AN ALTERNATIVE PROOF OF HAN - SHAFRIR'S LOWER BOUND FOR THE ENERGY OF MAPS IN PERFORATED DOMAINS (REVISED VERSION)

CARLO MARICONDA

Dipartimento di Matematica Pura e Applicata Padova

February 1996

1. Introduction

Let G be an open subset of \mathbb{R}^2 , x_1, \ldots, x_n be n distinct points in G, ρ , μ be positive real numbers and set $\Omega = G \setminus \bigcup_{i=1}^n B(x_i, \rho)$. We make the following assumptions:

$$(1.1) d(x_i, \partial G) \ge 2\rho \lor \mu, \quad i = 1, \dots, n;$$

$$(1.2) |x_i - x_j| \ge 4\rho \text{ for all } i \ne j \text{ in } \{1, \dots, n\};$$

(1.3)
$$u \in \mathcal{C}^1(\Omega, S^1) \cap \mathcal{C}(\bigcup_{i=1}^n \partial B(x_i, \rho), S^1);$$

(1.4)
$$\deg(u, \partial B(x_i, \rho)) = d_i \in \mathbb{Z}, \quad i = 1, \dots, n.$$

We write $I_n = \{1, ..., n\}$ and denote by \mathcal{P}_n the set of the partitions of I_n ; for each subset I of I_n and for each \mathcal{A} in \mathcal{P}_n we put $d_I = \sum_{i \in I} d_i$, $\sigma(\mathcal{A}) = \sum_{I \in \mathcal{A}} d_I^2$, $||d|| = \sum_i |d_i|$ and

 $F(d_1,\ldots,d_n)=\min\{\sigma(\mathcal{A}):\mathcal{A}\in\mathcal{P}_n\}$. We are concerned with the following:

Theorem 1.1. [1] Assuming (1.1) – (1.4) there exists a constant C depending only on n and ||d|| such that

$$\int_{\Omega} |\nabla u|^2 \ge 2\pi F(d_1, \dots, d_n) \log (\mu/\rho) - C.$$

This lower bound is essential to obtain the main result in [1] where it has been proved in a less general form [Th. 2.1]; this optimal version is due to Z. C. Han and I. Shafrir. Here we give an alternative proof of their result: we use their "elementary" Lemma [2, Lemma 1] but instead of analysing the possibilities for the points x_1, \ldots, x_n to regroup together in the domain we make a simple construction of circular annuli on which the integral of the function $|\nabla u|^2$ naturally exhibits the quantity $F(d_1, \ldots, d_n)$.

2. NOTATIONS AND PRELIMINARY RESULTS

We denote by Γ the family of triples $(\mathcal{A}, (x_I)_{I \in \mathcal{A}}, (\rho_I^{\mathcal{A}})_{I \in \mathcal{A}})$ where $\mathcal{A} \in \mathcal{P}_n$ and, for every I in $\mathcal{A}, x_I \in \mathbb{R}^2$ and $\rho_I^{\mathcal{A}} > 0$. We put

$$\delta_{\mathcal{A}} = \min_{I \neq J \in \mathcal{A}} |x_I - x_J|, \quad \forall I \in \mathcal{A}: \quad r_I^{\mathcal{A}} = \frac{\delta_{\mathcal{A}}}{2} \vee \rho_I^{\mathcal{A}}, \quad R_{\mathcal{A}} = \vee \max_{I \in \mathcal{A}} r_I^{\mathcal{A}};$$

we simply write ρ_I (resp. r_I) instead of $\rho_I^{\mathcal{A}}$ (resp. $r_I^{\mathcal{A}}$) when no ambiguity may occur.

Empty-Intersection Property (Δ). $(A,(x_I)_{I\in\mathcal{A}},(\rho_I)_{I\in\mathcal{A}})\in\Gamma$ verifies (Δ) if

$$\forall I, J \in \mathcal{A} \quad I \neq J \Rightarrow B(x_I, \rho_I) \cap B(x_J, \rho_J) = \emptyset \text{ and } x_J \notin B(x_I, 2\rho_I)$$

The interest in (Δ) relies on the fact that it allows to enlarge the balls $B(x_I, \rho_I)$ without affecting the empty–intersection property.

Proposition 2.1. Assume that $(A,(x_I)_{I\in\mathcal{A}},(\rho_I)_{I\in\mathcal{A}})\in\Gamma$ satisfies (Δ) . Then the triple $(A,(x_I)_{I\in\mathcal{A}},(r_I)_{I\in\mathcal{A}})$ satisfies (Δ) .

Proof. Let $I \neq J$ in \mathcal{A} . Since $2r_I = \delta_{\mathcal{A}} \vee 2\rho_I$ then $x_J \notin B(x_I, 2\rho_I)$.

Assume that $B(x_I, r_I) \cap B(x_J, r_J) \neq \emptyset$; then necessarily we have $|x_I - x_J| < r_I + r_J$ so that $\delta_A < r_I + r_J$ and thus either $r_I = \rho_I > \delta_A/2$ or $r_J = \rho_J > \delta_A/2$. Property (Δ) implies that $(\rho_I, \rho_J) \neq (r_I, r_J)$; if for instance $r_I = \rho_I > \delta_A/2$ and $r_J = \delta_A/2$ then we obtain $|x_I - x_J| < r_I + r_J = \rho_I + \delta_A/2 < 2\rho_I$, contradicting (Δ). \square

We shall denote by |X| the cardinality of a set X. We introduce a relation in \mathcal{P}_n : we write $A \succ \mathcal{B}$ if $|A| > |\mathcal{B}|$ and if for each $I \in \mathcal{A}$ there exists $J \in \mathcal{B}$ such that $I \subset J$.

Proposition 2.2. Let $(A,(x_I)_{I\in\mathcal{A}},(\rho_I^A)_{I\in\mathcal{A}})\in\Gamma$ and $|A|\geq 2$. There exist $J_{\mathcal{B}}\subset I_n$, $x_{J_{\mathcal{B}}}\in\mathbb{R}^2$, $\rho_{J_{\mathcal{B}}}>0$ such that for every I in A either $I\subsetneq J_{\mathcal{B}}$ and $B(x_I,R_{\mathcal{A}})\subset B(x_{J_{\mathcal{B}}},\rho_{J_{\mathcal{B}}})$ or $I\cap J_{\mathcal{B}}=\emptyset$ and $x_I\notin B(x_{J_{\mathcal{B}}},3\rho_{J_{\mathcal{B}}})$. Moreover

$$(\circ) 4R_{\mathcal{A}} \le \rho_{J_{\mathcal{B}}} \le 4^n R_{\mathcal{A}}.$$

Lemma 2.3. Let $x_1, ..., x_m \in \mathbb{R}^2, r_m > 0, x_{m+1} \in B(\frac{x_1 + ... + x_m}{m}, 3r_m)$. Then

$$B(\frac{x_1 + \dots + x_m}{m}, r_m) \cup B(x_{m+1}, r_m) \subset B(\frac{x_1 + \dots + x_{m+1}}{m+1}, r_{m+1}) \text{ where } r_{m+1} = 4r_m.$$

Proof of Lemma 2.3. It is enough to apply the triangular inequality \square

Proof of Proposition 2.2. Let $I_1 \neq I_2$ in \mathcal{A} be such that $|x_{I_2} - x_{I_1}| = \delta_{\mathcal{A}}$: then $x_{I_2} \in B(x_{I_1}, 3\frac{\delta_{\mathcal{A}}}{2})$ so that if we put $r_1 = R_{\mathcal{A}}$ we have $x_{I_2} \in B(x_{I_1}, 3r_1) \setminus \{x_{I_1}\}$. For $k \geq 2$ we define inductively

$$\bar{x}_k = \frac{x_{I_1} + \dots + x_{I_k}}{k}, \quad r_k = 4^{k-1}R_A, \quad E_k = B(\bar{x}_k, 3r_k) \cap E \setminus \{x_{I_1}, \dots, x_{I_k}\}$$

and if E_k is not empty let $I_{k+1} \in \mathcal{A} \setminus \{I_1, \ldots, I_k\}$ be such that $x_{I_{k+1}} \in E_k$. The set E being finite there exists $m \in \{2, \ldots, |\mathcal{A}|\}$ satisfying $E_m = \emptyset$: let

$$J_{\mathcal{B}} = I_1 \cup \cdots \cup I_m, \quad x_{J_{\mathcal{B}}} = \bar{x}_m, \quad \rho_{J_{\mathcal{B}}} = r_m.$$

It follows directly from the definitions that $4R_{\mathcal{A}} \leq \rho_{J_{\mathcal{B}}} = 4^{m-1}R_{\mathcal{A}} \leq 4^{n}R_{\mathcal{A}}$. Let $I \in \mathcal{A}$; then either $I \cap J_{\mathcal{B}} = \emptyset$ or $I = I_{k} \subsetneq J_{\mathcal{B}}$ for some $k \in \{1, \ldots, m\}$: in the first case the above construction shows that $x_{I} \notin B(x_{J_{\mathcal{B}}}, 3\rho_{J_{\mathcal{B}}})$; otherwise by Lemma 2.3 we obtain

$$B(x_{I_1}, r_1) \subset B(\bar{x}_2, r_2) \subset \cdots \subset B(\bar{x}_m, r_m)$$

and, for $k \in \{1, ..., m-1\}$,

$$B(x_{I_{k+1}}, r_1) \subset B(x_{I_{k+1}}, r_k) \subset B(\bar{x}_{k+1}, r_{k+1}) \subset \cdots \subset B(\bar{x}_m, r_m);$$

the conclusion follows. \square

Corollary 2.3. Let $(A,(x_I)_{I\in\mathcal{A}},(\rho_I^A)_{I\in\mathcal{A}})\in\Gamma$ and $|A|\geq 2$. There exists a triple $(\mathcal{B},(x_I)_{I\in\mathcal{B}},(
ho_I^{\mathcal{B}})_{I\in\mathcal{B}})\in\Gamma$ such that

- (2.1) $\mathcal{A} \succ \mathcal{B}, \quad \delta_{\mathcal{A}} \leq \delta_{\mathcal{B}}$
- $(2.2) \ \forall I \in \mathcal{A} \quad \exists J \in \mathcal{B}: \quad I \subset J, \quad B(x_I, r_I^{\mathcal{A}}) \subset B(x_I, \rho_J^{\mathcal{B}});$
- $(2.3) \ \forall I \in \mathcal{B}: \quad \rho_I^{\mathcal{B}} \leq 4^n R_{\mathcal{A}}.$

Moreover if $(A, (x_I)_{I \in A}, (\rho_I^A)_{I \in A})$ satisfies (Δ) then so does $(B, (x_I)_{I \in B}, (\rho_I^B)_{I \in B})$.

Proof of Corollary 2.3. Let $J_{\mathcal{B}}, x_{J_{\mathcal{B}}}, \rho_{J_{\mathcal{B}}}$ be as in Proposition 2.2 and set

$$\mathcal{B} = \{J_{\mathcal{B}}\} \cup \{\{I\} : I \in \mathcal{A}, \ I \cap J_{\mathcal{B}} = \emptyset\}; \quad \forall I \in \mathcal{B} : \ \rho_I^{\mathcal{B}} = \left\{ \begin{array}{l} r_I^{\mathcal{A}} \ \text{if} \ I \cap J_{\mathcal{B}} = \emptyset; \\ \rho_{J_{\mathcal{B}}} \ \text{if} \ I = J_{\mathcal{B}}. \end{array} \right.$$

Clearly (2.3) follows directly from (o).

Proof of (2.1). Let $I \in \mathcal{A}$; then either $I \in \mathcal{B}$ or $I \subsetneq J_{\mathcal{B}} \in \mathcal{B}$, hence $\mathcal{A} \succ \mathcal{B}$. Let $I_1 \neq I_2 \in \mathcal{B}$: if $I_1 = J_{\mathcal{B}}$ and $I_2 \in \mathcal{A}$ then $x_{I_2} \notin B(x_{J_{\mathcal{B}}}, 3\rho_{J_{\mathcal{B}}})$ so that $|x_{I_2} - x_{I_1}| \geq 3\rho_{J_{\mathcal{B}}}$ and thus, by (o), $|x_{I_2} - x_{I_1}| > 3R_{\mathcal{A}} > \delta_{\mathcal{A}}$; otherwise both I_1, I_2 belong to \mathcal{A} and $|x_{I_2} - x_{I_1}| \geq \delta_{\mathcal{A}}$.

Proof of (2.2). Let $I \in \mathcal{A}$: either $I \cap J_{\mathcal{B}} = \emptyset$ so that $I \in \mathcal{B}$ and $\rho_I^{\mathcal{B}} = r_I^{\mathcal{A}}$ or $I \subset J_{\mathcal{B}} \in \mathcal{B}$ and $B(x_I, \rho_I^A) \subset B(x_{J_B}, \rho_{J_B})$.

Finally, if $(\mathcal{A}, (x_I)_{I \in \mathcal{A}}, (\rho_I^{\mathcal{A}})_{I \in \mathcal{A}})$ satisfies (Δ) then, by Proposition 2.1, so does the triple $(\mathcal{A},(x_I)_{I\in\mathcal{A}},(r_I)_{I\in\mathcal{A}})$: to prove the claim it is enough to show that

$$\forall I \in \mathcal{A}: \quad I \cap J_{\mathcal{B}} = \emptyset \Rightarrow B(x_I, 2r_I^{\mathcal{A}}) \cap B(x_{J_{\mathcal{B}}}, 2\rho_{J_{\mathcal{B}}}) = \emptyset.$$

If the above property does not hold then $|x_I - x_{J_B}| < 2r_I^A + 2\rho_{J_B} \le 2R_A + 2\rho_{J_B} < 3\rho_{J_B}$, contradicting Proposition 2.2: the conclusion follows.

3. A DECREASING CHAIN OF PARTITIONS

Set $\mathcal{A}_0 = \{\{1\}, \dots, \{n\}\}$ and, for every i in I_n , let $\rho_{\{i\}}^0 = \rho$ and $x_{\{i\}} = x_i$.

Theorem 3.1. Let $n \geq 2$; there exist $m \ (< n)$ and for every i in $\{1, \ldots, m\}$ a triple $(\mathcal{A}_i,(x_I)_{I\in\mathcal{A}_i},(\rho_I^i)_{I\in\mathcal{A}_i})\in\Gamma$ such that if we put $\delta_{\mathcal{A}_i}=\delta_i$ and $r_I^{\mathcal{A}_i}=r_I^i$ we have

- $(3.1) \quad \mathcal{A}_0 \succ \cdots \succ \mathcal{A}_m = \{I_n\}, \quad \delta_0 \leq \cdots \leq \delta_{m-1};$ $(3.2) \quad \forall I \in \mathcal{A}_{i-1} \quad \exists J \in \mathcal{A}_i : \quad I \subset J, \quad B(x_I, r_I^{i-1}) \subset B(x_J, \rho_J^i) \quad (i = 1, \dots, m);$
- $(3.3) \ \forall I, J \in \mathcal{A}_i: \quad I \neq J \Rightarrow B(x_I, r_I^i) \cap B(x_J, r_J^i) = \emptyset \quad (i = 0, \dots, m);$
- $(3.4) \ \forall I \in \mathcal{A}_i: \quad \rho_I^i \leq 4^{ni} \frac{\delta_{i-1}}{2} \quad (i=1,\ldots,m).$

Remark 3.2. Let $i \in \{0,\ldots,m\}$ and $I \in \mathcal{A}_i$. Then $B(x_k,\rho) \subset B(x_I,\rho_I^i)$ if $k \in I$ and $B(x_k, \rho) \cap B(x_I, \rho_I^i) = \emptyset$ otherwise.

Remark 3.3. It is interesting to note that

$$\forall i \in \{1, \dots, m\} \quad 1 \le \rho_I^i / \delta_{i-1} \le 4^{n^2}, \qquad \forall i \in \{0, \dots, m-1\} \quad 1/2 \le r_I^i / \delta_i \le 4^{n^2}.$$

Proof of Theorem 3.1.

The initial assumption (1.2) implies that $(\mathcal{A}_0, (x_i)_{i \in I_n}, (\rho)_{i \in I_n})$ satisfies (Δ) . The iterated application of Corollary 2.3 and Proposition 2.1 yields the existence of a chain of triples in Γ satisfying (3.1), (3.2) and (3.3) (since $n = |\mathcal{A}_0| \geq |\mathcal{A}_{i-1}| > |\mathcal{A}_i|$ there exists m < n such that $|\mathcal{A}_m| = 1$). To prove (3.4) from (2.3) it is enough to show that $R_{\mathcal{A}_{i-1}} \leq 4^{n(i-1)} \frac{\delta_{i-1}}{2}$: we use induction on i. For i = 1 by (1.2) we have $R_{\mathcal{A}_0} = \frac{\delta_0}{2} \vee \rho = \frac{\delta_0}{2}$; assume that $R_{\mathcal{A}_{i-1}} \leq 4^{n(i-1)} \frac{\delta_{i-1}}{2}$ for some $i \geq 1$: then (2.3) implies that $\rho_I^i \leq 4^n R_{\mathcal{A}_{i-1}} \leq 4^{ni} \frac{\delta_{i-1}}{2}$ for every I in \mathcal{A}_i and therefore $R_{\mathcal{A}_i} \leq \frac{\delta_i}{2} \vee 4^{ni} \frac{\delta_{i-1}}{2}$ so that, by (3.1), $R_{\mathcal{A}_i} \leq 4^{ni} \frac{\delta_i}{2}$. \square

4. Proof of Han-Shafrir's Theorem

For x in \mathbb{R}^2 and 0 < r < R let $A_r^R(x) = B(x,R) \setminus B(x,r)$. The following elementary Lemma was stated in [1]; it will be widely used in the sequel.

Lemma 4.1. Let $u \in C^1(A_r^R(x), S^1) \cap C(\partial A_r^R(x), S^1)$ and $d = \deg(u, \partial B(x, r))$. Then

$$\int_{A_r^R(x)} |\nabla u|^2 \ge 2\pi d^2 \log (R/r).$$

Proof of Theorem 1.1. If $\mu \leq 2\rho$ then by (1.1) and (1.2) we have $B(x_i, \rho) \subset G$ and $B(x_i, 2\rho) \cap B(x_j, 2\rho) = \emptyset$ for $i \neq j$ in I_n ; Lemma 4.1 then yields the conclusion:

$$\int_{\Omega} |\nabla u|^2 \ge \sum_{i=1}^n \int_{A_{\rho}^{2\rho}(x_i)} |\nabla u|^2 \ge 2\pi \sum_{i=1}^n d_i^2 \log 2 \ge 2\pi F(d_1, \dots, d_n) \log (\mu/\rho).$$

In what follows we assume that $\mu \geq 2\rho$. If n=1 the result follows trivially from Lemma 4.1 with $r=\rho$, $R=\mu$ and $x=x_1$. Assume that $n\geq 2$ and let $(\mathcal{A}_i,(x_I)_{I\in\mathcal{A}_i},(\rho_I^i)_{I\in\mathcal{A}_i})\in\Gamma$ be such as in Theorem 3.1. Put $\delta_{-1}=\rho$ and

$$S = \{i \in \{0, \dots, m\} : 4^{ni} \delta_{i-1} \le \mu\}.$$

The set S being not empty $(0 \in S)$ let $k = \max S$.

For $i \leq k$ and $j \in I \in \mathcal{A}_i$ Theorem 3.1 then gives $B(x_j, \rho) \subset B(x_I, \rho_I^i) \subset B(x_I, \mu/2)$ so that the triangular inequality yields $B(x_I, \mu/2) \subset B(x_j, \mu)$: (1.1) then implies

$$(4.1) \qquad \forall i \in \{0, \dots, k\} \quad \forall I \in \mathcal{A}_i: \quad B(x_I, \rho_I^i) \subset B(x_I, \mu/2)$$

and thus by Theorem 3.1 the annuli $(A_{\rho_I}^{r_I}(x_I))_{I\in\mathcal{A}_i}$ are disjoint subsets of Ω : set

$$\forall i \in \{0,\ldots,k-1\}$$
 $\Omega_i = \bigcup_{I \in A_i} A_{\rho_I}^{r_I}(x_I).$

By (3.2) we have $\Omega_i \subset \bigcup_{I \in \mathcal{A}_{i+1}} B(x_I, \rho_I^{i+1}) \setminus \bigcup_{I \in \mathcal{A}_i} B(x_I, \rho_I^i)$ and thus $\Omega_j \cap \Omega_i = \emptyset$ if $j \neq i$. For I in \mathcal{A}_k we put

$$s_I = \begin{cases} \mu/2 & \text{if } k = m; \\ \mu/2 \wedge r_I^k & \text{if } k < m. \end{cases}$$

By Theorem 3.1 and (4.1) the annuli $(A_{\rho_I}^{s_I}(x_I))_{I\in\mathcal{A}_k}$ are disjoint subsets of Ω , set

$$\Omega_k = \bigcup_{I \in \mathcal{A}_k} A_{\rho_I}^{s_I}(x_I).$$

The sets $(\Omega_i)_{0 \le i \le k}$ being disjoint we have

$$\int_{\Omega} |\nabla u|^2 \ge \sum_{i=0}^k \int_{\Omega_i} |\nabla u|^2.$$

Let $i \in \{0, ..., k\}$ and $I \in \mathcal{A}_i$; since $B(x_I, \rho_I^i) \setminus \bigcup_{j \in I} B(x_j, \rho) \subset \Omega$ the excision property of the degree implies that $\deg(u, \partial B(x_I, \rho_I^i)) = d_I$: Lemma 4.1 then yields

(4.2)
$$\frac{1}{2\pi} \int_{\Omega} |\nabla u|^2 \ge \sum_{i=0}^{k-1} \sum_{I \in \mathcal{A}_i} d_I^2 \log(r_I/\rho_I) + \sum_{I \in \mathcal{A}_k} d_I^2 \log(s_I/\rho_I).$$

To estimate the right-hand side of (4.2) remark that if $i \in \{0, ..., k-1\}$ and $I \in \mathcal{A}_i$ the inequalities (3.4) and the definition of r_I imply

$$\forall I \in \mathcal{A}_i: \qquad r_I/\rho_I \geq 4^{-n^2} \delta_i/\delta_{i-1}.$$

Moreover for $I \in \mathcal{A}_k$ either $s_I = \mu/2$ or k < m and $s_I = r_I \ge \delta_k$; however if $k = \max S < m$ we have $4^{n(k+1)}\delta_k \ge \mu$ and thus in both cases $s_I \ge 4^{-n^2}\mu/2$ so that by (3.4) we obtain

$$\forall I \in \mathcal{A}_k : \qquad s_I/\rho_I \ge 4^{-n^2} \mu/\delta_{k-1}.$$

We point out that $\sum_{I\in\mathcal{A}} d_I^2 \leq ||d||^2$ for every \mathcal{A} in \mathcal{P}_n ; going back to (4.2) we deduce that

$$\frac{1}{2\pi} \int_{\Omega} |\nabla u|^2 \ge \sum_{i=0}^{k-1} \sigma(\mathcal{A}_i) \log(\delta_i/\delta_{i-1}) + \sigma(\mathcal{A}_k) \log(\mu/\delta_{k-1}) - C$$

where $C = n^3 ||d||^2 \log 4$. Now $\rho \leq \delta_0 \leq \cdots \leq \delta_{k-1} \leq \mu$ and $\sigma(\mathcal{A}_i) \geq F(d_1, \ldots, d_n)$ for $i = 0, \ldots, k$. The above inequality finally yields

$$\frac{1}{2\pi} \int_{\Omega} |\nabla u|^2 \ge F(d_1, \dots, d_n) \left[\log(\delta_0/\rho) + \dots + \log(\mu/\delta_{k-1}) \right] - C =$$

$$= F(d_1, \dots, d_n) \log(\mu/\rho) - C$$

which is the desired conclusion.

REFERENCES

- F. Bethuel, H. Brezis, F. Helein, Ginzburg-Landau Vortices, Birkäuser, Boston, 1994.
 Z-C. Han, I. Shafrir, Lower bounds for the energy of S¹- valued maps in perforated domains, J. d'Analyse (to appear).

DIPARTIMENTO DI MATEMATICA PURA E APPLICATA - VIA BELZONI, 7 - 35131 PADOVA - ITALY $\textit{E-mail aiddress} : \ mariconda@pdmat1.math.unipd.it$

