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We state a condition under which the integral functional [I(x)=
fa L1, x(1), x'{1)) dr attains a minimum under the assumption that x— L(z, x, x") is
concave. 1993 Academic Press. Inc.

INTRODUCTION

This paper concerns the problem (P) of the existence of a minimum for
the integral functional 7 defined by

.
1(x)=j0 L1, x(1), x'(1)) dt

on the set of functions x(-) belonging to W'#([0, T1, R") (p=1) such that
x(0)=a, x(T)=b, in the case where L does not necessarily satisfy Tonelli’s
classical assumption of convexity with respect to x'.

In this situation, the most general result is the Cellina—Colombo theorem
[2] stating that if L(z, x, x')=g(t, x) + A(t, x') and x> g(t, x) is concave
for a.e. t then Problem (P) admits at least one solution. For the case where
the integrand is not the sum of two functions whose arguments are #, x and
t, x’ separately, it is not known whether the concavity assumption on the
map x> L(1, x, x') is sufficient for the existence of a solution to Problem
(P). The purpose of this note is to consider this problem.

In Theorem 3 we prove that the functional I (under the concavity
condition) attains a minimum if we assume further the existence of a
solution

(X, Prsees Prgas Uts eees vn+l)

to the associated relaxed problem (PR’) satisfving

n+1

() a(=L(t X0, v,()# & ae (C)

i=1
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Obviously, each solution to (P) is a solution to (PR’) satisfying (C); the
cases for which our theorem can be usefully applied are those where the
converse does not hold. For instance, condition (C) is automatically
satisfied (for each %, v|, .., v,, ;) when the integrand L is the sum of two
functions whose arguments are ¢, x and 1, x’ separately. In this situation,
Theorem 3 yields Cellina and Colombo’s existence result; however, it is
well known that a solution to the associated relaxed problem is not, in
general, a solution to the original one.

As a further application of our condition we show that Problem (P)
attains a minimum if L(z, x, x"}Y=I(¢, x)+ f(¢, x) g(¢, x') and its bipolar
L**(1, x, -) is locally constant on A(t, x)= {&: L(t, x, &) > L**(1, x, &) }.

The main tools are basically the arguments of [2]: an extension of
Liapunov’s theorem on the range of a vector measure and a selection
theorem.

ASSUMPTIONS AND PRELIMINARY RESULTS

The following hypothesis is considered:

HypotHEests (H). The set-valued map ®:[0, T]— 2% is measurable
[1, Def. 1I1.1.1] with non-empty closed values. In addition we assume that
there exists at least one ve LP([0, T], R") such that v(t)e ®(1) ae. and
fovltydi=b—a. The Caratheodory function L:[0,T]xR"xR"—>R
satisfies the following growth assumption: if p =1, there exist a convex Ls.c.
monotonic function y: R™ - R™*, a constant B,, and a function «,(-) in L!
such that

L(1, x, &}z a, (1) = By |x| + ¢ (1€])

r—o

for each x, ¢ and for a.e. t( lim @= + oo);

if p>1, there exist a positive constant y,, a constant B, (B,/y,) is strictly
smaller than the best Sobolev constant in W §?([0, T], R")), a function a,(-)
in L' such that

L(t,x, &)z a,(t) =B, ix|1”+7y,1E1?  for each x, & and for ae. t.

For each f, x, let us denote by L**(¢ x, ) the bipolar of the map
v L1, x, &) [4, Sect. 1.42]. For each function L satisfying Hypothesis
(H), its bipolar fulfills Tonelli’s classical assumptions for the existence of a
solution to the relaxed problem (PR) associated to (P),

minimize jTL**(z, x(1), x'(1)) dt (PR)
Q
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on the subset of W' ?([0, T], R") of those functions x satisfying x(0)=gq,
x(T)=5, x'(t)e d(t) a.e. Now, consider the problem

T+l

minimize | Y. p,(1) L(z, x(2), v,(£)) dt

0 i1

pii[0, T]- R, v,: [0, T] » R" measurable

Zp,-(t)=1, p:i=0, v,(1)eD(1) ae. (PR")

X'(t)=Y p(t)v,(1)eL”
x(0)=aq, x(T)=b.
Clearly,
min PR <inf PR’ <inf P.

Moreover, we have the following:

TueoREM 1 [4, Th. [X.4.1, Sect. [X.4.5]. Let L satisfy Hypothesis (H).
Then min PR’ = min PR =inf P.

Let us denote by x.(-) the characteristic function of a set E. Theorem 2
is an extension of Liapunov’s theorem on the range of a vector measure
[3, Chap. 16].

THEOREM 2[2,6,9]. Letp,,..,p,: [0, T]1 > [0, 11,1, ... fn: [0, T] >
R’ (Iz1) be measurable (X, p,=1) and bounded below by an integrable
function. Let us further assume that ¥, p,f;e L'. Then there exists a
measurable partition E|, ..., E,, of [0, T} with the property that 3, fixg €L
and the following equality holds:

[ Epsdi= S fs

Lemma 1 below concerns a property of the subdifferential of a convex
function [4, Sect. 1.5.17; its proof follows directly from [2, Lemma 1].

Let us denote by 4.(f(t, x,¢)) the subdifferential of the function
x> f(t, x, &). Also, for a subset Q of R", we write [|Q| for the set

{lgl :q€Q}.

LEMMA 1. Let f:[0,T}xR"xR"—>R be a Caratheodory function
satisfying:
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(i) f(t,x, &)<a(t)+p|x|? (>0, xaeL');
(ii) x> f(1, x, &) is convex for a.e. t and for each L.

Let % be continuous, v,, ..., v,, , be measurable and such that
P(ry=() 0, f(1, ®(t), v,(1))#* & ae.

Then, the set-valued map ¥ admits an integrable selection.

Remark. The proof of [2, Lemma 1] points out the fact that an
integrable selection of ¥ exists if, instead of (i), we assume that there exists
a function a(-) in L' and a function ¢: R* — R such that

e (f(t, x, ENIl < a(t) + c(4) for each ¢, |x|<4.
LemMA 2. Let f, g:[0, TIxR" >R and set h(t, x, &)= f(1, x) g(1, C).
Then for each t, x, &,
h**(t, x, &) = f(1, x) G(1, £),

where
g**(1,¢) if flt,x)=0;
—(—g** (&) i fle,x)<0.

Proof. Let us suppose f(z, x)<O0, the other case (f(z, x)=0) being
similar. In this situation, the inequality

(—g)** (1, )< —g(1¢)

G(r,c)={

implies
—flt, ) (—g)** (1, £) < f(1, x) g, C),
whence
S, x) G(t, &) <h**(1, x, €). (1)

Conversely, let ¢, x be fixed and y be any convex function satisfying
Y(&) < f(1, x) g(t, &) for each ¢ Then

~1
S, x)

Y& < —g(t, &) for each ¢,

whence
-1
S, x)

Y <(-g)** ()

518 CARLO MARICONDA

In particular, for ¥(&)=h**(1, x, &),

h**(1, x, §) < (8, %) G(1, §). - (@)

The conclusion follows from (1) and (2).

MamN RESULT

THEOREM 3. Let L satisfy Hypothesis (H). Let us further suppose that
the function x— L(t, x, &) is concave for each t, &. Then, the problem

minimize jTL(z, x(1), X'(1)) dt (P)
4]

on the subset of WP of those functions satisfving x(0)=a, x(T)=b,
X' ()ed(t) ae. in [0, T] admits a solution if and only if there exists a
SOIULION (&, Pyy oy Prs1s Uts s Uny1) 0 the associated relaxed problem
(PR’) satisfying

N 0L 50,0 (0)# D ae. (©

Note that, when L(t, x, &) is differentiable in x, condition (C) reduces to

a_L(t’ i(t)’ Ui(t))zg_L
X X

3 (t, X(t), v,(1)) for each i, j.

Proof of Theorem 3. The necessity is due to the fact that each solution
to (P) satisfies (C).

Conversely, let (£, Pi, o Pus1s V15 Ugrq) be a solution to (PR)
satisfying condition (C). By Lemma 1, let &( -)e L' be a selection to

n+1
t— () 8(—L(, X(1), v:(1))).
i=1
Then, for each ye R" and ie {1, ..,n+ 1}, we have
L(t, %(1), v; (1)) 2 L(t, y, v,(£)) + {6(1), y— X(1) ), (3)

({-,-)) being the usual scalar product in R”. Set

Bl = [ 6(s)ds. )= (0,(0) LUt 5(0), v, (1), Coil0), BO)
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The growth assumptions on L (Hypothesis (H)) imply that the conditions
concerning the functions f; stated in Theorem 2 are satisfied: let
E,, .., E,,, be a measurable partition of [0, T} such that

T T
Soigeels [ Tpnvdndi=| Tol0) e
i [ o

T

J, T pincon, B0y di="E oo, BO> e 4

[ ) L 50, 000 de =[5 L6 30,00 200

and set X(t)=a+ [{ X, v,(s) x£(5) ds.
We show that x is a solution to (P). Clearly, by (4), (T) =%(T) = b and
X € W'*, Furthermore, by (3),

; L(1, %(1), (1)) xg(2) 2 Z L(t, x(1), v:(2)) 1 £,(2) + (1), X(1) — X(2) ).
The integration of the above inequality and (4) yield
min(PR'):f: . L(t, %(2), 01) 15 (1) i
> jz Lit, 5(0) 00 s i+ [ <0, 50~ 50> d (5)
Let us remark that
; L(t, X(1), v,(1)) x £,(1) = L(2, X(1), X'(1))
and that the Tonelli-Fubini theorem and integration by parts give
J; o0 50y di= joz (s ()= P ())<o(1), B(T) = B(2)) .
Then, (4) and (5) together yield
min(P) > min(PR’) > jor L(t, %(1), #(1)) dt > min(P):

the conclusion follows.

S

520 CARLO MARICONDA
SOME APPLICATIONS

THEOREM 4 (Cellina and Colombo [2]). Let L(t,x,x')=g(t, x)+
h(t, x') satisfy Hypothesis (H) and x+ g(t, x) be concave for ae. t. Then
Problem (P) admits at least one solution.

Proof. Since we have d.(—L(t, x, £))=0.(—g(t, x)) for each ¢, x, ¢
then condition (C) trivially holds: Theorem 3 yields the conclusion.

We shall assume the following hypothesis:

Hyrotuesis (H). Ser A(r)=a+co{[I &(s)ds} (see [7]). We assume
that:

(A,) the functions I, S, 2 [0, TIxR"* — R are such that L(t, x, &)=
I(t, x)+ f(1, x) g(1, &) satisfies Hypothesis (H) for a.. t, for each &, and for
each x € A(t),

(A,) either
for ae t:f(t, x)>0  for each xe A(t)

or
SJor ae t: f(t, x)<0  for each xeA(1);
(A3) for ae. t and xe A(1), the set A(t, x)={Eed(1): L**(1, x, E) <

L(t, x, &)} is open and, on it, the function & L**(t,x, &) is locally
constant,

(Fy) there exist a function af-) in L' and a function ¢: R* = R such
that

for ae.t. ||6x(f(ta X, é))“
Sa(t)+c(d)  for each Eed(t), xe A1), |x| < 4.

Let us remark that the class of non-trivial functions satisfying the
hypothesis quoted above is non-empty.

ExaMpPLE. &(1)=R*,a=0, L(,x,&)= — x>+ (L +x) |E— d(2)| |E— ¥ (2)|

(¢, Y e L=, ¢, Y =0, y being strictly smaller than the best Sobolev constant)
satisfies Hypothesis (F).

As a further application of Theorem 3, we have the following

THEOREM 5. Let |, f, g, ® satisfy Hypothesis (A). Then the problem

T T
minimize I(x)= 'fo I(2, x(t))y dt + ’fo S, x(2)) g(t, x'(2)) dt (P)



ON NON-CONVEX VARIATIONAL PROBLEMS 521

on the subset of W'? of those x(-) satisfying x(0)=a, x(T)=b, x'(t) e ®(1)
a.e. in [0, T] admits at least one solution.

Proof. Clearly, in view of Theorem 3, it is enough to prove the
existence of a solution (X, Py, ..., Pri1» Urs - Unyq) to (PR’) satisfying

L(t, x, v,(1)) = L(1, x, v;(1))

for each 1, x and i, je {1, ..,n+1}. For this purpose, let (X, py, ... Py s
Wy, .., W, ) be an arbitrary solution to (PR’). Then, by Theorem I

L**(t, (1), X'(1) = X pil0) L(t, X(1), wi(1)). (6)

The map &> L**(1, X(1), &) being convex, we can assume
L**(z, %(1), w; (1)) = L(1, X(1), w; (1)) a.e. (7
Set A = {1:L**(r, (1), ¥ (1)) < L(1, %(2), (1))} = {1 : X'(1) € A(1, X({))}.
By (F1,), for ae. e A4, the convex function L**(z, %(¢), -) is constant in a
neighbourhood of %'(z). As a consequence
L**(t, %(1), £) = L**(1, %(1), X'(1))
for a.e. re 4 and each ¢ e R". In particular
L**(1, 2(1), w, (1)) = L**(1, X(1), X' (1)) for ae. teA;
hence, by (6), we can assume
L**(¢, %(1), w;(2)) = L**(¢, %(¢), X'(1)) forae. ted. (8)
Equalities (7) and (8) prove that, if we set
Ui=WiXat X Ao,
then (X, Py, .y Pus1s Uiy s Unyy) IS @ solution to (PR’) satisfying
L(t, X(1), v;(2)) = L**(s, X(1), X'(1)) a.e. %
By Lemma 2, there exists a function G: [0, T] x R" — R such that
L**(t, x, &) =11, x) + f(1, x) G(1, &).

Thus (9) yields
g(t, v;(1)) =G(1, X'(1)) a.e.

The claim is proved.
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