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ON BANG-BANG CONSTRAINED
SOLUTIONS OF A CONTROL SYSTEM*

RAPHAEL CERF! anpD CARLO MARICONDA#

Abstract. Given ¢1,¢2 € L1([0,7T]) and a function z € W21([0, T]) solving the control prob-
lem (P) 2" +a1 ()’ +ao(t)z € [¢1(), #2(2)] a.e., z(0) = zo, z(T") = z1, 2'(0) = vg, ='(T) = v1, there
exists a bang—bang solution y to (P) satisfying y < x; moreover there exists a finite union of intervals
E such that y"” + a1y’ + a0y = d1xE + d2X[0,7)\E- The reachable set of bang-bang constrained
solutions is convex: an application to the calculus of variations.

Key words. bang-bang, linear control system, range of a vector measure, reachable set, cal-
culus of variations
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1. Introduction. We consider the family of bidimensional linear contrcl systems
(P) described by a generic second-order equation subject to a scalar control:

" +ay () +ag(t)x € B(t) = [¢1(2), d2(t)], (z(0),2'(0), z(T), z'(T)) = (zo,v0, T1, 1),

where ¢; < ¢2 € L*([0,T)]) and a3,a0 € C([0,T}), zo,v0, 71,1 € R,z € W21([0, T}).
The function y is said to be a bang-bang solution to (P) if it solves (P) and,
moreover,

(1.1) v +a1(t)y + ao(t)y € extr () = {#1(2), p2(2)} a.e.

Existence of bang—bang solutions has been proved, for instance, by Cesari [4, Thm. 16.3].
The purpose of this paper is to prove that, given an arbitrary solution z to (P), there
exists a bang-bang solution y such that

(1.2) vt e [0,T]  y(t) <z(t)

and, in addition, y” + a1y’ + aoy steers from ¢, to ¢, only a finite number of times.
Motivation of such a problem was to study the reachable set

V5 ={wT),y(T)) : y<c, y'+ar(t)y +ao(t)y € extr &(t), (¥(0),%'(0)) = (zo0,v0)},

where c is an arbitrary function. A consequence of Theorem 3.1 is that J§ coincides
with

X5 ={(y(T),y'(T) :y < e, ¥ + a1 (t)y’ + ao(t)y € ©(t), (¥(0),%'(0)) = (x0,v0)}-

Notice that X7 is convex, so the above assumption implies that V5 is convex too. An-
other motivation arises from nonconvex problems of the calculus of variations (see [1]).

A possible approach in finding bang-bang solutions is to use the Lyapunov The-
orem on the range of a vector measure [4, §16.1].
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Here, the solution of z + a1 (£)z’ + ao(t)T = p(t), z(0) = z'(0) = 0 is given by

x(t):/(; h(t, s)p(s)ds,

where h € C1([0,T] x [0, T]), and for each s € [0,T] the function hs(.) = h(.,s) €
C2([0,T]) is the solution to the associated homogeneous differential equation satisfy-
ing the initial conditions hs(s) = 0, h(s) = 1. The Lyapunov Theorem yields the
existence of a measurable subset E of [0,T] such that

T T |
(1.3) /0 h(T,s)p(s)ds = /0 h(T, s)(¢1(s)x&(s) + #2(s)Xj0,T\E(5)) ds,

T T
19 [ B = [ @S0+ 6 x0me) ds

Clearly, by differentiating under the integral sign, the function y defined by

(1.5) y(t)=/0 h(t, s)(¢1(s)xE(s) + 2. 8)x0,T\E(S)) ds

is a bang-bang solution. However, this approach does not give any information on the
behaviour of y with respect to z on [0, T)].

Here we prove a new Lyapunov-type theorem concerning the range of a two-
dimensional vector measure whose densities are such that their quotient is monotone;
in this case, the set E can be chosen in the form [o, 8]. Note that this is not true in
general; for instance, there are no a, 3 € {0, 37| satisfying

B 3n J¢] 37
/ sintdt = / sin tX[O,w]U[‘Zvr,Sﬂ'] (t) dt, / ldt = ‘/(; 1X[0,7r]u[27r,31r] (t) dt.
0

o [

In our application, the equalities h(s,s) = 0 and %(s,s) = 1 imply that the mono-
tonicity condition is locally fulfilled; this allows us to build a set E satisfying (1.3)-(1.4)
as a finite union of intervals and, in the case where ¢ < p < ¢2 are continuous, to
choose E in such a way that neither 0 nor T belong to its closure.

These facts, together with a decomposition of the kernel h(t,s) into a linear
combination of linearly independent functions, are the main tools that we use to show
that the bang—bang solution y defined by (1.5) satisfies the inequality y < z.

As an application, we consider the problem of minimizing the integral functionals

T
I(:z:,u)=‘/0 f(t, z(t),u(t)) dt,

where z : [0, 7] — R? is such that z(0), £'(0), z(T), z'(T) are fixed and u is a control
belonging to U(t,z) C R2. The classical approach to obtain existence of a minimum
is to impose conditions in order to have the lower semicontinuity of I with respect to
u (for instance convexity of u — f(t,z,u)).

Recently, in an effort to provide existence criteria other than convexity in u, some
sufficient conditions have been given: for problems of the calculus of variations (z’ = u
in the above setting) and for maps of the form f(t,z,z") = g(t, z) + h(t, z'), existence
of solutions has been obtained by requiring that the real map z — g(t, =) be monotone
[5] or, for z in R™, that the same function be concave [2]. Optimal control problems
escaping to convexity conditions have been handled in [6].
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It has been proved further in [3] that there exists a dense subset D of (R) such
that, for g in it, the problem

minimize /T 9(z(t)) dt + /T h(@'(t))dt . z(0) = zo, z(T) =
0 . 0

admits a solution for every lower semicontinuous h satisfying growth conditions.
Our theorem gives a straightforward generalization of the above result.

2. Assumptions and preliminary results. Let ¢;,¢, € LY0,T), ¢1 < oo,

and put ®(t) = [$1(t), ¢2(t)] C R. We are interested in the solutions of the following
control problem.

Problem P.
a,ag € C([O,T]), To,T1,V0,v1 €ER, =z € Wz’l([O,,T]),

(P) " + a1 (t)z’ + ao(t)z € B(2) ae.,
z(0) =zo, 2'(0) =w, z(T)=ax, z'(T) = v,.

By extr ® we mean the extreme points of ®, i.e., extr D(t) = {#1(t), Pa(t)}.
DEFINITION 2.1. A function y € W21(|0, TY)) is said to be a bang-bang solution
to (P) if y solves (P) and, moreover,

¥+ a1(t)y + ao(t)y € extr B(2) a.e.

The following representation formula of the solutions to (P) will be used later.
PROPOSITION 2.1. There ezists a function h € C( [0,T]x [0,T)) satisfying Prop-
erty S below such that, for each function p € L*([0,TY)), the solution of

(P,) 2"+ a1(t)z’ + ao(t)z = p(t), z(0) =z'(0) =0

is given by the formula

(2.1) o(t) = /0 h(t,s)p(s) ds.

Moreover, for each s € [0, T}, the function h(.,s) is of class c2([0,T)).
PROPERTY S. '
(1) There exist w1, ws € C2([0,T)), 21,2 € C}([0,T]) such that

(2.2) Vs, t € [0,T) h(t,s) = w1(t)z1(s) + wa(t)za(s)

wi(t)  wa(t)
wi(t) w(t)
For each o in [0, 7] there exists § > 0 such that if we set [5 = [to — 6,20 + 8] N[0, T]
then:

(2) Vs, t € I; h(t,s)>0if s <t, h(t,s)<0ift<s (whence h(s,s) = 0);

(3) Vs, t € I %(t, s) > 0;

(4) Viels  se h(t,s)/2(t,s) is decreasing on Is.

Proof of Proposition 2.1. For each s € [0, T, let hy(.) = h(.,s) € C2([0,T]) be the

solution to

and W(w;,ws,t) = det #0.

by (t) + a1 (¢)h(2) -+ ao(t)hs(t) = 0, hs(s) =0, k. (s) = 1.
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Set z(t) = fg h(t, s)p(s) ds. Differentiation under the integral sign shows that 2z is a
solution to (P,) whence, by uniqueness, z = z.

To prove the second part of the claim, let wy, w2 € C2([0,T]) be two solutions of
the differential equation '

(2.3) " + a1 (t)x’ + ao(t)x =0
such that their Wronskian

wi(t) wat)
wi(t) walt)

is nonzero for every t. Such functions exist because the set of the solutions of a
second-order linear differential equation is a two-dimensional vector space. Since for
each s € [0, T) the function h; is a solution to (2.3), there exist 21,22 defined on [0,T)
such that

W (w1, ws,t) = det

(2.4) Vs,t € [0,T] hs(t) = wy (t)z1(s) + wa(t)z2(s)-
Conditions on h at s and equation (2.4) yield

he(s) = 0 = wy (s)21(s) + wa(s)22(s), |
RB.(s) = 1 = w(s)z1(s) + wa(s)z2(s).

Since W (wy, we, s) # 0 for each s, we find

wi(s)
W(wl,'lU2, S)’

wg(s)

T Wanuns)’ 20T

Z]_(S) =

so that z1, 22 € C1([0,T)); hence h(t, s) = hs(t) belongs to c*([0,T) x [0,TY)).
By construction

Vs €[0,T]  h(s,s)=0 and %—}tl(s, 5)=1
implying
Vs € [0,T) Edéh(s,s)=0©‘v’s€ [0, T é;—};—(s,s)-i-%—};l(s,s)=0
& Vs € [0,T) g—g(s,s) = -1.

As a consequence,

ot

Vs € [0, T 58; (—Q—h,_l—) (s,s) =—L

‘By continuity for a fixed i in [0,T), there exists 6 >0 such that

: "~ Oh 0 ( h
Vs,t € [to —&,to +6] n [O,T] -55(1':, S) >0 and 5; (g—}:) (t,s) <0

for this 6 (2), (3), and (4) in Property S are satisfied.
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Assume, for instance, ®(t) = [0, ¢(t)] and let p € L*([0,T]) be such that 0 < p<
~¢. For a solution z to (P,) formula (2.1) yields, in particular,

T
@5 2(T) = /0 h(T, s)p(s) ds,

T
(2.6) 2/(T) = /0 %(T, s)p(s) ds.

Let us point out that the classical Lyapunov Theorem on the range of a vector measure
[4, §16.1] allows us to find a bang-bang solution. In fact, its application yields the
existence of a measurable subset E of [0, T] such that

T T

2.7) /0 h(T, s)p(s) ds = /0 H(T, 5)$(s)x5(s) ds.
T T

29) STt as = [ S g(opns(s)as,

so that the function Z defined by

5(t) = / B, $)$(s)xz(s) ds

is, by Proposition 2.1, a bang-bang solution to (P) (with ¢, = 0, ¢2 = ¢, Tp = vy = 0).
However, for 0 < ¢t < T, the Lyapunov Theorem does not give any information on the
relative positions of Z and the original solution z.

The purpose of Proposition 2.2 below is to show that if s (R/22) (t,s) is
monotone on [0,T] then the measurable subset E can be chosen to be an interval
[0, with0<a < B<T. Taking into account Property S (4), this will allow us to

~define in §3 a bang-bang solution y satisfying y(t) < z(t) for each t.

In what follows [a,b] is an interval of R; p and ¢ are two functions belonging to
L'([a, b)) satisfying 0 < p < ¢. We say that r € R is positive (resp. negative) if r > 0
(resp. r < 0).

We consider the following hypothesis.

Hypothesis H. The functions f, g belong to L*°([a,b]) and are positive almost
everywhere. Moreover there exists a strictly monotone positive function k such that

9(t) = k() f(t) ae.

We have the following Lyapunov-type result.
PROPOSITION 2.2. Let f, g satisfy Hypothesis H. Then there exist a, B €R such
that, if we put E = [, 8], we have

b B b

(2.9) / pl5)f(s)ds = [ $(s)7()ds = / 8(5)f(s)xz(s) ds
b B b

(2.10) | / p(s)g(s) ds = / 6(s)g(s) ds = / 8(5)9(s)xm(s) ds.

Moreover, a and 8 are unique if p, ¢, f, g are continuous, and 0 < p < ¢, f > 0,
g>0.
To prove Proposition 2.2, we need the following fundamenta) lemma.
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LEMMA 2.1. Assume that f, g satisfy Hypothesis H and let o, 8 € [a,b] be such
that

(2.11) / " 8(5)7(s) ds = / " 5)(s) ds,
(212) / " 8(5)f(s) ds = / " o(5)f(s) ds.
Then, if k is increasing, we have |

(2.13) / " $(a(s)ds > / " o(s)a(s) ds,
(2.14) /  b(s)als) ds < / " o(s)a(s) ds.

If k is decreasing on [a,b], inequalities (2.13) and (2.14) are reversed. Moreover,
inequalities (2.13)-(2.14) are strict if 0 < p< ¢ and f >0,9>0 a.e.

Proof of Lemma 2.1. Assume for instance that k is increasing. To prove (2.14)
let fs, f, be the monotone functions defined by

fol)= [ 801@ds, £t = [ pes(e)d
The Lebesgue-Stieltjes formula for integration by parts yields
b prb
| otsrgte)as = | somiaris)ds
b
=/ k(s) df»(s)
* b
= KO)So(®) = K@Sol0) = | 1a(s) k(o)

analogously we have

B B
/ 8(5)g(s) ds = k(B) f(8) — k(a) fs(a) — / fo(s) dk(s).

Taking into account that fs(a) = f,(a) = 0 and that by (2.12) f,(b) = f4(8), we are
thus led to show that

b B
(2.15) [ s anie) - [ fol)dk(s) < (k(6) - (BN £,(0)
By our assumptions we have
(2.16) Ve e [a,b]  folt) = folt);
therefore,

b 8 b
2.17 — dk .
(2.17) 2GR [ dote)dite) < /B fo(s) di(s)

Furthermore, since functions f, and k are increasing we have

b
/B £,(5) dk(s) < (k(b) — k(8))F»(b),
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which, together with (2.17), gives (2.15).

To prove the final part of the lemma, it is enough to remark that if f>0and
p > 0 then, by (2.12), B # a; if, moreover, 0 < p < ¢ a.e., then inequality (2.16) is
strict for every ¢ > a so that (2.17) is strict too (k being increasing). Similar arguments
prove (2.13). ]

Proof of Proposition 2.2.

(i) Ezistence. (a) Assume first 0 < p<¢and f>0,g>0ae Leta, ay G,
B2€ [a,b] be such that

b b

(2.18) [ o)1) s = [ o)1) as,

Qz O.b
(2.19) #(s)o(s)ds = [ p(s)g(s) ds,

6 b
(2.20) 8(s)F(s)ds = [ p(s)f(s)ds,

aﬁz ab
(2:21) s(s)o(e)ds = [ pls)g(s)ds.
Assume for instance that k is decreasing on [@,b]. In this situation Lemma 2.1 yields
(2.22) B2 < B, a2 < aj.

The function v defined by
ve) = [ 6(s)f(s)as

is continuous and increasing with values in [0,v(b)]: let v~! denote its inverse function.
Set

b
m = / p(s)f (s) ds.

Since, by (2.18), v(b) = v(a) +m, then v(a)+m € [0,v(b)] if and only if a < a < ay;
this allows us to introduce the continuous function &1 defined by the formula

Va € [a, 0] &1(a) = v (v(a) + m).

By definition, we have

§1(ex) b
22) Vacloa] [T 4(s)f(s)ds = v(61(@)) - v(a) = m = o
so that, by (2.20) and (2.22), we deduce

(2.24) Va € fa,a1]  &(a) > 81 > Bo.

Similarly, (2.21) allows us to define a continuous function 2 : [B2,b] — R such that
we have

8 b
(2.25) V8> 4, $(s)g(s) ds = / p(s)g(s) ds,
£2(8) a

from which, together with (2.19) and (2.22), we deduce
(2.26) V826  &(B) <oz <o
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We deduce from (2.24) and (2.26) that the composed application

€208 [a,cn] —2— [Bs,b] —2— [a, 0]
is defined and continuous from [a, ;] into itself and, therefore, admits a fixed point
&. Thus, if we set 8 = £1(&) we have & = ¢(3). Equalities (2.23) and (2.25) with
o, (B replaced by &, ( yield the conclusion.
(b) Let pp = p+ 2, ¢ = ¢+ 2, fn = f+ + so that 0 < pp < ¢, and f >0 2.,
and set gn, = kfn so that the monotonicity of k implies that g, > 0 a.e. and fn,gn
satisfy H. By (a) there exist am, B» such that

b Bn
(2.27) / () fn(s)ds = [ dn(s)fa(s)ds,
(2.28) / pn(S)gn(s)ds = [ dn(s)gn(s) ds.

By compactness we may assume Q, — &, B, — B. The conclusion follows by passing
through the limit in (2.27) and (2.28).

(ii) Uniqueness. Assume that 0 < p < é, f > 0, g > 0 are continuous and that,
for instance, k is decreasing. By (i(a)) the points ¢, such that there exists 3 satisfying
(2.11) and (2.12), are the fixed points of the composed map &2 o £;. By definition the
functions &;, &» are differentiable and we have

L W@ #e)f(e)
Yo € [a, o) §i(a) = v'(&1()) ¢(§1(a))f(§1(a))’
ooy ®(B)9(B) ‘
e Bt &)= 5 () g@B)
To prove the claim we notice that if o satisfies §2061(a) = o then
(2.29) (62060 (@) = (@) = L2

By (2.23) we have £1(a) > a so that the strict monotonicity of k implies k(&1 (a)) <
k(c) and thus (& o &)'(e) < 1 whenever £ © &(a) = a. Let S = {a € [a,}] :
£, 0 &1 (a) = a}. Clearly, S is compact and nonempty by (i); moreover, taking (2.29)

into account, for each a € S there exists 7 such that
Vtela—n,a £x0&1(t) > t,
(2.30) ] n, 20&1(t)

Vt €la, o+ 1| £ 0&1(t) < t.

As a consequence, the set S has no accumulation points and is therefore finite.

Let oy = minS and assume S # {a1}; let a2 = minS\ {e1}. Then by (2.30)
there exist ¢, < ta € [@1, 2] such that §20& (t1) < t1 and & o &1(t2) > t2. Therefore
there exists £ € [t1,to] such that &0 & () = {, a contradiction. 0

3. Main result.
THEOREM 3.1. Let x € W2([0,T]) be a solution to (P). Then there ezists a
bang-bang solution y to (P) satisfying

vt € [0, T} y(t) < z(t).
Moreover, there ezists a set E which is a finite union of intervals such that

¥ + a1 (t)y + ao(D)y = ¢1(E)xe(t) + d2(t)X,rn\E®) a-e
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COROLLARY 1. Under the above assumption, there exists a bang-bang solution y
satisfying
Vie [0,T]  y(t) = =(8).

Proof of Corollary 1. Let —® be defined by the equality (—®)(t) = —&(¢).
Clearly, £ = —z solves

"+ a1(t)T + ap(t)z € —B(¢t) a.e.

By Theorem 3.1 there exists a bang-bang solution § satisfying the same boundary
conditions as Z and satisfying

vVt € [0,T) 7(t) < Z(t).
Then the function y defined by
vee[0,7]  y(t) = —()

is a solution to our problem. 0
Proof of Theorem 3.1. Let h be the function defined in Proposition 2.1.
(i) We show that it is not restrictive to assume

®(t) = [0,4(t)] (¢ € L'(0,T)), 6 >0ae) and z¢=1v=0.
In fact, let ®(t) = [¢1(t), 92(t)] and z satisfy
" + a1(t)r’ + ap(t)x € ®(t) ae.
Then the function Z defined by
Z(t) = z(t) — £’ (0)t — z(0)
satisfies £(0) = Z'(0) = 0 and
&'+ a1(t)Z' + ao(t)Z € [11(t), %2 (t)] ae,

where

P1(t) = ¢1() — ao(t)z’(0)t — a1(t)'(0) — ao(t)z(0),

Yo (t) = d2(t) — ao(t)z’(0)t — a1(t)z’ (0) — ao(t)z(0).
Moreover, by Proposition 2.1, the function Z defined by

Z(t) = Z(t) —/(; h(t,s)y1(s)ds
satisfies £(0) = 0, Z'(0) = 0 and

' + a1 ()T + ao(t)Z € [0,92(t) — ¥1(2)] ace.

If we assume that Theorem 3.1 holds for such an interval and initial boundary condi-
tions, there exists a function 7 satisfying

5(0)=2z(0), F(0)=%'(0), T)=2(T), F(T)==(T),

7' +a1(t)g + ao(t)F € {0,92(t) — ¥ (t)} ae.,

vt € [0,T) g(t) < z().
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It is now easy to check that the function y defined by

y(t) = 3(0) + /0 h(t, sy (s) ds + 2/ ()t + (0)

is a solution to our problem.
(ii) Assume first that the § of Property (S) can be chosen in such a way that
Is = [0,T]. In this case, if we set

p=z"+a1z’ +apz

then by Proposition 2.1 we can write

(3.1)> z(t) = /Ot h(t, s)p(s) ds,

where h satisfies Property (S(1)) and, in addition,

(3.2) Vs, t € (0,7 h(t,s) >0ifs<t, h(t,s)<0ift<s,
(3.3) Vs,t € [0, T %%(t,s) >0,

(3.4) vt € [0,7T) s — h(t, s)/%g(t, s) is decreasing on {0, t].

In particular, the functions f and g defined on [0, 7] by

o) =hT,8),  Fe)= FH(T,s)

verify Hypothesis H with &(.) = A(T}.)/ %(T, .-
By Proposition 2.1, each bang-bang solution y such that z(0) = z'(0) = 0 is given
by the formula y(t) = f(;' h(t, s)v(s) ds for some measurable function v with values in

{0,0()}-

We are thus led to show that there exists such a v satisfying
T T
(3.5) / h(T, s)p(s) ds =/ h(T, s)v(s) ds,
0 0

T T
(3.6) /0 g—}:(T, s)p(s) ds =/0 %%—(T, s)v(s) ds,

and for each t in {0, T,

(3.7) /(;h(t,s)p(s)dsz /0 h(t, s)v(s) ds.

(a) Assume 0 < p < ¢ a.e.
By Proposition 2.2 there exist ¢, 3 € [0, T] such that

T B8
(3.8) /0 B(T, s)p(s) ds = / h(T, $)é(s) ds,
T B d
(3.9) A %%—(T,s)p(s)ds= i —aiz-(T,s)qb(s)ds.

It is clear that if we set

(3.10) v(s) = #(5)X(a.51(5)
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then (3.5) and (3.6) are satisfied. In order to prove (3.7) we first show that under our
assumptions on p and ¢ we have

(3.11) O0<a<p<T

Notice first that the equalities (e, B) = (0,T) or a = 3 cannot hold otherwise by (3.8),
p =@ or p=0 a.e., a contradiction. Assume, for instance, o = 0 and 8 < T, the

case o > 0 and B = T being similar. Under this assumption, equalities (3.8) and (3.9)
become

(3.12) /O * BT, 5)p(s) ds — /0 BT, 5)(s) ds,
T 8
(3.13) 0 %(T,s)p(s)ds: /0 %(T,s)d)(s)ds.

Property (3.4) and the assumption 0 < p < ¢ a.e. allow us to apply Lemma 2.1, from
which we deduce

T B
/ h(T, s)p(s)ds < / h(T, s)¢(s) ds,
0 0

contradicting (3.12).

Set y(t) = fot h(t,s)v(s)ds so that (3.8) and (3.9) become y(T) = z(T) and
y'(T) = 2'(T).

The purpose of what follows is to show (3.7), i.e., that y(t) < z(t) for each t. We
consider the cases t € [0,q], t € [3,T), t € |o, B] separately.

Inequality (3.7) is trivial if ¢ < a; in fact we have '

t
y(t)=0< / h(t,s)p(s)ds = z(t),
0
the inequality being strict for ¢ €]0, a]. In particular
(3.14) y(a) < z(a).

Assume t € [3,T).
Since, taking (3.2) into account, h(t,s) < 0 whenever s > t, we have

(3.15) Vi> g3 /T h(t,s)p(s)ds < 0= /T h(t,s)v(s)ds
¢ ¢

or, equivalently,

(3.16)
T t T ¢
VtZﬁ/O h(t,.s)p(.s)ds—/0 h(t,.s)p(.s)d.sﬁ/0 h(t,s)u(s)ds—/o h(t, s)v(s)ds.

Therefore, in order to prove that y(¢) < z(t) for t € [8, T it is enough to show that

T T
(3.17) vt € [B,T} /0 h(t,s)p(s) ds = /(; h(t, s)v(s) ds.
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For this purpose, we use Property (S(1)). Equalities (3.8) and (3.9) become
T T
(D) [ 21(6)(6(6) ~ v(s)) ds +waT) [ 2a(s)(pls) ~ () ds =,
T T
W) [ 26)(6ls) ~ v(s)) s+ wiT) [ a(s)(ple) - vl ds = 0.

The condition on the Wronskian of w;,w, at T implies
T
(3.18) / z1(s)(p(s) — v(s))ds =0,
0
_ T
(3.19) / z2(s)(p(s) — v(s))ds = 0.
0

Multiplying (3.18) by w; (¢), (3-19) by w2(t), and adding the two equations we obtain
T

T
/0 (wi(8)21(s) + wa(t)za(s))p(s) ds = /0 (wr (£)21 (s) + wa()z2(s))(s) ds,

which, together with Property (S(1)), gives (3.17). Moreover, note that since inequal-
ity (3.15) is strict for t # T,

(3.20) y(8) < ().

At this stage, we only need to prove that (3.7) holds for ¢ € [, 3].
Assume by contradiction that there exists t € [, 8] such that z(t) = y(t). Let

F= sup{t € [, 8] : 2(t) = (0)}
Then o < t < 8 and, by the very definition of £, () = y(f) so that

ey YUY o 18 y(t)—x(t)
y(t)—x(t)—tl_lf}g—t—_—;—-ﬁo-

It follows that

(3.21) /t h(t,s)p(s)ds = /t h(%, s)p(s) ds,
o 0
(3.22) / %(t-, s)o(s)ds < /0 %(ﬂ s)p(s) ds.

For each s € [0, ] let f(s) = h(%, 5), g(s) = %(t_, s), and k = g/ so that by (3.2)-(3.4)
the function % is increasing and f > 0, g > 0. If we replace (a,b) by (0,%), Lemma 2.1
together with (3.21) implies that

/a %(t_,s)qb(s)ds> /0 %g(f,s)p(s)ds,

thus contradicting (3.22).
(b) Assume, in general, 0 < p < ¢ a.e. and let ¢, p, € L*([0,T]) be such that

0<pn<énpae and pn— p, ¢n— ¢ in L([0,T])

(for instance, pn = p+ %, ¢n = ¢ + 2).
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Corresponding to each n, there exist a,, 8, € [0, T} such that, if we set v, =
PnX[an,B.]> We have

T T

(3.23) /0 R(T, 5)pn(s) ds = /0 B(T, $)vn(s) ds,
T T

(329) | w@am@ds= [ Swouioas

and, for each t in [0, T},

(3.25) /0 Bt $)pn(s) ds > /O " hit, 5)n(s) ds.

Because the interval 0,7 is compact, we may assume a, — a, B, — [ for some
a<Be[0,T).

Clearly v, = ¢nXa,, s, converges to ®X(a,8) in L([0,T)); therefore, if we pass
through the limit in (3.23), (3.24), and (3.25) and we set v = ®X{a,8]» We obtain (3.5),
(3.6), and (3.7).

(iii) In the general case, using Property (S) and the compactness of [a,d], there
exists a subdivision @ =0 < a; < --- < a; < T = ayy; of [0, T] such that, if we put
I; = [aj,a;41], we have
o Vs,tel; h(t,s)>0ifs<t, h(ts)<0ift<s;

o Vs,tel; -aa—i‘(t,s)>0;
o Vtel; s+ h(t,s)/Zk(t,s) is decreasing on I;.

By (i), on each interval I; there exist a;,; such that the solution y; to the
problem

¥ +a1(t)y + ao(t)y = é1 ()X(a,0510185,651 () + $2(t)X[a;,6,)() a.e. on I
with the initial conditions
yi(a;) = z(a;), y;(a;) = 2'(a;)
satisfies the equalities
yilaj+1) = z(aj+1),  ¥ji(aj41) = 2'(a;41),

and, moreover, y;(t) < z(t) for each ¢t € I;.

Clearly the function y € W21([0,T]) obtained by glueing together the functions
y; is a solution to our problem. d

Remark 3.1. The proof of Theorem 3.1, part (ii(a)) shows in fact that when
0 < p < ¢, we have y(t) < z(t) on 0, T.

Remark 3.2. With the notations introduced in Proposition 2.1, the proof of The-
orem 3.1, part (ii) shows that if T = § then, given a solution z to (P), there exists a
bang-bang solution y < z satisfying

y" +a1(t)y’ + ao(t)y = min ®(t) on [0,a] U8, T},
¥’ +a1(t)y + ao(t)y = max ®(t) on [, 4].

Because the number & depends only on the function h, it can happen that § = +o0.
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This is the case when a; and ag are constant and the equation A% 4+ ay A +ap =0
admits two real roots A1, A2. In fact, under this assumption we have either

h(t,s) = (eM2(t=3) — M1 (t=9)) if A} £ Ay, or

Az — A
h(t,s) = (t — s)e*t=9) if A; = A= A

4. Applications. Our first application concerns the reachable set of bang—bang
constrained solutions. Let ¢ be an arbitrary function defined on [0,T} and consider
the reachable sets X5 and Y5 associated with (P) defined by

X5 ={yD),y (D) : y< ey +ai(t)y + ao(t)y € 2(t), (¥(0),5'(0)) = (x0,0)},
Ve = {(y(T), ¢ (1)) : y< ¢, ¥ +ar(t)y +ao(t)y € extr 8(2), (y(0),%'(0)) = (o, v0)}-

Then Theorem 3.1 claims XF = )5, whence V7 is convex.

Finally, we give an application to the calculus of variations.

THEOREM 4.1. Let ap, a3 € C([0,T]), ¢1,¢2 € L1([0,T]) verify ¢1(t) < #2(t).
Let xg, Vg, T1, v1 be 4 fized real numbers. Then there ezists a dense subset D of C(R)
for the uniform convergence such that for g in D the problem

minimize { ‘/OT g(z(t)) dt + ‘/OT h(p(t)) dt}

on the subset of W21([0,T]) x L*([0,T]) of those functions (z, p) satisfying
(2(0),2'(0), z(T),z'(T)) = (20, v0, 21,0), " +a1(t)z’ +ao(t)x = p(t) € [$1(2), $2(2)]

admits at least one solution for every lower semicontinuous function h satisfying
the growth condition h(u) > cy(jul), ¥ being lower semicontinuous and conver,
lim,— oo ¥(r) /T = +00.

Proof. With Theorem 3.1 and the preceding application, the proof is a direct
adaptation of the proof given in (3]. 0
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