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1. INTRODUCTION

Let G be an open subset of R?, z1,...,2, be n distinct points in G, p, u be positive
real numbers and set Q@ = G \ UL, B(z;, p). We make the following assumptions:

(1.1) d(z;,0G) >2pVpu, i=1,...,n;

(1.2) |zi — ;| >4pforalli#jin {1,...,n};
(1.3) u ECI(Q,SI)ﬂC(U};l@B(x,-,p),Sl);
(1.4) deg (u,0B(zi,p))=di €Z, i=1,...,n.

We write I,, = {1,...,n} and denote by P, the set of the partitions of I,,; for each subset

I of I, and for each A in P, we put dj = Zdi’ o(A) = Zdi, 14|l = Zldil and
iel IeA i

F(dy,...,dn) =min{o(A): A€ P,}. We are concerned with the following:

Theorem 1.1. [1] Assuming (1.1) - (1.4) there ezists a constant C depending only on n

and ||d|| such that

/g;IVuI2 > 27I'F(d1,.. . ,dn)log (,u,/p) - C.

This lower bound is essential to obtain the main result in (1] where it has been proved
in a less general form [Th. 2.1]; this optimal version is due to Z. C. Han and I. Shafrir.
Here we give an alternative proof of their result: we use their "elementary” Lemma (2,
Lemma 1] but instead of analysing the possibilities for the points z;,...,z, to regroup
together in the domain we make a simple construction of circular annuli on which the
integral of the function [Vu|? naturally exhibits the quantity F(dy,...,dys).

2. NOTATIONS AND PRELIMINARY RESULTS

We denote by I' the family of triples (A, (zr)rea( p}") 1e4) where A € P, and, for every
I'in A, z; € R? and p‘f > 0. We put

04
64 = mi —zg], VI€A: rf=22vVvpA Ru=V A
AT R e s VIE A i = Vet Ra=Vipaerds

we simply write py (resp. rr) instead of pf (resp. r#) when no ambiguity may occur.

Empty—Intersection Property (A). (A, (z5)rea, (pr)1ea) € T verifies (A) if

VI,Je A I+#J= B(zr,pr)NB(zy,ps;) =0 and zs ¢ B(zr,2pr5)

The interest in (A) relies on the fact that it allows to enlarge the balls B (1, pr) without
affecting the empty—intersection property.



Proposition 2.1. Assume that (A,(z1)1ea,(pr)rca) € T satisfies (A). Then the triple
(A,(z1)rea, (r1)rea) satisfies (A).

Proof. Let I # J in A. Since 2r; = 64 V 2py then x5 ¢ B(z1,2py).

Assume that B(zr,rr) N B(zy,rs) # 0; then necessarily we have |z — 7| < r; +rj so
that 64 <ry + r; and thus either r;=pr>84/2 or ry=p;>84/2. Property (A) implies
that (pr,ps) # (r1,77); if for instance r; = p;r > 84/2 and r; = 6,4/2 then we obtain
ey —zs| <rr+ry=pr+64/2 < 2pr, contradicting (A). O

We shall denote by |X| the cardinality of a set X. We introduce a relation in P,: we
write A > B if | A| > |B| and if for each I € A there exists J € B such that I C J.

Proposition 2.2. Let (A4,(z1)re4,(p7 )IGA) €T and |A] > 2. There exist Jg C I,
v15 € R?, py, > 0 such that for every I in A either I G Jp and B(zr,R4) C B(zs,,p1,)
orIN Jg =0 and 21 ¢ B(z,,3pJ,).- Moreover

(o) 4R4 < pjs S4"Ra.
Lemma 2.3. Let z1,...,2m € R 1y > 0,241 € B(ﬂir’r‘l—’*'—’:m,Brm). Then

x1+.”+xm,rm)UB(:1:m+1,rm) CB(fvl + o+ T

B( m m+1

yTm41) where Ty = 4rp,.

Proof of Lemma 2.5. It is enough to apply the triangular inequality O

Proof of Proposition 2.2. Let Iy # I in A be such that |5, — 2| = 64: then z, €
B(z1,,3%) so that if we put ry = R4 we have z;, € B(zr,,3r1)\ {z1,}. For k > 2 we
define 1nduct1vely
7 (i s o
T = L ’
and if Ey is not empty let Ix41 € A\ {I1,..., It} be such that Tl € Er.
The set E being finite there exists m € {2,...,|A|} satisfying E,, = 0: let

ri =4*R4,  Ep = B(z,3m) N E \{zr,.---,z1.}

Js=LU---Ul,, zj, =Zm, Pls = Tm.-

It follows directly from the definitions that 4R4 < p Js = 4™ R4 < 4"Ry4. Let I € A;
then either INJg =0 or I = I G G Jg for some k € {1,. ..,m}: in the first case the above
construction shows that = ¢ B(:z: Jg»3pPJg); otherwise by Lemma 2.3 we obtain

B(zr,,m1) C B(Z2,m2) C - C B(Zm,™m)
and, for k € {1,...,m—1},
B($Ik+1,r1) C B($Ik+1’rk) C B(jk-*-l’rk-*-l) C--C B(jmarm);

the conclusion follows. [J



Corollary 2.3. Let (A, (z1)rea,(p1)rea) €T and |A] > 2. There exists a triple
(B,(.’L‘j)[eg,(p?)]eB) €T such that

(2.1) A-B, 64<6p

(22) VIe A 3JeB: ICJ, B(zrrf)C B(zr,p8);

(23) VIeB: p¥<4"Ry4.
Moreover if (A, (CUI)IE.A,(p';‘)IEA) satisfies (A) then so does (B,(:EI)[GB,(p?)Ieg).

Proof of Corollary 2.3. Let Jp,zj,,pJ, be as in Proposition 2.2 and set

riif I'NJg = 0

B={Js}U{{I}:T€ A INJs=0}; VIe€B: pf= ,
Pls 1f.[=.]3.

Clearly (2.3) follows directly from (o). o

Proof of (2.1). Let I € A; then either € Bor I g JB € B,hence A > B. Let I} # I, € B:
if I = Jp and I; € A then z5, ¢ B(z4,,3p7,) so that |z, — zr,| 2 3p s, and thus, by (o),
|z, — z1,| > 3R4 > 6.4; otherwise both I, I; belong to A and |z, — x| > 64.

Proof of (2.2). Let I € A: either IN Jg = § so that I € B and pf=rforIcJizeB
and B(z1,p1') C B(2 s, p1)-

Finally, if (A, (z1)1e4, (p1')1e4) satisfies (A) then, by Proposition 2.1, so does the triple
(A, (z1)1e4,(r1)rea): to prove the claim it is enough to show that

VieA: INJs=0= B(zr,2r{) N B(zs,,2ps,) = 0.

If the above property does not hold then |z; — Tyl < 2r}4 +2p5, S2RA+2py, < 3py,,
contradicting Proposition 2.2: the conclusion follows. [J

3. A DECREASING CHAIN OF PARTITIONS
Set Ag = {{1},...,{n}} and, for every ¢ in I,, let p?i} = pand 73 = z;.

Theorem 3.1. Let n > 2; there ezist m (< n) and for every i in {1,... ,m} a triple
(Ai,(iBI)IeA;,(P})IeA;) € I' such that if we put §4, = 6; and r}“" =r} we have

(31) Ao = An={L}, 6 <---<bm_y;

(82) VIe Ay IJe€A;: IC J, B(w;,r}_‘l) C B(zs,pYy) (i=1,...,m);

(33) VI,J € A;: I#J= B(ar,r})NB(zs,r) =0 (i=0,...,m);

(34) VIe Ai: ph<qmilior (=1, . m).

Remark 3.2. Let i € {0,...,m} and I € A4;. Then B(zk,p) C B(zy,p}) if k € I and
B(zk,p) N B(zy, p}) = 0 otherwise.

Remark 3.8. 1t is interesting to note that

Vie{l...,m} 1<pj/6ii <4, Vi€ {0,...,m—-1} 1/2<ri/ <4m.



Proof of Theorem $.1.

The initial assumption (1.2) implies that (Ao, (2;)icr, ,(p)icr, ) satisfies (A). The iterated

application of Corollary 2.3 and Proposition 2.1 yields the existence of a chain of triples in

I satisfying (3.1), (3.2) and (3.3) (since n = |A4q| > |Ai—1| > |A;| there exists m < n such

that |An,| =1). To prove (3.4) from (2.3) it is enough to show that Ra,_, < 4"(i‘1)45"2—“:

we use induction on ¢. For ¢ = 1 by (1.2) we have Ry, = %Q Vp = %0—; assume that
$i1

Ra,_, < 4"“‘”%‘—‘ for some ¢ > 1: then (2.3) implies that p} < 4"Ra,_, < 4™%5L for

every I in A; and therefore R4, < %ﬂ \Y% 4"i§% so that, by (3.1), R4, < 4"i%. |

4. PROOF OF HAN-SHAFRIR’S THEOREM

For zin R? and 0 < r < R let AF(z) = B(z, R) \ B(z,r). The following elementary
Lemma was stated in [1]; it will be widely used in the sequel.

Lemma 4.1. Let u € C'(AR(z),5*) N C(84E(z), S') and d = deg (u,0B(z,r)). Then

/ |Vul®> > 2rd? log (R/T).
AR (2)

Proof of Theorem 1.1. If u < 2p then by (1.1) and (1.2) we have B(zi,p) C G and
B(z:,2p) N B(zj,2p) = § for i # j in I,,; Lemma 4.1 then yields the conclusion:

/QIVulz > Z/Azp( )IVu|2 > 27er? log2 > 2w F(dy,...,dn)log (u/p).
=1 o \Zi =1

In what follows we assume that p > 2p. If n = 1 the result follows trivially from Lemma
4.1withr = p, R =y and z = z;. Assume that n > 2 and let (Ais(z1)reai, (pY)rea,) €T
be such as in Theorem 3.1. Put é_; =p and

S={i€{0,...,m}:4"6;_; < u}.
The set S being not empty (0 € S) let k = max S.
Fori < k and j € I € A; Theorem 3.1 then gives B(zj,p) C B(zr,pt) C B(zxr,p/2) so
that the triangular inequality yields B(zr,1/2) C B(xj,u): (1.1) then implies
(4.1) Vie{0,....k} VIeAi: B(zr,p}) C B(zr,u/2)

and thus by Theorem 3.1 the annuli (A7 (21))rea; are disjoint subsets of 2: set

ViE{O,...,k—l} Q,':U[eA..A;II(:C[).



By (3.2) we have Q; C UIGA,.H.B(:vI,p}'H) \Urea;B(zr1,p}) and thus ;N Q; = 0 if j # 1.
For I in A; we put
u/2 if k=m;
S = k-
u/2Ari if k< m.
By Theorem 3.1 and (4.1) the annuli (A3!(z))re4, are disjoint subsets of Q, set
Qi = Urea, A (zr).

The sets (Q;)o<i<k being disjoint we have

k
Vul|? > /Vuz.
[1vul > [ v

Let z € {0,...,k} and I € A;; since B(.’;I,pf}) \ UjerB(zj, p) C Q the excision property of
the degree implies that deg (u,0B(zr,p})) = dr: Lemma 4.1 then yields

k—1
(4.2) %/{;IVuIZ > Z Z d3log(rr/pr) + Z d3log (s1/pr).

=0 I€A; I€ A,

To estimate the right-hand side of (4.2) remark that if : € {0,...,k—1} and I € A; the
inequalities (3.4) and the definition of r; imply

VI€CAi:  rrfpr >4 6/6i_1.

Moreover for I € Ay either sy = u/2ork < mand sy = ry > 6k; howeverif k = max S <m
we have 4"(F*1)§, > 1 and thus in both cases sy > 4_"2,u/2 so that by (3.4) we obtain

VIE A ¢ 81/p124_n2/,6/6k_1.
We point out that 3, 4 d} < ||d||? for every A in P,; going back to (4.2) we deduce that

1 k—1
5 [IVP 2 Y 040 l0g(6:/6i-3) + o(Ax)og(u/b0—s) - C

where C' = n®||d||?log4. Now p < §g < --- < &—; < p and o(A;) > F(dy,...,dy,) for
¢ =0,...,k. The above inequality finally yields

3 [[1V6l" > F(ds, .. d) log(én/p) + -+ +log(u/6u-1)] - C =
Q
= F(dy,...,dn)log(u/p) — C

which is the desired conclusion. ]
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