, at every point x0 of the boundary
∂Ω of Ω , the existence of two affine functions of slope less than K that bound u0 from above

* Corresponding author.
E-mail addresses: maricond@math.unipd.it (C. Mariconda), treu@math.unipd.it (G. Treu).
0022-0396/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2007.05.028



C. Mariconda, G. Treu / J. Differential Equations 243 (2007) 388–413 389
and from below on ∂Ω and that coincide with u0 at x0. The (BSC) was used to study the problem
of minimizing the functional

I (u) =
∫
Ω

f
(∇u(x)

)
dx, u = u0 on ∂Ω

in various functional spaces. Under the assumption that f is strictly convex Stampacchia proved
in [15] that if u0 satisfies the (BSC) then I has a minimizer among the Lipschitz functions that
coincide with u0 in ∂Ω . More recently (for instance in [5,11]), the (BSC) was used to prove that
if I has a minimizer in u0 + W

1,1
0 (Ω) then every such minimizer is Lipschitz; F.H. Clarke even

proved in [7] the local Lipschitz regularity under a Bounded Slope Condition just from below or
from above.

All of the proofs of these results use a sort of Comparison Principle which allows, under
the assumption that f is strictly convex, to pass from an inequality like u0 � � on ∂Ω to u � �

on Ω , u being the minimizer of I in the class of interest and � an affine function. The Comparison
Principle between a minimizer and an affine function does not hold in general if the Lagrangian
f is not strictly convex. For instance, as it is pointed out in [4], in the case where f (ξ) = 0 on
[−1,1] and f (ξ) = (|ξ |2 − 1)2 on |ξ | > 1, the functions v(x) = 0 and w(x) = −|x| + 1 both

minimize
∫ 1
−1 f (x′(t)) dt among the absolutely continuous functions that vanish on {−1,1};

however w � v on {−1,1} but w > v on ] − 1,1[.
In trying to get rid of the strict convexity assumption on f , Cellina defines in [4] a new class of

functions, depending on the polar or Legendre transform f ∗ of the Lagrangian f and establishes
a new Comparison Principle between these new functions and the minimizers of I , even in the
case where f is not strictly convex; the analogous of the (BSC), using these new functions instead
of affine functions is then introduced.

This condition, that we call here Cellina Bounded Slope Condition (CBSC) of constant K

requires that, for every x0 in ∂Ω , u0 is bounded in ∂Ω from above and from below by a new
class of functions, depending on f (not affine in general, but which turn out to be affine if f

is strictly convex), both Lipschitz of constant less than K and coinciding with u0 at x0; both
the (BSC) and the (CBSC) are recalled in Section 5 of the paper. The paper [4] ends with the
following regularity result.

Theorem (Cellina). Let Ω be an open, bounded, and convex set; let f : Rn → R be convex.
Assume that (u0, f ) satisfies the (CBSC) of constant K , that the domain of f ∗ is open, and f is
strictly convex at every |ξ | > K . Let u be a continuous minimizer of

I (u) =
∫
Ω

f
(∇u(x)

)
dx

in u0 + W
1,1
0 (Ω). Then u is Lipschitz and its Lipschitz constant is bounded by K .

We just mention that the assumption on the polar of f in the theorem simply means that the
set of vectors p of R

n such that an affine function p · x + b bounds f from below is open.
We prove here that the conclusion of this regularity result does still hold if the epigraph

of f has no unbounded faces. Moreover there’s no need to assume neither the continuity of
the minimizer nor that the domain of f ∗ is open; actually our condition on the faces of the
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epigraph of f implies that f is non-constant on straight lines so that the domain of f ∗ has a non-
empty interior, and this is enough to prove the claim, which applies for instance to functions like
f (ξ) = √

1 + |ξ |2. We just mention that the condition that the domain of f ∗ has a non-empty
interior has already been used in some papers concerning BV functions and arises for instance,
in the form of the equivalent growth condition demi-coercivity defined in [1], in studying the
equilibrium of elastic structures with unilateral constraints on the stress. The result seems to be
optimal since, for instance, the problem of minimizing

∫ 1
0 |x′(t)|dt among the functions that

assume a prescribed value at 0 and 1 has a non-Lipschitz minimizer.1

Quite surprisingly for us, the assumption that the faces of the epigraph of f are bounded
is actually a reformulation of the growth condition (CGA)—Conical Growth Assumption that
we introduced in [13] in order to weaken the classical superlinearity condition in a Lipschitz
regularity result; this is somewhat analogous to the demi-coercivity growth condition which is
also equivalent to the fact that the function involved is not constant on straight lines.

The condition that the faces of the epigraph of a function are bounded appeared in [6] under
the name of Bounded Intersection Property as a condition that is satisfied by the convex functions
that verify some growth conditions (even weaker than superlinearity, like the Growth Assumption
(GA) introduced in the same paper); there it was just used to establish a representation formula
for the points of the epigraph of the convexified function in terms of the points of the epigraph
of the original function.

The proof of our new regularity result is based on the Comparison Principle of [4] (that holds
if f is just convex): if we assume the (CBSC), the minimizer u of I lies between two Lipschitz
functions u1 and u2 of Lipschitz constant K that coinciding with u0 on the boundary of Ω and
such that u1 � u � u2 a.e. on Ω . We show, in a more general setting, that in this situation there
is a further minimizer v of I that is Lipschitz, with a Lipschitz constant bounded by K . Now, the
points (∇u(x), f (∇u(x))) and (∇v(x), f (∇v(x))) belong a.e. to the same face of the epigraph
of f . Hence, if the faces of the epigraph are bounded, the gradient of u turns out to be bounded as
well by a quantity depending on K and f ; thus u is Lipschitz too. Therefore, under the (CGA),
the (BSC) is a particular case of (CBSC); we point out the two conditions are not equivalent.

Under the assumption that the faces of the epigraph of f are bounded, we give a condition on
f under which the classical (BSC) of constant K for a boundary datum u0 implies the (CBSC)
for (u0, f ) of an explicit constant depending on f and K .

In our proof, the existence of a Lipschitz minimizer in the class W
1,p
u1,u2(Ω) of functions of

u0 + W
1,p

0 (Ω) (p � 1) satisfying u1 � u � u2 a.e. on Ω is essentially obtained by means of a
result of [16], stating that if f is convex and g(x,u) :Ω × R → R is convex in u, twice differ-
entiable in both variables and the derivatives satisfy a suitable inequality on Ω × R then every
minimizer of I (u) = ∫

Ω
f (∇u(x)) + g(x,u(x)) dx in W

1,p
u1,u2(Ω) is Lipschitz. The first part of

this paper deals with a generalization of the latter result, allowing g(x,u) not to be differentiable
but, instead, just convex in u and with a partial subdifferential that is monotonic with respect to
the order induced by an appropriate cone of R

n × R.

1 In presenting the paper to us, Arrigo Cellina seemed not to be fully satisfied of his regularity result, due to the
presence of the strict convexity assumption on f . What a best challenge for us to try to drop out this assumption in the
occasion of the meeting for Cellina’s 65th birthday. The book Differential Inclusions by J.P. Aubin and A. Cellina begins
with an introduction called “Epigraph”; the letter “E” among two “putti” writing a derivative; the draw was also used for
the poster of the meeting. It is a nice coincidence that the conclusion of the regularity result of Cellina does still hold if
simply the Epigraph of f has no unbounded faces.
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Finally, under the assumption that the bipolar of a function fulfills the (CGA) (i.e. the bipolar’s
faces of the epigraph are bounded), we apply the representation result of [14] to obtain some
relationships between the problems of minimizing the functionals

I (u) =
∫
Ω

f
(∇u(x)

)
dx, I ∗∗(u) =

∫
Ω

f ∗∗(∇u(x)
)
dx

in various functional spaces. In particular we deduce that if I ∗∗ has a minimizer in u0 +W
1,1
0 (Ω)

that is Lipschitz then the value of the minimum of I ∗∗ equals the infimum of I in the same class
of functions; more precisely the minimum of I ∗∗ coincides with the infimum of I in the smaller
class of Lipschitz functions with a suitable Lipschitz constant, so no Lavrentiev phenomenon
occurs. These conclusions are usually obtained under some suitable conditions that bound the
Lagrangian both from below and from above. The first result in this direction was obtained by
Cellina in [6] for functionals defined on W 1,1([a, b],R

n) with Lagrangian f (x, x′) depending
on the state and the velocity, under the growth assumption (GA) mentioned above.

2. Notation, basic assumptions and preliminary results

In this paper Ω is an open, bounded subset of R
n, endowed with the usual scalar product “·”

and the euclidian norm | · |.
In Sections 3 and 4 of the paper we fix three Lipschitz functions u0, u1, u2 defined on Ω that

coincide on the boundary ∂Ω of Ω and we set

K = max
{
Lip(ui): i = 1,2

}
where, by Lip(u), we denote the Lipschitz constant of u.

Let p � 1; we consider the closed subset W
1,p
u1,u2(Ω) of u0 + W

1,p

0 (Ω) defined by

W
1,p
u1,u2(Ω) = {

u ∈ W 1,p(Ω): u1 � u � u2 a.e.
}
.

We will often refer to the following Basic Assumption.

Basic Assumption. The function f : Rn → R is convex, the function g :Ω × R → R is a
Carathéodory function such that u �→ g(x,u) is convex for a.e. x in Ω . There exist a ∈ Lp′

(Ω)n

(1/p + 1/p′ = 1) and b ∈ L1(Ω) such that f (ξ) + g(x,u) � a(x) · ξ + b(x) for all (x,u, ξ) ∈
Ω × R × R

n.
The functional I is defined on W 1,p(Ω) by

I (u) =
∫
Ω

f
(∇u(x)

) + g
(
x,u(x)

)
dx.

For every x such that u �→ g(x,u) is convex, we will denote by ∂ug(x,u) the (partial) sub-
differential of g(x, ·); in this context there exist a measurable p(x,u) such that p(x, ·) ∈ ∂ug(x, ·)
for a.e. x.
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The cone CK and the order relation “≺K”. For every K � 0 we consider the cone of R
n × R

defined by

CK = {
(x,u) ∈ R

n × R: u > K|x|}
and the order relation ≺K induced by CK defined on R

n × R by

(x,u) ≺K (y, v) ⇔ (y − x, v − u) ∈ CK ⇔ v > u + K|y − x|.

In what follows we will be concerned with the following monotonicity conditions on the
partial subdifferential ∂ug(x,u) of g.

Monotonicity Condition.

(Strict Monotonicity Condition) There exists p(x, ·) ∈ ∂ug(x, ·) for a.e. x such that

(x,u) ≺K (y, v) ⇒ p(x,u) < p(y, v)

or

(Large Monotonicity Condition) There exists p(x, ·) ∈ ∂ug(x, ·) for a.e. x such that

(x,u) ≺K (y, v) ⇒ p(x,u) � p(y, v).

We state here some facts that clarify the Monotonicity Condition.

Proposition 2.1.

(i) Assume that g satisfies the Strict (respectively Large) Monotonicity Condition. Then the
function u �→ g(x,u) is strictly convex (respectively convex) for a.e. x; the converse holds
true if g(x,u) does not depend on the first variable x.

(ii) Assume that g(x,u) admits a locally Lipschitz partial derivative gu(x,u) with respect to
the second variable: by Rademacher’s theorem gu(x,u) admits partial derivatives gux and
guu on Ω × R \ N , where N is negligible. Assume moreover that for every (x,u) in Ω × R

there exists a neighborhood I of (x,u) such that

sup
{∣∣gux(y, v)

∣∣: (y, v) ∈ I \ N
}

< (respectively �)K inf
{
guu(y, v): (y, v) ∈ I \ N

}
.

Then g fulfills the Strict (respectively Large) Monotonicity Condition.
(iii) In particular the Strict (respectively Large) Monotonicity Condition is satisfied if g(x,u)

admits a partial derivative gu(x,u) of class C1 and moreover

∀(x,u) ∈ Ω × R
∣∣gux(x,u)

∣∣ < (respectively �)Kguu(x,u).

Proof. (i) follows from the fact that a convex function of a real variable is strictly convex if and
only if it admits a strictly monotonic subdifferential. Assume now that g fulfills the assumption
stated in (ii) (strict version) and let (x,u) ≺K (y, v). Lebourg’s mean value theorem for Lipschitz
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functions [8, Theorem 2.4] yields the existence of (ξ, η) in the Clarke generalized gradient of gu

at a point (z,w) of the segment joining (x,u) to (y, v) such that

gu(y, v) − gu(x,u) = ξ · (y − x) + η(v − u).

The generalized gradient formula [8, Theorem 8.1] shows that (ξ, η) belongs to the convex hull
co(S) of the set

S =
{

lim
i→+∞

(
gux(zi,wi), guu(zi,wi)

)
: (zi ,wi) ∈ Ω × R \ N, lim

i→+∞(zi,wi) = (z,w)
}
.

Let I be a neighborhood of (z,w), ρ ∈ R, ε > 0 be such that

sup
{∣∣gux(z

′,w′)
∣∣: (z′,w′) ∈ I \ N

}
� ρ − ε � ρ + ε � K inf

{
guu(z

′,w′): (z′,w′) ∈ I \ N
}
.

Thus S is contained in the convex set

{
(α,β) ∈ R

n × R: |α| � ρ − ε � ρ + ε � Kβ
} ⊂ CK

so that in particular |ξ | < Kη. Therefore η > 0 and, since v − u > K|y − x|,

gu(y, v) − gu(x,u) � −|ξ ||y − x| + η(v − u)

> −|ξ ||y − x| + ηK|y − x| = (
Kη − |ξ |)|y − x| � 0

proving that gu(y, v) > gu(x,u). The case where g satisfies the assumption (ii) in the large sense
can be treated more easily and in a similar way; (iii) follows immediately. �
3. Lipschitzianity of the minima that satisfy an a priori bound: The strictly convex case

Theorem 3.1 (Lipschitz continuity of the minimizers in W
1,p
u1,u2(Ω)). Assume that f , g satisfy the

Basic Assumption and that one of the following conditions holds:

(a) g satisfies the Strict Monotonicity Condition i.e. there exists p(x, ·) ∈ ∂ug(x, ·) for a.e. x

such that

v > u + K|y − x| ⇒ p(x,u) < p(y, v)

or
(b) f is strictly convex and g satisfies the Large Monotonicity Condition i.e. there exists p(x, ·) ∈

∂ug(x, ·) for a.e. x such that

v > u + K|y − x| ⇒ p(x,u) � p(y, v).

Assume that the functional

I (u) =
∫

f
(∇u(x)

) + g
(
x,u(x)

)
dx
Ω
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admits a minimizer u in W
1,p
u1,u2(Ω). Then u is Lipschitz and its Lipschitz constant is bounded by

K = max{Lip(ui): i = 1,2}.

This first part of the proof of Theorem 3.1 follows the lines of that of Theorem 3.1 in [16],
which is itself inspired by [2]. We write it here for the convenience of the reader since, apart
some minor changes, Treu and Vornicescu give some conditions that ensure that ∇u belongs to
a prescribed closed convex set whereas we just look for u to be Lipschitz, making our first part
of the proof less technical than the one presented in [16].

Proof. Let u∗
0 be a Lipschitz continuous extension of u0 to R

n, with Lipschitz constant bounded
by K . We then consider the following Lipschitz continuous extensions of u1, u2 to R

n defined
by

u∗
i (x) =

{
ui(x) if x ∈ Ω ,

u∗
0(x) if x /∈ Ω ,

i = 1,2.

Let also

u∗(x) =
{

u(x) if x ∈ Ω ,

u∗
0(x) if x /∈ Ω .

Clearly u∗ ∈ W 1,p(Ω ′) for every open, bounded subset Ω ′ containing Ω .
Fix h in R

n. We first show that∣∣u∗(x + h) − u∗(x)
∣∣ � K|h| a.e.

or, equivalently, that

u∗(x + h) � u∗(x) + K|h|, u∗(x) � u∗(x − h) + K|h| a.e.

Assume, by contradiction, that one of the above inequalities does not hold on a set of strictly
positive measure. Then at least one of the sets

E+
h = {

x ∈ R
n: u∗(x + h) − K|h| > u∗(x)

}
, E−

h = {
x ∈ R

n: u∗(x − h) + K|h| < u∗(x)
}

is non-negligible; actually since

E+
h = E−

h − h

the sets defined above are both non-negligible. Let u+
h and u−

h be the functions defined by

u+
h (x) = max

{
u∗(x + h) − K|h|, u∗(x)

}
, u−

h (x) = min
{
u∗(x − h) + K|h|, u∗(x)

}
.

Notice that u+
h (x) = u∗(x + h) − K|h| on E+

h , u−
h (x) = u∗(x − h) + K|h| on E−

h and that
u−

h � u+
h a.e. in R

n.
As in the proof of [16, Theorem 3.1] we remark that

u∗
1 � u− � u+ � u∗

2, E− ∪ E+ ⊂ Ω a.e.
h h h h
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In fact if x /∈ E+
h then u+

h (x) = u∗(x) � u2(x) so that u+
h � u∗

2 and, analogously, u∗
1 � u−

h .
Moreover, by the Lipschitz continuity of u∗

2, u∗(x + h) − K|h| � u∗
2(x + h) − K|h| � u∗

2(x)

so that, if x /∈ Ω , u∗(x + h) − K|h| � u∗
2(x) = u∗(x) and x /∈ E+

h , proving that E+
h ⊂ Ω ; the

inclusion E−
h ⊂ Ω follows similarly. It follows that if x ∈ E+

h then x + h ∈ E−
h ⊂ Ω so that

u∗(x +h) = u(x +h); analogously when x ∈ E−
h then x −h ∈ Ω and thus u∗(x −h) = u(x −h).

Therefore, for every λ in [0,1], the functions

u+
h + λ

(
u+

h − u
)
, u−

h + λ
(
u−

h − u
)

belong to W
1,p
u1,u2(Ω) and thus

I
(
u+

h + λ
(
u+

h − u
))

� I (u), I
(
u−

h + λ
(
u−

h − u
))

� I (u)

or, equivalently,

∫
E+

h

f
(∇u(x) + λ

(∇u(x + h) − ∇u(x)
)) − f

(∇u(x)
)
dx

+
∫

E+
h

g
(
x,u(x) + λ

(
u(x + h) − K|h| − u(x)

)) − g
(
x,u(x)

)
dx � 0 (1)

and ∫
E−

h

f
(∇u(x) + λ

(∇u(x − h) − ∇u(x)
)) − f

(∇u(x)
)
dx

+
∫

E−
h

g
(
x,u(x) + λ

(
u(x − h) + K|h| − u(x)

)) − g
(
x,u(x)

)
dx � 0.

The change of variables that maps x in x +h in the left-hand member of the last inequality yields

∫
E+

h

f
(∇u(x + h) + λ

(∇u(x) − ∇u(x + h)
)) − f

(∇u(x + h)
)
dx

+
∫

E+
h

g
(
x + h,u(x + h) + λ

(
u(x) + K|h| − u(x + h)

)) − g
(
x + h,u(x + h)

)
dx � 0. (2)

Here begins the original part of the proof for a non-smooth function g. Adding term by term the
inequalities (1) and (2) we obtain the inequality

B � A

where
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A =
∫

E+
h

f
(∇u(x)

) + f
(∇u(x + h)

)

− f
(
λ∇u(x) + (1 − λ)∇u(x + h)

) − f
(
λ∇u(x + h) + (1 − λ)∇u(x)

)
dx

and

B =
∫

E+
h

b(x) dx

where

b(x) = g
(
x,u(x) + λψ(x)

) + g
(
x + h,u(x + h) − λψ(x)

) − g
(
x,u(x)

) − g
(
x + h,u(x + h)

)
with

ψ(x) = u(x + h) − K|h| − u(x) > 0 on E+
h .

The function f is convex and thus

f
(
λ∇u(x) + (1 − λ)∇u(x + h)

)
� λf

(∇u(x)
) + (1 − λ)f

(∇u(x + h)
)

and

f
(
λ∇u(x + h) + (1 − λ)∇u(x)

)
� λf

(∇u(x + h)
) + (1 − λ)f

(∇u(x)
)
.

Notice that ∇u(x) �= ∇u(x + h) on a non-negligible subset of E+
h , otherwise ∇u+

h = ∇u on Ω ;

moreover since u+
h − u ∈ W

1,p

0 (Ω) then u+
h = u on Ω , contradicting the assumption that E+

h

is non-negligible. Therefore, if f is strictly convex, the latter inequalities are strict on a non-
negligible subset of E+

h . It follows that

A � 0; A > 0 if f is strictly convex.

Let p(x, ·) ∈ ∂ug(x, ·) be measurable. Then, for a.e. x,

g
(
x,u(x) + λψ(x)

) − g
(
x,u(x)

)
� p

(
x,u(x) + λψ(x)

)
λψ(x)

and

g
(
x + h,u(x + h) − λψ(x)

) − g
(
x + h,u(x + h)

)
� −p

(
x + h,u(x + h) − λψ(x)

)
λψ(x)

and thus

b(x) � λψ(x)
[
p
(
x,u(x) + λψ(x)

) − p
(
x + h,u(x + h) − λψ(x)

)]
.

Set

y = x + h, u = u(x) + λψ(x), v = u(x + h) − λψ(x).
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Then

v − u = u(x + h) − λψ(x) − u(x) − λψ(x)

= u(x + h) − 2λ
(
u(x + h) − K|h| − u(x)

) − u(x)

= (1 − 2λ)
(
u(x + h) − u(x)

) + 2λK|h|
so that

v − u − K|h| = (1 − 2λ)
(
u(x + h) − K|h| − u(x)

)
.

Fix λ < 1/2. Then, since u(x + h) − K|h| − u(x) = ψ(x) > 0 a.e. on E+
h , we obtain v − u −

K|h| > 0, i.e. (x,u) ≺K (y, v) so that(
x,u(x) + λψ(x)

) ≺K

(
y,u(x + h) − λψ(x)

)
a.e. on E+

h .

Assume that (a) holds. Then

p
(
x,u(x) + λψ(x)

)
< p

(
x + h,u(x + h) − λψ(x)

)
a.e. on E+

h

and thus 0 > b(x) a.e. on E+
h whence

0 > B =
∫

E+
h

b(x) dx � A � 0,

a contradiction. If, instead, (b) holds then

p
(
x,u(x) + λψ(x)

)
� p

(
x + h,u(x + h) − λψ(x)

)
a.e. on E+

h .

Moreover A > 0 and thus

0 � B � A > 0

yielding again a contradiction.
Therefore, in both cases, it follows that E+

h is negligible and thus, for all h in R
n, the inequal-

ity |u∗(x + h) − u∗(x)| � K|h| holds a.e. in Ω .
Let ei be the ith vector of the canonical basis; it follows from the claim we have just proved

that there exists a negligible set Z such that, for every x in Ω \ Z, the gradient ∇u(x) exists
and, moreover, |u∗(x + 1

m
ei) − u∗(x)| � K

m
for all m = 1,2, . . . and i = 1, . . . , n. Therefore

|u∗(x + 1
m

ei) − u∗(x)|/ 1
m

� K for every m and i so that, passing to the limit, we obtain that

|∇u(x)| � K on Ω \ Z. Thus u − u0 ∈ W
1,∞
0 (Ω) and u0 is Lipschitz: it follows that u is Lip-

schitz, and its Lipschitz constant is bounded by K . �
Remark 3.2. It follows from Proposition 2.1 that the assumptions of Theorem 3.1 imply that
either f or g is strictly convex; therefore there exists at most one minimizer of I in W

1,p
u1,u2(Ω).

We will prove in the sequel that the problem of minimizing I in W
1,p
u1,u2(Ω) admits existence,

even in a non-strictly convex setting.
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Remark 3.3. Our Theorem 3.1 generalizes, in a non-smooth setting, Theorem 3.1 of [16] where
the authors assume a more restrictive version of our new condition (ii) of Proposition 2.1, namely
that g(x,u) admits a Lipschitz partial derivative gu(x,u) and that

sup
{∣∣gux(x,u)

∣∣: (x,u) ∈ Ω × R
}

< K inf
{
guu(x,u): (x,u) ∈ Ω × R

}
.

Our new Monotonicity Condition drops out, in Theorem 3.1, two orders of derivatives.

As it is shown in the smooth setting of [16], Theorem 3.1 can be generalized, with some
slight technicality, to a result that gives sufficient conditions under which the gradient of the
minimum u belongs to a prescribed compact convex subset K of R

n. It is enough to replace, in
the Monotonicity Condition, the cone CK with

CK = {
(ξ, η) ∈ R

n × R: γKo (ξ) < η
}

where γKo is the Minkowski functional of the polar Ko of K. More precisely the following result
holds.

Theorem 3.4. Let K be a compact convex subset of R
n; u0, u1, u2 :Ω → R be Lipschitz

functions such that u1 = u2 = u0 on ∂Ω and, moreover, ∇ui ∈ K, i = 0,1,2. Assume that f ,
g satisfy the Basic Assumption and that one of the following conditions holds:

(a) there exists p(x, ·) ∈ ∂ug(x, ·) for a.e. x such that

v > u + γKo (y − x) ⇒ p(x,u) < p(y, v)

or
(b) f is strictly convex and there exists p(x, ·) ∈ ∂ug(x, ·) for a.e. x such that

v > u + γKo (y − x) ⇒ p(x,u) � p(y, v).

Assume that the functional

I (u) =
∫
Ω

f
(∇u(x)

) + g
(
x,u(x)

)
dx

admits a minimizer u in W
1,p
u1,u2(Ω). Then ∇u ∈K a.e.

We just mention that, in this more general situation, an analogue of Proposition 2.1 does hold;
for instance (a) is satisfied (with CK instead of CK ) if g(x,u) admits a locally Lipschitz partial
derivative gu(x,u) with respect to the second variable and, for every (x,u) in Ω ×R, there exists
a neighborhood I of (x,u) such that

sup
{
γK

(−gux(y, v)
)
: (y, v) ∈ I \ N

}
< inf

{
guu(y, v): (y, v) ∈ I \ N

}
where N is the set in which gu is not differentiable.
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4. Lipschitzianity of the minima that satisfy an a priori bound—The non-strictly convex
case

The next result follows directly from Theorem 3.1 and is useful in a non-strictly convex set-
ting. It also gives existence of a minimizer in W

1,p
u1,u2(Ω).

Theorem 4.1 (Existence of a Lipschitz minimizer in W
1,p
u1,u2(Ω)). Assume that f,g satisfy the

Basic Assumption and the Large Monotonicity Condition, i.e. there exists p(x, ·) ∈ ∂ug(x, ·) for
a.e. x such that

v > u + K|y − x| ⇒ p(x,u) � p(y, v).

Then the problem of minimizing

I (u) =
∫
Ω

f
(∇u(x)

) + g
(
x,u(x)

)
dx

in W
1,p
u1,u2(Ω) admits at least one solution; moreover at least one of the minimizers of I is Lip-

schitz with a Lipschitz constant bounded by K = max{Lip(ui): i = 1,2}. In particular, if I is
strictly convex, the unique minimizer of I is Lipschitz.

Proof. For every k = 1,2, . . . let Ik be the functional defined on W 1,p(Ω) by

Ik(u) =
∫
Ω

fk

(∇u(x)
) + g

(
x,u(x)

)
dx

where we set fk(ξ) = f (ξ)+ 1
k
|ξ |p if p > 1, fk(ξ) = f (ξ)+ 1

k
|ξ |2 if p = 1. Then Ik is coercive

and has therefore a minimizer uk in the closed subset W
1,p
u1,u2(Ω) of W 1,p(Ω). Moreover fk is

strictly convex so that fk and g satisfy the assumption (b) of Theorem 3.1. It follows that uk is
Lipschitz with a Lipschitz constant bounded by K : we may assume, up to a subsequence, that uk

converges weakly in W
1,p
u1,u2(Ω) and uniformly to a function u, which is therefore Lipschitz with

a Lipschitz constant bounded by K . The functional I being lower semicontinuous we have

I (u) =
∫
Ω

f
(∇u(x)

) + g
(
x,u(x)

)
dx � lim inf

k→+∞

∫
Ω

f
(∇uk(x)

) + g
(
x,uk(x)

)
dx.

Moreover, for every k,∫
Ω

f
(∇uk(x)

)
dx + g

(
x,uk(x)

)
dx �

∫
Ω

f
(∇uk(x)

) + 1

k
|∇uk|p dx + g

(
x,uk(x)

)
dx = Ik(uk).

Let u be any function in W
1,p
u1,u2(Ω); since uk is a minimizer of Ik the latter inequalities yield

I (u) � lim inf
k→+∞ Ik(uk) � lim inf

k→+∞ Ik(u) = I (u)

thus proving that u is a minimizer of I in W
1,p
u1,u2(Ω). �
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In the particular case of g(x,u) = g(u) (not depending on x) Theorem 4.1 becomes particu-
larly attractive.

Corollary 4.2. Assume that f : Rn → R, g : R → R are convex and that f is bounded from below
by an affine function. Then the problem of minimizing

I (u) =
∫
Ω

f
(∇u(x)

) + g
(
u(x)

)
dx

in W
1,p
u1,u2(Ω) admits at least one solution; moreover at least one of the minimizers is Lipschitz

with a Lipschitz constant bounded by K = max{Lip(ui): i = 1,2}.

The proof of this corollary follows from the fact that, by Proposition 2.1, the assumptions of
Theorem 4.1 are satisfied.

Remark 4.3. This corollary extends and gives an alternative proof of Theorem 5.1 of [12] where
we assumed I to be strictly convex.

The purpose of what follows is to show under the assumptions of Theorem 4.1 that if, instead
of f being strictly convex, the faces of the epigraph of f are bounded then every minimizer of I

in W
1,p
u1,u2(Ω) is Lipschitz.

We first show that if the fact that the epigraph of f has no unbounded faces is equivalent to a
sort of growth condition that we introduced in [13] under the name of Conical Growth Assump-
tion (CGA). In [13] this condition appeared to be quite weaker than superlinearity but seemed
there to be much more technical than the simple requirement that the faces of the epigraph are
bounded.

Conical Growth Assumption (CGA). A convex function f : Rn → R satisfies the (CGA) if and
only if, for every positive R0, there exist ε > 0, c ∈ R and R > 0 such that for every |ξ | � R,
|ξ0| � R0

f (ξ) � f (ξ0) + p(ξ0) · (ξ − ξ0) + ε|ξ | + c

where p(ξ0) ∈ ∂f (ξ0).

Remark 4.4. By definition of subdifferential the convex function f satisfies

f (ξ) � f (ξ0) + p(ξ0) · (ξ − ξ0)

for every ξ ; if f satisfies the (CGA) then, after a radius depending on |ξ0|, the function grows a
little more than that.

Remark 4.5. The (CGA) is fulfilled if, for instance, f is superlinear, i.e. if

lim|ξ |→+∞
f (ξ)

|ξ | = +∞.
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Theorem 4.6. A convex function f : Rn → R satisfies the Conical Growth Assumption (CGA) if
and only if the faces of the epigraph of f are bounded.

Proof. Assume that f satisfies the (CGA) and fix ξ0 in R. Then, for suitable R > 0, ε > 0 and
c ∈ R the inequality

f (ξ) � f (ξ0) + p(ξ0) · (ξ − ξ0) + ε|ξ | + c (∗)

holds for every |ξ | � R and some p(ξ0) ∈ ∂f (ξ0). It follows that if |ξ | > max{R,−c/ε} then
(ξ, f (ξ)) does not belong to the same face of the epigraph of f containing (ξ0, f (ξ0)) otherwise

f (ξ) = f (ξ0) + p(ξ0) · (ξ − ξ0)

so that, by (∗), ε|ξ | + c = 0, a contradiction.
Assume now that the faces of the epigraph of f are bounded. If f does not fulfill the (CGA)

there exists R0 > 0 and, for every k � 1, ξk and ξk
0 in R

n with |ξk| � k, |ξk
0 | � R0 such that

f
(
ξk

)
< f

(
ξk

0

) + p
(
ξk

0

) · (ξk − ξk
0

) + 1

k

∣∣ξk
∣∣

where p(ξk
0 ) ∈ ∂f (ξk

0 ). Thus, for every t ∈ [0,1], by convexity we have

f
(
(1 − t)ξ k

0 + tξ k
)
� (1 − t)f

(
ξk

0

) + tf
(
ξk

)
< f

(
ξk

0

) + p
(
ξk

0

) · t(ξk − ξk
0

) + t

k

∣∣ξk
∣∣.

Set ξk = λkνk with λk � k and |νk| = 1. The latter inequality can be rewritten as

f
(
(1 − t)ξ k

0 + tλkνk

)
< f

(
ξk

0

) + tp
(
ξk

0

) · (λkνk − ξk
0

) + t

k
λk

so that, for r > 0, t = r/λk and k sufficiently big we obtain

f

((
1 − r

λk

)
ξk

0 + rνk

)
< f

(
ξk

0

) + r

λk

p
(
ξk

0

) · (λkνk − ξk
0

) + r

k
.

Up to a subsequence we may assume that limk νk = ν0, limk ξk
0 = ξ0. Moreover, the subdiffer-

ential of f being bounded on the balls of R
n, we may assume that limk p(ξk

0 ) = p; necessarily
p ∈ ∂f (ξ0). Passing to the limit in the latter inequality we obtain

f (ξ0 + rν0) � f (ξ0) + p · (rν0).

Moreover, the opposite inequality holds since p ∈ ∂f (ξ0) and therefore

f (ξ0 + rν0) = f (ξ0) + p · ((ξ0 + rν0) − ξ0
)

so that the points (ξ0, f (ξ0)) and (ξ0 + rν0, f (ξ0 + rν0)) belong to the same face of the epigraph
of f . A contradiction, since r is arbitrary and the faces of the epigraph of f are bounded. It
follows that the (CGA) holds. �
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We will need to introduce a further notation.

Notation R
f
K . Let f : Rn → R be convex. We denote by R

f
K the maximum modulus of the points

of the domain that belong to the projection of a face of the epigraph epi(f ) of f containing the
image of a point of modulus less than K ; in other words

R
f
K = max

{|ξ |: ∃|η| � K
(
ξ, f (ξ)

)
and

(
η,f (η)

)
belong to the same face of epi(f )

}
.

Proposition 4.7. Assume that the faces of the epigraph of f are bounded. Then R
f
K is finite.

Proof. Since, from Theorem 4.6, the (CGA) holds there exist R > 0, ε > 0 and c in R such that

f (ξ) � f (η) + p(η) · (ξ − η) + ε|ξ | + c

for every |η| � K and |ξ | � R, where p(η) ∈ ∂f (η). It follows that if |ξ | > max{R,−c/ε} then
the points (η, f (η)) and (ξ, f (ξ)) do not belong to the same face of the epigraph of f . �

We are now in the position to weaken the strict convexity assumption in the last part of Theo-
rem 4.1.

Theorem 4.8 (Existence and Lipschitz continuity of minimizers in W
1,p
u1,u2(Ω)). Assume that f,g

fulfill the Basic Assumption and that g satisfies the Large Monotonicity Condition, i.e. there exists
p(x, ·) ∈ ∂ug(x, ·) for a.e. x such that

v > u + K|y − x| ⇒ p(x,u) � p(y, v).

Assume moreover that the faces of the epigraph of f are bounded. Then the problem of minimiz-
ing

I (u) =
∫
Ω

f
(∇u(x)

) + g
(
x,u(x)

)
dx

in W
1,p
u1,u2(Ω) admits at least one solution. Every minimizer of I in W

1,p
u1,u2(Ω) is Lipschitz with

a Lipschitz constant bounded by

R
f
K = max

{|ξ |: ∃|η| � K
(
ξ, f (ξ)

)
and

(
η,f (η)

)
belong to the same face of epi(f )

}
where K = max{Lip(ui): i = 1,2}. Moreover, one of these minimizers has a Lipschitz constant
bounded by K .

The proof of the theorem is based on the following lemma.

Lemma 4.9. Let f , g satisfy the Basic Assumptions and u, v be two minimizers of

I (u) =
∫

f
(∇u(x)

) + g
(
x,u(x)

)
dx
Ω
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on a convex subset of W 1,p(Ω). Then for a.e. x in Ω the points

(∇u(x), f
(∇u(x)

))
,

(∇v(x), f
(∇v(x)

))
belong to the same face of the epigraph of f .

Proof. Let Σ be the subset of Ω where (∇u(x), f (∇u(x))) and (∇v(x), f (∇v(x))) do not
belong to the same face of the epigraph of f . For any measurable function q : Rn → R

n such that
q(ξ) ∈ ∂f (ξ) the set Σ can be expressed by the formula

Σ = {
x ∈ Ω: f

(∇v(x)
)
> f

(∇u(x)
) + q

(∇u(x)
) · (∇v(x) − ∇u(x)

)}
it follows that Σ is a measurable subset of Ω . Let, for any measurable subset A of Ω and u in
W 1,p(Ω),

IA(u) =
∫
A

f
(∇u(x)

) + g
(
x,u(x)

)
dx.

By decomposing Ω as the union of Σ with its complement we obtain

I

(
1

2
u + 1

2
v

)
= IΩ\Σ

(
1

2
u + 1

2
v

)
+ IΣ

(
1

2
u + 1

2
v

)
.

The convexity of f and g (on the last variable) yields, for a.e. x,

f

(
1

2
∇u(x) + 1

2
∇v(x)

)
� 1

2
f

(∇u(x)
) + 1

2
f

(∇v(x)
)

and, analogously

g

(
x,

1

2
u(x) + 1

2
v(x)

)
� 1

2
g
(
x,u(x)

) + 1

2
g
(
x, v(x)

)
and thus

IΩ\Σ
(

1

2
u + 1

2
v

)
� 1

2
IΩ\Σ(u) + 1

2
IΩ\Σ(v).

Moreover, on Σ , (∇u(x), f (∇u(x))) and (∇v(x), f (∇v(x))) do not belong to the same face of
the epigraph of f and thus we have

f

(
1

2
∇u + 1

2
∇v

)
<

1

2
f (∇u) + 1

2
f (∇v) a.e. on Σ

so that, if Σ is not negligible,

IΣ

(
1
u + 1

v

)
<

1
IΣ(u) + 1

IΣ(v).

2 2 2 2
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Therefore, if Σ is not negligible, by adding together the functionals IΩ\Σ and IΣ we obtain

I

(
1

2
u + 1

2
v

)
<

1

2
I (u) + 1

2
I (v) = I (u) = I (v)

since u and v are both minimizers of I in a convex subset of W
1,p
u1,u2(Ω), a contradiction. It

follows that Σ is negligible, so that ∇u and ∇v belong a.e. to the same face of the epigraph
of f . �
Proof of Theorem 4.8. Theorem 4.1 yields the existence of a minimizer u of I that is Lipschitz
with a Lipschitz constant bounded by K ; therefore |∇u(x)| � K a.e. If v is any other minimizer
of I in W

1,p
u1,u2(Ω) then, by the lemma, the points (∇u(x), f (∇u(x))) and (∇v(x), f (∇v(x)))

belong a.e. to the same face of the epigraph of f . Then ∇v(x) belongs a.e. to the projection of
the face of the epigraph of f containing (∇u(x), f (∇u(x))) and in particular, for a.e. x in Ω ,
|∇v(x)| is bounded above by

max
{|ξ |: ∃|η| � K

(
ξ, f (ξ)

)
and

(
η,f (η)

)
belong to the same face of epi(f )

} = R
f
K

which is finite, by Proposition 4.7. Now v −u ∈ W
1,p

0 (Ω) and |∇(v −u)| is essentially bounded;

it follows that v is Lipschitz and its Lipschitz constant is bounded by R
f
K . �

5. Lipschitz regularity under the Bounded Slope Condition of Cellina

In this part of the paper we let g = 0 and thus consider the functional

I (u) =
∫
Ω

f
(∇u(x)

)
dx

where f : Rn → R is convex, bounded below by an affine function. Let u0 be a Lipschitz function
on Ω .

There are many recent results concerning the Lipschitz regularity of the minima of the func-
tional I on u0 +W 1,p(Ω) under the assumption that the boundary datum u0 satisfies the Bounded
Slope Condition (BSC) of Hartman–Stampacchia, that we recall here; we refer to [10] for some
classical results involving the (BSC).

Bounded Slope Condition (BSC). The function u0 satisfies the (BSC) of constant K � 0 if for
every x0 ∈ ∂Ω there exist k+(x0) and k−(x0) in R

n such that, for every x ∈ ∂Ω ,

u0
(
x0) + k−(

x0) · (x − x0) � u0(x) � u0
(
x0) + k+(

x0) · (x − x0).
In addition there is K � 0 such that

∀x0 ∈ ∂Ω max
{∣∣k−(

x0)∣∣, ∣∣k+(
x0)∣∣} � K.
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We mention [5,13] for some regularity results when the boundary datum satisfies the (BSC);
Clarke even proved a local Lipschitz regularity in [7] for boundary data satisfying a partial BSC
(just from below, or from above). The proofs of these results rely strongly on the assumption that
the Lagrangian is strictly convex; they are in fact based on the Comparison Principle between a
minimum and an affine function (a special class of minima) which may be false if the Lagrangian
is not strictly convex.

More recently Cellina introduced a new class of minimizers of I and formulated a new Com-
parison Principle dropping out the requirement of strict convexity of f .

We recall briefly these results for the convenience of the reader. By f ∗ we denote the polar
of f . The effective domain of a function ϕ : Rn → R ∪ {+∞} is

Dom(ϕ) = {
ξ ∈ R

n: ϕ(ξ) < +∞}
.

Definition 5.1. For θ ∈ Dom(f ∗), x0 ∈ R
n and r ∈ R we define the functions

h+
θ,x0,r

(x) = sup
k∈∂f ∗(θ)

k · (x − x0) + r, h−
θ,x0,r

(x) = inf
k∈∂f ∗(θ)

k · (x − x0) + r.

The function h+
θ,x0,r

is convex and h−
θ,x0,r

is concave; they both coincide with r at x0. We
mention that if f is strictly convex then ∂f ∗(θ) is single valued and thus in this case the maps
just defined are affine.

It turns then out that, in what concerns the minimizers of I , under a suitable “growth” assump-
tion on the convex function f (unnecessarily strictly convex) the functions h+

θ,x0,r
and h−

θ,x0,r
do

the same job as do affine functions when f is strictly convex.
For instance it is proved in [5, Theorem 1] that if f is convex (even extended valued), lower

semicontinuous and Dom(f ∗) has a non-empty interior then, for θ in the interior of Dom(f ∗),
x0 ∈ R

n and r ∈ R the map h+
θ,x0,r

(respectively h−
θ,x0,r

) is a minimizer of I among the functions
in

h+
θ,x0,r

+ W
1,1
0 (Ω)

(
respectively h−

θ,x0,r
+ W

1,1
0 (Ω)

)
.

We recall here some characterizations of the latter condition on the effective domain of f ∗; we
refer to [1] for the simple proof of the following equivalence result.

Proposition 5.2. Let f : Rn → R be convex. The following conditions are equivalent:

(i) The interior of Dom(f ∗) is non-empty;
(ii) f is demi-coercive, i.e. there exist a > 0, p ∈ R

n and b ∈ R such that

f (ξ) � a|ξ | + p · ξ + c

for all ξ in R
n;

(iii) f is non-constant on straight lines.

In what follows by u � v on ∂Ω we mean that the positive part (u − v)+ of u − v belongs to
W

1,1
0 (Ω). We will use the result of Cellina, that we state here for the convenience of the reader

in a slightly general version.
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Comparison Principle (Cellina). (See [5, Theorem 2].) Let Ω be convex, f : Rn → R ∪ {+∞}
be convex, lower semicontinuous and non-constant on straight lines. Let u be a minimizer of

I (u) =
∫
Ω

f
(∇u(x)

)
dx

on u0 + W
1,1
0 (Ω). Assume that, for θ in the interior of Dom(f ∗), x0 ∈ R

n \ Ω and r ∈ R, we
have h+

θ,x0,r
� u0 (respectively h−

θ,x0,r
� u0) on ∂Ω . Then h+

θ,x0,r
� u (respectively h−

θ,x0,r
� u)

a.e. on Ω .

Remark 5.3. The true formulation of the Comparison Principle is actually slightly different.
Cellina assumes in [5] that the domain of f ∗ is open; however the proofs of these results still
hold if the domain of f ∗ has a non-empty interior or equivalently (Proposition 5.2) that f is
non-constant on straight lines. This is the case, for instance, of f (ξ) = √

1 + ξ2, ξ ∈ R, where
the domain of f ∗ is [−1,1]. As it is pointed out in [5], the domain of f ∗ is open if f has a
superlinear growth.

Lemma 5.4. Assume that the faces of the epigraph of f are bounded. Then if ξ0 ∈ R
n and

p ∈ ∂f (ξ0) there is a neighborhood of p that is contained in the domain of f ∗; in particular
Dom(f ∗) has a non-empty interior. Moreover the norm of every element of ∂f ∗(p) is bounded

by R
f
|ξ0| given by

R
f
|ξ0| = max

{|ξ |: ∃|η| � |ξ0|
(
ξ, f (ξ)

)
and

(
η,f (η)

)
belong to the same face of epi(f )

}
.

Proof. By Theorem 4.6 the (CGA) holds: there exist ε > 0, R � |ξ0| and c ∈ R such that, for
every |ξ | � R,

f (ξ) � f (ξ0) + p · (ξ − ξ0) + ε|ξ | + c

so that, for every ν ∈ R
n with |ν| = 1, |ξ | � ξ · ν and thus

f (ξ) � f (ξ0) + p · ξ + εν · ξ − p · ξ0 + c

or, equivalently,

∀|ξ | � R f (ξ) � f (ξ0) + (p + εν) · ξ − p · ξ0 + c.

Moreover, f being bounded from below by an affine function, f (ξ) − (p + εν) · ξ is bounded
from below too on the ball of radius R centered in the origin. Therefore there exists r ∈ R such
that

f (ξ) � (p + εν) · ξ + r

for every ξ in R
n, proving that p + εν ∈ Dom(f ∗) for every unitary vector ν. The convexity of

Dom(f ∗) implies that the entire ball of radius ε and centered in p is contained in Dom(f ∗). To
prove the last part of the claim it is enough to remark that if ξ ∈ ∂f ∗(p) then p ∈ ∂f (ξ) so that
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f (ξ)−f (ξ0) = p · (ξ − ξ0) and thus the points (ξ, f (ξ)) and (ξ0, f (ξ0)) belong to the same face
of the epigraph of f . �
Remark 5.5. Lemma 5.4 provides also a direct proof that the interior of the domain of f ∗ is
non-empty if the faces of the epigraph of f are bounded. Alternatively, this conclusion could be
directly obtained by the equivalence stated in Proposition 5.2.

The following condition on the boundary datum analogous to the classical (BSC) was introduced
in [5]; we call it the Cellina Bounded Slope Condition.

(CBSC). We say that (u0, f ) satisfies the (CBSC) of constant K � 0 if for every x0 ∈ ∂Ω there
exist θ+(x0) and θ−(x0) in the interior of Dom(f ∗) such that, for every x ∈ ∂Ω ,

u0
(
x0) + inf

k∈∂f ∗(θ−(x0))
k · (x − x0) � u0(x) � u0

(
x0) + sup

k∈∂f ∗(θ+(x0))

k · (x − x0).
In addition there is K � 0 such that

K � sup
x0∈∂Ω

sup
{|k|: k ∈ ∂f ∗(θ−(

x0)) ∪ ∂f ∗(θ+(
x0))}.

We notice that when θ belongs to the interior of Dom(f ∗), the subdifferential ∂f ∗(θ) is
bounded and therefore sup{|k|: k ∈ ∂f ∗(θ)} is finite. The (CBSC) requires thus a uniformity
in this bound. We also mention that if the (CBSC) of constant K holds then u0 is Lipschitz on
∂Ω and its Lipschitz constant is bounded by K .

Remark 5.6. The definition of (CBSC) does not actually require that f be convex. We will use
it for non-necessarily convex function only in the last section of this paper.

We give here criteria under which the classical (BSC) implies the new (CBSC), that is always
fulfilled if the faces of the epigraph are bounded.

Proposition 5.7.

(i) Let k, θ ∈ R
n be such that θ ∈ ∂f (k). Then, for every x0 ∈ R

n, r ∈ R and x ∈ R
n the follow-

ing inequalities hold

h−
θ,x0,r

(x) � k · (x − x0) + r � h+
θ,x0,r

(x).

(ii) Assume that the Lipschitz function u0 satisfies the (BSC) of constant K and that the epigraph
of f has no unbounded faces. Then (u0, f ) fulfills the (CBSC) of constant R

f
K .

Proof. Claim (i) follows immediately from the fact that k ∈ ∂f ∗(θ) so that

inf
{
k · (x − x0): k ∈ ∂f ∗(θ)

}
� k · (x − x0) � sup

{
k · (x − x0): k ∈ ∂f ∗(θ)

}
.
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If the faces of the epigraph of f are bounded then Lemma 5.4 shows that, every θ is in ∂f (k) be-
longs to the interior of the domain of f ∗ and that moreover, every element of ∂f ∗(θ) is bounded
by R

f
K ; the application of (i) yields the conclusion. �

Remark 5.8. The (BSC) and (CBSC) are not equivalent. It can be shown for instance that if
f (ξ) = 0 for |ξ | < 1, f (ξ) = 1

2 (|ξ |−1)2 for |ξ | � 1 then every Lipschitz function u0 of Lipschitz
constant 1 satisfies the (CBSC), no matter what the domain Ω is. Instead the (BSC) implies the
convexity of the domain and affinity of the boundary datum on the flat parts of the boundary Ω .
More details on the subject will be given in a forthcoming paper.

Example 5.9. Let n = 1, Ω = [a, b], u0(a) = A, u0(b) = B . Assume that ∂f (B−A
b−a

) has a value

that is interior to the domain of f ∗. Then (u0, f ) satisfies the (CBSC). In fact u0(x) = B−A
b−a

×
(x − a) + A satisfies the (BSC); the claim follows from Proposition 5.7.

We are now able to state the following regularity results without any strictly convexity as-
sumption on f ; the first one is an application of Theorem 4.1, the second one follows from
Theorem 4.8

Theorem 5.10 (Existence of a Lipschitz minimizer under the (CBSC)). Let Ω be an open,
bounded and convex set; let f : Rn → R be convex. Assume that (u0, f ) satisfies the (CBSC)
of constant K and that f is non-constant on straight lines. Assume that

I (u) =
∫
Ω

f
(∇u(x)

)
dx

has a minimizer u in u0 + W
1,1
0 (Ω). Then there are two Lipschitz functions u1, u2 satisfying

u1 � u � u2 a.e. Lip(ui) � K, ui = u0 on ∂Ω (i = 1,2)

and therefore there exists a Lipschitz minimizer of I that is Lipschitz with a Lipschitz constant is
bounded by K .

Proof. Cellina Comparison Principle yields

u0
(
x0) + inf

k∈∂f ∗(θ−(x0))
k · (x − x0) � u(x) � u0

(
x0) + sup

k∈∂f ∗(θ+(x0))

k · (x − x0)

for a.e. x in Ω . Set

u1(x) = sup
{
u0

(
x0) + inf

k∈∂f ∗(θ−(x0))
k · (x − x0): x0 ∈ ∂Ω

}

and

u2(x) = inf
{
u0

(
x0) + sup

∗ + 0
k · (x − x0): x0 ∈ ∂Ω

}
.

k∈∂f (θ (x ))
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Then u1 and u2 are Lipschitz; their Lipschitz constant is bounded by K , moreover u1 = u2 = u0

on ∂Ω . It follows that the minimizers of I in u0 + W
1,1
0 (Ω) are minimizers of I in W

1,p
u1,u2(Ω).

Theorem 4.1 yields the conclusion. �
Remark 5.11. As it is pointed out in [7] the existence of a Lipschitz minimizer under the classical
(BSC) may be obtained easily by considering a strictly convex perturbation of the functional, like∫
Ω

f (∇u) + 1
k
|∇u|2 dx and passing to the limit. The same reasoning would not hold here since

it may not be true that (u0, f (ξ) + 1
k
|ξ |2) satisfies the (CBSC).

Theorem 5.12 (Lipschitz continuity of minimizers under the (CBSC) and the (CGA)). Let Ω be
an open, bounded and convex set; let f : Rn → R be convex. Assume that (u0, f ) satisfies the
(CBSC) of constant K and that the epigraph of f does not contain an unbounded face. Let u be
a minimizer of

I (u) =
∫
Ω

f
(∇u(x)

)
dx

in u0 + W
1,1
0 (Ω). Then u is Lipschitz and its Lipschitz constant is bounded by

R
f
K = max

{|ξ |: ∃|η| � K,
(
ξ, f (ξ)

)
and

(
η,f (η)

)
belong to the same face of epi(f )

}
.

Moreover, I has a minimizer whose Lipschitz constant is bounded by K .

Proof. Since the faces of the epigraph of f are bounded then f is non-constant on straight lines:
Theorem 5.10 yields the existence of two Lipschitz functions u1 and u2, with a Lipschitz constant
bounded by K , such that u1 = u2 = u0 on ∂Ω ; therefore u is a minimizer of I in W

1,p
u1,u2(Ω). The

assumption (again) that the faces of the epigraph of f are bounded together with Theorem 4.8
yield the conclusion. �
Remark 5.13. Theorem 5.12 extends Theorem 3 of [5] where it is assumed that u is continuous
and, instead of the fact that the faces of the epigraph of f are bounded, that f is strictly convex
out of the ball of radius K and that Dom(f ∗) is open. Our result applies for instance to functions
like f (ξ) = √

1 + |ξ |2.

Remark 5.14. The assumption that the epigraph of f does not contain any unbounded face is
somewhat optimal. For instance, any increasing absolutely continuous function on [−1,1] with
prescribed boundary values is a minimizer of I (u) = ∫ 1

0 |u′(t)|dt so that I admits among its
minimizers some functions that are not Lipschitz; here the (BSC) is obviously satisfied.

Remark 5.15. We will prove in a forthcoming paper that the convexity assumption on the domain
Ω can be weakened in the claims of Theorems 5.10 and 5.12.

6. Relaxation and Lipschitz regularity in the non-convex case

In this section we will consider the case of a Lagrangian f : Rn → R, that we assume again
to be bounded below by an affine function but not to be convex; u0 is a Lipschitz function on Ω .
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For r > 0 we denote by Lipr (Ω) the set of Lipschitz functions on Ω whose Lipschitz constant
is less than r ; Lipr (Ω,u0) is the subset of Lipr (Ω) of those functions that coincide with u0 on
∂Ω ; the space of Lipschitz functions on Ω is denoted by Lip(Ω). The bipolar of f is denoted
by f ∗∗.

Theorem 6.1. Assume that u0 ∈ LipK(Ω) and that the epigraph of f ∗∗ has no unbounded faces.
There exists K ′ � K such that

inf

{∫
Ω

f ∗∗(∇u(x)
)
dx: u ∈ LipK(Ω,u0)

}
� inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ LipK ′(Ω,u0)

}
.

Proof. Given a function g : Rn → R and r > 0 let us denote by gr the function defined by

gr(ξ) =
{

g(ξ) if |ξ | � r ,

+∞ if |ξ | > r .

We obviously have f ∗∗(∇u(x)) = (f ∗∗)K(∇u(x)) for every u in LipK(Ω,u0).
Now (f ∗∗)K � (fK)∗∗, the equality being false in general. However, if the faces of the epi-

graph of f are bounded, a sort of reverse inequality holds true. In fact, by [14, Theorem 3.2],
there exists K ′ > K such that, for every ε > 0, any |ξ | � K may be written as a convex combi-
nation

ξ =
2n+2∑
i=1

λiξi, λi � 0,

2n+2∑
i=1

λi = 1, |ξi | � K ′

and

2n+2∑
i=1

λif (ξi) � f ∗∗(ξ) + ε.

Therefore, by convexity,

(fK ′)∗∗(ξ) = (fK ′)∗∗
(

2n+2∑
i=1

λiξi

)
�

2n+2∑
i=1

λi(fK ′)∗∗(ξi) � f ∗∗(ξ) + ε

so that, ε being arbitrary,

∀|ξ | � K (fK ′)∗∗(ξ) �
(
f ∗∗)

K
(ξ).

It follows that

inf

{∫
f ∗∗(∇u(x)

)
dx: u ∈ LipK(Ω,u0)

}
� inf

{∫
(fK ′)∗∗(∇u(x)

)
dx: u ∈ LipK(Ω,u0)

}

Ω Ω
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and thus, since LipK(Ω,u0) ⊂ LipK ′(Ω,u0),

inf

{∫
Ω

f ∗∗(∇u(x)
)
dx: u ∈ LipK(Ω,u0)

}
� inf

{∫
Ω

(fK ′)∗∗(∇u(x)
)
dx: u ∈ LipK ′(Ω,u0)

}
.

The relaxation result [9, Proposition X.3.6] states that

inf

{∫
Ω

(fK ′)∗∗(∇u(x)
)
dx: u ∈ LipK ′(Ω,u0)

}
= inf

{∫
Ω

fK ′
(∇u(x)

)
dx: u ∈ LipK ′(Ω,u0)

}

the conclusion follows. �
Remark 6.2. The results hold true if |∇u0| � K a.e. instead of assuming that u0 is Lipschitz;
in this case it is enough to replace in the claim of Theorem 6.1 the sets Lipr (Ω,u0) with Wr =
{u ∈ u0 + W

1,1
0 (Ω): |∇u| � r a.e.}.

The next relaxation result is straightforward. As usual, I and I ∗∗ are the functionals defined
by

I (u) =
∫
Ω

f
(∇u(x)

)
dx, I ∗∗(u) =

∫
Ω

f ∗∗(∇u(x)
)
dx.

Theorem 6.3. Assume that the epigraph of f ∗∗ has no unbounded faces. Assume moreover that

I ∗∗(u) =
∫
Ω

f ∗∗(∇u(x)
)
dx

admits a minimizer on u0 + W
1,1
0 (Ω) that is Lipschitz. Then

min
{
I ∗∗(u): u ∈ u0 + W

1,1
0 (Ω)

} = inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ LipK ′(Ω,u0)

}

for some K ′; in particular there is no Lavrentiev phenomenon for I , i.e.

inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ u0 + W

1,1
0 (Ω)

}
= inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ Lip(Ω,u0)

}
.

Proof. Let K be greater than the Lipschitz constant of the minimizer of I . Since

min I ∗∗ = inf

{∫
f ∗∗(∇u(x)

)
dx: u ∈ LipK(Ω,u0)

}

Ω
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then by Theorem 6.1 we have

min I ∗∗ � inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ LipK ′(Ω,u0)

}

for some K ′. Now

inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ LipK ′(Ω,u0)

}
� inf

{∫
Ω

f
(∇u(x)

)
dx: u ∈ u0 + W

1,1
0 (Ω)

}

and f � f ∗∗ on R
n so that inf I � inf I ∗∗; it follows that the above inequalities are in fact

equalities. �
The proofs of the next corollaries follow then directly from the results of the previous sections.

Corollary 6.4. Let f : Rn → R be such that the epigraph of f ∗∗ has no unbounded faces. Let
Ω be an open bounded and convex set and (u0, f ) satisfy the (CBSC). Assume that I ∗∗ has a
minimizer in u0 + W

1,1
0 (Ω). Then there exists K ′ such that

min
{
I ∗∗(u): u ∈ u0 + W

1,1
0 (Ω)

} = inf
{
I (u): u ∈ LipK ′(Ω,u0)

}
and thus, in particular,

min I ∗∗ = inf I on u0 + W
1,1
0 (Ω).

Moreover, the minimizers of I , if they exist, are Lipschitz.

The assumption that I ∗∗ has a minimizer is satisfied when f ∗∗ has superlinear growth; the
popularity of this growth condition leads us to reformulate explicitly Corollary 6.4 in this situa-
tion as follows.

Corollary 6.5. Assume that f : Rn → R has a superlinear growth. Let Ω be an open, bounded,
and convex set and (u0, f ) satisfy the (CBSC). There exists K ′ such that

min
{
I ∗∗(u): u ∈ u0 + W

1,1
0 (Ω)

} = inf
{
I (u): u ∈ LipK ′(Ω,u0)

}
and thus, in particular,

min I ∗∗ = inf I on u0 + W
1,1
0 (Ω).

Moreover, the minimizers of I , if they exist, are Lipschitz.

Remark 6.6. We underline the fact that, in Corollary 6.5, we do not need any condition that
bounds the Lagrangian f from above, as instead is assumed in the classical relaxation results
(see for example [3, Theorem 10.8.3]).
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