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We consider a functional I(x) = [i, f(Vu(x)) dz on ug+W!1(Q). Under the assumption
that f is just convex, we prove a new Comparison Principle, we improve and give a short
proof of Cellina’s Comparison result for a new class of minimizers. We then extend a local
Lipschitz regularity result obtained recently by Clarke for a wider class of functions f
and boundary data ug satisfying a new one-sided Bounded Slope Condition. A relaxation
result follows. -
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1. Introduction

The regularity of minimizers of integral functionals is a well-known and widely
studied problem of the Calculus of Variations. Starting with the De Giorgi-Nash
regularity theorem a huge number of results have been proved both for solution
of elliptic equations and for minimizers by means of various developments of their
techniques.

In this paper, we focus our attention to the scalar case of the Calculus of Vari-
ations and in particular to the minimizers of

I(u) = /Q F(Vu(z))dz, u€uo+Wrt(LR). (1.1)

The techniques we mentioned above apply to local minimizers and lead to the
local Lipschitzianity of the solutions under suitably growth assumptions on the
lagrangian and/or ellipticity conditions on the associated Enler equation.

One can ask, anyhow, if the boundary data may have a role and to what extent.
can substitute the growth assumptions in the regularity of the minimizers.
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Stampacchia, in the 60’s, considered a special class of boundary data: those
satisfying the Bounded Slope Condition (BSC). It requires that at every point of
the boundary 89 of Q there are two affine functions £_, and é:o that coincide with
ug in 2° satisfying €,(z) < uu(x) < €4(x) on 9Q and such that their gradients
are uniformly bounded, for z® varying in d§. This condition is satisfied if, for
instance, ugy is of class C2, 9§ is smooth and the principal curvatures of 9Q are
strictly positive. Moreover, the validity of the (BSC) forces ug to be affine or Q to
be convex; in any case ug must be affine on the flat parts of 9. Assuming that f
is strictly convex Stanipacchia showed in [1] that the functional I has a minimizer
amoug the Lipschitz functions (instead of the Sobolev ones that we consider here).

It is shown, for instance, in [2], that in this situation the Lavrentiev phenoimenon
does not occur and therefore if ug satisfies the (BSC) and f is strictly convex
then the minimum of I in the Sobolev space ug + W' (§2) is Lipschitz. We then
generalized in [3] the results of [2]; the main tool in the proofs is a Comparison
Principle, that allows to pass from an inequality among minimizers in the boundary
of 2 to the same inequality in all of Q. This Comparison Principle was also inspired
by the results of Giusti [4] in the Lipschitz setting; the strict convewity of the
functional is essential for its validity.

By means of the aforenientioned Comparison Principle presented in [3], Clarke
proved in [5] that just a one-sided (BSC) is enough to obtain, again under the
assuruption that the lagrangian is strictly convex, the local Lipschitz regularity of
the minimum of I (the Lower (BSC) is the requirement, in the (BSC), of just the
existence of the affine functions €, from below; an analogue definition holds for the
Upper (BSC)). As it is shown in [5] this result is soniewhat optimal since there are
examples where, under these assumptions, the minima are not globally Lipschitz.
We remark here that in all these results no growth conditions are needed.

Many problems however involve a lagrangian that is not strictly conver; this is
the case for instance of those who arise from a non convex one as one considers the
relaxed functional, whose lagrangian has flat parts on its epigraph. In this case of
a non strictly convex lagrangian both the minimizers may not be Lipschitz and the
Comparison Principle may fail.

In [6], Cellina introduced a class of functions that, for mauy purposes, do the
samie job as affine functions: they are minimizers of I and preserve the comparison
with the mininizers of I from the boundary of € to all of €. These functious,
originally defined by meaus of the polar of the function f, are here redefined in
terms of the support functions of the faces of the epigraph of f. We give a new and
short proof of the fact that they satisty a Comparison Principle; furthermore we
do uot require anymore that €2 is convex nor that the domain of the polar of f is
open. Actually, it is enough that the interior of the closure of Q differs from € for
at most a negligible set; this occurs if, for instance, the boundary of  is negligible.

In {7}, we introduced a condition on (ug, f), that we called the Cellina (BSC)
or (CBSC) since it appeared for the first time in [6]. This condition is somewhat
similar to the classical (BSC), where the new class of minimizers mentioned above
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replace the affine function. We then obtained in (7], under the (CBSC), a Lipschitz
regularity result on the minimizers of I without the requirement that f is strictly
convex or that f is superlinear: we just assume that the faces of the epigraph of f
are bounded. It is worthwhile to underline the fact that all the superlinear functions
satisfy this latter assumption and that the (CBSC) is much more general than the
(BSC); some relations between these two conditions are given here.

In this paper, we apply these techniques to extend Clarke’s local regularity
result mentioned above. More precisely, instead of the strict convezity of f we just
assume that f is superlinear or that the projections of the faces of the epigraph of
f are uniformly bounded; then if the boundary datum and f satisfy a one-sided
(CBSC), then the minimizers of I turn out to be locally Lipschitz and bounded.
Qur assumption yields here the existence of the greatest and the smaller of the min-
imizers of I that share the same boundary datum; the proof of the local regularity
result is then based on Clarke’s dilation technique together with a new Comparison
Principle between these extreme minimizers and any other local minimizer of I.

Finally, we consider the case of a possibly non convex function f that grows
more than (or even as) a cone or such that the projections of the faces of the
epigraph of its convex envelope f** are uniformly bounded. Assuming that the
relaxed associated problem of minimizing I**(u) = Jo F7(Vu(z) dz has a locally
Lipschitz minimizer in up + w, Q) then the infima of the original problem I
among the locally Lipschitz functions of ug + W, () coincides with the minimum
of I**. This kind of relaxation results are known to hold under the much stronger
assumption that f is superlinear. We then apply it to prove a locally Lipschitz
regularity result for a Borel measurable class of non convex lagrangians.

2. A Comparison Principle in the Non Strictly Convex Case

In this paper Q is an open, bounded subset of R™, endowed with t}E usual scalar
product “” and the euclidian norm |- |; Q is the closure of € and int(£2) the interior
of ; 8A is the boundary of a set A.

In this section L : QxR x R* — RU{+oc} is a Carathéodory function satisfying
L(:l‘, u, €) 2 a(x) ’ E + b(]")
for a.e. (almost everywhere) z in €, for every (z,€) € RxR", for some a in
L=(Q;R™) and b in L' (). The functional [ is defined on WhH(Q) by
I(v) = / L{z,v(z), Vv(z)) dz.
Q

Definition 2.1. A function u is a minimum or a minimizer of I in W(Q) (or
in u+ WOI’I(Q)) if z — L(z,u(z),Vu(z)) € L'(Q) and I(u) < I(v) for every
veut+ W)

In what follows by v < v on 8Q we mean that the positive part (u —v)T of
u — v belongs to W(}’I(Q). In [3, Theorem 4.1] we proved that if L{z,u,-) is strictly
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1132 C. Mariconda & G. Treu

convex then 4 < v a.e. on 2 whenever u and v are minima of I such that « < v
a.e. on J§. The conclusion of this result may be false without the strictly convexity
assumption on L. The following example is taken from [6].

Example 2.1. Let

o it le < 1
m‘{(lel—w e > 1

The functions u(z) = —|z|+1 and v(z) = 0 both minimize fjl f(z'(t)) dt among the
absolutely continuous functions that vanish on {—1,1}; however v < v on {-1,1}
but > wvon]-1,1].

In the general case, without assuming that the lagrangian is strictly convez, we
introduce a class of minima for which the conclusion of the Comparison Principle
stated above still applies.

Definition 2.2. We say that a minimum u of I in W11(Q) satisfies the Comparison
Principle from below if for every minimum v of I in W1*(Q) the inequality u < v
on 3 implies u < v a.e. on . Analogously, a minimum v of I in W(Q) satisfies
the Comparison Principle from above if for every minimum u of I in W11(Q) the
inequality © < v on 99 implies v < v a.e. on 2.

Remark 2.1. Assume that v satisfies the Comparison Principle from below
(respectively above). Then u is the minimum (respectively maximum) element
among the minima of I (on u + WOI'I(Q)). In fact if v is any other minimum of
Ionu+ WOI‘I(Q) then v < v (respectively © > v) on §Q and therefore u < v
(respectively u > v) a.e. on Q.

It is interesting for our purposes to note that the converse holds true. We shall
denote by uAv (respectively uVv) the pointwise minimum (respectively maximum)
of u and v. Our methods here are inspired by those of Giusti in [4] for Lipschitz
functions.

Theorem 2.1 (Comparison Principle for Extreme Minima). (a) Let u,v be
two minima of I in WHH(Q) and v < v on Q. Then u Av and v Vv are
minima of I in W1(€).

(b) A minimum u of I satisfies the Comparison Principle from below if and only
if u is the minimum of the set of the minima of I on u + WOI'I(Q).

(c) A minimum v of I satisfies the Comparison Principle from above if and only
if v is the maximum of the set of the minima of I on v + WOI'I(Q).

Proof. Let u,v be two minima of I such that v < v on Q. Since uAv € u+W, ()
then I'(u) < I(u A v) or equivalently,

/> ’ L(z,u(z), Vu(z))dr < / Lz, v(z), Vv(z)) dz.

n>v
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Analogously, by taking u Vv € v+ VVOI’I(Q) we obtain the reverse inequality and
thus
/ L(z, u(z), Vu(z)) dz = / L(z, v(z), Vo(z)) da.
u>v u>v
It follows that ’
I(unv) = /< L(z,u(z), Vu(z)) dz +/ L(z,v(x), Vuv(z)) dx

= / L(z,u(z), Vu(z)) dz = I(u)
Q

so that v A v is a minimum of I in u + WO1 1(€2); analogously » V v turns out to
be a minimum of I, proving (a). Assume now that v < v on 8Q and that u is the
minimum among the minimizers of [ in u + WO1 1(2). Then (a) implies that u A v
is a minimizer too; the minimality of u yields u = u A v or equivalently u < v a.e.
Claim (c) follows similarly. m]

Remark 2.2. In Proposition 4.2, we will give a sufficient condition for the existence
of the greatest and the lowest of the minimizers of I that share the same boundary
value.

Remark 2.3. If f is strictly convex then Theorem 2.1 is a generalization of (3,
Theorem 4.1] in the case of a comparison between two minima. In fact in this case
there exists at most a unique minimum of I having a prescribed boundary datum.
In particular the affine functions, being minimizers of I, do satisfy the Comparison
Principle both from below and from above.

Here is a simple but useful application of the last result.
Theorem 2.2. Let f : R" — RU{+oc} be conver, lower semicontinuous and

a € R™ be such that f(a) < +oo. Let ug € WH1(Q) be such that m < ug < M on
OQ and assume that the problem of minimizing

I{v) = / f(Vu(z)) dx
Q
in ug + W' () admits at least a solution. Then I has a minimizer w that is
essentially bounded and moreover
a-z+m-sup{la-z: re} <w)<a-z+M-~-infla-z: z€Q}
for a.e. x € Q.
In particular, if f(0) is finite then m < w < M a.e. on Q.
Proof. Let u be a minimizer of I in uy + WOI'I(Q). The affine functions a -z + b
are minimizers of J. We set by = m —sup{a-z: z €Q} and b = M — inf{a-z :

ze€Q}thena-z4+ b <ug < a-x+ by on 8N By Theorem 2.1 we deduce that
w=(uA(a x+b))V (a-z+bi)is a minimizer too. m]



1134 C. Maricondu & G. Treu

Remark 2.4. We shall give, in a subsequent section, a further condition on f that
will ensure that every minimum of I is essentially bounded.

The previous results may be formulated for sub/super-minima instead of min-
inla; we state them here for the convenience of the reader.

Definition 2.3. A function u € Wh(Q) is a sub-minimum of I if
Lz, u(z), Vu(z)) € LY () and I(u) <I()ifv<u ae
Analogously u is said to be a super-minimum of I if
Lz, u(z), Vu(x)) € L'(Q) and [(u)<I(v)ifu<v ae

Definition 2.4. We say that a sub-minimum u € W' (Q) of I satisfies the Com-
parison Principle from below if for every super-minimuin v of I the inequality u < v
on 9§ implies u < v a.e. on Q. Analogously, a super-minimum v € Wi Q) of I
satisfies the Comparison Principle from above if for every sub-minimum u of I the
inequality u < v on 99 implies u < v a.e. on 1.

The proof of Theoremn 2.1 yields the following analogue for sub/super-minima.

Theorem 2.3 (Comparison Principle for Extreme Sub/Super-Minima).
The minimum (respectively mazimum) of the set of the sub-minima (respectively
super-minima) of I among the functions of W LY(Q) having a prescribed boundary
value satisfies the Comparison Principle from below (respectively above).

3. A Class of Minimizers That Do Satisfy the Comparison
Principle

We consider here L(z,u,&) = f(§) for some lower semicontinuous, convez function
f:R" = RU{+oc} (not identically equal to +oc) and the functional

I(v):/ﬂf(VU(J:))dx.

We point out that we do not assuie here that f is strictly convex.

Tu this section we define a class of miniiizers other than affine functions and
show that they satisfy a Comparison Principle. The ideas and many of the argu-
mments that we use here arise actually from the paper [6] of Cellina. There are
however some differences and improvements that justify to write them here. The
definition of this class of minimizers is written here in terms of the faces of the
epigraph of f whereas Cellina extensively uses the subdifferential of the polar of f
to define themn. Furthermore we weaken the assumptions and give a simpler proof
of the Comparison Principle stated in [6].

Let us recall the notion of ezposed face of the epigraph of a convex function, we
will use it extensively.
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Definition 3.1 (Exposed Faces). An exposed face of the epigraph of f is the
intersection of the epigraph of f with a supporting hyperplane.

The projection onto R”™ of such a face is a closed, convex subset of R™.

Remark 3.1. It follows from the definition that F is the projection of an exposed
face of the epigraph of f if and only if there exists p € R"™ such that

VEER“, V£0€F7 f(f)‘f(&O)ZP(f"ﬁo)
and the equality holds if and only if £ € F.

Definition 3.2 (The Functions h;,zo and hp o). Let F be the projection of
a bounded exposed face of the epigraph of f and z° € R". We define the functions

0 ~ - 0
h;xo(z) IIEEa.F)‘(k(I—I ), h’F,.tO(z) —gg}:\‘k(x_l- )

Remark 3.2. Clearly h;,o is a translate of the support function of ' and moreover
h;,xo(ﬂ = —h;_ro(—x). In particular h;o(z) = max{k -z : k € F} is the polar
I of the indicator function Ir(z) of F that is equal to 0 on F, to +oo out of F.
The function h;ru is convex and Ap o is concave; they are both Lipschitz with
Lipschitz constant equal to max{l¢| : £ € F } and they are equal to 0 at z%. We
mention that if f is strictly convex then F is reduced to a point and thus in this
case the maps just defined are affine.

Remark 3.3. This class of functions was introduced by Cellina in [6]- In that paper
however these functions are defined in terms of the subdifferential of the polar of
f and depend on a further real parameter. More precisely, for 6 in the interior of
the effective domain of f*, 22 € R® and r € R the functions h;ru.r and hﬂ_,z:u,r are
there defined by
h;ro'r(r) = kezl;P(o)k Sz -2+, h;'zu'r(x) = keg}f(o) k-(x—x% +r

The fact of defining them here in terms of the faces of the epigraph of f is only an
attempt to simplify the notations; in fact the projection F of an exposed face of
the epigraph of f is the subdifferential Af*(8) of the polar of f at a point 8 that is
interior of the domain of f*.

The next result follows immediately from the fact that the functions defined
above arise from the support function of a closed convex set.

Proposition 3.1. Let F be the projection onto R™ of a bounded erposed face of
the epigraph of f and 2% € R". Then h}t,ro and h;',x“ are Lipschitz and thus differ-
entiable almost everywhere. Moreover their gradients belong to F a.e. and

h;ru(x) = Vh’;,xo (x)- (x—2°%), hp(@)= Vh;vro(x) Az -2") ae
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Proof. It is not restrictive to assume that =% = 0. By Remark 3.2, it is enough
to prove the result for the function h} ,, that we call here for simplicity hr. The
function hf is convex with values in R and thus admits a non empty subdifferential
8hr at every point. Since hp{(z) = max{k -z : k € F} = I1(x) then k € dhp(z) if
and only if z € 8Ix(k); this occurs exactly when k € F and k- z = max{k-z: k€
F} = hp(z). Moreover, hr is Lipschitz so that hr is differentiable a.e. and, at every
point z of differentiability of hr, Shr(x) = {Vhr(z)}; it follows that Vhp(z) € F
and hp(z) = Vhr(z) - T ae. ]

Corollary 3.1. Let F be the projection onto R™ of a bounded erposed face F of
the epigraph of f and {(z,2) : z = p-z+b} be a supporting hyperplane to F. Then,
for every z° € R",

pE Bf(Vh;CJ(,(I)), pEIf(VhE o(z)) ae

Proof. Since, by Proposition 3.1, Vh?",'IO € F a.e. then (Vh;lo(z),f(Vh;yID (z))
belong a.e. to F and thus p € c’)f(VhIﬁyxn(x)) a.e. The other case is analogous. O

Theorem 3.1. Let F be the projection onto R" of a bounded exposed face of the
epigraph of f and x° € R™. The functions h;zn and hi. o are minima of I.

Proof. Here again we prove the result for hp = h;xm the other case being similar.
Let v € W11(Q) be such that v — hp € ’WOI'I(Q). By Corollary 3.1 there is p € R®
such that, for every £ € R™ and a.e. x in ,
f&) = f(Vhp(z)) 2 p- (§ — Vhr(z))
so that in particular
F(V(a)) 2 f(Vhr(a) +p- V(v = he)(@) ae.

and thus. by integration on €,
1)~ 1r) 2 [ p- V(0= he)(e)dr =0
Q
since v — hp € W' (R2). The conclusion follows. a

Remark 3.4. Theorem 3.1 is a reformulation of [6, Theorem 1] that makes no use
of the notion of the polar of f; the result stated in Proposition 3.1 is proven here
just by relating the functions hf‘,xo to the support functions of a convex set. We
stated and proved them here for the convenience of the reader.

Theorem 3.2 (Comparison Principle between Minimizers and h}h-,,,o)- Let
f:R" = RU{+2c} be conver, lower semicontinuous and F be the projection onto
R"™ of a bounded exrposed face of the epigraph of f. Let w be a minimizer of

I() = /Q F(Vo(a)) de
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on ug + Wil(Q). Assume that, for some z° ¢ int(S2), h;vzo > ug on 9Q; then

h;zn >w a.e. on S Analogously, if h < ug on 0N} then h;yxo <w a.e. on .

F,x0

Remark 3.5. The conclusion of Theorem 3.2 does still hold if for some r € R, the
functions hfzo are replaced by h,{ Lo + 7; this is due to the fact that w(z) —~r is
still a minimizer of I whenever w is a minimizer of I.

Remark 3.6. This result is an extension of [6, Theorem 2] although it is stated
here in terms of the faces of the epigraph of F' instead of the subdifferentials of the
polar of f*. The main novelties however are that we do not assume here that the
domain of f* is open (allowing thus to work with functions like /1 + |£]2), nor
that 2 is convex. Further, the proof of the result is much simpler and shorter than
that of [6, Theorem 2].

Remark 3.7. As it is pointed out in [6], the claim of Theorem 3.2 does not hold,

in general, if zg € int(£?). In view of Theorem 2.1, this is due to the fact that in this
case hp o (respectively h;xn) is not the minimum (respectively the maximum) of
the minimizers of I.

Lemma 3.1. Let F be the projection onto R™ of a bounded exposed face of the
epigraph of f. Then, for every z in R", the map y — h;y(m) is Lipschitz of constant

Kr = max{{n{:n € F}.

Proof. Let y;,y2 € R™; then
b, () = supk - (z — ¥2)
<supk-(x—y1)+supk-(y1 — y2)
keF keF
< hlt.yl(-T') + Krly2 — |
proving the claim. O

Proof of Theorem 3.2. Assume that h = h,t,o > ug on JQ and that w > h on

a non negligible set E. Since w < h on 9Q then w A h € w + IVO“(Q) and thus
I{w A h) > I(w) or, equivalently,

0> /E F(Vu(a)) - F(Vh(z)) da.

Assume that {(x,z) : z = p-z +b} is a supporting hyperplane to the face F of the
epigraph of f whose projection is F; by Corollary 3.1, we have p € 3f(Vh(x)) a.e.
on 2 so that

f(Vw(x)) — f(Vh(z)) > p- (Vw(z) — Vhp(z)) ae. on E.
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Since w A h = w out of E the latter inequalities yield
02 [ (Vo) - [(Th) de 2 ER\ZEA O,
E E

=/p-V(w#w/\h)(x)d;r=0
2

since w —w A h € WOI‘I(Q). Therefore, a.e. on E we have
f(Vw(z)) - f(Vh(z)) = p- (Vw = Vh)(z)

so that the points (Vw(z), f(Vw(x))) and (h(z), f(h(z))) belong a.e. on E' to F.
Thus Vw(x) € F a.e. and in particular, by Proposition 3.1,

Vuw(z) - (& —2°) < max{k-{z —z°): k € F} = Vhp(z) - (z - 2%) ae onE.
Therefore, if we set n = w — w A h we have
Vn(z) - (¢ —2%) <0 ae, ne€ W, '(Q), #>0on anon negligible set  (3.1)
(we will still call n on R™ its trivial extension out of €2). There exists 4 > 0 such
that i > & on a non negligible subset Es of 2.

If 4% ¢ Q there is a closed ball B(z°,r] centered in z° of radius r > 0 that
is contained in R"\Q. There is a cone C with apex z° and aperture less than (for
instance) 7 /2 that intersects Ej on a non negligible set Eéc. A slight modification of
the proof of a classical result on the existence of a representative of a given Sobolev
function that is absolutely continuous on almost every line (see, for instance, 8,
Theorem 3.35]) yields a representative 5)* of 1 such that n* =0 on dB(z°, 7| N C,
for almost every direction v of the cone the map t — n7(z° + tv) is absolutely
continuous on {r, +oc[ and

d
' Erf(xo + itz —2) =V’ + te —2") - (2 —2°) foraet>r
Iu particular, for a.e. & in C, we have
d
EU* (2" +t(x - %) = Vn(a® + tz —2")) - (2 —2°) <0 forae t>r
so that 1* is decreasing on a.e. direction of the cone. In particular § < np=7n* <0
a.e. on Eg", a contradictiou.

Let 2° € 8% and (29) be a sequence in R™\Q such that |29 — 2% < 1/k. By

Lemma 3.1 for every & in R" and k = 1,2,... we have
K
I sol@) = Bf o (@) < =

(62)
so that, for every k,

Krp
Tk
Since w — ka— is still a minimizer of I and z§ ¢ Q, the first part of the proof shows
that

w(x) < h;.z2($) on JQ.

.
wiw) - =L <k, () aeonQ

Local Lipschitz Regularity of Minima for a Scalar Problem 1139
and therefore, using again (3.2), we obtain that, for all k =1,2,...,
K
w(z) < hp(z) + Q—k£ a.e. on Q.

By letting k — 400 we get n=w — hp <0 ae. on {, contradicting (3.1). m]

4. Some Applications to the Regularity of the Minimizers
We consider here the functional

I(v) :/Qf(Vv(:c))dw

where f : R® — R is convex. In this section, we will often assume that the diameters
of the projections onto R™ of the faces of the epigraph of f are uniformly bounded
or that f is superlinear. Any strictly convex function satisfies this condition. This
assumption implies that the faces of the epigraph of f are bounded; this weaker
condition was called (CGA) or Conical Growth Condition in {7, 9] to obtain some
global Lipschitz regularity results. The next example shows that there exist super-
linear functions such that the diameters of the projections onto R™ of the faces of
the epigraph of f are not uniformly bounded.

Example 4.1 (The Projections of Faces of a Superlinear Function May
Not be Uniformly Bounded). Let k; = ‘32 (i € N) so that ki — ki =
k; — ki1 + 1; let g be defined by

k2 if €] = k;
g(g)z{l if [¢| cer”

+oc  otherwise

and set f(¢) = g*=(£) for any £ € R". Then, for every & f(£) = |62 and the
projections onto R™ of the faces of the epigraph of f are the sets

Fr={ :relk,knl}l, =1 ieN

Moreover diam (F*) = kiz1 — ki = ki —ki-1 +1 = diam (F*.,) + 1 — +oc for
i — +00.

We will apply here the Comparison Principle for extreme minima formulated
in Theorem 2.1; we first give a condition that ensures the existence of the lowest
and the greatest of the minimizers of I among the functions that share the same
boundary value.

Proposition 4.1 (Existence of the Minimum and the Maximum of the
Minimizers). Let f : R" — R be convexr. Assume that either f is superlinear or
that the diameters of the projections onto R" of the faces of the epigraph of f are
uniformly bounded.
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Let up € W1(Q) and assume that the functional
10) = [ $(V0() do
0

has a minimizer in ug+ Wy ' (). Then the sets of the minimizers of I in the same
space has a minimum and a marimum element.

Proof. Let us first point out that, in this situation, the set X of the minima of I
is a weakly compact subset of W11(Q): the proof of this claim is straightforward
if f is superlinear; otherwise, let ug, k € N, be a sequence of minima of I in ug +
Wyl (). By [7, Lemma 4.9], for every k = 1,2,..., the points (ux(z), f(Vuz(z)))
and (uq(z), f(Vui(z))) belong a.e. to the same face of the epigraph of f. If the
diameter of the projection onto R™ of the faces of the epigraph of f is bounded by
D then

|[Vur(z) — Vur(z)] £ D ae.

Therefore the functions ux —u; (k = 1,2,...) of Wy'!(2) are equi-Lipschitz and
thus converge, up to a subsequence, weakly and a.e. to a function w in uo-+-W0l 1();
the weak lower semicontinuity of I then shows that w is a minimum too, so that
X is weakly compact. We now prove that X has a maximum. The space W11(Q)
being separable, there exists a countable dense subset {wq,..., wg,...} of X. Set
vg = wy V-V wg; Theorem 2.1 shows that vr € X; let v be the pointwise limit of
the monotonic sequence vg. By the weak compactness of X, we may assume that
v, weakly converges to a function in X which, by Mazur’s Lemma, actually turns
out to be equal to v. Therefore v € X and, since v > wy, for every k then v > u for
any u € X. The existence of a minimum follows similarly. [}

Remark 4.1. The proof of Proposition 4.1 shows that the conclusion holds true
if, instead of assuming that f is superlinear or that the diameters of the projections
onto R™ of the faces of the epigraph of f are uniformly bounded, the function f is
such that the faces of its epigraph are bounded and I has a Lipschitz minimizer.

A first consequence of Theorem 4.1 is a refinement of Theorem 2.2. We denote by
Ry the radius of the smallest ball centered in the origin which enclose the projection
onto R™ of the exposed face of the epigraph of f containing (0, f(0)).

Theorem 4.1 (The Minimizers are Bounded). Let f : R" — R be conver.
Assume that either f is superlinear or that the diameters of the projections onto
R™ of the faces of the epigraph of f are uniformly bounded. If ug € W11(Q) is
essentially bounded, then every minimizer u of

I{v) = /Qf(Vv(w))dz

Local Lipschitz Regularity of Minima for a Scalar Problem 1141

n ug + WOI'I(Q) 1s essentially bounded; moreover, if m < ug < M on 09, then
m — Ropdiam(2) < u < M + Rodiam(Q) a.e. in Q.

In particular, ||ul| L~(q) < |luollr=(q) if (0. f(0)) is an extreme point of the epigraph

of f.

Proof. Let m and M be such that m < uwg < M a.e. The constant functions
are minimizers of I among the functions that have the same boundary datum:
Proposition 4.1 yields a maximum w* among the minima of I that are equal to M
on Q. By [7, Lemma 4.9] the points (Vw* (x), f(Vw™" (z))) and (0, f(0)) belong to
a same exposed face of the epigraph of f. Moreover, since w* — M ¢ WO1 1 (), then

w* is Lipschitz of constant less than Ry so that, in particular, for every ' € 9Q.
wt(r) < wh(@®) + Rolz — 2% < M + Ry diam(R)) ae. in Q.

Analogously, the minimum of the minima of I in m + VVOI‘I(Q) is a fuuction w™
that is Lipschitz of constant Ry and therefore

w(z) > w (2) — Rolr — 2°} > m — Ry diam(Q?) a.e. in Q.

Again, using the Comparison Principle (Theorem 2.1) we obtain w™ < u < w+ a.e.
in 2 and therefore

m — Ry diam(Q)) < u < M + Rpdiam(Q) a.e. in Q. s}

The following assumptions are the one-sided versions of what we called (CBSC)
or Cellina Bounded Slope Condition in [7], a condition introduced by Cellina in
6] to generalize the classical (BSC) or Bounded Slope Condition (see [2, 4]). They
represent, in this non strictly convex setting, the generalization of the Lower and
Upper Bounded Slope Condition, the one-sided versions of the (BSC) introduced
by Clarke in [5]: the affine functions involved in the Lower (respectively Upper)
(BSC)are replaced here by the functions of the form h,

"0

(respectively and h; £0)

Definition 4.1 (Lower (CBSC)). We say that (ug,f) satisfies the Lower
(CBSC) of constant K > 0 if for every ” € 98 there exists an exposed face of the
epigraph of f whose projection F(x”) onto R” is contained in the ball centered in
0 of radius K and, moreover.

vr €00, wuo(z®)+ R E 0y 20 () < uglz).

Definition 4.2 (Upper (CBSC)). We say that (ug, f) satisfies the Upper
(CBSC) of constant K > 0 if for every z° € 98} there exists an exposed face of the
epigraph of f whose projection F(z°) onto R" is contained in the ball centered in
0 of radius K and, moreover,

Ve dQ, ug(z®) + hE ey a0 () 2 uo().
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Let us recall the definition of (CBSC), that we formulate here in terms of Lower
and Upper (CBSC).

Definition 4.3 (CBSC). We say that (ug, f) satisfies the (CBSC)of constant
K > 0 if (u, f) satisfies both the Lower and Upper (CBSC) of constant K.

Remark 4.2. We point out that whereas the (BSC) depends only on ug and its
behavior on 8, the validity of the (CBSC) depends also strongly on f. The original
definition of (CBSC) that we gave in [7] slightly differs from the simpler one that is
given here due to the fact that we do not use anymore the notion of subdifferential
of the polar of f* to define the functions hf,vru; moreover we are just concerned with
the points z° of 17, without taking care of the other points of Q2 (notice that if
) is convex, then 8Q = 810).

We showed in [7] that, if f has values in R and the faces of the epigraph of f
are bounded, then the validity of the (BSC) ensures that of the (CBSC). It follows
similarly that the Lower (respectively Upper) (BSC)of Clarke implies the Lower
(respectively Upper) (CBSC). We prove it here again for the convenience of the
reader, since the original proof given in {7} involves the subdifferential of the polar
of f and a different notation.

We underline that in the next proposition we just assume that the projections
of the faces of the epigraph are bounded (and not uniformly bounded). We point
out the fact that any superlinear function satisfies this property (see [7}).

Proposition 4.2. Assume that f : R* — R is convez and that the faces of the
epigraph of f are bounded. If ug satisfies the Lower (respectively Upper) (BSC) of
constant K then (ug, f) fulfills the Lower (respectively Upper) (CBSC) of constant

Rl = max{|¢| : 3n| < K, (& £(€)) and (n, f(n)) belong to a same face of epi(f)}.

Proof. Let ug(z?) + a- (z — 2°) < uo(z) for all = in OQ. Let p € 9f(a) and F be
the exposed face equal to the intersection of the epigraph of f with the supporting
hyperplane {(£,z) : z = p- (€ — a) + f(a)}. Then, if F is the projection of F
on R", F is bounded and hp o = min{k - (x — ) : ke F} <a-(z—2°% for
every z. Moreover if |a| < K then |k| < R{( for every k in F. It follows that the
Lower (BSC) of constant K implies the Lower (CBSC) of constant R{(. The “upper”
version of the claim follows analogously. ]

However the (CBSC) itself is much weaker than the Lower or Upper (BSC). In
fact the (BSC) forces the domaiu € to be convex and up to be affine on the flat
parts of 00 and, as a consequence of [5, Proposition 1.1], the Lower (BSC) forces
the boundary datum to be convex on the flat parts of the boundary of 2. The next
result shows that the (CBSC)is much more tolerant.
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Proposition 4.3. Let ) be an open bounded set and F be the projection of a
bounded face of the epigraph of f. Assume that ug is Lipschitz on Q2 and such that
Vuy € F a.e. Then (uo, f) satisfy the (CBSC) of constant Kr = max{|{|: § € F}.

Proof. We can consider the function ug defined in R" with Vug € F a.e. (see, for
example [10, Lemma 2.2]). Let 20 € 8Q and 2 € 9 by Lebourg’s Mean Value
Theorem [11, Theorem 2.4] there exists z in the segment joining z% to r aud an
element p of Clarke’s generalized gradient of uo at z such that

up(z) —uo(z®) =p- (z - z9).

Since, by the Generalized Gradient Formula [11, Theorem 8.1], p is in the convex
hull of the limits of sequences of gradients of uo (and F is convex) it then turns out
that p € F; therefore hy o(x) < uo(z) — ug{x%) < h;‘ro(z). m]

Remark 4.3. An interpretation of Proposition 4.3 is that flat parts of the epigraph
of f give more chance in order that (ug, f) satisfy the (CBSC).

Remark 4.4. We notice also the fact that, for example, the assumptions of Propo-
sition 4.3 are fulfilled whenever the epigraph of f has a face whose projection con-
tains a ball centered in & of radius K and ug{z) — & - = is Lipschitz of constant K.

Example 4.2 (The Lower (CBSC) is not equivalent to the Upper
(CBSC)). Let f be the function of Example 2.1. Let £ = [~1,1] x [0,1] and
ug : 09 — R be the function defined by

u(z,0) =1—|z| -1<z<1,
u(-1Ly) =u(l,y) =y*> ye01]
u(z,1) =1 z € [0,1].

The projections of faces of the epigraph of f are a ball B of radius 1 and single
points. Then hf o = |z — 2%, hp o = |z — z9| whereas, if F is a singleton, the
functions h;,o are affine. Therefore (ug, f) satisfies the Lower (CBSC). However
it turns out easily that (ug, f) does not fulfill the Upper (CBSC). Moreover up is
neither convex nor concave on all of the flat parts of the boundary of  and thus
it does neither satisfy a one-sided (BSC) condition.

We recall here the Lipschitz regularity result that we established in [7, Theo-
rem 5.12].

Theorem 4.2 (Lipschitz Continuity of Minimizers under the (CBSC)).
Let Q be such that int(R)\Q is negligible and f : R* — R be conver. Assume.
moreover, that (uo, f) satisfies the (CBSC) of constant K and that the faces of the
epigraph of f containing the images of the points of radius less than K are bounded.
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Let w be a minimizer of
10) = [ 1(Ve(e) da

in up + Wi Q). Then w is Lipschitz and its Lipschitz constant is bounded by

R{( =max{|¢]|: Tn| < K (& F()) and (n, f(n)) belong to a same face of epi(f)}.

Moreover, I has a minimizer whose Lipschitz constant is bounded by K.

Remark 4.5. [7, Theorem 5.12] requires actually that € is convex and that all
the faces of the epigraph are bounded; its proof, in view of Theorem 3.2, shows
that the results holds true under the weaker assumption of Theorem 4.2. In fact by
the Comparison Principle (Theorem 3.2) we first obtain that the result holds true
for the minima of I in ug + W' (int({?)) which coincides with ug + W1(€) since
int(€Q2) differs from © for at most a negligible set. The latter equality is satisfied for
instance if  is convex or, more generally, if Q is negligible.

Remark 4.4 together with Theorem 4.2 yield the following result.

Corollary 4.1 (Lipschitzianity of the Minima for Every Lipschitz Bound-
ary Datum). Let Q be such that int(Q)\Q? is negligible and f : R™ — R be conver.
Assume that the faces of the epigraph of f are bounded and that the projection F
of the exposed face of the epigraph f through (0, f(0)) contains a ball of radius K.
Then, if ug is any Lipschitz function of Lipschitz constant less than K, every mini-
mizer of I in u0+W0“(Q) is Lipschitz and its Lipschitz constant is bounded by R{(F.

We are now in the position to formulate the extension of Clarke’s local lips-
chitzianity result [5, Theorem 2.1]. We admit however that our proof is strongly
inspired by the dilation method of Clarke.

We denote again by Ro the radius of the smallest ball centered in the origin
which enclose the projection onto R"™ of the exposed face of the epigraph of f
containing (0, £(0)).

Theorem 4.3 (Local Lipschitzianity). Let Q be convex. Let f : R* — R be
conver and assume moreover that one of the following assumptions holds:

(a) f is superlinear, or
(b) the diameters of the projections onto R™ of the faces of the epigraph of f are
uniformly bounded by a constant D

and that the functional I{v) = [, f(Vv(z)) dx admits a minimizer on u0+W01’l(Q).
If (uo, f) satisfies either the Lower (CBSC) or the Upper (CBSC) of constant K,
then every minimizer of I is bounded, locally Lipschitz and lower semicontinuous
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on the closure of Q; moreover one of the minimizers T is such that

Kl

Vi@l < Gsa0)

a.e. K'=2K diam() + 2|luo|| 1 (o0 + Ro diam(€).

Moreover, under (b), if w is any minimizer of I. then

K/

o < dist(z. 90
[Vu(z)| < dist(z, 99)

+D.

Remark 4.6. We illustrate here why Theorem 4.3 extends the aforementioned
result of Clarke. We assume here the one-sided (CBSC)instead of Clarke’s one-
sided (BSC); moreover we allow the epigraph of f to have some noun trivial faces.

The proof of Theorem 4.3 is inspired by the dilation technique of Clarke’s proof
described also in [12, 13].

Proof of Theorem 4.3. Let u be any minimizer of I'; by Theorem 4.1, the function
u is essentially bounded and

“U”,x; S M= R(] dlam(Q) + ”‘ll()”Lx(aQ).

We assume that (uo, f) satisfies the Lower (CBSC); the other case can be treated
similarly. For every z” in 09, Theorem 3.2 yields

uo(z?) + Mooy 2o(T) < u(x)

for a.e. z in §2; we point out, in view of the subsequent Remark 4.7. that Theorem 3.2
holds without assuming that €2 is convex. Set

¢(x) = sup{uo(a") + Bpeny po(®) 0 ¥ € 00}, (4.1)

Then ¢ is Lipschitz, its Lipschitz constant being bounded by K, and moreover
¢ = ug on ). Let = € dQ. Set, for A €]0,1[, 0 = M(Q — =) + 2 and, for 2 in Q.

ux(z) = /\u(r ; ‘ot z).

Then uy € W(,l‘l(Q)\) + a where @) (r) = Aug (52 + 2} so that by [13, Lemma 1]
we have

K
uy<u+(1-X) (X diani(Q) + ||“0||L\(0S2)) on 08y

for every minimizer u of I in ug + W' (Q). Let % be the maximum of these mini-
mizers; its existence follows from Proposition 4.1. Then @ (restricted to ) is also
the maximum of the minimizers of I (v) = fm f(Vv(x))dr among the functions
of Wh1(Q,) that coincide with @ on 8Q. Furthermore the proof of [5. Lemma 2.7|
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shows tliat T, is a minimizer relative to the domain Q. The Comparison Principle
(Theorem 2.1) then yields

K
Uy <u+{l-— A)(—)\- diam(92) + IIU()“Lac(aﬂ)) a.e. on 2y

so that, for every A > 1,
Uy —u<g(l—A) ae ony (4.2)
where
q = 2K diam(Q) + |Juol| L= (a0)-
For every A > % and z such that (4.2) holds we deduce that
E(I ; Z 4 z) —a(z)=(01- )\)H(
< (=Nl +a) < 1= 2K

where K/ = M + q. For every k = 1,2,... set Ay = k/(k +1) so that A, > $ and

5f+z=c+ Hz—z), 1 - A =1/(k+ 1) let Z bea negligible set such that

r—=z

+ z) + ux(z) — T(x)

<

a(c+ %(z—z)) ) < (4.3)

on 3, \Zx. The sets Q,, increase with k and their union is €. Therefore if z €
Q\Uzc= 1 Zx the inequality (4.3) holds for k > k,, for some k; € N. Now the gradient
of T exists a.e. so that, passing to the limit in (4.3) for k — 400, we obtain
Va(z) - (z—2) <K' ae.
so that, by choosing z such that
r—z _ Vi)
lr -2 |[Vu(z)
we get
K(
< B
Ve < 5o
If w is any other winimum of I, the points (Vw(z), f(Vw(z))) and (Vu(z),
f(VT(z))) belong a.e. to the same exposed face of the epigraph of f.
Therefore, under (b), [Vw(z) — Vu(z)| < D so that
ad
< -
— dist(z, 0Q)

If (a) holds, then for z on a compact subset K of £2, we have

a.e.

|Vw(z)| < |Vu(z)|+ D +D ae.

i

_ K
|[Vw(z)| < [Va(z)| + Dk < m

where Dy is a bound of the diameter of the faces of the epigraph of f containing
the images of the points of K. Finally, the lower semicontinuity of w follows from

+Dx ae.onk
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the fact that w > £ on 8 where £, defined in (4.1) is Lipschitz on the closure of Q
and equal to ug on 9§ ]

Remark 4.7. The proof of Theorem 4.3 shows that one may weaken the convexity
assumption on {2 by assuming instead that int(2) \ Q is negligible: indeed, in this
case, the minimizers of I turn out to be locally Lipschitz at those points z that lie
in the interior of a convex combination of points of 9 with respect to with Q is
star-shaped.

Remark 4.8. As Clarke points out in the paper [5], if ug satisfies a one-sided
(BSC) and f is just convex then it is easy to see that { has at least a locally Lipschitz
minimizer: it is enough to consider the perturbed problem with the lagrangian
fe(€) = F(€) + 11€|° instead of f and pass to the lmit for k — +oc. This argument
does not hold anymore if (ug, f) satisfies a one-sided (CBSC)since it may be that
(w0, fr) does no more satisfy a one-sided (CBSC).

5. The Nonconvex Case

In this section we will consider a Borel measurable function f : R" — R that we
do not assuie to be convex; we assume that f is bounded from below by an affine
function. We denote by f** the bipolar of f and by I** the functional defined on
W(Q) by

I”(u)=/ﬂf"(Vu(r))dz.

Theorem 5.1 (Relaxation). Let Q be open and bounded. Assume that the faces
of the epigraph of f** are bounded and that either

(a) f(€) > a|€|+b, for somea >0 and bER, or
(b) the diameters of the projections onto R™ of the faces of the epigraph of f** are
uniformly bounded.
If I** admits a locally Lipschitz minimizer, then
min{I"" (u):u € uo + W)}
= inf{I(u):u € uo + W, (Q), u locally Lipschitz}

and the minimizers of I, if they exist, are locally Lipschitz.

Proof. Let A;, j € N, be an increasing family of regular open sets whose union is
Q and set Qp = Ag and ; = A;\4,_, for j > 1. We denote by % a locally Lipschitz
minimizer of I**, by I, and I;{J‘ the functionals

oy = [ J(Vu@)ds, W= [ e de
Q; Q2

defined for every u € T+ W, (§;). The restriction of & to €; is a minimizer for
I8 let K be its Lipschitz constant on Q;. Then applying [7, Theorem 6.3] it
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follows that
I3 (@) = inf{Iq, (u), w € T+ Wy () N Lipg, (25)}

for some K, where by Lipk/(€;) is the space of Lipschitz functions on ; with
J

Lipschitz constant less than K. Let ¢ > 0 and u; € T+ Wit n Lipy, (Q;) be
such that

f(Vuy(z))dz < [ f(Va(z))ds + .257
Q; 0,

Let v be the function defined by v = Z]. u;Xq;, where xo, is the characteristic
function of Q;; clearly v is locally Lipschitz.
If f satisfies assumption (a) then, for every j,

1 b
[Vu;| < af(Vuj) -~ aeon Q;.

Therefore. for every m > 1.

Z/ |Vu(x)| dz 52—/ F(Vui(x)) dz — =|Q U - U Q|
=075 panh? a

so that Vv € LY(Q) and

JLLEEE > [, $@utenas - Zie
L R pR—. b
< p /Q > (Va(z))dz — E'Q' + 2.

It follows that the series 3, u; converges to v in up + IVOM(Q).

The same conclusion holds if f satisfies assumption (b): in fact if R is a uniform
bound of the diameters of the projections of the faces of the epigraph of f then,
for every j € N, Vu; and Vi belong a.e. to the projection of the same face of
the epigraph of f and thus |Vu;} < |Va| + R a.e. in ©;, whence Vv € L(Q) and
V| € |ViE| + R a.e. in . Now, since

/Qf(Vv)dzzjgo/Qjf(Vu])dz<]z=:0/ij (V&) dz + 2¢

the conclusion follows. o

The following result follows directly from Theorem 4.3.

Corollary 5.1. Let Q2 be convez. Assume that either f is superlinear or the diam-
eters of the projection onto R" of the faces of the epigraph of f** are uniformly
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bounded. If (uo, f**) satisfies either the Lower (CBSC) or the Upper (CBSC) of
constant K and the functional I** admits a minimizer on ug + W(,I'I(Q) then

min{I**(u) : u € ug + I’Vol‘l(Q)}
= inf{I(u) : u e ug + Wy Q). u locally Lipschit=)

and the minimizers of I. if they exist, are locally Lipschitz.
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