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The parametric integral
b
I(C)=J S(x'(1))dt

attains the minimum in a class of rectifiable curves C:x=x(r), a<t<b, under
slow growth conditions and no convexity assumption on f.  © 1992 Academic Press, Inc.

INTRODUCTION

Let f: R" — R be continuous and positive homogeneous of degree one.

The primary purpose of this paper is to show that if / satisfies the growth
assumption

VEeR": f(&) = vI¢]

then Tonelli’s convexity assumption on f can be omitted for the existence
of the minimum of the parametric integral

b
10) = fix()dr

on the set of rectifiable Fréchet-curves C:x=x(1), a<t<b, with
prescribed boundary conditions (x(a), x(b))e Kx B, K (resp. B) being
compact (resp. closed).

The main tool is an extension of Liapunov’s Theorem on the range of
vector measures (Theorem 1).

I thank Professor L. D. Berkovitz who carefully read the manuscript and
suggested the present version of the first part of the proof of Theorem 2,
which is more concise and elegant than the original one. I also thank
Professor A.Cellina for the useful conversations we had during the
preparation of this paper.
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292 CARLO MARICONDA
PARAMETRIC CURVES

A parametric curve C in R” is a suitable equivalence class of n-vector
continuous maps

x=x(t), agt<b; y=y(s)c<s<d
leaving unchanged the sense in which the curve is travelled.

Usually, two continuous maps x and y are said to be equivalent if there
is a strictly increasing continuous map

s=h(t), a<t<b, h(a)=c. h(b)=d
such that
y(h())=x(1), a<i<b.
For technical reasons a weaker equivalence relation is needed.
DerINITION 1 [3, 14.1.A7]. Two continuous maps x and y as above

are said to be Fréchet equivalent if for every £>0 there is some
homeomorphism

his=h(t), a<i<b, hla)=c, h(b)=d
such that
| y(h(2)) — (1) <5, a<i<b.

A class of F-equivalent maps is called a parametric curve or F(réchet)-
curve.

It is easily seen that for any given F-curve C:x=x(t), a<t<b, the
subsets

[Cl=[x]={x():a<i<b} and {x(a)}, {x(b)}
of R” are F-invariant. The same holds for the Jordan length L(C) of a

Fréchet curve C, which is defined as a total variation,

N
L(C)=sup Z x(e)—x(g;_ )l (1)

i=1

where sup is taken with respect to all subdivisions

a=ty << - <ty=b of [a, b].
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A F-curve is said to be rectifiable if L(C) < +o0. The following proposition
justifies the definition of F-curve.

ProPOSITION 1 [3, 14.1.1]. A rectifiable curve C possesses A.C. repre-
sentations. In particular, the arc-length parameter s yields a unique A.C.
representation

x=x(s), 0<s< L(C), |x'(s)|=1 ae. in [0, L].

If x(1), as<t<b, is an A.C. representation of C, the Jordan length L(C) is
given by

L(©)=[ ¥ ()l d )

Let /:R"xR”"— R be a continuous function, and C be a rectifiable
F-curve, x(t), a <t <b, be any of its A.C. representations. Then the integral

1x1=] fxto), <) de ()

is independent of the chosen A.C. representation if and only if f is a
parametric integrand, ie., f does not depend on r and is positive
homogencous of degree one in x’, that is, Vk>0: f(x, kx')=kf(x, x')
[3, 14.1.B]. In this situation (3) defines the parametric integral I(C) for any
F-curve C and for any of its A.C. representations.

PRELIMINARY RESULTS

Let f: [0, T]xR" >R be a function and let, for p>1, (h,) be the
following growth condition on f:

(h,) there exist y>0 and a function e LY([0, T]) such that
Y(t, x)e [0, TTx R™ f(t, x) = v|x]” +d(2). (4p)

The following theorem is an extension of Liapunov’s Theorem on the range
of a vector measure [3, Chap. 16]. Its proof, given here for the convenience
of the reader, is based on an argument of A. Cellina and G. Colombo [2].
Let us indicate by y the characteristic function of a set E.

THEOREM 1. Let Q be a measurable bounded subset of R", f, ..., f, (resp.
u,, .., u,) be a vector-valued measurable functions with values in R’ (resp.
R*). Let p,, .., p. be real valued, measurable and such that:
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(i) piw)=0, %, p,=1;
(i) X p fieL'(Q);

(iii) there exist an l-valued L' function 8, a positive vector y such that

[x)28) +7lu(0)]” (xeQ, 1< p<o0).

Then there exists a measurable partition E,, ..., E,, of Q with the property
that ¥, fixg e L'(2), ¥, u; g, € L7(2), and the following equalities hold:

LZ pfffdu=ZfE,ﬁdu, (5)

Lzmm@=zkmw. (6)

With the above notations, let us remark that if the functions u; are
chosen to be zero, then Theorem 1 yields the following Corollary:

COROLLARY. Let f,, .., f,, be measurable, bounded below be an integrable
Sfunction, and such that Y7 | p.fie L'. Then there exists a measurable

partition E, .., E, of Q such that (5) holds.

Remark. The above Corollary is a slightly different version of [4,
Proposition 4.1] and takes into account the fact that the growth condition
(iii) is necessary for (5) to hold. In fact, let us consider for instance
Q=10,11, u;=u,=0, fi{t)=1/t, fo=—~f,, p,=p,=1/2. Then the
function p, f,; + p,f,=0¢ L' but for each measurable partition E,, E, of
10, 1] the function f=f,xz + fo2r, is not an element of L'(|f(t)] = 1/t
a.e.).

Proof of Theorem 1. Let us suppose that /=k =1, the general case
being similar. By Lusin’s Theorem there exists a sequence (K;),.n of
disjoint compact subsets of £ and a null set N such that Q=Nu{|J; X))
and the restriction of each of the maps f; to any K; is continuous. In this
situation, the growth assumption (iii) implies that the functions u; restricted
to K; belong to L7(K,)= L'(K,) (jeN). For any j fixed in N, Liapunov’s
Theorem on the range of vector measures [3, Chap.16] provides the

L Yofidu=} L_J f, du, o

J.K Z Dilt; dy=;J.E{ u; du. (8)
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} Set, for any ve N, the function s, to be
} s‘,:Z Z (ﬁ_é)XE;"

j<v i=1

By (iii), each term of the right-hand side of the above equality is a sum of
non-negative terms, hence the sequence s, is monotone non-decreasing.
Furthermore, by (7) we have

[sai=3 3| i-0)au

J<v i=1"5

=3 [ 3 pifi-8)du

j<v Kii=1
<[ (2 p,f,-——cS) du
QN
which, by (ii), is finite. Moreover, if we set E; = Ujen (EY), we have
lims, =Y fixg—§6 ae.

Then Beppo Levi's convergence theorem implies that

Y fixp e L'(Q)
and

J.Q;ffxa dll=fg lisn s, du+J.Q ddu
=1i:nL)svd;4+L26d;4
:J‘QZ Pi(ﬁ—5)dy+J‘g(5du

:J‘QZ p: fidu,

which proves (5). In this situation assumption (iii) implies that
> u;x g€ L7(Q2). Hence, if we set s, to be

y= Z Z U; X E;

Jj€v i=1
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we have

si< Y ludxgeLl?(2)  and §, =Y U {5 e

i=1 i

Lebesgue’s dominated convergence theorem and equality (8) yield the
conclusion.

MAIN RESULT

THEOREM 2. Let K (resp. B) be a compact (resp. closed) subset of R".
Let f:R" — R be continuous, positive homogeneous of degree one. Further-
more, suppose that f satisfies the following growth assumption (hy):

(h,) there exists y> 0 such that, for every x'e R"
Sz yix).
Then the parametric integral

b
10)=[ fixw)ar

has an absolute mininwum in the class A of all rectifiable F-curves C: x = x({t),
a<t<b, satisfying the boundary conditions x(a)€ K, x(b)e B.

Proof. Let us consider the following equivalent control problem:

min Jql f(u) ds, subject to
V]

4 (P)
R u(s), x(0)e K, x(s,)eB.
ds
We are considering the A.C. representation with arc length as parameter,
hence s, is not fixed. The relaxed version of this problem is

i=n+1

minj(:l S pis) flu(s))ds,  subjectto

i=1

d_\‘ n+1
LS pis) i), (PR)
ds El pitsu

P20, Y plo)=1

i=1
The relaxed control VeCtor iS (P, v Puy 1> Ups oy Up i1 )-
The growth assumption (h,) implies that there exists an M >0 such that
the length s, of any relaxed curve is <M. Condition (h,) and p,>0,
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S, p;=1, imply that all controls in a minimizing sequence all lie in a given
ball in L'. This fact and the form of the state equations imply that all
curves in a minimizing sequence are equi-absolutely continuous. It then
follows from [1, Theorem 8.5, Chap. III] that the relaxed problem has a
solution

(X(S), pl(s)’ Rl pn+l(s)7 ul(s)7 Rd] un+l(s))'

Thus, if we set 2=[0,s,] and f,()=f(u,(r)) then Theorem 1 can be
applied. Let E,, .., E,, be the measurable partition of [0, s,] such that (5)
and (6) of Theorem 1 hold. We claim that the parametric curve C repre-
sented by %= %(¢), 0<1<s,, defined as

n+1

Fy= ) uw)re(t),  %(0)=x(0)

i=1

is a minimum of 7 in the class 4.
Clearly ¥ is A.C. and, by (6) we have X(s;)=x(s,)e B, hence Ced.
Furthermore, by (5) we have

1@=" 7(Suto) ato)) e

=3[ faa

=7 pito) Sty

= min(PR).
It follows that
inf(P) = inf(/) < [(C) = min(PR ) < inf(P),

hence the above equalities are in fact equalities.
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