A Generalization of the Cellina-Colombo Theorem for a Class of Non-convex Variational Problems

CARLO MARICONDA

Dipartimento di Matematica Pura e Applicata, via Belzoni 7, 35131 Padova, Italy

Submitted by Leonard D. Berkovitz

We state a condition under which the integral functional $I(x) = \int_0^T L(t, x(t), x'(t)) dt$ attains a minimum under the assumption that $x \mapsto L(t, x, x')$ is concave. © 1993 Academic Press. Inc.

Introduction

This paper concerns the problem (P) of the existence of a minimum for the integral functional I defined by

$$I(x) = \int_0^T L(t, x(t), x'(t)) dt$$

on the set of functions $x(\cdot)$ belonging to $W^{1,p}([0,T], \mathbb{R}^n)$ $(p \ge 1)$ such that x(0) = a, x(T) = b, in the case where L does not necessarily satisfy Tonelli's classical assumption of convexity with respect to x'.

In this situation, the most general result is the Cellina-Colombo theorem [2] stating that if L(t, x, x') = g(t, x) + h(t, x') and $x \mapsto g(t, x)$ is concave for a.e. t then Problem (P) admits at least one solution. For the case where the integrand is not the sum of two functions whose arguments are t, x and t, x' separately, it is not known whether the concavity assumption on the map $x \mapsto L(t, x, x')$ is sufficient for the existence of a solution to Problem (P). The purpose of this note is to consider this problem.

In Theorem 3 we prove that the functional I (under the concavity condition) attains a minimum if we assume further the existence of a solution

$$(\tilde{x}, p_1, ..., p_{n+1}, v_1, ..., v_{n+1})$$

to the associated relaxed problem (PR') satisfying

$$\bigcap_{i=1}^{n+1} \partial_x (-L(t, \tilde{x}(t), v_i(t))) \neq \emptyset \qquad \text{a.e.}$$
 (C)

Obviously, each solution to (P) is a solution to (PR') satisfying (C); the cases for which our theorem can be usefully applied are those where the converse does not hold. For instance, condition (C) is automatically satisfied (for each $\tilde{x}, v_1, ..., v_{n+1}$) when the integrand L is the sum of two functions whose arguments are t, x and t, x' separately. In this situation, Theorem 3 yields Cellina and Colombo's existence result; however, it is well known that a solution to the associated relaxed problem is not, in general, a solution to the original one.

As a further application of our condition we show that Problem (P) attains a minimum if L(t, x, x') = l(t, x) + f(t, x) g(t, x') and its bipolar $L^{**}(t, x, \cdot)$ is locally constant on $A(t, x) = \{\xi : L(t, x, \xi) > L^{**}(t, x, \xi)\}$.

The main tools are basically the arguments of [2]: an extension of Liapunov's theorem on the range of a vector measure and a selection theorem.

Assumptions and Preliminary Results

The following hypothesis is considered:

HYPOTHESIS (H). The set-valued map $\Phi: [0,T] \to 2^{\mathbb{R}^n}$ is measurable [1, Def. III.1.1] with non-empty closed values. In addition we assume that there exists at least one $v \in L^p([0,T],\mathbb{R}^n)$ such that $v(t) \in \Phi(t)$ a.e. and $\int_0^T v(t) \, dt = b - a$. The Caratheodory function $L: [0,T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ satisfies the following growth assumption: if p = 1, there exist a convex l.s.c. monotonic function $\psi: \mathbb{R}^+ \to \mathbb{R}^+$, a constant β_1 , and a function $\alpha_1(\cdot)$ in L^1 such that

$$L(t, x, \xi) \geqslant \alpha_1(t) - \beta_1 |x| + \psi(|\xi|)$$
for each x, \xi and for a.e. $t\left(\lim_{r \to \infty} \frac{\psi(r)}{r} = +\infty\right)$;

if p>1, there exist a positive constant γ_p , a constant β_p (β_p/γ_p) is strictly smaller than the best Sobolev constant in $W_0^{1,p}([0,T],\mathbb{R}^n))$, a function $\alpha_p(\cdot)$ in L^1 such that

$$L(t, x, \xi) \ge \alpha_p(t) - \beta_p |x|^p + \gamma_p |\xi|^p$$
 for each x, ξ and for a.e. t .

For each t, x, let us denote by $L^{**}(t, x, \cdot)$ the bipolar of the map $\xi \mapsto L(t, x, \xi)$ [4, Sect. I.4.2]. For each function L satisfying Hypothesis (H), its bipolar fulfills Tonelli's classical assumptions for the existence of a solution to the relaxed problem (PR) associated to (P),

minimize
$$\int_{0}^{T} L^{**}(t, x(t), x'(t)) dt$$
 (PR)

on the subset of $W^{1,p}([0,T], \mathbb{R}^n)$ of those functions x satisfying x(0) = a, x(T) = b, $x'(t) \in \Phi(t)$ a.e. Now, consider the problem

minimize
$$\int_{0}^{T} \sum_{i=1}^{n+1} p_{i}(t) L(t, x(t), v_{i}(t)) dt$$

$$p_{i} : [0, T] \to \mathbb{R}, \qquad v_{i} : [0, T] \to \mathbb{R}^{n} \text{ measurable}$$

$$\sum_{i} p_{i}(t) = 1, \qquad p_{i} \ge 0, \qquad v_{i}(t) \in \Phi(t) \text{ a.e.}$$

$$x'(t) = \sum_{i} p_{i}(t) v_{i}(t) \in L^{p}$$

$$x(0) = a, \qquad x(T) = b.$$
(PR')

Clearly,

516

 $\min PR \leq \inf PR' \leq \inf P$.

Moreover, we have the following:

THEOREM 1 [4, Th. IX.4.1, Sect. IX.4.5]. Let L satisfy Hypothesis (H). Then min PR' = min PR = inf P.

Let us denote by $\chi_E(\cdot)$ the characteristic function of a set E. Theorem 2 is an extension of Liapunov's theorem on the range of a vector measure [3, Chap. 16].

THEOREM 2 [2, 6, 9]. Let $p_1, ..., p_m$: $[0, T] \rightarrow [0, 1], f_1, ..., f_m$: $[0, T] \rightarrow \mathbb{R}^l$ $(l \ge 1)$ be measurable $(\sum_i p_i = 1)$ and bounded below by an integrable function. Let us further assume that $\sum_i p_i f_i \in L^1$. Then there exists a measurable partition $E_1, ..., E_m$ of [0, T] with the property that $\sum_i f_i \chi_{E_i} \in L^1$ and the following equality holds:

$$\int_0^T \sum_i p_i f_i dt = \int_0^T \sum_i f_i \chi_{E_i} dt.$$

Lemma 1 below concerns a property of the subdifferential of a convex function [4, Sect. I.5.1]; its proof follows directly from [2, Lemma 1].

Let us denote by $\partial_x(f(t, x, \xi))$ the subdifferential of the function $x \mapsto f(t, x, \xi)$. Also, for a subset Q of \mathbb{R}^n , we write ||Q|| for the set $\{|q|: q \in Q\}$.

LEMMA 1. Let $f: [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be a Caratheodory function satisfying:

- (i) $f(t, x, \xi) \leq \alpha(t) + \beta |x|^p (\beta > 0, \alpha \in L^1);$
- (ii) $x \mapsto f(t, x, \xi)$ is convex for a.e. t and for each ξ .

Let \tilde{x} be continuous, $v_1, ..., v_{n+1}$ be measurable and such that

$$\Psi(t) = \bigcap_{i} \partial_{x} f(t, \tilde{x}(t), v_{i}(t)) \neq \emptyset \qquad a.e.$$

Then, the set-valued map Ψ admits an integrable selection.

Remark. The proof of [2, Lemma 1] points out the fact that an integrable selection of Ψ exists if, instead of (i), we assume that there exists a function $\alpha(\cdot)$ in L^1 and a function $c: \mathbb{R}^+ \to \mathbb{R}$ such that

$$\|\partial_x (f(t, x, \xi))\| \le \alpha(t) + c(\Delta)$$
 for each $t, \xi, |x| \le \Delta$.

LEMMA 2. Let $f, g: [0, T] \times \mathbb{R}^n \to \mathbb{R}$ and set $h(t, x, \xi) = f(t, x) g(t, \xi)$. Then for each t, x, ξ ,

$$h^{**}(t, x, \xi) = f(t, x) G(t, \xi),$$

where

$$G(t, \xi) = \begin{cases} g^{**}(t, \xi) & \text{if } f(t, x) \ge 0; \\ -(-g)^{**}(t, \xi) & \text{if } f(t, x) < 0. \end{cases}$$

Proof. Let us suppose f(t, x) < 0, the other case $(f(t, x) \ge 0)$ being similar. In this situation, the inequality

$$(-g)^{**}(t,\xi) \leqslant -g(t,\xi)$$

implies

$$-f(t, x)((-g)^{**}(t, \xi)) \leq f(t, x) g(t, \xi),$$

whence

$$f(t, x) G(t, \xi) \le h^{**}(t, x, \xi).$$
 (1)

Conversely, let t, x be fixed and ψ be any convex function satisfying $\psi(\xi) \leq f(t, x) g(t, \xi)$ for each ξ . Then

$$\frac{-1}{f(t,x)}\psi(\xi) \leqslant -g(t,\xi) \quad \text{for each } \xi,$$

whence

$$\frac{-1}{f(t,x)}\psi(\xi)\leqslant (-g)^{**}(t,\xi).$$

In particular, for $\psi(\xi) = h^{**}(t, x, \xi)$,

518

$$h^{**}(t, x, \xi) \le f(t, x) G(t, \xi).$$
 (2)

The conclusion follows from (1) and (2).

MAIN RESULT

THEOREM 3. Let L satisfy Hypothesis (H). Let us further suppose that the function $x \mapsto L(t, x, \xi)$ is concave for each t, ξ . Then, the problem

minimize
$$\int_0^T L(t, x(t), x'(t)) dt$$
 (P)

on the subset of $W^{1,p}$ of those functions satisfying x(0) = a, x(T) = b, $x'(t) \in \Phi(t)$ a.e. in [0, T] admits a solution if and only if there exists a solution $(\tilde{x}, p_1, ..., p_{n+1}, v_1, ..., v_{n+1})$ to the associated relaxed problem (PR') satisfying

$$\bigcap_{i=1}^{n+1} \hat{\sigma}_x(-L(t, \tilde{x}(t), v_i(t))) \neq \emptyset \qquad a.e.$$
 (C)

Note that, when $L(t, x, \xi)$ is differentiable in x, condition (C) reduces to

$$\frac{\partial L}{\partial x}(t, \tilde{x}(t), v_i(t)) = \frac{\partial L}{\partial x}(t, \tilde{x}(t), v_j(t)) \quad \text{for each } i, j.$$

Proof of Theorem 3. The necessity is due to the fact that each solution to (P) satisfies (C).

Conversely, let $(\tilde{x}, p_i, ..., p_{n+1}, v_1, ..., v_{n+1})$ be a solution to (PR') satisfying condition (C). By Lemma 1, let $\delta(\cdot) \in L^1$ be a selection to

$$t \mapsto \bigcap_{i=1}^{n+1} \partial_x (-L(t, \tilde{x}(t), v_i(t))).$$

Then, for each $y \in \mathbb{R}^n$ and $i \in \{1, ..., n+1\}$, we have

$$L(t, \tilde{x}(t), v_i(t)) \geqslant L(t, y, v_i(t)) + \langle \delta(t), y - \tilde{x}(t) \rangle, \tag{3}$$

 $(\langle \cdot, \cdot \rangle)$ being the usual scalar product in \mathbb{R}^n . Set

$$B(t) = \int_0^t \delta(s) \ ds, \qquad f_i(t) = (v_i(t), L(t, \tilde{x}(t), v_i(t)), \langle v_i(t), B(t) \rangle).$$

The growth assumptions on L (Hypothesis (H)) imply that the conditions concerning the functions f_i stated in Theorem 2 are satisfied: let $E_1, ..., E_{n+1}$ be a measurable partition of [0, T] such that

$$\sum_{i} v_i \chi_{E_i} \in L^p, \qquad \int_0^T \sum_{i} p_i(t) v_i(t) dt = \int_0^T \sum_{i} v_i(t) \chi_{E_i}(t) dt,$$

$$\int_0^T \sum_i p_i(t) \langle v_i(t), B(t) \rangle dt = \int_0^T \sum_i \langle v_i(t), B(t) \rangle \chi_{E_i}(t) dt, \tag{4}$$

$$\int_0^T \sum_i p_i(t) L(t, \tilde{x}(t), v_i(t)) dt = \int_0^T \sum_i L(t, \tilde{x}(t), v_i(t)) \chi_{E_i}(t) dt,$$

and set $\bar{x}(t) = a + \int_0^t \sum_i v_i(s) \chi_{E_i}(s) ds$.

We show that \bar{x} is a solution to (P). Clearly, by (4), $\tilde{x}(T) = \bar{x}(T) = b$ and $\bar{x} \in W^{1,p}$. Furthermore, by (3),

$$\sum_{i} L(t, \tilde{x}(t), v_{i}(t)) \chi_{E_{i}}(t) \geq \sum_{i} L(t, \bar{x}(t), v_{i}(t)) \chi_{E_{i}}(t) + \langle \delta(t), \bar{x}(t) - \tilde{x}(t) \rangle.$$

The integration of the above inequality and (4) yield

$$\min(PR') = \int_0^T \sum_i L(t, \tilde{x}(t), v_i(t)) \chi_{E_i}(t) dt$$

$$\geq \int_0^T \sum_i L(t, \tilde{x}(t), v_i(t)) \chi_{E_i}(t) dt + \int_0^T \langle \delta(t), \tilde{x}(t) - \tilde{x}(t) \rangle dt.$$
 (5)

Let us remark that

$$\sum_{i} L(t, \bar{x}(t), v_{i}(t)) \chi_{E_{i}}(t) = L(t, \bar{x}(t), \bar{x}'(t))$$

and that the Tonelli-Fubini theorem and integration by parts give

$$\int_0^T \langle \delta(t), \bar{x}(t) \rangle dt = \int_0^T \sum_i (\chi_{E_i}(t) - p_i(t)) \langle v_i(t), B(T) - B(t) \rangle dt.$$

Then, (4) and (5) together yield

$$\min(\mathbf{P}) \geqslant \min(\mathbf{PR}') \geqslant \int_0^T L(t, \bar{x}(t), \bar{x}'(t)) dt \geqslant \min(\mathbf{P}):$$

the conclusion follows.

SOME APPLICATIONS

THEOREM 4 (Cellina and Colombo [2]). Let L(t, x, x') = g(t, x) + h(t, x') satisfy Hypothesis (H) and $x \mapsto g(t, x)$ be concave for a.e. t. Then Problem (P) admits at least one solution.

Proof. Since we have $\partial_x(-L(t, x, \xi)) = \partial_x(-g(t, x))$ for each t, x, ξ then condition (C) trivially holds: Theorem 3 yields the conclusion.

We shall assume the following hypothesis:

HYPOTHESIS ($\tilde{\mathbf{H}}$). Set $\Lambda(t) = a + \cos\{\int_0^T \boldsymbol{\Phi}(s) \, ds\}$ (see [7]). We assume that:

- $(\tilde{\mathbf{H}}_1)$ the functions l, f, g: $[0, T] \times \mathbb{R}^n \to \mathbb{R}$ are such that $L(t, x, \xi) = l(t, x) + f(t, x)$ $g(t, \xi)$ satisfies Hypothesis (H) for a.e. t, for each ξ , and for each $x \in A(t)$;
 - (\tilde{H}_2) either

for a.e.
$$t: f(t, x) > 0$$
 for each $x \in A(t)$

or

for a.e.
$$t: f(t, x) < 0$$
 for each $x \in \Lambda(t)$;

- $(\tilde{\mathbf{H}}_3)$ for a.e. t and $x \in A(t)$, the set $A(t, x) = \{\xi \in \Phi(t) : L^{**}(t, x, \xi) < L(t, x, \xi)\}$ is open and, on it, the function $\xi \mapsto L^{**}(t, x, \xi)$ is locally constant;
- $(\tilde{\mathbf{H}}_4)$ there exist a function $\alpha(\cdot)$ in L^1 and a function $c\colon \mathbb{R}^+ \to \mathbb{R}$ such that

for a.e.
$$t: \|\partial_x(f(t, x, \xi))\|$$

 $\leq \alpha(t) + c(\Delta)$ for each $\xi \in \Phi(t), x \in \Lambda(t), |x| \leq \Delta$.

Let us remark that the class of non-trivial functions satisfying the hypothesis quoted above is non-empty.

EXAMPLE. $\Phi(t) = \mathbb{R}^+$, a = 0, $L(t, x, \xi) = -\gamma x^2 + (1+x) |\xi - \phi(t)| |\xi - \psi(t)|$ $(\phi, \psi \in L^{\infty}, \phi, \psi \ge 0, \gamma)$ being strictly smaller than the best Sobolev constant) satisfies Hypothesis (\tilde{H}) .

As a further application of Theorem 3, we have the following

THEOREM 5. Let l, f, g, Φ satisfy Hypothesis (\tilde{H}). Then the problem

minimize
$$I(x) = \int_0^T l(t, x(t)) dt + \int_0^T f(t, x(t)) g(t, x'(t)) dt$$
 (P)

522

Proof. Clearly, in view of Theorem 3, it is enough to prove the existence of a solution $(\tilde{x}, p_1, ..., p_{n+1}, v_1, ..., v_{n+1})$ to (PR') satisfying

$$L(t, x, v_i(t)) = L(t, x, v_i(t))$$

for each t, x and $i, j \in \{1, ..., n+1\}$. For this purpose, let $(\tilde{x}, p_1, ..., p_{n+1}, w_1, ..., w_{n+1})$ be an arbitrary solution to (PR'). Then, by Theorem 1

$$L^{**}(t, \tilde{x}(t), \tilde{x}'(t)) = \sum_{i} p_{i}(t) L(t, \tilde{x}(t), w_{i}(t)). \tag{6}$$

The map $\xi \mapsto L^{**}(t, \tilde{x}(t), \xi)$ being convex, we can assume

$$L^{**}(t, \tilde{x}(t), w_i(t)) = L(t, \tilde{x}(t), w_i(t))$$
 a.e. (7)

Set $A = \{t : L^{**}(t, \tilde{x}(t), \tilde{x}'(t)) < L(t, \tilde{x}(t), \tilde{x}'(t))\} = \{t : \tilde{x}'(t) \in A(t, \tilde{x}(t))\}.$ By (\tilde{H}_3) , for a.e. $t \in A$, the convex function $L^{**}(t, \tilde{x}(t), \cdot)$ is constant in a neighbourhood of $\tilde{x}'(t)$. As a consequence

$$L^{**}(t, \tilde{x}(t), \xi) \geqslant L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$

for a.e. $t \in A$ and each $\xi \in \mathbb{R}^n$. In particular

$$L^{**}(t, \tilde{x}(t), w_i(t)) \geqslant L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$
 for a.e. $t \in A$;

hence, by (6), we can assume

$$L^{**}(t, \tilde{x}(t), w_i(t)) = L^{**}(t, \tilde{x}(t), \tilde{x}'(t))$$
 for a.e. $t \in A$. (8)

Equalities (7) and (8) prove that, if we set

$$v_i = w_i \chi_A + \tilde{x}' \chi_{[0, T] \setminus A}$$

then $(\tilde{x}, p_1, ..., p_{n+1}, v_1, ..., v_{n+1})$ is a solution to (PR') satisfying

$$L(t, \tilde{x}(t), v_i(t)) = L^{**}(t, \tilde{x}(t), \tilde{x}'(t)) \quad \text{a.e.}$$
 (9)

By Lemma 2, there exists a function $G: [0, T] \times \mathbb{R}^n \to \mathbb{R}$ such that

$$L^{**}(t, x, \xi) = l(t, x) + f(t, x) G(t, \xi).$$

Thus (9) yields

$$g(t, v_i(t)) = G(t, \tilde{x}'(t))$$
 a.e.

The claim is proved.

REFERENCES

- C. CASTAING AND M. VALADIER, "Convex Analysis and Measurable Multifunctions," Springer-Verlag, Berlin, 1977.
- A. CELLINA AND G. COLOMBO, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. Henri Poincaré 7 (1990), 97-106.
- 3. L. CESARI, "Optimization-Theory and Applications," Springer-Verlag, New York, 1983.
- I. EKELAND AND R. TEMAM, "Convex Analysis and Variational Problems," North-Holland, Amsterdam, 1977.
- P. Marcellini, Non-convex integrals of the calculus of variations, in "Notes of the CIME Course on Methods of Nonconvex Analysis, 1989."
- C. Mariconda, On a parametric problem of the calculus of variations without convexity assumptions, J. Math. Anal. Appl. 170, No. 1 (1992), 291-297.
- C. OLECH, Integrals of set-valued functions and linear control problems, in "Proceedings, IFAC Congress, Warsaw, 1969."
- J. P. RAYMOND, Conditions nécessaires et suffisantes d'existence de solutions en calcul des variations, Ann. Inst. Henri Poincaré 4, No. 2 (1987), 169-202.
- 9. J. P. RAYMOND, Existence theorems in optimal control problems without convexity assumptions, J. Optim. Theory Appl. 67, No. 1 (1990), 109-132.

	• !		
	•		