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Abstract. We consider a nonlinear (possibly) degenerate elliptic operator
Lv = − div a(∇v) + b(x, v) where the functions a and b are, unnecessarly
strictly, monotonic. For a given boundary datum ϕ we prove the existence of

the maximum and the minimum of the solutions and formulate a Haar-Rado
type result, namely a continuity property for these solutions that may follow
from the continuity of ϕ. In the homogeneous case we formulate a general-

ization of the Bounded Slope Condition and use it to obtain the existence of
solutions to Lv = 0 that are Lipschitz, or locally Lipschitz, or Hölder upon
the behavior of ϕ.

Introduction

A famous result due to Hartman and Stampacchia in 1966 [6] shows the existence
of a globally Lipschitz solution to the equation

−div a(∇v) + F (u) = 0 on Ω, u = ϕ on ∂Ω (0.1)

when the boundary datum ϕ satisfies the Bounded Slope Condition (BSC). It is
required moreover that a : Rn → Rn is continuous and satisfies the ellipticity
condition

∀ξ, η ∈ Rn (a(ξ)− a(η)) · (ξ − η) ≥ µ|ξ − η|2 (µ > 0) (0.2)

and F satisfies various technical assumptions that we omit here. In the case where
F = 0 the result is obtained even under the weaker assumption that a is just
(unnecessarily strictly) monotonic. Few years before under the same assumption
on the boundary datum Stampacchia obtained in [?] the existence of a minimizer
of an integral functional among Lipschitz functions. After many years this result
became a source of inspiration for some new results in the Calculus of Variations
concerning the regularity of the minimizers for the problem

min

ˆ
Ω

f(∇v(x)) dx : u ∈ ϕ+W 1,1
0 (Ω). (P)

We mention Cellina who first revisited their paper in this framework and established
in [3] the Lipschitz continuity of the minimizers of (P) when ϕ satisfies the (BSC);
Clarke in [5] introduced the new one sided Lower/Upper (BSC) and obtained under
this condition the local Lipschitz continuity of the solutions to (P) by assuming
moreover that Ω is convex. In both cases the lagrangian f was supposed to be
strictly convex due mostly to the lack of the validity of the Comparison Principles,
a key tool, when the epigraph of f has some non trivial flat faces. The methods
developed by these authors allowed Bousquet to prove in [2] the continuity of the
minimizers for a continuous boundary datum, and us to establish in [10] the global
Hölder continuity of the minimizers of (P) once ϕ is Lipschitz and f is coercive; there
we were also able to drop the usual strict convexity assumption on the lagrangian.
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Following the same path of Hartman and Stampacchia these latter results ob-
tained in the framework of the Calculus of Variations are now giving some new
existence theorems in the framework of the Partial Differential Equations (PDE’s
in the rest of the paper). Bousquet considered the very same operator studied
in [6] and obtained in [1] the existence of a solution to (0.1) among locally Lips-
chitz functions if ϕ satisfies Clarke’s unilateral (BSC) and a is uniformly strictly
monotonic.

Our purpose is to study the existence of regular solutions to 0.1 when a is not
uniformly strictly monotonic. As in [6] and [1] we obtain the results by using the
regularity of the boundary datum instead of the classical upper bounds on the
growth of a. More precisely we are concerned with the problem

Lv
.
= −div a(∇v) + b(x, v) = 0 on Ω ⊂ Rn, u = ϕ on ∂Ω

where a, differently from [1], is not supposed to be a strictly monotone operator,
namely we require that

∀ξ, η ∈ Rn (a(η)− a(ξ)) · (η − ξ) ≥ 0. (0.3)

We assume moreover that u 7→ b(x, u) is monotonic and that either the equality
(0.3) implies that a(ξ) = a(η) or that u 7→ b(x, u) is strictly monotonic. This condi-
tion is fulfilled for instance if a is the gradient of a convex, C1 function f : Rn → R
such that the non trivial maximal faces of the epigraph of f have dimension n, a
common fact for the problems of the Calculus of Variations arising from the con-
vexification of a non convex lagrangian. The main difficulties here are the non
uniqueness of the solutions to the Dirichlet problem and the fact that affine func-
tions do no more satisfy, in general, the Comparison Principles from above or from
below.

In the first parts of the paper we thoroughly study the set of the solutions, no
more unique, to the Dirichlet problem associated to Lv = 0 and show in particular
under some natural growth condition on a and b that, given a boundary datum ϕ,
there is a maximal and a minimal solution to the Dirichlet problem Lv = 0, v = ϕ
on ∂Ω. We formulate some Comparison Principles that, as well as we know, are new
in the case where a is not strictly monotonic and we exhibit, in the homogeneous
case, a new class of solutions to Lv = 0, depending on the level sets of a, that
satisfy the Comparison Principle.

We then establish the fact that if ω is any modulus of continuity and u is the
maximum or the minimum of the solutions to Lv = 0 such that

∀γ ∈ ∂Ω |u(x)− ϕ(γ)| ≤ ω(|x− γ|) a.e. x

then |u(y) − u(x)| ≤ ω(|y − x|) for a.e. x, y. More precisely the monotonicity
of b is enough if b does not depend on x, otherwise we require a more general
monotonic assumption on the two variables x, u. This result is well known when u
belongs to the class of a-harmonic functions, the solutions to the equations that are
narrowly similar to the p-Laplace equation, where the function a needs to satisfy a
homogeneity assumption that we do not make here. The result is also the PDE’s
counterpart of the so called Haar-Rado theorem for the Lipschitz minimizers of (P)
that we recently extended in [12].

The results of these parts, though similar to the corresponding ones in the Cal-
culus of Variations, require some arguments that are new and strictly related to
the structure of the partial differential operator.

In the last part of the paper we extend the (BSC) by using the new class of
functions described above instead of the affine ones: it turns out that in the case
where a is not strictly monotonic, the class of the boundary data that satisfy
this new Generalized (BSC) is wider than the class of functions that satisfy the
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(BSC). To clarify this statement we just mention some facts that differentiate them.
The (BSC) is a quite restrictive condition: among other properties that forces the
domain to be convex. On the other hand once a level set of a contains a ball
centered in the origin it turns out that every Lipschitz function of a suitable rank
satisfies the Generalized (BSC) with no convexity requirement on the domain Ω.

We then apply the Haar-Rado type theorem in the homogeneous case i.e. Lv =
−div a(∇v). Again, without assuming the strict monotonicity of a we prove the
analogue of the results of the Calculus of Variations mentioned above: existence of
a Lipschitz solution when ϕ satisfies the Generalized (BSC) and, if Ω is convex, of
a locally Lipschitz solution when ϕ satisfies a unilateral Generalized (BSC), and of
a Hölder solution when ϕ is Lipschitz. The techniques are here similar to those of
the Calculus of Variations since most of them rely on the Comparison Principles.

1. Notation and setting

If v and w are functions then v∧w (resp. v∨w) stands for the pointwise minimum
(resp. maximum) of v and w. The scalar product in Rn is denoted by “·”.

Definition 1.1 (Modulus of continuity). A modulus of continuity is a positive
continuous function ω : [0,+∞[ such that ω(0) = 0. A real valued function ϕ on a
set X is ω–continuous if |ϕ(y)− ϕ(x)| ≤ ω(|y − x|) for all x, y ∈ X.

Definition 1.2 (Inequalities in the trace sense). Let u, v ∈W 1,1(D). We say that

u ≤ v in ∂D in the trace sense if u ∧ v ∈ u +W 1,1
0 (D) or, equivalently, if u ∨ v is

in v +W 1,1
0 (D).

Some basic facts about inequalities in the trace sense can be found in [12].
We consider here the following operator in divergence form

Lv = −div a(∇v) + b(x, v).

Throughout the paper we will make use of the following assumptions.

Basic Assumptions. We assume that Lv = −div a(∇v) + b(x, v) is such that

A1) the function a : Rn → Rn is continuous and monotonic, i.e.

∀ξ, η ∈ Rn (a(η)− a(ξ)) · (η − ξ) ≥ 0. (1.1)

Moreover

∀ξ, η ∈ Rn (a(η)− a(ξ)) · (η − ξ) = 0 ⇐⇒ a(ξ) = a(η); (1.2)

B1) the function b : Ω × R → R is a measurable function that is continuous in
the second variable and

∀x ∈ Ω ∀u, v ∈ R (b(x, v)− b(x, u))(v − u) ≥ 0. (1.3)

Remark 1.1. Under just A1) and B1) the solutions to Lv = 0 with a prescribed
boundary datum may not be unique. Such solutions turn out to be unique if either
(1.1) or (1.3) is strict, i.e. either L is elliptic or u 7→ b(x, u) is strictly monotonic
for each x.

Remark 1.2. Condition A1) is fulfilled if, for instance, a is the gradient of a convex,
C1 function f : Rn → R such that the non trivial maximal faces of its epigraph have
dimension n. Indeed if (∇f(η)−∇f(ξ)) · (η−ξ) = 0 then f is affine on the segment
[ξ, η] so that the graph of f contains the segment joining (ξ, f(ξ)) to (η, f(η)). The
assumption on the non trivial faces of the graph of f implies that the segment [ξ, η]
belongs to the closure E of an open set E where f is affine, say f(x) = k · x+ d for
some k ∈ Rn and d ∈ R. Thus ∇f = k on E and in particular ∇f(ξ) = ∇f(η) = k.
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2. Basic tools

In this section we present the basic tools to prove our regularity results and a Haar-
Rado type theorem. Most of them are a reformulation in the PDE’s framework of
some analogous result that we proved for minimizers of integral functionals in [12].
However their proofs are not a straightforward modification of the variational ones
and need some peculiar techniques that we develope here.

2.1. Comparison Principles. We recall the notion of sub/supersolution to the
PDE Lv = 0. Here p ≥ 1 and q is the conjugate exponent of p.

Definition 2.1. Let u ∈W 1,p(Ω) be such that a(∇u), b(x, u(x)) ∈ Lq(Ω). We say
that u is a subsolution to Lv = 0 (we write that Lu ≤ 0) in Ω if

∀φ ∈W 1,p
0 (Ω), φ ≥ 0 a.e.

ˆ
Ω

a(∇u(x))∇φ(x) + b(x, u(x))φ(x) dx ≤ 0 ; (2.1)

u is a supersolution to Lv = 0 (we write that Lu ≥ 0) in Ω if

∀φ ∈W 1,p
0 (Ω), φ ≥ 0 a.e.

ˆ
Ω

a(∇u(x))∇φ(x) + b(x, u(x))φ(x) dx ≥ 0. (2.2)

Finally, u is a solution to Lv = 0 (i.e. Lu = 0) in Ω if

∀φ ∈W 1,p
0 (Ω),

ˆ
Ω

a(∇u(x))∇φ(x) + b(x, u(x))φ(x) dx = 0. (2.3)

A subsolution (resp. supersolution) to Lv = 0 is said to be strict if the inequality
(2.1) (resp. (2.2)) is strict whenever φ is non zero.

The next Lemma is a key tool in the proof of the subsequent Comparison Principle.

Lemma 2.1. Assume that L satisfies A1) and B1). Let u, w be such that Lu ≤ 0,
Lw ≥ 0 and u ≤ w on ∂Ω. The the following statements hold

a) a(∇u) = a(∇w) and b(x, u(x)) = b(x,w(x)) a.e. on the set

Σ = {x ∈ Ω : u(x) > w(x)};

b) L(u ∧ w) ≤ 0 and L(u ∨ w) ≥ 0;
c) L(u ∧ w) = 0 if Lu = 0 and L(u ∨ w) = 0 if Lw = 0.

Proof. a) Let Σ = {x ∈ Ω : u(x) > w(x)}. Since, by taking (u − w)+ as a test
function ˆ

Ω

a(∇u) · ∇(u− w)+ + b(x, u)(u− w)+ dx ≤ 0

and ˆ
Ω

a(∇w) · ∇(u− w)+ + b(x,w)(u− w)+ dx ≥ 0

then ˆ
Σ

(a(∇u)− a(∇w)) · (∇u−∇w) + (b(x, u)− b(x,w)(u− w) dx ≤ 0

so that A1) and B1) imply that

(a(∇u)− a(∇w)) · (∇u−∇w) = 0, (b(x, u)− b(x,w))(u− w) = 0 a.e. on Σ :

again A1) and B1) yield a(∇u) = a(∇w) and b(x, u) = b(x,w) a.e. on Σ.
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We show now that u ∨ w is a supersolution to Lv = 0. If φ ∈ W 1,p
0 (Ω), φ ≥ 0 a.e.

then by a) we haveˆ
Ω

a(∇(u ∨ w)) · ∇φ+ b(x, u ∨ w)φdx

=

ˆ
u≤w

a(∇w) · ∇φ+ b(x,w)φdx+

ˆ
Σ

a(∇u) · ∇φ+ b(x, u)φdx

=

ˆ
u≤w

a(∇w) · ∇φ+ b(x,w)φdx+

ˆ
Σ

a(∇w) · ∇φ+ b(x,w)φdx

=

ˆ
Ω

a(∇w) · ∇φ+ b(x,w)φdx ≥ 0.

Notice that the last inequality is actually a equality if Lw = 0, proving the parts
of claims b) and c) concerning u ∨ w. The statements concerning u ∧ w follow
similarly. �

In the next Comparison Principle we give some conditions the ensure that u ≤ w
a.e. on Ω once Lu ≤ 0, Lw ≥ 0 and u ≤ w on ∂Ω. The first of these conditions
is the strict monotonicity of a or b: in case i) the conclusion is well known and
we write it here just for the convenience of the reader. We underline that in this
case the basic point is the uniqueness of the solutions to Lw = 0 for a prescribed
boundary datum. In the general case, without assuming i), the solutions to Lv = 0
may not be unique and it may happen that the Comparison Principle does not hold
for arbitrary solutions to Lv = 0. An example of this situation can be found in [4]
in a variational setting. The new fact here is that we take into account the case
where solutions to Lv = 0 are not unique. Namely in the case iii) of Theorem 2.1the
function that are involved in the Comparison Principle are some special solutions to
Lv = 0: the maximum and/or the minimum one for a prescribed boundary datum.

Definition 2.2. We say that u ∈W 1,p(Ω) is the maximum (resp. minimum) of the

solutions to Lv = 0 if Lu = 0 and v ≤ u (resp. v ≥ u) a.e. for every v ∈ u+W 1,p
0 (Ω)

satisfying Lv = 0.

We underline that these solutions do both trivially exist in the case where the
solutions to Lv = 0 are unique. We will show in § 3 that they still exist if L satisfies
some suitable growth conditions.

Theorem 2.1 (Comparison Principle for extremal solutions). Assume that L sat-
isfies A1) and B1). Let u, w be such that Lu ≤ 0, Lw ≥ 0 and u ≤ w on ∂Ω.
Assume moreover that one of the following assumptions holds:

i) Either the function a is strictly monotonic or the function u 7→ b(x, u) is
strictly monotonic for a. e. x;

ii) u is a strict subsolution or w is a strict supersolution to Lv = 0;
iii) u is the minimum of the solutions or w is the maximum of the solutions to

Lv = 0.

Then u ≤ w a.e. on Ω.

Proof. i) Claim a) of Lemma 2.1 implies that a(∇u) = a(∇w) and b(x, u(x)) =
b(x,w(x)) a.e. on Σ = {x ∈ Ω : u(x) > w(x)}. The strict monotonicity of a (resp.
of b(x, ·)) implies that ∇u = ∇w (resp. u = w) a.e. on Σ: in both cases we obtain
that (u− w)+ = 0 a.e. on Ω.
ii) Assume that Lu < 0 and that by contradiction that u > w on a non negligible

set Σ. Then by taking (u− w)+ as a test function we getˆ
Σ

a(∇u) · ∇(u− w)+ + b(x, u)(u− w)+ dx < 0.
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Now Lemma 2.1 implies that a(∇u) = a(∇w) and b(x, u(x)) = b(x,w(x)) a.e. on
Σ = {x ∈ Ω : u(x) > w(x)} and thusˆ

Ω

a(∇w) · ∇(u− w)+ + b(x,w)(u− w)+ dx < 0,

contradicting the fact that Lw ≥ 0; it follows that u ≤ w a.e.. The case where w is
a strict supersolution follows similarly.
iii) Assume that u is the minimum of the solutions to Lv = 0. Since by c)

of Lemma 2.1 u ∧ w is still a solution to Lu = 0 then the minimality of u yields
u ≤ u ∧ w so that u ≤ w a.e.. The case where w is the maximum of the solutions
to Lu = 0 follows similarly. �
2.2. Behavior of solutions with respect to translations. Let now ω be any
positive modulus of continuity. We consider the following monotonicity assumption
on b, more general then B1).
Assumption B2).

∀x, y ∈ Rn, ∀u, v ∈ R v ≥ u+ ω(|y − x|) ⇒ b(y, v) ≥ b(x, u).

Remark 2.1. Notice that B2) implies B1): indeed if x ∈ Ω then ω(0) = 0 = x− x
so that if v ≥ u then v ≥ u + ω(0) and the validity of B2) yields b(x, v) ≥ b(x, u).
Moreover if b(x, u) = b(u) does not depend on x then B2) is fulfilled if and only if
b is increasing.

The following theorem states that, in the case we are considering, the property
of being a subsolution or supersolutions is preserved under suitable translations.

Theorem 2.2. Let ω be a modulus of continuity, h ∈ Rn and assume that L
satisfies A1) and B1). Let u be a subsolution of Lv = 0. Then u(y − h)− ω(|h|) is
a subsolution of Lv = 0 on h + Ω. Analogously, if u is a supersolution of Lv = 0
on Ω then u(y + h) + ω(|h|) is a supersolution of Lv = 0 on h+Ω.

Proof. Let u be a subsolution of Lv = 0 and set c = ω(|h|), w(y) = u(y − h) − c.

Let φ ∈W 1,2
0 (h+Ω) be positive a.e.; the change of variables y = x+ h yields

I
.
=

ˆ
h+Ω

a(∇w(y)) · ∇φ(y) + b(y, w(y))φ(y) dy =

=

ˆ
Ω

a(∇u(x)) · ∇ψ(x) + b(x+ h, u(x)− c)ψ(x) dx

where we set ψ(x) = φ(x+ h), a function of W 1,p
0 (Ω). Therefore I = Ξ+Π with

Ξ =

ˆ
Ω

a(∇u(x)) · ∇ψ(x) + b(x, u(x))ψ(x) dx

Π =

ˆ
Ω

(b(x+ h, u(x)− c)− b(x, u(x)))ψ(x) dx.

Now Ξ ≤ 0 since u is a subsolution of Lv = 0; moreover since u(x)− (u(x)− c) =
c ≥ c then B2) implies that b(x, u(x)) ≥ b(x+ h, u(x)− c) so that Π ≤ 0: it follows
that I ≤ 0, i.e. w(y) = u(y − h) − ω(|h|) is a subsolution. The part of the claim
concerning supersolutions follows similarly. �
2.3. A Haar-Rado type theorem. The next result is in the flavor of well know
properties that hold both in the Calculus of Variations and in the PDE’s setting. In
the first case it is known as Haar-Rado theorem and it holds for Lipschitz minimizers
of strictly convex functionals of the gradient, whereas for differential equation can
be found in [7, Lemma 6.47] for a-harmonic functions. The proof there is based
on the particular structure of the operator (strict monotonicity and homogeneity
in the gradient variable) that allows the use of Harnack inequality in the interior
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of the domain. Our approach is based on the validity of the Comparison Principles
stated before. Our proof is directly inspired by our recent generalization of Haar-
Rado theorem in the Calculus of Variations [12]; we give it here for the sake of
completeness.

Theorem 2.3 (Haar-Rado type). Let ω : [0,+∞[→ [0,+∞[ be a modulus of con-
tinuity, ϕ be a function in W 1,p(Ω) that is ω-continuous on Ω. Let L satisfy A1)
and B1) and u be the maximum or the minimum of the solutions to Lv = 0 on

ϕ+W 1,p
0 (Ω). Assume moreover that one the following assumptions holds

H1) u, ϕ ∈ C(Ω) and

∀γ ∈ ∂Ω, ∀x ∈ Ω |u(x)− ϕ(γ)| ≤ ω(|x− γ|); (2.4)

H2) Ω ∩ (h+Ω) is regular for all h ∈ Rn; moreover

∀γ ∈ ∂Ω |u(x)− ϕ(γ)| ≤ ω(|x− γ|) a.e. x; (2.5)

H3) there exist ℓ1, ℓ2 ∈ ϕ+W 1,1
0 (Ω) that are ω-continuous on Ω and such that

ℓ1(x) ≤ u(x) ≤ ℓ2(x) a.e. on Ω. (2.6)

Then |u(y)− u(x)| ≤ ω(|y − x|) for every Lebesgue points x and y of u.

Proof. Assume that u is the maximum of the solutions to Lv = 0. Fix h in Rn:
we know from [12, Lemma 4.1] that uh − ω(|h|) ≤ u on ∂(Ω ∩ Ωh) in the trace
sense. By Theorem 2.2 uh − ω(|h|) is a subsolution of Lv = 0 on Ωh and thus on
Ω ∩ Ωh whereas u is still the maximum of the solutions to Lv = 0 on Ω ∩ Ωh. The
Comparison Principle (Theorem 2.1) implies that uh − ω(|h|) ≤ u a.e. on Ω ∩ Ωh.
Now let x, y be two Lebesgue points of u and let r > 0 be such that Br(x) and
Br(y) are contained in Ω. Let h = y − x; since u(z + h) ≤ u(z) + ω(|h|) for a.e.
z ∈ Br(x), it turns out by integration on balls of radius r and then passing to the
limit as r tends to 0 that u(y) − u(x) ≤ ω(|y − x|); proving the claim. The case
where u is the minimum of the solutions follows similarly. �

3. The set of solutions to Lv = 0

In this section we assume p > 1 and we posit that L satisfies the Basic Assump-
tions A1) and B1) and moreover, the following growth condition.

Definition 3.1. For a : Rn → Rn a level set for a is a set of the form

Fξ = {η ∈ Rn : a(η) = a(ξ)}

for some ξ ∈ Rn.

Growth Assumption G). The functions a, b satisfy one of the following condi-
tions. Either

G1) The level sets of a are uniformly bounded, i.e. there is K > 0 such that
diamFξ ≤ K for all ξ ∈ Rn and there exists a modulus of continuity τ such
that |b(x, v)− b(x, u)| ≤ τ(|v − u|) for a.e. x and every u, v ∈ R; or

G2)

∀ξ ∈ Rn a(ξ) · ξ ≥ α|ξ|p, |a(ξ)| ≤ β|ξ|p−1 + r

∀u ∈ R |b(x, u)| ≤ γ|u|p−1 + s(x) a.e. in Ω

for some α, β, γ > 0, r ≥ 0 and s ∈ Lq(Ω).

Remark 3.1. Conditions G1) and G2) are independent.??

Lemma 3.1. Let F be a level set for a. F is closed and moreover

a) if a satisfies A1) then F is convex;
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b) if a Assumption G2) then

∀η, ξ ∈ F α|η|p−1 ≤ β|ξ|p−1 + r.

Proof. a) Let η, ξ ∈ F and ζ = λξ + (1− λ)η for some λ ∈]0, 1[. Now

0 ≤ (a(ζ)− a(ξ)) · (ζ − ξ) = (1− λ)(a(ζ)− a(ξ)) · (η − ξ)

0 ≤ (a(ζ)− a(η)) · (ζ − η) = λ(a(ζ)− a(ξ)) · (ξ − η)

Since a(ξ) = a(η) it follows that (a(ζ)−a(ξ))·(ζ−ξ) = 0: the monotonicity assump-
tion A1) yields the conclusion. b) The claim follows directly from the inequalities

α|η|p ≤ a(η) · η = a(ξ) · η ≤ (β|ξ|p−1 + r)|η|.
�

Theorem 3.1. Assume that L satisfies A1), B1) and G). Let ϕ in W 1,p(Ω) and

assume that the set of solutions X to Lv = 0 in ϕ +W 1,p
0 (Ω) is non empty. The

following assumptions hold:

a) Let u ∈ X and v ∈ ϕ+W 1,p
0 (Ω). Then v ∈ X if and only if a(∇v) = a(∇u)

and b(x, u) = b(x, v) a.e. in Ω;
b) if u, v ∈ X then u ∨ v, u ∧ v ∈ X;
c) X is convex;
d) X is weakly compact.

Proof. a) It is obvious that if a(∇v) = a(∇u) and b(x, u) = b(x, v) a.e. in Ω then
Lv = Lu = 0. Conversely assume that v ∈ X; by taking φ = (v − u)+ as a test
function we obtain thatˆ

{v≥u}
(a(∇v)− a(∇u)) · (∇v −∇u) + (b(x, v)− b(x, u))(v − u) dx = 0

whereas, by taking φ = (u− v)+ as a test function we obtain thatˆ
{v≤u}

(a(∇v)− a(∇u)) · (∇v −∇u) + (b(x, v)− b(x, u))(v − u) dx = 0

and thusˆ
Ω

(a(∇v)− a(∇u)) · (∇v −∇u) + (b(x, v)− b(x, u))(v − u) dx = 0.

Since from A1) and B1) the integrand is positive then

(a(∇v)− a(∇u)) · (∇v −∇u) = 0 (b(x, v)− b(x, u))(v − u) = 0 a.e.

it follows that a(∇u) = a(∇v) and b(x, v) = b(x, u) a.e.. b) If u, v ∈ X then
a(∇u) = a(∇v) and b(x, u) = b(x, v) a.e. so that a(∇(u ∧ v)) = a(∇(u ∨ v)) =
a(∇u) and analogously b(x, u ∧ v) = b(x, u ∨ v) = b(x, u) a.e.: a) implies that both
u ∧ v, u ∨ v ∈ X. c) Let u, v ∈ X. Then by a) we have a(∇u) = a(∇v) and
b(x, u) = b(x, v) a.e.. It follows from Lemma 3.1 a) that if w = λu + (1 − λ)v for
some λ ∈ [0, 1] then a(∇w) = a(∇u) a.e.; from the monotonicity of b(x, ·) we infer
that b(x, λu + (1 − λ)v) = b(x, u): a) yields the claim. d) Assume first that G1)
holds. Let (uk)k be a sequence in X. Then by a) a(∇uk) = a(∇u1). Since the
level sets are uniformly bounded there is K > 0 such that |∇(uk(x)− u1(x))| ≤ K
a.e. for every k. It follows that the sequence (uk − u1)k is weakly∗ precompact in
W 1,∞(Ω) so that there exists a subsequence weakly converging to a function v in
W 1,1(Ω): set u = u1 + v. Since ∇uk ⇀ ∇u in L1(Ω), by Mazur’s Lemma there is a
sequence (∇wk)k of convex combination of ∇uk that converges strongly to ∇u in
L1(Ω). Notice that since the level sets of a are convex and ∇uk(x) ∈ F∇u1(x) a.e.
then ∇wk(x) ∈ F∇u1(x) a.e. for every k. Modulo a subsequence we may assume
that ∇wk converges a.e. to ∇u. At every point x of convergence we thus have that
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∇u(x) ∈ F∇u1(x) a.e. or equivalently a(∇u(x)) = a(∇u1(x)) a.e.. Moreover the
uniform continuity of b(x, ·) implies that b(x, uk(x)) → b(x, u(x)) a.e.. It follows
then by a) that u ∈ X proving that the sequence (uk)k has a subsequence weakly
converging in X.

Assume now that G2) holds. The set X is closed in W 1,p(Ω): indeed if uk ∈ X
and uk → u in W 1,p(Ω) then, passing to a convenient subsequence, we may assume
that uk → u, ∇uk → ∇u a.e. and |uk| ≤ h, |∇uk| ≤ h, for some h ∈ Lp(Ω). The
continuity of a and b(x, ·) thus implies that a(∇uk) → a(∇u), b(x, uk) → b(x, u)
a.e. and the estimates from above in G) give both |a(∇uk)| ≤ β|∇uk|p−1 ≤ βhp−1

and |b(x, uk)| ≤ γ|uk|p−1 + |s| ≤ γhp−1 + |s|, with hp−1, s ∈ Lq(Ω). Thus, if

φ ∈W 1,p
0 (Ω) the Lebesgue dominated convergence theorem yieldsˆ
Ω

a(∇u) · ∇φ+ b(x, u)φdx = lim
k→∞

ˆ
Ω

a(∇uk) · ∇φ+ b(x, uk)φdx = 0,

proving that u ∈ X; the convexity of X then yields the closure of X in the weak
topology. Moreover X is bounded in W 1,p(Ω), indeed fix u ∈ X: if v ∈ X then
from a) we deduce that a(∇v) = a(∇u); Lemma 3.1 b) then implies that

α|∇v|p−1 ≤ β|∇u|p−1 + r a.e.

so that ∥∇v∥p is bounded by a constant (depending on u). Since v ∈ u+W 1,p
0 (Ω),

Poincaré inequality yields the conclusion. �

Remark 3.2. The existence of a solution to Lv = 0 follows the Browder-Minty
Theorem [14] if the constants in the growth conditions are suitably chosen in such
a way that the operator L is coercive.

We are now in the position to prove the existence of the minimum and the
maximum of the solutions to Lv = 0 with a prescribed boundary datum.

Theorem 3.2 (Existence of extremal solutions). Assume that L satisfies A1), B1)

and G). Given ϕ ∈ W 1,p(Ω) there are u−, u+ ∈ ϕ +W 1,p
0 (Ω) solutions to Lv = 0

satisfying u− ≤ u ≤ u+ a.e. for all u ∈ ϕ+W 1,p
0 (Ω) with Lu = 0.

Proof. Let X be the set of solutions to Lv = 0 in ϕ +W 1,p
0 (Ω). From the closure

and the convexity of X together with the separability of W 1,p(Ω) there is a dense
sequence (uk)k in X. For every k ∈ N set vk = u1 ∨ · · · ∨ uk and let u+ be the
pointwise limit of vk. From the weak compactness of X there is w ∈ X such
that vk converges weakly to w; thus vk converges strongly to w in Lp(Ω) so that
u+ = w ∈ X. Clearly u+ ≥ u for every u ∈ X. The existence of u− follows
similarly. �

4. The generalized (BSC)

From now on we consider the homogeneous case

Lv = −div a(∇v)
and we assume that the operator satisfies the Basic Assumption A1).

4.1. A class of functions that satisfies the Comparison Principle. We con-
sider the translates of the support functions of a compact and convex set, first
introduced by Cellina [4] in the framework of the Calculus of Variations to deal
with non strictly convex problems.

Definition 4.1 (A class of functions). Whenever F is a compact and convex subset
of Rn and x0 ∈ Rn we consider the functions

h+F,x0
(x) = max{ξ · (x− x0) : ξ ∈ F}
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h−F,x0
(x) = min{ξ · (x− x0) : ξ ∈ F} = −h+−F,x0

(x).

Example 1. Let F be the unit ball. Then h+F,x0
(x) = |x − x0| and h−F,x0

(x) =

−|x− x0| for all x0.
It is worth mentioning that the functions just defined are Lipschitz, that∇h±F,x0

∈
F and that h±F,x0

(x) = ∇h±F,x0
(x) · (x−x0) a.e.: this follows easily from the proper-

ties of the support function to a set [15] or see [4] for a direct proof; they are nothing
more than affine when F is reduced to a single point. We show now that these func-
tions satisfy the Comparison Principle with respect to any other minimizer (not just
the minimum or the maximum ones). The proposition is the reformulation in this
PDE’s setting of a result by Cellina in [4] in the more general form as in [9].

Proposition 4.1. Assume that a satisfies A1) and let F be a compact level set
for a. For every x0 ∈ Rn and c ∈ R the functions c + h±F,x0

are solutions to

−div a(∇v) = 0. Moreover if x0 /∈ Ω they satisfy the Comparison Principle:

u ∈ (c+h±F,x0
)+W 1,1

0 (Ω) Lu ≤ 0, u ≤ c+h±F,x0
on ∂Ω ⇒ u ≤ c+h±F,x0

a.e. on Ω,

u ∈ (c+h±F,x0
)+W 1,1

0 (Ω) Lu ≥ 0, u ≥ c+h±F,x0
on ∂Ω ⇒ u ≥ c+h±F,x0

a.e. on Ω.

Proof. Let F = {η ∈ Rn : a(η) = a(ξ)} for some ξ. The fact that c + h±F,x0
are

solutions follows immediately since

a(∇(c+ h±F,x0
)) = a(ξ)

is a constant. Assume now without restriction that c = 0. Set h = h+F,x0
and

let u ∈ h + W 1,1
0 (Ω) be a solution to Lv = 0. By Theorem 3.1 we obtain that

a(∇u) = a(∇h) a.e. so that ∇u ∈ F a.e.; by the very definition of h we thus obtain
that

∇u(x) · (x− x0) ≤ ∇h+F,x0
(x) · (x− x0) = h(x) a.e.

and therefore, if we set ψ = h− u, we have

ψ ∈W 1,1
0 (Ω), ∇ψ(x) · (x− x0) ≥ 0 a.e. on Ω.

We resume here the same reasoning that was carried on in [8]: there is a represen-
tative ψ∗ of ψ that is zero on ∂Ω and such that ψ∗ is absolutely continuous on a.e.
line through x0 and such that, for a.e. x ∈ Ω,

∀t d

dt
ψ∗(x0 + t(x− x0)) = ∇ψ(x0 + t(x− x0)) · (x− x0) ≥ 0

so that ψ∗ increases along a.e. line from x0. Since ψ∗ = 0 on ∂Ω it follows that
ψ∗ does actually vanish along these lines, so that ψ∗ = 0 a.e. on Ω. Thus ψ = 0
a.e. on Ω and u = h, so that h = h+F,x0

is the only solution with such a boundary

datum. The same reasoning applies to h−F,x0
. Remark ?? yields the conclusion. �

4.2. Bounded Slopes Conditions. We first recall the Bounded Slope Condition
introduced by Hartmann and Stampacchia in [6] .

Definition 4.2 (BSC). The function ϕ satisfies the Bounded Slope Condition of
rank M ≥ 0 if for every γ ∈ ∂Ω

∃|z−γ | ≤M ∀γ′ ∈ ∂Ω ϕ(γ) + z−γ · (γ′ − γ) ≤ ϕ(γ′) (4.1)

∃|z+γ | ≤M ∀γ′ ∈ ∂Ω ϕ(γ) + z+γ · (γ′ − γ) ≥ ϕ(γ′) (4.2)

Remark 4.1. We remind that ϕ satisfies the (BSC) if and only if it is the restriction
of a convex function and of a concave function, both defined on Rn and globally
Lipschitz. Under a uniform convexity assumption on the domain any C2 function
satisfies the (BSC) [13]. The (BSC) is a quite restrictive condition: it forces for
instance the function ϕ to be affine on the flat parts of ∂Ω and Ω to be convex.
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Recently, some new conditions that are less restrictive than the (BSC) appeared
in the literature for problems of the Calculus of Variations depending on the gra-
dient. The Lower (resp. Upper) (BSC) was introduced by Clarke: it requires the
validity of just (4.1) (resp. (4.2)), which turns out in [5] to be sufficient to obtain
the local Lipschitz continuity of the minimizers of strictly convex functionals. A
generalized (BSC) was introduced by Cellina, where the functions c+h±F,x0

defined

above replace affine functions in the (BSC): when the sets F are the projections
onto Rn of the faces of the epigraph of the lagrangian the condition turns out to be
sufficient in [11] to obtain the Lipschitz continuity of the minimizers. The condition
is particularly suitable and interesting when the lagrangian is not strictly convex,
since in this case some of the faces of its epigraph are not reduced to a point, so
that the functions h±F,x0

are not affine.
In what follows we convert the results quoted above in the framework of elliptic

PDE’s. Let us first formulate the definition of the Generalized (BSC) in this context.
We recall that we consider the operator Lv = −div a(∇v), where a : Rn → Rn

satisfies Assumption A1).

Definition 4.3 (Generalized (BSC) or (GBSC)). The pair (ϕ, a) satisfies the Gen-
eralized (BSC ) of rank M ≥ 0 if for every γ ∈ ∂Ω:

i) there exists a level set F− for a, contained in a ball of radius M , such that

∀γ′ ∈ ∂Ω ϕ(γ) + h−
F−

γ ,γ
(γ′) ≤ ϕ(γ′); (4.3)

ii) there exists a level set F+ for a, contained in a ball of radius M , such that

∀γ′ ∈ ∂Ω ϕ(γ) + h+
F+

γ ,γ
(γ′) ≥ ϕ(γ′). (4.4)

The pair (ϕ, a) is said to satisfy the Generalized Lower (resp. Upper) (BSC ) if just
(4.3) (resp. (4.4)) holds.

Remark 4.2. Opposite to the (BSC) the definition of the Generalized (BSC) in-
volves the operator a. This is why it appears slightly different to the analogous
condition formulated in the context of the Calculus of Variations [11] where it de-
pends on the lagrangian. This also explains why the proof of the subsequent results
differ from their analogous versions that have been established in the frameworks
of the Calculus of variations.

The term “Generalized” in the new (BSC) is motivated by the following result.

Proposition 4.2. Assume that the function a satisfies A1),G) and that (ϕ, a) sat-
isfies the Lower (resp. Upper) (BSC) of rank M . Then ϕ satisfies the Lower (resp.
Upper) Generalized (BSC) of a rank depending only on a and M .

Proof. Assume that for some γ and z ∈ Rn with |z| ≤M we have

∀γ′ ∈ ∂Ω ϕ(γ) + z · (γ′ − γ) ≤ ϕ(γ′).

Let Fz be the level set for a defined by

Fz = {η ∈ Rn : a(η) = a(z)}.
Since, clearly, for all γ′ ∈ ∂Ω

h−Fz,γ
(γ′) = min{ξ · (γ′ − γ) : ξ ∈ Fz} ≤ z · (γ′ − γ)

then ϕ(γ) + h−Fz,γ
(γ′) ≤ ϕ(γ′). If G1) holds then Fz is contained in a ball of center

0 and radius M +K. If g2) then by Lemma 3.1 b) we have

|αη|p−1 ≤ β|z|p−1 + r ≤ βMp−1 + r

so that F is contained in a ball of center 0 and radius depending on a and M , thus
proving that the validity of the Lower (BSC) implies that of the Generalized Lower
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(BSC) in both the cases. The version of the result for the Upper (BSC) follows
similarly. �

Example 2. The Generalized (BSC) is strictly more general than the (BSC). For
instance if

a(ξ) = ∇f(ξ) f(ξ) =

{
(|ξ|2 − 1)2 if |ξ| ≥ 1;
0 otherwise.

then the level set F of a containing the origin is the closed unit ball. It follows
from Example 1 that h+F,x0

(x) = |x− x0| and h−F,x0
(x) = −|x− x0|. Therefore any

Lipschitz function ϕ of rank less or equal than 1 is such that (ϕ, a) satisfies the
Generalized (BSC); note that the domain may be not convex.

5. Regularity results for the solutions to −div a(∇v) = 0

In this section we assume that the operator Lv = −div a(∇v) satisfies the Basic
Assumption A1) and the Growth Assumption G). In this situation where b = 0
the Browder-Minty Theorem ensures the existence of a solution to the Dirichlet
problem associated to L.

5.1. Lipschitz continuity. We first formulate a variant of the celebrated result
on the existence of a Lipschitz solution to Lu = 0 [6, Theorem 13.1]. There it is
required that a satisfies the monotonicity assumption (1.1) and that ϕ satisfies the
(BSC). We allow here ϕ to belong to a wider class, whereas a counterpart due to
the nonlinarity, we assume moreover that a satisfies the slightly stronger condition
A1).

Theorem 5.1 (Lipschitz continuity with the Generalized (BSC)). Let Ω be an
open and bounded subset of Rn. Assume that the function a satisfies A1), G) and
that (ϕ, a) satisfies the Generalized (BSC) of rank M . Let u be the maximum (resp.

minimum) of the solutions to Lv = 0 on ϕ+W 1,1
0 (Ω). Then u is Lipschitz of rank

depending on a and M .

Proof. Let u be any solution to Lv = 0 on ϕ +W 1,1
0 (Ω). It follows from Proposi-

tion 4.1 that the inequalities (4.3) and (4.4) hold true for every γ′ ∈ Ω (instead of
just for γ′ ∈ ∂Ω). For x ∈ Ω set

ℓ−(x) = sup{ϕ(γ) + h−
F−

γ ,γ
(x) : γ ∈ ∂Ω}

and

ℓ+(x) = inf{ϕ(γ) + h+
F+

γ ,γ
(x) : γ ∈ ∂Ω}.

Then ℓ± are Lipschitz, both belong to ϕ+W 1,1
0 (Ω) and we have

ℓ− ≤ u ≤ ℓ+ a.e. on Ω

so that Assumption H3) of Theorem 2.3 is satisfied: its application yields the Lip-
schitz continuity of u whenever u is the maximum or the minimum of the minimiz-
ers. �

It follows from Proposition 4.2 that the conclusion of Theorem 5.1 does hold
if one assumes the more restrictive assumption that ϕ satisfies the (BSC) instead
of the Generalized (BSC), thus obtaining the conclusion of [6, Theorem 13.1] as a
corollary. We have to say however that in [6] it is not required that the function
a satisfies the assumptions A1) and G). The fact that G) can be omitted there is
due to the fact that the functions involved are just Lipschitz of a prescribed rank;
here we need G) first to define the functions hF,x0 defined upon some level sets that
turn out to be bounded under G).
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5.2. Local Lipschitz and Hölder continuity. In [5] Clarke introduced the uni-
lateral (BSC) to obtain the local Lipschitz regularity of the minimum of a varia-
tional problem of the gradient. We generalized it to the case of non strictly convex
lagrangian in [11]. The Comparison Principles established here allow us to convert
the result in the framework of PDE’s. We underline that, beside the interest of
this results in itself, it is also a basic tool in the subsequent proof of the Hölder
continuty of the solutions to Lv = 0 (Theorem 5.3).

Theorem 5.2 (Local Lipschitz continuity). Let Ω be an open, convex and bounded
subset of Rn. Assume that the function a satisfies A1), G) and that (ϕ, a) fulfills
the Lower or the Upper (GBSC). Let u be the maximum (resp. minimum) of the
solutions to Lv = 0. Then u is locally Lipschitz.

Proof. The proof is similar to those of [5, Theorems 2.1] and [11, Theorem 4.1]. We
just point out the new fact that we are dealing with solutions to a PDE instead
of minimizers of an integral functional, by showing that the main arguments of
these proofs do still work in this setting. Let u be the maximum of the solutions
to Lu = 0 on ϕ+W 1,p

0 (Ω) and (ϕ, a) satisfies the Lower (GBSC).

i) For λ ∈]0, 1] and γ ∈ ∂Ω the function uλ(x) = λu

(
x− γ

λ
+ γ

)
is still a solution

to Lv = 0 on Ωλ = λ(Ω− γ) + γ: it is the greater one among those that share the
same boundary datum.
ii) By Proposition 4.1 the Lower (GBSC) implies that u(x) ≥ ϕ(γ) + h−

F−
γ ,γ

(x) for

a.e. x ∈ Ω.
iii) The solutions to Lv = 0 with v ∈ ϕ+W 1,p

0 (Ω) are bounded. Fix γ ∈ ∂Ω: since
u(x) ≥ ϕ(γ) + h−

F−
γ ,γ

(x) then u is bounded from below. Moreover let C = ∥ϕ∥∞
and uC be the greatest solution to Lv = 0 with v = C on ∂Ω. By Theorem 3.1 we
have a(0) = a(∇C) = a(∇uC) so that ∇uC belongs a.e. to the level set {η ∈ Rn :
a(η) = a(0)} which is bounded thanks to assumption G) and Lemma 3.1 b). Thus
uC is Lipschitz and bounded by a constant depending only on C, a and diamΩ.

The proof then proceeds as in [5, Theorem 2.1] �

Finally we have the analogue of [10, Theorem 4.5] yield the following result.

Theorem 5.3 (Continuity and Hölder continuity). Let Ω be an open, convex and
bounded subset of Rn. Assume that the function a satisfies A1) and G). Assume
moreover, under G1, that a(ξ) · ξ ≥ α|ξ|p. Let u be the maximum or the minimum

of the solutions to Lv = 0 on ϕ+W 1,p
0 (Ω). Then

a) If ϕ is Lipschitz then u is Hölder continuous in Ω of order α = p−1
n+p−1 ;

b) if ϕ is continuous then u is continuous on Ω.

Proof. Again we just show that the main arguments of the proof of [10, Theorem
4.5] continue to hold true in this PDE’s setting. Assume first that ϕ is Lipschitz.
i) The analogue of [5, Lemma 2.11] is still valid. More precisely: let u be the
maximum (resp. minimum) of the solutions to Lv = 0 when the boundary datum
ϕ satisfies the Lower (resp. Upper) BSC and the domain is a polyhedron Q. Then
there exists a constant C depending only on the diameter of Q, ∥ϕ∥∞, ∥∇ϕ∥∞ such
that

∀γ ∈ ∂Ω, ∀x ∈ Ω u(x)− ϕ(γ) ≤ C|x− γ|α (resp. ϕ(γ)− u(x) ≤ C|x− γ|α).

Indeed the result is a consequence of the local Lipschitz continuity of u, that we
established in Theorem 5.2, and of a uniform bound of ∥∇u∥Lp(Q) that follows there
from the coercivity of the functional and the fact that u is a minimizer. Here such
an estimate follows from Lemma 3.1 b) with η = ∇u and ξ = ∇ϕ.
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ii) Let now u be any solution to Lv = 0 with v = ϕ on ∂Ω, where ϕ is Lipschitz
of rank M . Following the steps of the proof of Theorem 4.5 of [10], for γ ∈ ∂Ω,
we consider the convex function ϕγ(x) = ϕ(γ) +M |x − γ| and a cube Qγ that is
tangent to Ω at γ, contains Ω, and is isometric to a cube Q that does not depend
on γ. Let uγ be the maximum of the solutions on Qγ to Lv = 0, v = ϕγ on ∂Qγ .
Since Qγ is polyhedron we know that

∀x ∈ Qγ uγ(x)− ϕ(γ) ≤ C|x− γ|α (5.1)

where C depends only on diamQγ = diamQ and on ∥∇ϕγ∥∞ = M , so not on γ
itself. Since ϕγ is convex, then the Comparison Principle 2.1 implies that uγ ≥ ϕγ
on Qγ so that uγ ≥ ϕγ ≥ ϕ on Ω. Now uγ is still the maximum of the solutions
to Lv = 0 on Ω among the functions that share the same boundary datum. Again,
Theorem 2.1 shows that uγ ≥ u a.e. on Ω. It follows from (5.1) that

u(x)− ϕ(γ) ≤ uγ(x)− ϕ(γ) ≤ C|x− γ|α a.e. on Ω.

Analogously one obtains that ϕ(γ)− u(x) ≤ C|x− γ|α a.e. on Ω.
iii) If u is the maximum or the minimum of the solutions to Lv = 0 with v = ϕ on
∂Ω then a) follows from the Haar-Rado type Theorem 2.3.
iv) Claim b) follows as in the last lines of the proof of [2, Lemma 7] by approximating
ϕ by means of Lipschitz functions and of the Comparison Principle. �

We have proved in Lemma 3.1 that if a satisfies assumptions A1) and G) then
for every ξ ∈ Rn the level set Fξ = {η ∈ Rn : a(η) = a(ξ)} is compact. If this
requirement is slightly strengthened the previous results hold for every solution to
Lv = 0, not just for the maximum and the minimum ones.

Corollary 5.1. Under the above assumptions assume moreover that the diameters
of the level sets of a are bounded by a constant. The conclusions of Theorem 5.1,
Theorem 5.2 and of Theorem 5.3 hold for every solution to Lv = 0, v = ϕ on ∂Ω.

Proof. It is enough to note that if u and w are solutions to Lv = 0 with the same
boundary datum then, by Proposition 3.1, their gradients belong to a same level
set. Our assumption that w = u + ℓ where ℓ is a Lipschitz function whose rank
depends only on a: the Hölder or Lipschitz regularity of w is then inherited by that
of u. �

Similarly to [10, Corollary 4.10] it can be easily shown that if the diameters of
the sets Fξ are uniformly bounded then the conclusions of .

Remark 5.1. The conclusion of Theorem 5.3 is, from one hand, an extension of
a well known result among a-harmonic function, i.e. solutions to −div a(∇v) = 0
where a is strictly monotonic and satisfies the further assumption that a(ξ) ∼
c|ξ|p−1 in the sense that a(λξ) = λ|λ|p−2a(ξ) whenever λ ∈ R is non zero [7,
Theorem 6.44]. We note however that this classical results holds even when the
boundary datum ϕ is Hölder, the domain is regular and a has a suitable dependence
on x. The extension of the validity of our result to Hölder boundary data or regular,
though non convex domains, remains open.
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