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Via Trieste 63, 35121 Padova, Italy

To Paolo Marcellini on the occasion of his 60-th birthday

Abstract. In this paper we establish a comparison result for solutions to the
problem

minimize

∫

Ω

l(‖∇u(x)‖) dx

or to the problem

minimize

∫

Ω

l(γC(∇u(x)) dx,

for a special class of solutions, without assuming neither smoothness nor strict
convexity of l.

1. Introduction. This paper is partially a sequel to [1], to [2] and to [4], where
special classes of solutions were presented, for variational problems involving general
convex Lagrangeans L, with the purpose of proving comparison theorems without
assumptions of smoothness and without the assumption of strict convexity on L.
Comparison theorems are the basis for several powerful tools used in the Calculus
of Variations or in Partial Differential Equations, including the Strong Maximum
Principle and the Moving Plane Method. These results are obtained exploiting the
property of uniqueness of solutions; in turn, this property depends on the strict
convexity of the Lagrangean. The assumption of strict convexity, however, forbids
considering important classes of Lagrangeans, in particular those Lagrangeans that
are generated from the convexification of functionals that, originally, were not con-
vex. Although, without this assumption of strict convexity, one cannot hope to
prove a comparison theorem that would be true for any two solutions, in the ap-
plications of this principle, in general, one of the solutions belongs to a special class
of solutions and one aims at results for this more restricted class of solutions.

In the present paper we consider the problem of minimizing

∫

Ω

l(‖∇u(x)‖) dx (1)

with ‖ · ‖ the Euclidean norm, or, more generally, of minimizing
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∫

Ω

l(γC(∇u(x))) dx (2)

where γC is the gauge of the convex set C (see Section 3). In either case, the
function l is convex, lower semicontinuous and even. In particular, the problems we
consider contain the minimization of

∫

Ω

l(〈∇u(x), Q∇u(x)〉
1
2 ) dx (3)

with Q a symmetric, positive definite N ×N matrix.
We show that, without any regularity assumption and without the assumption

of strict convexity, a comparison result holds when one of the two solutions involved
in the comparison belongs to special classes of solutions, that we will denote wx0,k

c .
These solutions are defined through the polar of the Lagrangean L, without exploit-
ing, in the definition, a differential equation, a procedure that would require the
regularity of L, that we do not assume. Our definition of the class wx0,k

c , when ap-
plied to the classical case of the Lagrangean L(ξ) = 1

2‖ξ‖
2, gives back the solutions

(when x0 does not belong to the closure of Ω) given by wx0,k
c (x) = c log ‖x−x0‖+k,

for N = 2, and wx0,k
c (x) = − c

N−2
1

‖x−x0‖N−2 + k, for N > 2. As it is well known,

these are the solutions that are used to establish the validity of the Strong Maximum
Principle and of Hopf’s Lemma for harmonic functions.

As an application of our comparison Theorem, we will provide a Maximum Prin-
ciple for a class of extended valued Lagrangeans.

2. Comparison Theorems. The rotationally symmetric case. In this paper,
Ω is a bounded, open set. By a solution we mean a function providing a finite
minimum of (1) among those functions assuming the same boundary values. We
denote by Dom(L) the effective domain of the function L, i.e. the set of points
where L is finite, and by ∂L(p) the subdifferential of L at p. By L∗ we mean the
polar or Legendre transform of L, a (possibly extended valued) convex function; we
refer to [5] for the details on these subjects.

In this section we consider the problem of minimizing (1). The results of this
section are strictly contained in the results of Section 3.

Consider the Lagrangean L(ξ) = l(‖ξ‖), where

l : R −→ R ∪ {+∞}

is convex, even and lower semicontinuous.
We will use the fact that L∗ is rotationally invariant and that

∂L∗(p) = ∂l∗(‖p‖)
p

‖p‖
if p 6= 0, ∂L∗(0) = ∂l∗(0)B

where B is the unit ball; moreover ∂l∗(·) is an upper semicontinuous, increasing map
with values the closed intervals of R. Our results will be based on the properties of
the function wx0,k

c , defined as follows.
Let z∗(t) be any measurable selection from ∂l∗(t) and, for c 6= 0, set

wx0,k
c (x) = sign(c)

∫ ‖x−x0‖

1

z∗
( |c|

sN−1

)

ds+ k

whose gradient is sgn(c)z∗( |c|
‖x−x0‖N−1 ) x−x0

‖x−x0‖
. This function need not be well defined

for every choice of x0: for instance, in the case L(t) = |t| −
√

|t|, whose polar is
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L∗(p) = 1
4

1
1−|p| for p ∈ (−1, 1), whenever x0 ∈ Ω, for any c 6= 0, the values of the

map c
‖x−x0‖N−1 when x varies in Ω are never entirely contained in (−1, 1), where

L∗ is defined. This explains the need of some further assumptions, as the one that
follows.

Assumption (A). We shall assume that either

i) Dom(l∗) ⊃ [−ℓ,+ℓ] and dist(x0,Ω) > ( |c|ℓ )
1

N−1 or
ii) Dom(l∗) = (−∞,+∞) and dist(x0,Ω) > 0, or
iii) Dom(l) ⊂ [−ℓ,+ℓ] and x0 /∈ Ω.

Proposition 1. Assume (A). Then wx0,k
c is well defined; for every admissible vari-

ation η,
∫

Ω

〈
x− x0

‖x− x0‖N
,∇η(x)〉 dx = 0, (4)

and wx0,k
c (x) is a solution to the problem of minimizing (1).

Proof. For x0 /∈ Ω, x−x0

‖x−x0‖N is the gradient of the harmonic function ‖x−x0‖
2−N

2−N , or

of the harmonic function log ‖x− x0‖ for N = 2, so (4) is true for η ∈ C∞
c (Ω).

In case iii) of Assumption (A), solutions are Lipschitzian and so are variations; the
map x−x0

‖x−x0‖N is in L1(Ω); hence, by approximation, (4) holds for every admissible,

i.e. lipschitzian, variation η. In case i) we have that |c|
‖x−x0‖N−1 ≤ |ℓ| and in ii),

x−x0

‖x−x0‖N is in L∞(Ω), so that, again by approximation, the validity of (4) holds for

η in W 1,1
0 (Ω). So (4) holds for every admissible variation.

From the definition of wx0,k
c , we have that

∇wx0,k
c (x)

‖∇w
x0,k
c (x)‖

= sgn(c) x−x0

‖x−x0‖
a.e. and

‖∇wx0,k
c (x)‖

∇wx0,k
c (x)

‖∇wx0,k
c (x)‖

= ∇wx0,k
c (x) ∈ sgn(c)∂l∗(

|c|

‖x− x0‖N−1
)
x− x0

‖x− x0‖

so that ‖∇wx0,k
c (x)‖ ∈ ∂l∗( |c|

‖x−x0‖N−1 ) and |c|
‖x−x0‖N−1 ∈ ∂l(‖∇wx0,k

c (x)‖) a.e..

Hence, (4) is the Euler Lagrange equation of problem (1) computed along the func-
tion wx0,k

c .
Since wx0,k

c satisfies the Euler Lagrange equation, the convexity of the functional
implies that it is a solution to the problem of minimizing (1).

The following is our main result.

Theorem 2.1 (Comparison Theorem). Assume (A).

i) Let w be a solution to the problem of minimizing (1) such that, on ∂Ω, we
have w ≤ wx0,k

c in the sense of W 1,1(Ω). Then, a.e. in Ω, w(x) ≤ wx0,k
c (x).

ii) Assume that, instead, on ∂Ω we have w ≥ wx0,k
c . Then w(x) ≥ wx0,k

c (x) a.e.
in Ω.

Proof. Ad i). Set η+(x) = max{0, w(x)−wx0,k
c (x)} and E+ = {x ∈ Ω : η+(x) > 0}.

The assumption on the boundary data implies that η+ ∈W 1,1
0 (Ω): we wish to prove

that E+ has measure zero.
a) We have that

∇(wx0,k
c + η+)(x) =

{

∇wx0,k
c (x) if w(x) ≤ wx0,k

c (x)

∇wx0,k
c (x) + ∇η+(x) otherwise
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so that
∫

Ω

[L(∇wx0,k
c (x) + ∇η+(x)) − L(∇wx0,k

c (x))] dx

=

∫

E+

[L(∇wx0,k
c (x) + ∇η+(x)) − L(∇wx0,k

c (x))] dx.

We claim that
∫

E+

L(∇wx0,k
c (x) + ∇η+(x)) dx =

∫

E+

L(∇wx0,k
c (x)) dx. (5)

In fact, it cannot be that
∫

E+

L(∇w(x)) dx =

∫

E+

L(∇wx0,k
c (x) + ∇η+(x)) dx <

∫

E+

L(∇wx0,k
c (x)) dx

since, otherwise,
∫

Ω

L(∇wx0,k
c (x) + ∇η+(x)) dx <

∫

Ω

L(∇wx0,k
c (x)) dx

and wx0,k
c would not be a solution. It cannot be, either, that

∫

E+

L(∇w(x)) dx >

∫

E+

L(∇wx0,k
c (x)) dx =

∫

E+

L(∇w(x) −∇η+(x)) dx,

since w would not be a solution. Then,
∫

E+

L(∇w(x)) dx =

∫

E+

L(∇wx0,k
c (x)) dx.

This proves the claim.
Set u(x) = x−x0

‖x−x0‖N : from Proposition 1 we have that
∫

E+〈u(x),∇η
+(x)〉 dx = 0.

Thus
∫

E+

L(∇wx0,k
c (x) + ∇η+(x)) − [L(∇wx0,k

c (x)) + 〈cu(x),∇η+(x)〉] dx = 0. (6)

On the other hand, since cu(x) ∈ ∂L(∇wx0,k
c (x)) a.e., then

ψ(x)
.
= L(∇wx0,k

c (x) + ∇η+(x)) − [L(∇wx0,k
c (x)) + 〈cu(x),∇η+(x)〉] ≥ 0 a.e.

Now ψ is measurable, a.e. non negative and its integral vanishes: it follows that
ψ = 0 a.e., or equivalently,

{

L(∇wx0,k
c (x) + ∇η+(x)) = L(∇wx0,k

c (x)) + 〈cu(x),∇η+(x)〉 a.e.

cu(x) ∈ ∂L(∇wx0,k
c (x)) a.e.

(7)

Let x be such that (7) holds: it follows, by convexity that, for every λ ∈ [0, 1],

L(∇wx0,k
c (x) + λ∇η+(x)) = L(∇wx0,k

c (x)) + λ〈cu(x),∇η+(x)〉

Hence, with the exception of a subset of E+ of measure zero, this set independent
of λ, the map λ 7→ L(∇wx0,k

c (x) + λ∇η+(x)) is affine on the interval [0, 1].
b) Whenever ∇η+(x) 6= 0, we have that

ξ1
.
= ∇wx0,k

c (x) 6= ∇wx0,k
c (x) + ∇η+(x)

.
= ξ2.

From the previous result, on the non-trivial segment (ξ1, ξ2) ⊂ R
N the map L

is affine, i.e., in the N + 1 dimensional space, the segment joining (ξ1, L(ξ1)) to
(ξ2, L(ξ2)) is contained in a proper face F of the epigraph of L. Since L(ξ) = l(‖ξ‖)
is rotationally symmetric, its epigraph has at most one face of dimension strictly
greater than 1: if it exists, it contains (0, L(0)) and its slope is 0. Here the slope of
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F is cu(x) 6= 0, therefore we must have that ξ2 is parallel to ξ1: we have obtained
that ∇η+(x) and ∇wx0,k

c (x) are parallel.
c) We wish to show that this conclusion implies that ∇η+(x) = 0, except possibly

on a set of measure zero.
Consider the one-dimensional faces of the epigraph of the convex function l, cor-

responding to countably many non trivial intervals [αi, βi] such that the restriction
of l to [αi, βi] is affine, and, for t ∈ (αi, βi), ∂l(t) equals the constant singleton {l′i}.
Whenever ∇η+(x) is parallel to ∇wx0,k

c (x), we have that

‖∇wx0,k
c (x) + λ∇η+(x)‖ − ‖∇wx0,k

c (x)‖ = λ‖∇η+(x)‖ sign〈c(x − x0),∇η
+(x)〉,

so they are distinct if ∇η+(x) 6= 0 ; hence, in this case, from (7), these values must
belong, for some i, to the same interval [αi, βi], so that

{l′i} ∈ ∂l(‖∇wx0,k
c (x) + λ∇η+(x)‖) ∩ ∂l(‖∇wx0,k

c (x)‖),

and we have

l(‖∇wx0,k
c (x)+λ∇η+(x)‖)

=l(‖∇wx0,k
c (x)‖) + λl′i‖∇η

+(x)‖ sign〈c(x − x0),∇η
+(x)〉.

(8)

Since

〈c
x− x0

‖x− x0‖N
,∇η+(x)〉 =

|c|

‖x− x0‖N−1
‖∇η+(x)‖ sign〈c(x− x0),∇η

+(x)〉, (9)

comparing (8) with (7), we obtain

|c|

‖x− x0‖N−1
= l′i.

The set of x ∈ R
N such that |c|

‖x−x0‖N−1 = l′i, for some i ∈ N, is of N dimensional

measure zero. This shows that, outside a set of measure zero, ∇η+(x) is null. Now

η+ ∈W 1,1
0 (Ω): it follows that η+ = 0 a.e., so that E+ has measure zero.

Ad ii). Set η−(x) = min{0, w(x) − wx0,k
c (x)} and E− = {x ∈ Ω : η−(x) < 0}.

Steps a) to c) above do not depend on the boundary values of w − wx0,k
c , so we

reach the conclusion that η− = 0 on Ω and thus E− is negligible.

Examples. 1. When N = 2 and L(ξ) = 1
2‖ξ‖

2, ∂l∗(p) = p and

wx0,k
c (x) = sign(c)

∫ ‖x−x0‖

1

z∗
( |c|

s

)

ds+ k = c log ‖x− x0‖ + k.

If there exist r0 > 0, r1 > 0, such that for ‖x− x0‖ = r0 we have
w(x) ≥ c log(r0) + k and for ‖x − x0‖ = r1, w(x) ≥ c log(r1) + k, and w is
continuous then, on the annulus centered at x0 with radii between r0 and r1,
w(x) ≥ c log ‖x−x0‖+k ; this is the argument used in the proof of the Strong
Maximum Principle.

2. For the Lagrangean

L(ξ) =

{

0 |ξ| ≤ 1,

+∞ otherwise.

we obtain L∗(p) = ‖p‖; ∇wx0,k
c (x) = ± x−x0

‖x−x0‖
and wx0,k

c (x) = ±‖x− x0‖.
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3. For

L(t) =

{

0 |t| ≤ 1,
1
2 (|t| − 1)2 |t| > 1

whose polar is L∗(p) = 1
2 |p|

2 + |p| we have

∂L∗(p) =

{

B(0, 1) p = 0,

p+ sgn(p) p 6= 0.
(10)

and, for c > 0, N = 2, we deduce that

wx0,k
c (x) =

∫ ‖x−x0‖

1

z∗
( c

s

)

ds =

∫ ‖x−x0‖

1

( c

s
+ 1

)

ds = c log ‖x− x0‖ + ‖x− x0‖.

4. For L(ξ) = ‖ξ‖, we have

l∗(t) =

{

0 |t| ≤ 1,

+∞ otherwise.

and wx0,k
c (x) ≡ k.

As an application of Theorem 1, consider the case Dom(l) = (−ℓ,+ℓ); any func-
tion w that makes (1) finite, has to be Lipschitzian with Lipschitz constant ℓ. It is
not clear whether there can be pairs of points (x∗, y∗) in the closure of Ω, such that
|w(x∗)−w(y∗)| = ℓ‖x∗ − y∗‖. The following result, that was proved in [3] with the
additional assumptions of smoothness and of strict convexity of l, shows that this
is not possible for w a solution and for special pairs of points.

Theorem 2.2 (A Maximum Principle for extended valued Lagrangeans). Assume
that Dom(l) = (−ℓ,+ℓ). Let w be a solution to the problem of minimizing (1) on
φ+W 1,1(Ω), where φ is Lipschitzian of constant λ < ℓ. Then, for no x∗ ∈ Ω there
exists y∗ ∈ ∂Ω such that |w(x∗) − φ(y∗)| = ℓ‖x∗ − y∗‖.

Proof. a) Since lim
t→ℓ

l(t) = +∞ then, by convexity, for any selection z(·) from ∂l(·),

we have lim
t→ℓ

z(t) = +∞. Let z∗ be any selection from ∂l∗: we have that z∗(p) tends

to ℓ as p→ +∞. Hence, for every x0 and c 6= 0,

lim
x→x0

z∗
( |c|

‖x− x0‖N−1

)

= ℓ.

b) Assume that there exist x∗ and y∗ ∈ ∂Ω satisfying w(x∗)−φ(y∗) = ℓ‖x∗−y∗‖.
Fix λ < Λ < ℓ. Let M be such that z∗(p) > Λ whenever p > M . Let D be the

diameter of Ω; choose c so large that
c

DN−1
> M ; a fortiori, for t ≤ D, we have

z∗
( c

tN−1

)

> Λ;

notice that z∗ ≤ ℓ, so that

∫ 1

0

z∗
( c

sN−1

)

ds ≤ ℓ, and consider the solution wy∗,k
c ,

as provided by Proposition 1, centered at y∗, with k =

∫ 1

0

z∗
( c

sN−1

)

ds + φ(y∗),

i.e.,

wy∗,k
c (x) =

∫ ‖x−y∗‖

1

z∗
( c

sN−1

)

ds+

∫ 1

0

z∗
( c

sN−1

)

ds+ φ(y∗)
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=

∫ ‖x−y∗‖

0

z∗
( c

sN−1

)

ds+ φ(y∗).

Notice that since z∗ ≤ ℓ then wy∗,k
c is defined on R

N ; moreover for a.e. y on the

ball of center y∗ and radius D we have
c

‖y − y∗‖N−1
≥

c

DN−1
> M and thus

‖∇wy∗,k
c (x)‖ = z∗

( c

‖y − y∗‖N−1

)

≥ Λ.

Let now y ∈ ∂Ω: the latter inequality yields that

wy∗,k
c (y) − φ(y∗) = wy∗,k

c (y) − wy∗,k
c (y∗) ≥ Λ‖y∗ − y‖.

Since w(y) − φ(y∗) = φ(y) − φ(y∗) ≤ λ‖y∗ − y‖ we have obtained that, on ∂Ω, one
has wy∗,k

c (y) ≥ w(y).
On the other hand, at the point x∗ one has w(x∗) − φ(y∗) = ℓ‖y∗ − x∗‖, while,

from wy∗,k
c (x∗) − φ(y∗) =

∫ ‖x∗−y∗‖

0
z∗

(

c
sN−1

)

ds and the inequality z∗ < ℓ, one

obtains wy∗,k
c (x∗) − φ(y∗) < ℓ‖y∗ − x∗‖ or, equivalently,

wy∗,k
c (x∗) ≤ φ(y∗) + ℓ‖y∗ − x∗‖ = w(x∗).

Hence the open set {x ∈ Ω : w(x) > wy∗,k
c (x)} contains x∗, a contradiction to

Theorem 1.
c) Since L is radial then −w is a solution to the problem of minimizing (1) on

−φ+W 1,1
0 (Ω). It follows from b) that there are no x∗ ∈ Ω and y∗ ∈ ∂Ω such that

(−w)(x∗)− (−φ)(y∗) = ℓ‖x∗− y∗‖, proving that for such pair of points the equality
φ(y∗) − w(x∗) = ℓ‖x∗ − y∗‖ does not hold.

3. A less symmetric case. In this section we consider an extension of the mini-
mization problem (3) to cover a more general, non rotationally symmeytric, case.

Let C be a closed, bounded and convex subset of R
N containing the origin in its

interior and let C∗ be its polar, defined by

C∗ = {x∗ ∈ R
N : ∀x ∈ C, 〈x, x∗〉 ≤ 1}.

We denote by γC the gauge of C defined on R
N by

γC(x) = inf{λ > 0 : x ∈ λC}.

We have that the polar (IC)∗(x∗) = inf{x∈C}〈x, x
∗〉 of the indicator function of C

is the gauge of the polar C∗ of C, and that (see for instance [5], Corollary 15.1.2)
γC∗ is also the support function of C, i.e.

γC∗(x∗) = sup{〈x, x∗〉 : x ∈ C}. (11)

Example 1. Let Q be a symmetric, positive definite N ×N matrix, and let

C = {x ∈ R
N : 〈x,Qx〉 ≤ 1}.

Then γC(ξ) = 〈ξ,Qξ〉
1
2 and γC∗(x∗) = 〈x∗, Q−1x∗〉1/2.

Let l : [0,+∞[→ R ∪ {+∞} be a convex, lower semicontinuous function that
attains its minimum at 0 and consider the minimization problem (2). In particular,
in the case where Q is the identity matrix, we have that l(γC(ξ)) = l(‖ξ‖), and
problem (2) reduces to problem (1).
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Let z∗(t) be any measurable selection from ∂l∗(t). For x0 /∈ Ω, c 6= 0 and k ∈ R,
set

wx0,k
c (x) = sgn(c)

∫ γC∗ (x−x0)

1

z∗
( |c|

sN−1

)

ds+ k. (12)

In the case where Q is the identity matrix, the function wx0,k
c defined in (12)

coincides with the function defined in Section 2. We will show that the maps wx0,k
c

are minimizers of (2) that satisfy the Comparison Principle stated in Theorem 1.
Hence, the results of this section will contain the results of Section 2.

The following is the analog of Proposition 1 in this more general setting.

Proposition 2. Let x0 /∈ Ω and C be strictly convex. The field

u(x) =
x− x0

(γC∗(x− x0))N

is divergence free.

Proof. The assumption that C is strictly convex implies that x 7→ γC∗(x−x0) does
not vanish and that is differentiable for every x 6= x0. We have

∂ui

∂xi
=

(γC∗(x− x0))
N −N(γC∗(x − x0))

N−1(xi − (x0)i)
∂

∂xi
γC∗(x − x0)

(γC∗(x − x0))2N

so that

div(u(x))=N(γC∗(x−x0))
N−1

γC∗(x− x0) −
∑N

i=1(xi − (x0)i)
∂

∂xi
γC∗(x− x0)

(γC∗(x − x0))2N
= 0

since γC∗ is positively homogeneous of degree 1.

Proposition 2 and the arguments of the previous section yield the following analog
of Theorem 1.

Theorem 3.1. Assume (A) and let C be strictly convex. Then wx0,k
c is a well

defined Lipschitz solution to the problem of minimizing (1). Moreover wx0,k
c satisfies

the Comparison Principle stated in Theorem 1.

Proof. We sketch the proof, which is similar to that of Proposition 1 and Theorem
1, by just mentioning the technical arguments that are new. The chain rule gives,
for a.e. x,

∇wx0,k
c (x) = sgn(c) z∗

( |c|

(γC∗(x− x0))N−1

)

∇γC∗(x− x0)

Since γC∗ is positively homogeneous of degree 1, we have

|c|

(γC∗(x− x0))N−1
= γC∗(x− x0)

|c|

(γC∗(x− x0))N
= γC∗

(

|c|
x− x0

(γC∗(x− x0))N

)

and

∇γC∗(x− x0) = ∇γC∗

(

|c|
x− x0

(γC∗(x− x0))N

)

so that

∇wx0,k
c (x) = sgn(c) z∗

(

γC∗

(

|c|
x− x0

(γC∗(x− x0))N

))

∇γC∗

(

|c|
x− x0

(γC∗(x− x0))N

)

.

The differentiability of γC∗ and [5, Theorem 15.3] give, for p ∈ R
N \ {0},

∂L∗(p) = ∂l∗(γC∗(p))∇γC∗(p) (13)
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proving that

∇wx0,k
c (x) ∈ ∂L∗

(

c
x− x0

(γC∗(x− x0))N

)

a.e.

By Lemma 1, the arguments of Proposition 1 show then that wx0,k
c is a minimizer

of (1).
By (13) the faces of the epigraph of L with slope different from 0 are at most one–
dimensional. To conclude that wx0,k

c satisfies the Comparison Principle, the proof
of Theorem 1 shows that it is enough to show that

∂l∗
(

γC∗

(

c
x− x0

(γC∗(x− x0))N

))

is a.e. reduced to a point, or equivalently that the sets
{

x ∈ R
N : γC∗

(

c
x− x0

(γC∗(x− x0))N

)

= l′i

}

are negligible for every i. This occurs since, again by homogeneity,

γC∗

(

c
x− x0

(γC∗(x− x0))N

)

= |c|
1

(γC∗(x− x0))N−1

and moreover, for every λ > 0,

γC∗(x− x0) = λ ⇐⇒ x ∈ x0 + λ∂C∗

where ∂C∗ is the boundary of C∗, a negligible set.
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