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Abstract Let L(x, ξ) : R
N × R

N → R be a Borelian function and let (P) be the
problem of minimizing

b∫

a

L(y(t), y′(t))dt

among the absolutely continuous functions with prescribed values at a and b. We give
some sufficient conditions that weaken the classical superlinear growth assumption
to ensure that the minima of (P) are Lipschitz. We do not assume convexity of L w.r.
to ξ or continuity of L.

Mathematics Subject Classification (1991) 49-XX

1 Introduction

In this paper we are concerned with the Lipschitz regularity of the solutions of the
problem

min

b∫

a

L(y(t), y′(t))dt : y ∈ AC([a, b], RN), y(a) = A, y(b) = B. (P)

A classical result states that if L(x, ξ) is continuous, convex in ξ and superlinear then
every minimum of (P) is Lipschitz continuous. Some recent results show that the
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same result holds true by weakening some assumption: continuity is not assumed
in [1], a weaker growth assumption and no convexity in [2], no continuity and no
convexity in [3]. Ambrosio, Ascenzi, Buttazzo in [1] and Dal Maso, Frankowska in
[3] do strongly use some inequalities involving the superlinearity condition. Instead,
Cellina in [2] introduces a new growth assumption (GA) and the result is obtained
through a relaxation result and a reparametrization technique. Following [2], a func-
tion L(x, ξ) : R

N × R
N → R is said to satisfy the GA if the intersection of the

supporting hyperplanes of L∗∗(x, ξ) (the convex l.s.c. envelope of L(x, ·)) with the axis
ξ = 0 in R

N+1 tends to −∞ as |ξ | goes to infinity. This condition is fulfilled when L
is superlinear and there are functions, like |t| − √|t|, that satisfy (GA) and are not
superlinear.

Our starting point is a key inequality in the proof of [3] which involves the behavior
of the sections (x, λ) �→ L(x, λu), (λ ≥ 0, |u| = 1). This leads us to introduce the con-
dition (GAσ ) that is fulfilled if the sections of the function L satisfy condition (GA),
with some uniformity with respect to x and u. We show then in Sect. 3 that, if L is a
Borelian function that satisfies (GAσ ), every minimizer of (P) is Lipschitz. In Sect. 4
we study the properties of the functions that satisfy (GA) or (GAσ ). In particular we
give a geometrical characterization of assumption (GA). Opposite to the superlinear
case, where superlinear functions have superlinear sections, the sections of a function
that satisfies the GA do not necessarily satisfy (GA), as it is shown in Example 4.1.
In Sect. 5 we introduce a global growth assumption (G) involving the bipolar of L
(instead of the bipolar of the sections, as in (GAσ )) and L itself which is stronger than
(GA); most of the section is devoted to the proof that (G) is stronger than (GAσ );
yielding a new sufficient condition for the Lipschitz regularity of the minima of (P).
Finally, in the last section, we show that in the one dimensional case, the assumptions
(GA), (GAσ ) and (G) are all equivalent.

We just mention that, since assumption (GA) does not imply (GAσ ), the regularity
result of [2] for continuous lagrangians does not follow directly from our result; we
will extend it in a forthcoming paper concerning a relaxation result, as a consequence
of Corollary 3.13.

2 Notation, main assumptions and preliminary results

In what follows | · | is the euclidean norm and “·” the scalar product in R
N , B(0, R] is

the ball of radius R. Let f : R
N → R. We denote by f ∗∗ the bipolar of f , by epi f the

epigraph of f . The derivative of f with respect to η is df (ξ ; η) and its gradient is ∇f ; if
N = 1 d�f (ξ) and drf (ξ) are, respectively, the left and right derivatives of f in ξ ; in this
case the derivative of f is f ′. If u belongs to the unitary sphere ∂BN of R

N , fu : R
+ → R

is the u−section of f defined by fu(λ) = f (λu). If f is convex, ∂f is the subdifferential
of f . For a function L(x, ξ) : R

N × R
N → R we denote by L∗∗(x, ξ) the bipolar of ξ �→

L(x, ξ) and by dL∗∗((x, ξ); η) (resp. ∂ξL(x, ξ)) the directional derivative with respect to
η (resp. the subdifferential at ξ) of ξ �→ L∗∗(x, ξ). Moreover if u is in ∂BN , the u-section
of L(x, ·) is denoted by Lu(x, ·). When the variable ξ is in R, d�L∗∗(x, ξ) and drL∗∗(x, ξ)
are respectively the left and right derivatives of ξ �→ L(x, ξ)w.r.t. ξ . If L(x, ξ) is differ-
entiable, ∇ξL(x, ξ) is the gradient of L w.r.t. the variable ξ . Finally, AC([a, b], RN) is
the space of absolutely continuous functions on [a, b] with values in R

N .
In this paper L : R

N ×R
N −→ R is just a Borelian function. We assume, moreover,

that the bipolar of every section Lu is never equal to −∞. Notice that (Lu)
∗∗, the
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bipolar of Lu(x, ·), may be different from the u-section (L∗∗)u of the bipolar of L; in
general, since L∗∗ ≤ L, we have (L∗∗)u ≤ (Lu)

∗∗.
The following result will be widely used in the paper.

Monotonicity Lemma 2.1 Let f : R
N → R be convex, u ∈ ∂BN , p(ξ) in ∂f (ξ). Then:

(i) for every t, p(tu) · u ∈ ∂fu(t);
(ii) the map t �→ p(tu) · tu − f (tu) is increasing.

Proof For t, t0 ∈ R we have

fu(t)− fu(t0) = f (tu)− f (t0u) ≥ p(t0u) · (tu − t0u) = p(t0u) · u(t − t0),

proving (i). Let s < t; we have

f (su)− f (tu) ≥ p(tu) · (s − t)u = p(tu) · su − p(tu) · tu.

By (i) and the monotonicity of the subdifferential of convex functions it follows that
p(tu) · u ≥ p(su) · u so that

f (su)− f (tu) ≥ p(tu) · (s − t)u = p(su) · su − p(tu) · tu

i.e. p(su) · su − f (su) ≤ p(tu) · tu − f (tu). �

3 Lipschitzianity of the minima

We introduce here the condition that will imply the lipschitzianity of the minima
of (P).

Condition (H). We say that L satisfies (H) if for every compact subset C of R
N and

M ∈ R there exists R > 0 such that, for every λ ≥ R, u ∈ ∂BN and x ∈ C, one of the
following conditions holds:

(a) (Lu)
∗∗(x, λ) < L(x, λu)

or
(b) d�(Lu)

∗∗(x, λ)λ− (Lu)
∗∗(x, λ) ≥ M.

Remark 3.1 The interpretation of (a) is straightforward; the explanation of (b) is
postponed after the definition of the growth assumption (GAσ ).

Theorem 3.2 Assume that L satisfies (H). Every minimizer of (P) in AC([a, b], RN) is
Lipschitz.

Proof Let y be a minimizer of (P). It is shown in [3, formula (3.3)] that, if we set

g(t, v) =
{

L(y(t), vy′(t)) if v ∈]0, 2[
+∞ elsewhere

then g∗∗(t, 1) = L(y(t), y′(t)) and, without assuming any growth assumption, there
exists c in R such that

d�g∗∗(t, 1) ≤ L(y(t), y′(t))+ c, g∗∗(t, 1) = g(t, 1) for a.e. t.
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The proof of these results is based on the fact that ϕ(t) = t minimizes the functionals

I(ϕ) =
b∫

a

g(t,ϕ′(t))dt, I∗∗(ϕ) =
b∫

a

g∗∗(t,ϕ′(t))dt

among the absolutely continuous functions satisfying ϕ(a) = a and ϕ(b) = b. We point
out that the same result holds true if g is replaced by the function h defined by

h(t, v) =
{

L(y(t), vy′(t)) if v > 0
+∞ elsewhere

In fact, by [4, Corollary 20.5 and Theorem 18.25], the change of variable formula in
the key Lemma 2.3 of [3] does still hold for an absolutely continuous functionψ whose
derivative is strictly positive a.e. Therefore

d�h∗∗(t, 1) ≤ L(y(t), y′(t))+ c, h∗∗(t, 1) = h(t, 1) for a.e. t. (3.1)

Set, for every t such that y′(t) �= 0,

u(t) = y′(t)
|y′(t)| .

With our notations we have

h(t, v) = Lu(t)(y(t), v|y′(t)|)
and therefore

h∗∗(t, v) = (Lu(t))
∗∗(y(t), v|y′(t)|) d�h∗∗(t, v) = d�(Lu(t))

∗∗(y(t), v|y′(t)|)|y′(t)|.
By (3.1) we obtain that

(Lu(t))
∗∗(y(t), |y′(t)|) = Lu(t)(y(t), y′(t)) a.e. (3.2)

and moreover, for a.e. t such that y′(t) �= 0,

d�(Lu(t))
∗∗(y(t), v|y′(t)|)|y′(t)| − (Lu(t))

∗∗(y(t), |y′(t)|) ≤ c (3.3)

Let C = {y(t) : t ∈ [a, b]}. By (H) there exists R such that, for x ∈ C, u ∈ ∂BN and
λ ≥ R, either (Lu)

∗∗(x, λ) < L(x, λu) or d�(Lu)
∗∗(x, λ)λ− (Lu)

∗∗(x, λ) > c. Therefore,
if |y′(t)| > R, conditions (3.2) and (3.3) are not fulfilled at t. It follows that |y′(t)| ≤ R
a.e. �

The next growth assumption will be strictly related to case (b) of assumption (H).

Growth assumption on the sections (GAσ ). We say that L satisfies (GAσ ) if, for every
u ∈ ∂BN , there exists qu(x, λ) in ∂(Lu)

∗∗(x, λ) such that

lim
λ→+∞ qu(x, λ)λ− (Lu)

∗∗(x, λ) = +∞ (3.4)

uniformly with respect to x in compact sets and to u in ∂BN .

Remark 3.3 Fix u in ∂BN and x in R
N . The set

{(τ , z) ∈ [0, +∞[×R : z = (Lu)
∗∗(x, λ)+ qu(x, λ)(τ − λ)}
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is a tangent plane to the epigraph of the map (Lu)
∗∗(x, ·) in λ; the ordinate of its

intersection with the axis τ = 0 is z(x, λ) = (Lu)
∗∗(x, λ) − qu(x, λ)λ. Therefore con-

dition (GAσ ) is equivalent to lim
λ→+∞ z(x, λ) = −∞ uniformly with respect to x in

compact sets and to u in ∂BN .

Proposition 3.4 Assumption (GAσ ) is equivalent to each of the following conditions:

(i) For every qu(x, λ) in ∂(Lu)
∗∗(x, λ) (u ∈ ∂BN),

lim
λ→+∞ qu(x, λ)λ− (Lu)

∗∗(x, λ) = +∞

uniformly with respect to x in compact sets and to u in ∂BN.
(ii) lim

λ→+∞ d�(Lu)
∗∗(x, λ)λ − (Lu)

∗∗(x, λ) = +∞ uniformly w.r. to x in compact sets

and to u in ∂BN.

In particular, in the case where (Lu)
∗∗ is of class C1, condition (GAσ ) is equivalent to

lim
λ→+∞ ∂λ(Lu)

∗∗(x, λ)λ− (Lu)
∗∗(x, λ) = +∞ uniformly w.r. to x in compact sets and to

u in ∂BN.

Proof (i) Assume that (3.4) holds for some qu(x, λ) in ∂(Lu)
∗∗(x, λ) and let au(x, λ) ∈

∂(Lu)
∗∗(x, λ). Let C be a compact subset of R

N , M ∈ R and let R be such that

qu(x, R)R − (Lu)
∗∗(x, R) ≥ M

for every x ∈ C, u ∈ ∂BN . The monotonicity Lemma 2.1 ensures that for every λ > R

au(x, λ)λ− (Lu)
∗∗(x, λ) ≥ M.

To prove (ii) it is enough to remark that there exists qu(x, λ) ∈ ∂(Lu)
∗∗(x, λ) such that

d�(Lu)
∗∗(x, λ) = qu(x, λ); (i) yields the conclusion. �

Remark 3.5 It turns out from the previous proposition that, in the case where the
u-sections of L are convex, condition (H) is equivalent to (GAσ ).

Condition (GAσ ) generalizes the classical superlinearity condition.

Proposition 3.6 Assume that for every compact subset C of R
N, there exists r > 0 such

that L is bounded on C × B(0, r]. Assume moreover that L is superlinear, i.e. that

L(x, ξ) ≥ �(|ξ |), lim
r→+∞�(r) = +∞.

Then L satisfies (GAσ ).

Proof If L does not satisfy (GAσ ) there exists a compact subset C of R
N , a sequence

(xn) in C, a sequence (λn) in R, with λn → +∞ and a sequence (un) in B(0, 1] such
that

qun(xn, λn)λn − (Lun)
∗∗(xn, λn) ≤ h

for some qu(x, λ) ∈ ∂(Lu)
∗∗(x, λ) and h in R. Therefore, if k and r are such that L ≤ k

on C × B(0, r], we have

k ≥ (Lun)
∗∗(xn, r) ≥ (Lun)

∗∗(xn, λn)+ qun(xn, λn)(r − λn)

≥ −h + rqun(xn, λn) (3.5)
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so that qun(xn, λn) ≤ (h + k)/r. From (3.5) we deduce that, for λn ≥ r,

(Lun)
∗∗(xn, λn) ≤ k + h + k

r
(λn − r),

contradicting the superlinear growth of L. �
The result obtained recently by Dal Maso and Frankowska in [3, Theorem 2.1]

follows then directly from Theorem 3.2 and Proposition 3.6.

Corollary 3.7 Assume that for every compact subset C of R
N, there exists r > 0 such

that L is bounded on C × B(0, r]. Assume moreover that L is superlinear, i.e. that

L(x, ξ) ≥ �(|ξ |), lim
r→+∞�(r) = +∞.

Then every minimizer of (P) is Lipschitz.

Notice that, if L(x, ξ) is convex with respect to ξ , then every bipolar qu(x, λ) of Lu
at (x, λu) is of the form

qu(x, λ) = p(x, λu) · u,

where p(x, ξ) ∈ ∂L(x, ξ). In this case condition (H) turns then out to be equivalent to
the following growth condition.

Growth assumption (GA). We say that L satisfies (GA) if there exists p(x, ξ) in
∂L∗∗(x, ξ) such that

lim|ξ |→+∞ p(x, ξ) · ξ − L∗∗(x, ξ) = +∞ (3.6)

uniformly w.r. to x in a compact set.

Remark 3.8 In what follows we also will be concerned with functions of a real vari-
able ξ that take the value +∞ in ]−∞,0]; in this case the above limit is intended as ξ
goes to +∞. Therefore a function L satisfies (GAσ ) if every section Lu satisfies (GA)
uniformly w.r. to x in compact sets and to u in ∂BN .

Remark 3.9 The set

{(η, z) ∈ R
N × R : z = L∗∗(x, ξ)+ p(x, ξ) · (η − ξ)}

is a tangent plane to the epigraph of the map L∗∗(x, ·) in ξ ; the ordinate of its intersec-
tion with the axis η = 0 is z(x, ξ) = L∗∗(x, ξ) − p(x, ξ) · ξ . Therefore condition (GA)
is equivalent to lim|ξ |→+∞ z(x, ξ) = −∞ uniformly with respect to x in compact sets.

Proposition 3.10 Assumption (GA) is equivalent to each of the following conditions:

(i) For every q(x, ξ) in ∂L∗∗(x, ξ),

lim|ξ |→+∞ q(x, ξ) · ξ − L∗∗(x, ξ) = +∞

uniformly w.r. to x in compact sets.
(ii) lim|ξ |→+∞ dL∗∗((x, ξ); ξ)− L∗∗(x, ξ) = +∞ uniformly w.r. to x in a compact set.
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In particular, if L∗∗ is of class C1, condition (GA) is equivalent to

lim|ξ |→+∞ ∇ξL∗∗(x, ξ) · ξ − L∗∗(x, ξ) = +∞

uniformly w.r. to x in compact sets.

Proof (i) Assume that (GA) holds for some p(x, ξ) ∈ ∂L∗∗(x, ξ) and let q(x, ξ) ∈
∂L∗∗(x, ξ). Let C be a compact subset of R

N , M ∈ R and let R be such that

p(x, ξ) · ξ − L∗∗(x, ξ) ≥ M

for every x ∈ C and |ξ | ≥ R. The monotonicity Lemma 2.1 ensures that for every
t > 1, x ∈ C and |ξ | ≥ R,

q(x, tξ) · tξ − L∗∗(x, tξ) ≥ p(x, ξ) · ξ − L∗∗(x, ξ) ≥ M

and therefore q(x, η) · η− L∗∗(x, η) ≥ M for every x ∈ C and |η| > R. (ii) It is enough
to remark that there exists p(x, ξ) ∈ ∂L∗∗(x, ξ) such that dL∗∗((x, ξ); ξ) = p(x, ξ) · ξ ;
(i) yields the conclusion. �
Remark 3.11 By Proposition 4 in [2] every convex function f : R

N → R that is super-
linear, i.e. lim|ξ |→+∞ f (ξ)/ξ = +∞ fulfills (GA). An example of a function that satisfies

(GA) without being superlinear is |t| − √|t|.
Remark 3.12 The GA was first presented in [2] as a generalization of the super-
linearity condition where it is proven that the conclusion of Theorem 3.2 does hold by
assuming the continuity of L in both variables and (GA) instead of (H). Since, as we
show in the next section, neither (H) implies (GA) nor (GA) implies (H), the result
of Cellina does not follow directly from our Theorem 3.2. We will generalize it in a
forthcoming paper concerning a relaxation result; the result will follow from the next
direct consequence of Theorem 3.2.

Corollary 3.13 Assume that L(x, ξ) is convex in ξ and satisfies (GA). Then every min-
imizer of (P) in AC([a, b], RN) is Lipschitz.

4 The growth assumptions (GA) and (GAσ )

Opposite to the superlinear case a function that satisfies the GA does not, in general,
satisfy the same growth assumption on its sections. The following examples show that,
in general, neither (GA) implies (GAσ ) nor does (GAσ ) imply (GA).

Example 4.1 We show here that, in general, (GA) does not imply (GAσ ). Let

L(ξ1, ξ2) =

⎧⎪⎨
⎪⎩

0 if |ξ | ≤ 1√
1 + ξ2

1 if |ξ | > 1, ξ2 = 0
|ξ | − √|ξ | if |ξ | > 1, ξ2 �= 0

Then L∗∗(ξ) = max{|ξ | − √|ξ |, 0} so that, for |ξ | > 1, ∇L∗∗(ξ) · ξ − L∗∗(ξ) = √|ξ |/2
tends to +∞ as |ξ | tends to +∞; therefore L fulfills (GA). However the sections of L
are convex and, for u = (1, 0) and λ > 1, the function

L′
u(λ)λ− Lu(λ) = − 1√

λ2 + 1
+ 1
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is bounded, so that L does not satisfy (GAσ ). We point out that with a slight
modification of the definition of L one can obtain even a continuous function sat-
isfying (GA) but not (G).

Example 4.2 In general condition (GAσ ) does not imply (GA). For instance the func-
tion L(ξ) = −√|ξ | fulfills (GAσ ) but its bipolar is identically equal to −∞.

In some of the next results we assume that L(x, ξ) is bounded on the compact subsets
of its domain; this obviously implies that any subdifferential of L∗∗(x, ξ) is bounded
on compact sets too. We give here a geometrical characterization of condition (GA).

Theorem 4.3 Assume that L is bounded on compact sets. Then L satisfies (GA) if and
only if for every compact subset C of R

N , p(x, ξ) in ∂L∗∗(x, ξ) and R0 > 0 there exists
R > 0 such that, setting ϕξ0(t, ξ) = L∗∗(x, t ξ|ξ | ) − L∗∗(x, ξ0) − p(x, ξ0) · (t ξ|ξ | − ξ0) ≥ 0,
we have

L∗∗(x, ξ) ≥ L∗∗(x, ξ0)+ p(x, ξ0) · (x − ξ0)+ M
R
(|ξ | − R)+ ϕξ0(R, ξ)

R
|ξ | (4.7)

for every |ξ0| ≤ R0, x in C and |ξ | ≥ R.

Proof We assume that L∗∗(x, ξ) = f (ξ), the general case is not much different; it is
not restrictive to assume that f is convex. Assume that (GA) holds; let R0 > 0, x ∈ C,
|ξ0| ≤ R0 and p(ξ) ∈ ∂f (ξ). Let u ∈ ∂BN . Then q(t) = p(tu) · u − p(ξ0) · u belongs to
the subdifferential of the map t �→ ϕξ0(t, u) and

tq(t)− ϕξ0(t, u) = p(tu) · tu − f (tu)+ f (ξ0)− p(ξ0) · ξ0

≥ p(tu) · tu − f (tu)+ c

where c = sup{f (ξ0) − p(ξ0) · ξ0 : |ξ0| ≤ R0} is finite by the boundedness condi-
tion. It follows from (GA) that lim

t→+∞ tq(t) − ϕξ0(t, u) = +∞ uniformly with respect

to u ∈ ∂BN and |ξ0| ≤ R0. Therefore if we fix M ∈ R there exists R> 0 such that
tq(t) − ϕξ0(t, u) ≥ M for every t ≥ R, u ∈ ∂BN , |ξ0| ≤ R0; in particular, for every
u ∈ ∂BN , q(R) ≥ (M + ϕξ0(R, u))/R, so that

ϕξ0(t, u)− ϕξ0(R, u) ≥ M + ϕξ0(R, u)
R

(t − R) (4.8)

for every t > R. If we set t = |ξ | and u = ξ
|ξ | , (4.8) is equivalent to

f (ξ) ≥ f (ξ0)+ p(ξ0) · (x − ξ0)+ M
R
(|ξ | − R)+ ϕξ0(R, u)+ ϕξ0(R, u)

R
(|ξ | − R)

= f (ξ0)+ p(ξ0) · (x − ξ0)+ M
R
(|ξ | − R)+ ϕξ0(R, u)

R
|ξ |,

proving (4.7). Conversely assume that (4.7) holds for ξ0 = 0, then the last part of the
previous proof shows that

ϕ0(τ , ξ)− ϕ0(R, ξ) ≥ M + ϕ0(R, ξ)
R

(τ − R)

for every τ > R. It follows that drϕ0(R, ξ), the right derivative of the map t �→ ϕ0(t, ξ)
at t = R, is greater than M+ϕ0(R,ξ)

R . Let q(t) be a subdifferential of the map t �→ ϕ0(t, ξ)
and τ > R; by the monotonicity Lemma 2.1 for every t > τ we have

tq(t)− ϕ0(t, ξ) ≥ τq(τ )− ϕ0(τ , ξ) ≥ τ
M + ϕ0(R, ξ)

R
− ϕ0(τ )
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so that, letting τ tend to R, we obtain that

tq(t)− ϕ0(t, ξ) ≥ R
M + ϕ0(R, ξ)

R
− ϕ0(R, ξ) = M

for every t > R. Again by Lemma 2.1 we may choose q(t) =
(

p(t ξ|ξ | )− p(0)
)

· ξ
|ξ | so

that, if in the latter inequality we set t = |ξ |, we obtain

p(ξ) · ξ − f (ξ) ≥ M + f (0)

for every |ξ | ≥ R, proving the validity of (GA). �
The following condition will be exploited later.

Conical growth assumption (CGA). For every compact subset C of R
N and R0 ≥ 0

there exist ε > 0, R > 0 and c ∈ R such that

∀ξ ∈ R
N |ξ | ≥ R, L∗∗(x, ξ) ≥ L∗∗(x, ξ0)+ p(x, ξ0) · (ξ − ξ0)+ ε|ξ | + c

for every x ∈ C, |ξ0| ≤ R0 and p(x, ξ0) in ∂L∗∗(x, ξ0).
The following result is a direct consequence of Theorem 4.3; it actually appeared

first in the proof of Theorem 2 of [2].

Corollary 4.4 Assume that L is bounded on compact sets and satisfies the GA. Then L
satisfies (CGA).

Proof It is enough to remark that the function ϕξ0 defined in Theorem 4.3 is positive;
the inequality (4.7) yields the conclusion. �
Example 4.5 There are functions satisfying (CGA) but not (GA). Let, for instance

L(ξ) = 3
4

if |ξ | ≤ 1; L(ξ) = −3
4

(
1 − 1

2n−1

)
+

(
1 − 1

22n

)
|ξ | if 2n−1 ≤ |ξ | < 2n.

Then L is continuous, convex, piecewise affine. Moreover L satisfies (CGA): in fact it
is enough to remark that if ξ0 ∈]2m−1, 2m[, ξ ∈]2n−1, 2n[ then p(ξ0) = (1 − 1

22m ) and

L(ξ)− [L(ξ0)+ p(x0)(ξ − ξ0)] =
(

1
22m − 1

22n

)
+ 1

2n+1
− 1

2m .

However L does not satisfy (GA) since, if ξn = 2n−1 and p(ξn) =
(

1 − 1
22n

)
, then

lim
n→+∞ p(ξn)ξn − L(ξn) = lim

n→+∞
3
4

(
1 − 1

2n−1

)
= 3

4
.

A powerful consequence of (CGA) was established in [2] in the continuous case; we
state it here in a more general setting. For every (x, ξ) we set

L(x, ξ) = lim inf
η→ξ

L(x, η),

i.e. L(x, ξ) denotes the lower semicontinuous envelope of the map η �→ L(x, η). The
proof of the following result is based on the fact that if f : R

N → R is convex and
satisfies (CGA) then the intersection of its epigraph with any supporting hyperplane
is bounded. This condition is referred in [2] as the Bounded Intersection Property.
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Theorem 4.6 Assume that L satisfies (CGA) and let p(x, ξ) in ∂L∗∗(x, ξ). Then given
R0 > 0 and a compact subset C of RN there exists R > 0 (depending only on R0 and
C) such that for every x ∈ C; for every ξ , with |ξ | ≤ R0, there exists at most ν ≤ N+1
points ξi, with |ξi| ≤ R, and coefficients of a convex combination αi, such that

(
ξ

L∗∗(x, ξ)

)
=

ν∑
i=1

αi

(
ξi

L(x, ξi)

)

and L∗∗(x, ξ) = L(x, ξi) = L∗∗(x, ξ)+ p(x, ξ) · (ξ − ξi).

Proof It is enough to remark that Theorem 1 in [2] holds for functions that are lower
semicontinuous instead of continuous and that the bipolar of a function coincides with
the bipolar of its lower semicontinuous envelope. �

Conditions (GA) and (GAσ ) are equivalent if L(x, ξ) is convex in ξ .

Proposition 4.7 Assume that L(x, ·) is convex for every x in R
N. Then L satisfies (GA)

if and only if L satisfies (GAσ ).

Proof If L(x, ·) is convex then (Lu)
∗∗(x, λ) = Lu(x, λ) = L(x, λu); moreover if

p(x, ξ) ∈ ∂L(x, ξ) then, by Lemma 2.1, qu(x, λ) = p(x, λu) · u ∈ ∂Lu(x, λ); the equiva-
lence of the two conditions follows immediately. �

In Example 4.5 we showed that condition (CGA) does not imply (GA). We end
this section by showing that (CGA) together with (GAσ ) imply (GA).

Proposition 4.8 Assume that L satisfies (CGA) and that the function ξ �→ L(x, ξ) is
lower semicontinuous and Lu(x, ·) is convex for every x in R

N. If L satisfies (GAσ ) then
L satisfies (GA).

We postpone the proof of Proposition 4.8 after the following Lemma.

Lemma 4.9 Assume that Lu(x, ·) is convex for every x and u in ∂BN. Let ξ and ξ0 in
R

N be such that, for some p(x, ξ) in ∂L∗∗(x, ξ),

L(x, ξ0) = L∗∗(x, ξ)+ p(x, ξ) · (ξ0 − ξ). (4.9)

Then p(x, ξ) · u ≥ d�Lu(x, |ξ0|), where u = ξ0/|ξ0|.
Proof Set λ0 = |ξ0|. For every x ∈ R

N and λ ≥ 0 we have

L(x, λu) ≥ L∗∗(x, λu) ≥ L∗∗(x, ξ)+ p(x, ξ) · (λu − ξ).

It follows from (4.9) that, for every λ ≥ 0,

L(x, λu)− L(x, λ0u) ≥ p(x, ξ) · u(λ− λ0)

and thus p(x, ξ) · u ∈ ∂Lu(x, λ0); in particular p(x, ξ) · u is greater than d�Lu(x, |ξ0|),
the minimum of ∂Lu(x, |ξ0|); proving the claim. �
Proof of Proposition 4.8 For every u ∈ ∂BN we denote by qu(x, λ) the left derivative
of Lu(x, ·) at λ. Fix M in R and C be a compact subset in R

N ; from (GAσ ) and the
convexity assumption it follows that there exists R > 0 such that, for every u and
x ∈ C,

qu(x, λ)λ− L(x, λu) ≥ M for every λ ≥ R.



Lipschitz regularity of the minimizers 109

Fix ξ with |ξ | ≥ R. By Theorem 4.6 we have ξ = ∑ν
i=1 αiξi for some ξ1, . . . , ξν in R

N and
coefficients of a convex combination αi satisfying L(x, ξi) = L∗∗(x, ξ)+p(x, ξ) ·(ξi −ξ).
Let i be such that |ξi| ≥ |ξ |. The latter equality yields

p(x, ξ) · ξ − L∗∗(x, ξ) = p(x, ξ) · ξi − L(x, ξi);

moreover by Lemma 4.9, with ξi instead of ξ0, we have

p(x, ξ) · ξi ≥ qu(x, |ξi|)|ξi|
where u = ξi/|ξi|; it follows that

p(x, ξ) · ξ − L∗∗(x, ξ) ≥ qu(x, |ξi|)|ξi| − Lu(x, |ξi|) ≥ M,

proving the claim �

5 A global growth condition

We introduce here a new global condition that turns out to be stronger than both
(GAσ ) and (GA).

Example 5.1 It is pointed out in [2] that the function L(ξ) = (2 + sin ξ)ξ2 satisfies
(GA) but, if p(ξ) ∈ ∂L∗∗(ξ), the limit lim|ξ |→+∞ p(ξ)ξ − L(ξ) does not exist. In fact,

setting tk = −π
2 + 2kπ (k ∈ Z) we have

∂L∗∗(ξ) =
{

2tk if ξ ∈]tk, tk+1[
[2tk−1, 2tk] if ξ = tk

so that p(ξ) ∼ 2ξ as |ξ | tends to +∞. Then

p(π/2 + 2kπ)(π/2 + 2kπ)− L(π/2 + 2kπ) ∼ −(π/2 + 2kπ)2

tends to −∞ as k → +∞. However,

p(2kπ)(2kπ)− L(2kπ) = 2tk(2kπ) ∼ 2(2kπ)2 − (2kπ)2

tends to +∞ as k → +∞. It follows that

sup
t>0

{p(t)t − L(t)} = +∞

and, analogously,

sup
t<0

{p(t)t − L(t)} = +∞.

These last remarks lead us to introduce the next growth condition (G).

Growth condition (G). We say that L satisfies (G) if , for some p(x, ξ) in ∂L∗∗(x, ξ),

lim
R→+∞ sup{p(x, λu) · λu − L(x, λu) : λ ≤ R} = +∞

uniformly w.r. to x in compact sets and to u in ∂BN , i.e. if for every compact subset C
of R

N and M ∈ R there exists R > 0 such that, for every u ∈ ∂BN and x ∈ C,

p(x, λuu) · λuu − L(x, λuu) ≥ M (5.10)

for some λu ≤ R.
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Remark 5.2 In the one dimensional case L satisfies (G) if and only if

sup
t>0

{p(x, t)t − L(x, t)} = sup
t<0

{p(x, t)t − L(x, t)} = +∞

uniformly w.r. to x in compact sets. In particular the function defined in Example 5.1
satisfies (G).

Remark 5.3 Since dL∗∗((x, ξ); ξ) = max
p∈∂L∗∗(x,ξ)

p(x, ξ) · ξ , then condition (G) can be

restated with dL∗∗((x, λuu)); u) instead of p(x, λuu) · u.

The following result shows that condition (G) is stronger than (GA).

Proposition 5.4 If L satisfies (G) then L fulfills (GA). The converse holds true if
ξ �→ L(x, ξ) is convex for every x.

Proof Let p(x, ξ) ∈ ∂L∗∗(x, ξ) and C be a compact subset in R
N . Fix M ∈ R and let

R, λu be such that (5.10) holds. Let u ∈ ∂BN . By Lemma 2.1, for every t ≥ R, we have

p(x, tu) · tu−L∗∗(x, tu)≥p(x, λuu) · λuu−L∗∗(x, λuu)≥p(x, λuu) · λuu−L(x, λuu)≥M

and therefore

p(x, ξ) · ξ − L∗∗(x, ξ) ≥ M

for every |ξ | ≥ R. The last part of the claim is immediate. �
Example 5.5 We show here that, in general, (GA) does not imply (G). Let

L(ξ1, ξ2) =

⎧⎪⎨
⎪⎩

0 if |ξ | ≤ 1√
1 + ξ2

1 if |ξ | > 1, ξ2 = 0
|ξ | − √|ξ | if |ξ | > 1, ξ2 �= 0

Then L∗∗(ξ) = max{|ξ |−√|ξ |, 0} so that, for |ξ | > 1, ∇L∗∗(ξ)·ξ−L(ξ) = √|ξ |/2 tends
to +∞ as |ξ | tends to +∞ whereas, for ξ = (ξ1, 0) with |ξ | > 1, ∇L∗∗(ξ) · ξ − L∗∗(ξ)
is asymptotic to −√|ξ1|/2 as |ξ1| tends to +∞.

Theorem 5.6 Assume that L(x, ξ) is bounded on compact sets and that L satisfies (G).
Then L fulfills (GAσ ).

The proof of Theorem 5.6 is much simpler in the case where L does not depend
on x; we sketch it here for the convenience of the reader.

Sketch of the proof of Theorem 5.6 for L(x, ξ) = L(ξ). Assume that L(ξ) fulfills (G).
Let p ∈ ∂L∗∗ and M ∈ R; there exists R0 > 0 such that, for every unitary vector u,
p(λuu) · λuu − L(λuu) ≥ M, for some λu ≤ R0. Obviously (Lu)

∗∗(λu) ≤ Lu(λu) =
L(λuu) and therefore p(λuu) · λuu − (Lu)

∗∗(λu) ≥ M. Let qu ∈ ∂(Lu)
∗∗, we claim that

there exists λ such that, for every λ ≥ λ and unitary vector u,

qu(λ)λ− (Lu)
∗∗(λ) ≥ p(R0u) · R0u − (Lu)

∗∗(R0). (5.11)

In fact, if (5.11) does not hold then there exist a divergent increasing sequence λn and
a sequence of unitary vectors un such that

qun(λn)λn − (Lun)
∗∗(λn) ≤ p(R0un) · R0un − (Lun)

∗∗(R0).
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It follows by convexity that

p(R0un) · R0un − qun(λn)λn ≥ (Lun)
∗∗(R0)− (Lun)

∗∗(λn) ≥ qun(λn)(R0 − λn),

implying that

qun(λn) ≤ p(R0un) · un. (5.12)

Let us point out that, again by Lemma 2.1, p(R0u) · u ∈ ∂(L∗∗)u(R0). Since (L∗∗)u ≤
(Lu)

∗∗, one expects that for every ε > 0, p(R0u) ·u ≤ qu(λ)+ε definitely; this however
does not contradict (5.12). The point here is that L satisfies (GA) and, a fortiori, the
CGA: there exist R > 0, ε > 0 and c ∈ R such that, for every unitary vector u,

∀ξ ∈ R
N |ξ | ≥ R, L∗∗(ξ) ≥ L∗∗(R0u)+ p(R0u) · (ξ − R0u)+ ε|ξ | + c.

In particular, for ξ = λu and λ ≥ R, we obtain

L∗∗(λu) ≥ (p(R0u) · u + ε)λ+ c(R0), (5.13)

where c(R0) = inf{L∗∗(R0u)− p(R0u) · R0u + c : u ∈ ∂BN} > −∞, L being bounded
on compact sets. Now the right hand side of the latter inequality is an affine, whence
convex function of λ; moreover Lu(λ) = L(λu) ≥ L∗∗(λu) for every λ ≥ 0; therefore
from (5.13) we obtain

(Lu)
∗∗(λ) ≥ (p(R0u) · u + ε)λ+ c(R0)

for λ ≥ R. It follows that there exists λ such that, for λ ≥ λ, the subdifferential qu of
(Lu)

∗∗ at λ is larger than p(R0u) · u + ε/2; we will show that λ does not depend on u.
In particular, for λn ≥ λ, we have qun(λn) ≥ p(R0un) · un + ε/2, contradicting (5.12).
Hence (5.11) holds true and the monotonicity Lemma 2.1 yields the conclusion. �

We postpone the proof of Theorem 5.6 in the general case after some preliminary
results that take into account the problem of the uniformity with respect to the first
variable varying in a compact set and to the unitary vectors u.

Lemma 5.7 Let ϕ,ψ : [R, +∞[→ R be convex, with ϕ ≤ ψ , and let p(λ) in ∂ϕ(λ), q(λ)
in ∂ψ(λ) and ε > 0. For every λ1 ≥ R the inequality

q(λ) > p(λ1)− ε

holds for every λ ≥ ψ(λ1)−ϕ(λ1)
ε

+ λ1.

Proof Assume that q(λ) ≤ p(R) − ε for some λ ≥ R. Since q in ∂ψ and p in ∂ϕ we
have

ψ(λ)− ψ(R) ≤ q(λ)(λ− R)

≤ (p(R)− ε)(λ− R) = p(R)(λ− R)− ε(λ− R)

≤ ϕ(λ)− ϕ(R)− ε(λ− R)

so that

ψ(λ) ≤ ϕ(λ)+ ψ(R)− ϕ(R)− ε(λ− R)

≤ ψ(λ)+ ψ(R)− ϕ(R)− ε(λ− R),

which is equivalent to λ ≤ ψ(λ1)−ϕ(λ1)
ε

+ λ1. �
The next result is a consequence of Lemma 5.7.
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Lemma 5.8 Let ψ : [0, +∞[→ R be convex, with ψ(λ) ≥ aλ+ b for every λ ≥ R and
q in ∂ψ . For every ε > 0 there exists R1 = R1(ε, R,ψ(R)− (aR + b)), increasing in the
third variable, such that

q(λ) ≥ a − ε for every λ ≥ R1.

Proof From Lemma 5.7 with ϕ(λ) = aλ+ b we may set R1(ε, R, η) = η/ε + R. �
We need also the following simple result.

Lemma 5.9 Let ψ : [0, +∞[→ R be such that ψ(λ) ≥ aλ + b for every λ ≥ R and
m = inf{ψ(λ) : 0 ≤ λ ≤ R} > −∞. Then ψ∗∗(λ) ≥ aλ + min{m − aR, b} for every
λ ≥ 0.

The next result compares the subdifferential of (Lu)
∗∗ with that of (L∗∗)u; it is the

main tool in the proof of Theorem 5.6.

Lemma 5.10 Assume that L(x, ξ) is bounded on compact sets and satisfies (CGA).

qu(x, λ) ∈ ∂(Lu)
∗∗(x, λ), p(x, ξ) ∈ ∂L∗∗(x, ξ) (u ∈ ∂BN).

Then for every compact subset C of R
N and R0 ≥ 0 there exist ε > 0 and λ0 = λ0(R0, ε)

such that, for every unitary vector u and x ∈ C,

p(x, λu) · u ≥ p(x, R0u) · u + ε/2 and q(x, λ) ≥ p(x, R0u) · u + ε/2 (5.14)

for every λ ≥ λ0.

Remark 5.11 We recall that, from Lemma 2.1, p(x, λu) · u ∈ ∂(L∗∗)u(x, λ), so that the
first inequality in (5.14) is a strict monotonicity property of the subdifferentials of
the sections of L∗∗. We also notice that, from the inequality L∗∗ ≤ L it follows that
(L∗∗)u ≤ (Lu)

∗∗; in this situation the application of Lemma 5.7 with ϕ(·) = (L∗∗)u(x, ·)
and ψ(·) = (Lu)

∗∗(x, ·) yields that, definitively, qu(x, λ) ≥ p(x, R0u) · u − ε. Here the
result is much stronger, thanks to (CGA).

Proof of Lemma 5.10 By (CGA) there exists R = R(R0) such that, for every λ ≥ R,
x ∈ C and unitary vector u,

L∗∗(x, λu) ≥ L∗∗(x, R0u)+ p(x, R0) · (λ− R0)u + ελ+ c

≥ (p(x, R0u) · u + ε)λ+ c1(R0, ε), (5.15)

where c1 = inf{L∗∗(x, R0u) − p(x, R0u) · u + c : x ∈ C, u ∈ ∂BN} > −∞ since L
is affinely minorized and L is bounded on compact sets. Fix x in C and set ψ(λ) =
L∗∗(x, λu). We recall that, by the monotonicity Lemma 2.1, p(x, λu) · u ∈ ∂ψ(t). Set

�1(x, R0, u, R) = L∗∗(x, Ru)− [L∗∗(x, R0u)+ p(x, R0u) · (R − R0)u];
by Lemma 5.8 there exists R1 = R1(R, ε,�1(x, R0, u, R)), increasing in the last vari-
able, such that

∀λ ≥ R1(R, ε,�1(x, R0, u, R)) p(x, λu) · u ≥ p(x, R0u) · u + ε/2. (5.16)

To prove the second inequality of our statement, we notice that, by (5.15) we have

Lu(x, λ) ≥ (p(x, R0u) · u + ε)λ+ c1(R0, ε)
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for every λ ≥ R and unitary vector u. Let m(R) = inf{Lu(x, λ) : u ∈ ∂BN , 0 ≤ λ ≤ R},
which is finite since L is bounded below by an affine function. By Lemma 5.9, for
every λ ≥ 0 we have

(Lu)
∗∗(x, λ) ≥ (p(x, R0u) · u + ε)λ+ c2(R0),

where

c2(R0, ε) = inf{c(R0, ε), m − [(p(x, R0u) · u + ε]R : x ∈ C, u ∈ ∂BN}.
Again, as in the proof of the first inequality, if we set

�2(x, R0, u, R) = (Lu)
∗∗(x, R)− [L∗∗(x, R0u)+ p(x, R0u) · (R − R0)u],

the application of Lemma 5.8 yields the existence of R2 = R2(R, ε,�2(x, R0, u, R)),
increasing in the last variable, such that

∀λ ≥ R2(R, ε,�2(x, R0, u, R)) qu(x, λ) ≥ p(x, R0u) · u + ε/2. (5.17)

Since L∗∗(x, Ru) ≤ (Lu)
∗∗(x, R) ≤ L(x, Ru), by the local boundedness assumption

there exists K, depending only on R0 and R and therefore only on R0, such that
�i(x, R0, u, R) ≤ K (i = 1, 2). The conclusion follows by (5.16) and (5.17) if we set

λ0 = max{R1(R, ε, K), R2(R, ε, K)},
the functions R1 and R2 being monotonic in the last variable. �

We are now in the position to prove the main result of this Sect. (5b).

Proof of Theorem 5.6 Let C be a compact subset of R
N , M∈R and p(x, ξ) ∈ ∂L∗∗(x, ξ).

From (G) we deduce that there exists R0 such that, for every u in ∂BN , and x ∈ C,

p(x, λuu) · λuu − L(x, λuu) ≥ M

for some λu ≤ R0. Since (Lu)
∗∗(x, λ) ≤ L(x, λu) we deduce that p(x, λuu) · λuu −

(Lu)
∗∗(x, λu) ≥ M and therefore, by the monotonicity Lemma 2.1, we have

p(x, R0u) · R0u − L(x, R0u) ≥ M. (5.18)

Let qu(x, λ) ∈ ∂(Lu)
∗∗(x, λ). Since, from Corollary 4.4, L fulfills (CGA), then by

Lemma 5.10 there exist ε > 0 and λ0 = λ0(R0, ε) such that, for every unitary vector u
and x ∈ C,

q(x, λ) ≥ p(x, R0u) · u + ε/2 (5.19)

whenever λ ≥ λ0. Assume that, for some x ∈ C and u ∈ ∂BN , we have

qu(x, λ0)λ0 − (Lu)
∗∗(x, λ0) ≤ p(x, R0u) · R0u − (Lu)

∗∗(x, R0). (5.20)

Since, by convexity,

qu(x, λ0)(R0 − λ0) ≤ (Lu)
∗∗(x, R0)− (Lu)

∗∗(x, λ0)

then, from (5.20), we obtain

qu(x, λ0)(R0 − λ0) ≤ p(x, R0u) · R0u − qu(x, λ0)λ0

which is equivalent to

qu(x, λ0) ≤ p(x, R0u) · u,



114 C. Mariconda, G. Treu

contradicting (5.19). Therefore from (5.18) we obtain

qu(x, λ0)λ0 − (Lu)
∗∗(x, λ0) ≥ p(x, R0u) · R0u − (Lu)

∗∗(x, R0) ≥ M

for all u ∈ ∂BN , and x ∈ C. The monotonicity Lemma 2.1 yields the conclusion. �
The converse of Theorem 5.6 does not hold, as it is shown in the following example.

Example 5.12 Set

L(ξ1, ξ2) =
{ |ξ | − √|ξ | if ξ2 �= 0,
ξ2

1 if ξ2 = 0.

Clearly L satisfies (GAσ ): in fact the map t → |t| − √|t| satisfies (GA) and t → t2

is superlinear. However L does not satisfy (G) since L∗∗(ξ) = |ξ | − √|ξ | and, for
ξ = (ξ1, 0),

∇L∗∗(ξ) · ξ − L(ξ) = |ξ1| −
√|ξ1|

2
− ξ2

1 → −∞
as |ξ1| → +∞.

6 The one dimensional case

The purpose of this section is to show that, in the one dimensional case, the growth
assumptions (GAσ ), (GA) and (G) introduced above are all equivalent. Here, fol-
lowing the notation introduced in Sect. 2, L1(x, ·) and L−1(x, ·) are the two sections
Lu(x, ·) of L(x, ·), u = ±1.

Lemma 6.1 Let L : R × R −→ R. If L satisfies (CGA) then, for every compact subset
C of R

N, there exists λ̄ such that (Lu)
∗∗(x, λ) = L∗∗(x, λ), ∂(Lu)

∗∗(x, λ) = ∂L∗∗(x, λ)
for every λ ≥ λ̄ and u = ±1.

Proof Let p(x, λ) ∈ ∂L∗∗(x, λ) and C be a compact subset of R
N . We apply three times

Lemma 5.10 with u = 1 (starting with R0 = 0): let 0 < λ0 < λ1 < λ2 and ε > 0 be
such that

∀x ∈ C

⎧⎨
⎩

p(x, λ0) ≥ p(x, 0)+ ε

p(x, λ1) ≥ p(x, λ0)+ ε

p(x, λ2) ≥ p(x, λ1)+ ε.

Fix x in C and set f (ξ) = L(x, ξ). Let (ξ1, f (ξ1)), (η, f (η)) be two points of the graph of
f with ξ1 ≤ 0, η ≥ λ2; we denote by �1 the segment that joins them. Let (ξ , y1) ∈ �1
with ξ ≥ λ2. We claim that there exists ξ2 ≥ 0 such that the ordinate of the point (ξ , y2)

of the segment joining (ξ2, f (ξ2)) with (η, f (η)) is less than y1. In fact let ϕ be the affine
function on [0, λ2] whose graph is the segment � joining (0, f (0)) with (λ2, f (λ2)) and
set

� = {(λ, y) : λ ∈ [0, λ2], y ≤ ϕ(λ)}.
Notice that � is not reduced to the segment � itself, otherwise f would be affine on
[0, λ2], contradicting the fact that the subgradients p(x, λ0) and p(x, λ1) of f at λ0 and λ1
are different. Therefore there exists ξ2 ∈ [0, λ2] such that (ξ2, f (ξ2)) ∈ �: let (η1, f (η1))

be the intersection of the segment�2 joining (η, f (η)) and (ξ2, f (ξ2))with the epigraph
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of f and let y2 be such that (ξ , y2) ∈ �2; clearly 0 ≤ η1 ≤ λ2. Let g : [ξ1, η] → R be the
function whose graph is the union of the segment joining (ξ1, f (ξ1)) with (0, f (0)), of
the graph of f restricted to [0, λ2] and of the segment joining (λ2, f (λ2)) with (η, f (η)).
Since (ξ1, f (ξ1)) and (η, f (η)) belong to the epigraph of f then g is convex. It follows
that the angular coefficient of �1 is smaller of that of �2 and therefore y2 ≤ y1,
proving the claim. As a consequence, for every ξ ≥ λ2,

L∗∗(x, ξ) = inf{αL(x, ξ1)+ (1 − α)L(x, η) : α ≥ 0, ξ = αξ1 + (1 − α)η}
= inf{αL(x, ξ2)+ (1 − α)L(x, η) : α ≥ 0, η ≥ 0, ξ2 ≥ 0 ξ = αξ2 + (1 − α)η}
= (L1)

∗∗(x, ξ),

proving the first part of the claim. It is obvious that ∂L∗∗(x, ξ) ⊂ ∂(L1)
∗∗(x, ξ) for

every ξ ≥ λ2. Conversely, let ξ0 > λ2 and p ∈ ∂(L1)
∗∗(x, ξ0). Then

∀ξ ∈ [0, +∞[ (L1)
∗∗(x, ξ) ≤ (L1)

∗∗(x, ξ0)+ p(ξ − ξ0);

in particular for every ξ > λ2 we have

L∗∗(x, ξ)− L∗∗(x, ξ0) ≥ p(ξ − ξ0)

and therefore

d�L∗∗(x, ξ0) ≤ p ≤ drL∗∗(x, ξ0).

Now ∂L∗∗(x, ξ0) = [d�L∗∗(x, ξ0), drL∗∗(x, ξ0)] (this interval may be unbounded if L is
not bounded on bounded sets) and thus p ∈ ∂L∗∗(x, ξ0), proving that ∂L∗∗(x, ξ0) =
∂(L1)

∗∗(x, ξ0) for every x0 > λ2. An application of this result to the function L̃(x, ξ) =
L(x, −ξ) yields the statement concerning L−1. �
Theorem 6.2 The function L : R × R → R satisfies (GA) if and only if L satisfies
(GAσ ).

Proof If L satisfies (GA) then (CGA) holds and the conclusion follows from
Lemma 6.1. Conversely, assume that L satisfies (GAσ ). Let �(ξ) = aξ + b be an
affine function minorizing L on R and C be compact subset of R. Our assumption
implies that there exists α < 0 such that, for every p−1(x, ξ) ∈ ∂(L−1)

∗∗(x, ξ) we have

∀x ∈ C η−1(x) = (L−1)
∗∗(x,α)− p−1(x,α)α ≤ b.

Analogously, there exists β > 0 such that for every p1(x, ξ) ∈ ∂(L1)
∗∗(x, ξ) we have

∀x ∈ C η1(x) = (L1)
∗∗(x,β)− p1(x,β)β ≤ b.

We notice that (0, η−1(x)) (resp. (0, η1(x))) is the intersection of the supporting line y =
�−1(x) (resp. y = �1(x)) to the epigraph of L−1(x, ·) (resp. L1(x, ·)) at (α, (L−1)

∗∗(x,α))
(resp. (β, (L1)

∗∗(x,β))) with the ordinate axes. Let (ξ(x), η(x)) be the intersection of
the two tangent lines: necessarily η(x) ≤ aξ(x)+ b. The function

h(x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(L−1)
∗∗(x, ξ) if ξ ≤ α

�−1(x, ξ) if ξ ∈ [α, ξ(x)]
�1(x, ξ) if ξ ∈ [ξ(x),β]
(L1)

∗∗(x, ξ) if ξ ≥ β

is convex in ξ and lower than L(x, ξ). Therefore h(x, ξ) ≤ L∗∗(x, ξ) so that (L−1)
∗∗

(x, ξ) = L∗∗(x, ξ) for ξ ≤ α and (L1)
∗∗(x, ξ) = L∗∗(x, ξ) for ξ ≥ β. It follows that L

satisfies (GA). �
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We have shown in Example 5.5 that, in general, condition (GA) does not imply (G),
even if the function L depends only on ξ . However in the one dimensional case (GA)
and (G) are equivalent.

Proposition 6.3 The function L : R × R → R satisfies (G) if and only if L satisfies
(GA).

Proof From Proposition 5.4 it is enough to prove that (GA) implies (G). Henceforth,
assume that L satisfies (GA). Fix M ∈ R and let C be a compact subset of R

N ; there
exists R0 such that

∀ξ ∈ R
N |ξ | ≥ R0, p(x, ξ)ξ − L∗∗(x, ξ) > M

for every p(x, ξ) ∈ ∂L∗∗(x, ξ). Fix ξ > R; by Theorem 4.6 there exist ξ1, ξ2 and
α ∈ [0, 1] satisfying L∗∗(x, ξ) = αL(x, ξ1) + (1 − α)L(x, ξ2), L(x, ξi) = L∗∗(x, ξi) =
L∗∗(x, ξ) + p(x, ξ)(ξi − ξ) (i = 1, 2) where, as usual, L(x, ξ) = lim inf

η→ξ
L(x, η). It is not

restrictive to assume that ξ2 > R0; let (λk)k be such that

λk > R0, lim
k→+∞

λk = ξ2, lim
k→+∞

L(x, λk) = L∗∗(x, ξ2).

Since (p(x, λk))k is bounded we may assume that limk p(x, λk) = q ∈ R; from the
inequality L∗∗(x, λ)−L∗∗(x, λk) ≥ p(x, λk)(λ−λk)we deduce that L∗∗(x, λ)−L∗∗(x, ξ2)

≥ q(x)(λ− ξ2) for all λ ∈ R, so that q(x) ∈ ∂L∗∗(x, ξ2). It follows that

lim
k

p(x, λk)λk − L(x, λk) = q(x)ξ2 − L∗∗(x, ξ2) > M;

in particular p(x, λk)λk − L(x, λk) > M for some λk ≤ R. Analogously there exists
λ < 0 such that q′(x)λ− L∗∗(x, λ) > M, proving that L fulfills (G). �

Lastly, we mention that the limit at infinity of an affinely minorized function satis-
fying (GA) may be different to +∞.

Example 6.4 Let L(ξ) = − log ξ if ξ ≥ 1, L(ξ) = (ξ − 1)2 − ξ + 1 otherwise. Then L
is convex, it satisfies (GA) but lim

ξ→+∞ L(ξ) = −∞.

Actually we show that the limit at infinity of a function of one variable that satisfies
(GA) is equal to +∞ or to −∞.

Proposition 6.5 Let L : R → R satisfy (GA). Then either

lim
ξ→+∞ L∗∗(ξ) = +∞ or lim

ξ→+∞ L∗∗(ξ) = −∞.

Proof Let p(ξ) ∈ ∂L∗∗(ξ). If there exists ξ0 such that p(ξ0) > 0 then

L∗∗(ξ)− L∗∗(ξ0) ≥ p(ξ0)(ξ − ξ0)

so that lim
ξ→+∞ L∗∗(ξ) = +∞. Assume now that p(ξ) ≤ 0 for every ξ . Then L∗∗ is

decreasing on R: let � = lim
ξ→+∞ L∗∗(ξ). If � ∈ R then, from the equality p(ξ)ξ =

p(ξ)ξ − L∗∗(ξ) + L∗∗(ξ), by (GA) we deduce that lim
ξ→+∞ p(ξ)ξ = +∞; however

p(ξ)ξ ≤ 0 for every ξ ≥ 0, a contradiction. It follows that � = −∞. �
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