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Pressureless Gas Dynamics



Metric Projection (1/2)

Hilbert space H with scalar product 〈·, ·〉 and induced norm ‖ · ‖,
and C ⊂ H closed and convex.

Definition
For any Y ∈ H we will denote by PC(Y) the metric projection of Y
onto the cone C, so that PC(Y) satisfies

‖Y− PC(Y)‖ = inf
{
‖Y− Z‖ : Z ∈ C

}
.
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Metric Projection (2/2)

The metric projection PC(Y) exists and is uniquely determined for all
Y ∈ H . Moreover, it is characterized by the following property:

Y∗ = PC(Y) ⇐⇒

{
Y∗ ∈ C,
〈Y− Y∗, Y∗ − Z〉 > 0 for all Z ∈ C.

If C is a closed convex cone, this is equivalent to

〈Y− Y∗, Y∗〉 = 0, 〈Y− Y∗, Z〉 6 0 for all Z ∈ C.

The metric projection is a contraction:

‖PC(Y1)− PC(Y2)‖ 6 ‖Y1 − Y2‖ for all Y1, Y2 ∈ H .
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Lipschitz continuity

For given X̄, V̄ ∈ H we now consider the map

t 7→ Xt := PC(X̄+ tV̄) for t ∈ R,

which is well-defined and Lipschitz continuous. We have

‖Xt+h − Xt‖ 6 |h|‖V̄‖ for all t,h ∈ H .

The velocity

Vt := lim
h→0

(Xt+h − Xt)/h exists strongly for a.e. t ∈ R

and satisfies the inequality ‖Vt‖ 6 ‖V̄‖.

3



Tangent Cone

For any Z ∈ C we define the tangent cone

TanZ C := TZC, TZC :=
⋃
h>0

h(C− Z),

which is a convex set:
if h1,h2 > 0 and Y1, Y2 ∈ C are given, then

(1− λ)h1(Y1 − Z) + λh2(Y2 − Z) = h
((

(1− µ)Y1 + µY2
)
− Z

)
∈ TZC

for all λ ∈ [0, 1], where

h := (1− λ)h1 + λh2 > 0 and µ := λh2/h ∈ [0, 1].

For any Y ∈ H we denote by [Y]⊥ the orthogonal complement of RY.
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Velocities (1/2)

Theorem (Haraux)

For fixed t ∈ R, let Vt be any weak limit point of

Vt(hn) := (Xt+hn − Xt)/hn

as hn → 0+. Then Vt ∈ ΣXtC and 〈V̄− Vt, Vt〉 > 0, where

ΣXtC := TanXt C ∩ [(X̄+ tV̄)− Xt]⊥.

Moreover, we have

〈V̄− Vt,W〉 6 0 for all W ∈ TXtC ∩ [(X̄+ tV̄)− Xt]⊥.
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Velocities (2/2)

If the cone C is polyhedric, so that

TXtC ∩ [(X̄+ tV̄)− Xt]⊥ = ΣXtC

for all t ∈ R, then the map t 7→ Xt is strongly right-differentiable and,
denoting the right derivative again by Vt, we have

Vt = PΣXtC(V̄) for all t ∈ R.
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Optimal Transport

Consider now H = L 2(R, µ) for some µ ∈ P2(R).

The cone is defined as

C :=
{
X ∈ L 2(R, µ) : X is monotone

}
.

We call X monotone if the support of the induced transport plan

γX := (id, X)#µ

is a monotone set in R×R, where # denotes the push-forward.

A subset Γ ⊂ R×R is monotone if for any (mi, xi) ∈ Γ we have

(m1 −m2) · (x1 − x2) > 0.
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A Technical Lemma

For a Borel measure ν on a topological space Ω, we say z ∈ spt ν if

ν(N) > 0 for every open neighborhood N of z.

Lemma

For given µ ∈ P2(R) and X ∈ C we define γX := (id, X)#µ. Then
there exists a Borel set NX ⊂ R with µ(NX) = 0 such that

(m, X(m)) ∈ spt γX for all m ∈ R \ NX.
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Closed Convex Cone

Lemma

Let H = L 2(R, µ) for some µ ∈ P2(R). The set

C :=
{
X ∈ L 2(R, µ) : X is monotone

}
.

is a closed convex cone in L 2(R, µ). For any X ∈ C and any smooth,
strictly increasing function ζ : R −→ R that coincides with the
identity map outside a compact set, we have ζ ◦ X ∈ C.
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Pressureless Gas Dynamics

Theorem (Global Existence)

Let initial data ϱ̄ ∈ P2(R) and v̄ ∈ L 2(R, ϱ̄) be given. For some
reference measure µ ∈ P2(R), let X̄ ∈ C be the unique monotone
transport with X̄#µ = ϱ̄. For V̄ := v̄ ◦ X̄ we define

Xt := PC(X̄+ tV̄) for all t ∈ R.

Then Xt is differentiable for a.e. t ∈ R and Vt := Ẋt can be written in
the following form: there exists a velocity vt ∈ L 2(R, ϱt) with

ϱt := Xt#µ, such that Vt = vt ◦ Xt.

Then (ϱt, vt) is a weak solution of the pressureless gas equations.
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Space of Velocities

Lemma

For any Xt as above we define

HXt := L 2(R, µ)-closure of
{
φ ◦ Xt : φ ∈ D(R)

}
and ϱt := Xt#µ. Then the following statement is true:

the function W ∈ L 2(R, µ) is in HXt

if and only if
there exists w ∈ L 2(R, ϱt) such that W = w ◦ Xt.
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Velocities are in the Tangent Cone

Lemma

Let HXt be defined as above. Then HXt ⊂ SXtC, with

SXtC := L 2(R, µ)-closure of TXtC ∩ [(X̄+ tV̄)− Xt]⊥.

Recall that Xt := PC(X̄+ tV̄) for t ∈ R.

Lemma

With the notation above, we have Vt =: Ẋt ∈ HXt for a.e. t ∈ R.
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Uniqueness and Semi-Group Property

Special case: For µ = ϱ̄ we can choose (X̄, V̄) = (id, v̄).

If there are two sets of initial data (ϱ̄i, v̄i), i = 1..2, and if (X̄i, V̄i) are the
monotone transport maps and initial velocities corresponding to the
reference measure µ ∈ P2(R), then the transport maps Xi,t satisfy

‖X1,t − X2,t‖L 2(R,µ) 6 ‖X̄1 − X̄2‖L 2(R,µ) + |t|‖V̄1 − V̄2‖L 2(R,µ)

for all t ∈ R since the metric projection is a contraction. This implies
the uniqueness and semi-group property of the transport map Xt.

The Eulerian velocities vt are determined by the orthogonal
projection of V̄ onto the space HXt , which is also unique.
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One-dimensional granular
system with memory effects



Nonlinear Partial Differential Equations

Evolution of Solid/Liquid Mixture [Lefebvre-Lepot & Maury]

∂tϱ+ ∂x(ϱu) = 0
∂t(ϱu) + ∂x(ϱu2) + ∂xp = ϱf

∂tγ + u∂xγ = −p

 in [0,∞)×R (1)

0 6 ϱ 6 1

(1− ϱ)γ = 0, γ 6 0

Physical quantities

ϱ density
u velocity
γ adhesion potential

p pressure
f external force
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Different Flow Behavior

∂tϱ+ ∂x(ϱu) = 0
∂t(ϱu) + ∂x(ϱu2) + ∂xp = ϱf

∂tγ + u∂xγ = −p

 in [0,∞)×R

0 6 ϱ 6 1

(1− ϱ)γ = 0, γ 6 0

1. Free Zones ϱ < 1

Pressureless dynamics of a compressible flow
Both p and γ vanish

2. Congested Zones ϱ = 1

“Incompressible flow” ∂xu = 0
Lagrange multiplier p is recorded into γ
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Conservative Form

Differentiating with respect to x we obtain

∂t(∂xγ) + ∂x
(
u∂xγ

)
= −∂xp in [0,∞)×R

Subtracting from momentum equation:

∂t(ϱu− ∂xγ) + ∂x
(
(ϱu− ∂xγ)u

)
= 0 in [0,∞)×R

Additional momentum ∂xγ

Exclusion relation (1− ϱ)γ = 0 implies that ∂xγ � ϱ. Writing

∂xγ =: ϱv , w := u− v,

we obtain
∂t(ϱw) + ∂x(ϱuw) = ϱf in [0,∞)×R

(cf. two-velocity models by [Brenner])
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Memory Effects

Spherical solid particle immersed in viscous fluid
in the presence of a wall [Maury]

Forces

• external force f
• lubrication force flub ≈ −ε q̇q dominant as q→ 0

where q is the distance to the wall
and ε is the viscosity
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Vanishing Viscosity Limit ε → 0

Sticky particle case. Hybrid system
q̇+ γ = ū+

ˆ t

0
f(s)ds

q > 0
qγ = 0, γ 6 0

Two possible system states: free q > 0 and stuck q = 0

Macroscopic model. Aligned solid particles

∂tϱ+ ∂x(ϱu) = 0

∂t(ϱu) + ∂x(ϱu2)−∂x

(
ε

1− ϱ
∂xu

)
= ϱf

 in [0,∞)×R

Lubrication force represented by singular viscous force
[Lefebvre-Lepot & Maury]
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Global Existence

Weak solutions of the following system:

∂tϱ+ ∂x(ϱu) = 0
∂t(ϱu− ∂xγ) + ∂x

(
(ϱu− ∂xγ)u

)
= ϱf

}
in [0,∞)×R

0 6 ϱ 6 1

(1− ϱ)γ = 0, γ 6 0

Related work on

• pressureless gas dynamics equation
[Natile-Savaré]

• pressureless system with maximal density constraint
[Bouchut et al.]

Maximal density constraint relevant e.g. for traffic flow, crowd motion
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Finite-Dimensional Example

Consider a particle of unit mass moving under the influence of some
force field f(t, x) inside a convex set K ⊂ RN:

Newton’s Law
Most of the time we have ẍ(t) = f(t, x(t)).

Collisions
Upon collision with the boundary, an instantaneous force changes
the velocity so that the particle remains inside K.
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Normal Cone
For any x ∈ K we define the closed convex set

NxK :=
{
w ∈ Rd : w · (x̃− x) 6 0 for all x̃ ∈ K

}
.

We have that NxK = ∂IK(x), where IK is the indicator function of K.
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Tangent Cone (Admissible Velocities)
For any x ∈ K we define the tangent cone by polarity:

TxK := (NxK)∗ =
{
u ∈ Rd : u · w 6 0 for all w ∈ NxK

}
.

Since both set are closed convex cones, we also have NxK = (TxK)∗.
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When the particle hits the boundary, its velocity is changed to an
admissible velocity (particle “bounces off”).

Impact Law
If x(t) ∈ ∂K, then we assume that v(t+) := PTx(t)Kv(t−), where PTx(t)K is
the metric projection onto Tx(t)K, which is well-defined. Then

v(t−)− v(t+) ∈ Nx(t)K.
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Second Order Differential Inclusion
We can model the above behavior using the differential inclusion

ẋ = v and v̇+ ∂IK(x) 3 f(x)

a.e. in [0,∞). This makes sense e.g. if

x ∈ Lip
(
[0,∞),Rd) and v ∈ BV

(
[0,∞),Rd).

The acceleration measure v̇ is supported in the set of times for which
x(t) ∈ ∂K. At these times, we assume that the impact law holds.

Remark
This framework allows for particle motions that preserve the energy,
such as a particle sliding along the boundary of a circle.
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Pressureless Gas Dynamics

Let Ω := (0, 1) and

K :=
{
X ∈ L 2(Ω): X nondecreasing

}
There exists an bijection between ϱ ∈ P2(R) and X ∈ K given by

ϱ = X#(L1|Ω).

Here L1 is the Lebesgue measure and # denotes the push-forward.
The elements of K are optimal transport maps.

Lagrangian Formulation
To any solution (ϱ,u) of the pressureless gas dynamics equations we
associate a uniquely determined curve of optimal transport maps

t 7→ X(t, ·) ∈ K.
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Boundary of K
We find that X ∈ ∂K if and only if

ΩX :=
{
m ∈ Ω: X is constant in a neighborhood of m

}
6= ∅.

Notice that if (α, β) is a maximal interval contained in ΩX, then the
push-forward ϱ := X#(L1|Ω) has a Dirac measure of mass β − α at
position X(m) for any generic m ∈ (α, β) (where X is constant).

m m

X ΞW

α β α β

ΩX
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Lemma (Normal Cone NXK = ∂IK(X))

Let X ∈ K be given. For any W ∈ L 2(Ω) we denote by

ΞW(m) :=

ˆ m

0
W(s)ds for all m ∈ Ω,

its primitive. Then W ∈ NXK if and only if ΞW ∈ NX, where

NX :=
{
Ξ ∈ C (Ω): Ξ > 0 in Ω and Ξ = 0 in Ω \ ΩX

}
.

Lemma (Tangent Cone TXK = (NXK)∗)

Let X ∈ K be given. Then

TXK =
{
U ∈ L 2(Ω): U is nondecreasing in each (α, β) ⊂ ΩX

}
.
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Space of Velocities
For any X ∈ K we also define

HX =
{
U ∈ L 2(Ω): U is constant in each (α, β) ⊂ ΩX

}
.

This is a closed subspace (not merely a cone). We denote by PHX the
orthogonal projection onto HX. For any V ∈ L 2(Ω) we find that

PHX(V) =


V a.e. in Ω \ ΩX, β

α

V(s)ds in each maximal interval (α, β) ⊂ ΩX.

Eulerian Velocity
If V ∈ HX, then V is constant wherever X is constant. Therefore there
exists a u ∈ L 2(R, ϱ) with V = u ◦ X a.e., where ϱ = X#(L1|Ω).
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Admissible Transport Maps

Consider initial density ϱ̄ ∈ P2(R) with 0 6 ϱ̄ 6 1.

Maximal Compression
Let X̃ ∈ L 2(R, ϱ̄) be a monotone map such that

X̃#ϱ̄ = 1[0,1].

Admissible transport maps compress ϱ̄ not more than X̃:

K̃ := X̃+K with K :=
{
X ∈ L 2(R, ϱ̄) : X nondecreasing

}
To any Xt ∈ K̃ we associate an monotone transport map

St := Xt − X̃ ∈ K.
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Lagrangian Dynamics

Free velocity.
For initial velocity Ū ∈ L 2(R, ϱ̄), we define

Ufree
t (y) := Ū+

ˆ t

0
f
(
s, Xs(y)

)
ds,

integrating along trajectories t 7→ Xt(y) starting at y ∈ R.

Free trajectory.
For initial transport X̄ := id ∈ K̃, we define

Xfree
t (y) := X̄(y) +

ˆ t

0
Ufree
s (y)ds.

Lagrangian solution.
We are looking for a curve t 7→ Xt ∈ K̃ such that

Xt = PK̃(Xfree
t ) for t ∈ [0,∞).

Coupled system: Ufree
t depends on Xt. 30



Tangent Cone / Admissible Velocities

The associated Lagrangian velocity Ut := Ẋt not only belongs to the
tangent cone of K at St := Xt − X̃, which is defined as

TStK := L 2(R, ϱ̄)-closure of
⋃
h>0

h(K − St),

it has to be constant on each congested block and thus belong to

HSt :=
{
U ∈ L 2(R, ϱ̄) : U constant on maximal intervals in ΩSt},

where ΩSt is the union of intervals on which St is constant.

Adhesion potential
For all y ∈ R and t ∈ [0,∞) we define

Γt(y) :=
ˆ y

−∞

(
Ut(z)− Ufree

t (z)
)
dz.
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Solution Concept

Given suitable initial data (ϱ̄, ū), a triple (ϱ,u, γ) is called a weak
solution of the system (1) provided that

• the triple (ϱ,u, γ) satisfies

ϱt ∈ P2(R), ut ∈ L 2(R, ϱt) for a.e. t ∈ [0,∞),

γ ∈ L ∞(
[0,∞);W1,1(R)

)
;

• the density constraints 0 6 ϱt 6 1 holds a.e.;
• the exclusion principle (1− ϱt)γt = 0 and γt 6 0 holds a.e.;
• for all φ ∈ C∞

c
(
[0, T)×R

)
we have

ˆ T

0

ˆ
R

(
∂tφ(t, x) + ut(x)∂xφ(t, x)

)(
ρt(x)ut(x)− ∂xγt(x)

)
dx dt

+

ˆ T

0

ˆ
R

φ(t, x) ρt(x)ft(x)dx dt = −
ˆ
R

φ(0, x) ρ̄(x)ū(x)dx,

with a similar statement for the continuity equation.
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Main Result

Theorem (Global Existence)
Let external force f ∈ L∞

(
[0,∞);Lip(R)∩ L∞(R)

)
be given. Suppose

that ρ̄ ∈ P2(R) with 0 6 ϱ 6 1 a.e., and that ū ∈ L2(R, ρ̄). Define

ρ0 := ρ̄, U0 := ū, X0 := id.

There exists a curve t 7→ Xt ∈ K̃ that is differentiable for a.e. t and
solves the Lagrangian dynamics equations introduced above.

Lagrangian velocity Ut and adhesion potential Γt are well-defined.

There exist (ut, γt) ∈ L2(R, ρt)×W1,1(R) for a.e. t, such that

Ut = ut ◦ Xt, Γt = γt ◦ Xt where ρt := (Xt)#ρ0.

The triple (ρ,u, γ) is a global weak solution of system (1).
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Heterogeneous Maximal Constraint

The same approach works if the maximal density constraint is given
by a function ϱ∗ that is transported with the flow:

∂tϱ+ ∂x(ϱu) = 0
∂t(ϱu− ∂xγ) + ∂x

(
(ϱu− ∂xγ)u

)
= ϱf

∂tϱ
∗ + u∂xϱ∗ = 0

 in [0,∞)×R

0 6 ϱ 6 ϱ∗

(ϱ∗ − ϱ)γ = 0, γ 6 0
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Solution at time t = 0.

35



Solution at time t = 0.1.
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Solution at time t = 0.5.
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Solution at time t = 0.8.
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Monotone Functions



Set-Valued Maps

For a set-valued map u : Rn −→ Rn we define

the domain of u:

dom(u) := {x ∈ Rn : u(x) 6= ∅},

the image of u:

im(u) := {y ∈ Rn : there exists x ∈ Rn with y ∈ u(x),

the graph of u:

Γu := {(x, y) ∈ Rn ×Rn : y ∈ u(x)},

and the inverse of u:

u−1(x) := {y ∈ Rn : x ∈ u(y)}.
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Monotone Maps

We say that a set-valued map u : Rn −→ Rn is monotone if

(y1 − y2) · (x1 − x2) > 0 for all xi ∈ Rn, yi ∈ u(xi), i = 1..2.

A monotone map u is called maximal if it is maximal with respect to
inclusion in the class of monotone functions:

v ⊃ u, v monotone =⇒ v = u.
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1-Lipschitz Functions

Let Φ: Rn ×Rn −→ Rn ×Rn be the Cayley transform:

Φ(x, y) := 1√
2
(x+ y, x− y) for (x, y) ∈ Rn ×Rn.

Proposition
Let u be a maximal monotone function. Then (u+ id)−1 is defined
on the whole Rn and Φ(Γu) is the graph of a 1-Lipschitz function
Fu : Rn −→ Rn given by

Fu(z) := z−
√
2(u+ id)−1(

√
2z) for all z ∈ Rn.

Conversely, for any 1-Lipschitz function ϕ : Rn −→ Rn the set
Φ−1(Γϕ) is the graph of a maximal monotone function.
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Properties of Monotone Functions (1/2)

Proposition
Let u be a maximal monotone function. Then

1. if u is maximal, then its graph Γu is closed, and u(x) is a
convex, closed (possibly empty) set for every x ∈ Rn;

2. u is maximal if and only if the domain of u+ id is Rn;
3. u+ id and (u+ id)−1 are monotone functions and (u+ id)−1
is 1-Lipschitz continuous;

4. for any set X ⊂ dom(u), x̄ in the interior of conv(X) and ȳ ∈ u(x̄)

|ȳ| 6 C
dist(x̄,Rn \ conv(X)

where C :=
(
supx∈X infy∈u(x) |y|

)
diam(X).
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Properties of Monotone Functions (2/2)

Corollary
Let u be a maximal monotone function. Then

1. u is upper semicontinuous:

xn −→ x, yn −→ y, y ∈ u(xn) =⇒ y ∈ u(x);

2. the domain of u contains the interior of its convex hull:

int conv dom(u) ⊂ dom(u) ⊂ conv dom(u);

3. u(B) is bounded if B is relatively compact in int dom(u);
4. if u(x) consists of exactly one point y, then x belongs to

int dom(u) and u is continuous at x:

xn −→ x, yn ∈ u(xn) =⇒ yn −→ y.
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Singular Sets

Definition
Let u be a maximal monotone function and k = 1, . . . ,n an integer.
We define

Σk(u) := {x ∈ Rn : dimu(x) > k}

where dimu(x) is the dimension of the set u(x).

Recall that u(x) is a closed, convex set (possibly empty). We note that

Σn(u) ⊂ Σn−1(u) ⊂ · · · ⊂ Σ1(u).
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Size of Singular Sets

Theorem
The Hausdorff dimension of the set Σk(u) is at most (n− k).
More precisely Σk(u) is countably Hn−k-rectifiable: we can find
countably many C 1-submanifolds Γi ⊂ Rn of dimension n− k
that cover Hn−k-almost all of Σk(u), i.e.,

Hn−k
(
Σk(u) \

⋃
i

Γi

)
= 0.

In particular, Σn(u) is at most countable.
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Size Estimates for the Graph

Proposition
For any monotone function u and for any ball B ⊂ Rn ×Rn

of radius r we have

Hn(Γu ∩ B) 6 2n/2ωnrn

for some constant ωn, and for every Borel set A ⊂ Rn

Hn(Γu ∩ (A×Rn)
)
6 2n/2ωn

(
diam(A) + osc(u,A)

)n
,

where osc(u,A) := sup{|y1 − y2| : y1, y2 ∈ u(A)
}
.
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Differentiability Properties

Theorem
Let u be a maximal monotone function and let D be the set of
points x such that u(x) is a singleton (that is, u(x) consists of
exactly one point, which we still denote by u(x)).
Then u is differentiable at almost every x̄ ∈ D, i.e., there exists an
(n× n)-matrix ∇u(x̄) such that

lim
x→x̄
y∈u(x)

y− u(x̄)−∇u(x̄) · (x− x̄)
|x− x̄| = 0.

Moreover, the determinants of all minors of ∇u are integrable on
every bounded set B such that u(B) is bounded.
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Distributional Derivatives (1/2)

Proposition
Let u be a monotone function and Ω an open set relatively compact
in int dom(u). The function u, viewed as an element in L ∞(Ω;Rn),
belongs to BV(Ω;Rn). Moreover, we have

ˆ
Ω

|Du| 6 Cn
(
diam(Ω) + osc(u,Ω)

)n
where Cn is a constant that depends on n only.

The inequality above can be improved to
ˆ
Ω

|Du| 6 Cndiam(Ω)n−1 osc(u,Ω).
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Distributional Derivatives (2/2)

Theorem
Let Ω be an open convex set in Rn.

1. If u is a maximal monotone function such that dom(u) ⊃ Ω,
then u ∈ BVloc(Ω;R

n) and Du is a positive, matrix-valued,
and locally bounded measure.

2. Conversely, if u ∈ L 1
loc(Ω;R

n) and Du is a positive, matrix-
valued distribution on Ω, then there exists a maximal mono-
tone function v such that dom(v) ⊃ Ω and v = u a.e. in Ω.

A matrix-valued distribution Λ is positive (resp. symmetric) if 〈Λ, ϕ〉
is a positive (resp. symmetric) matrix for positive test functions ϕ.
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Approximation of Monotone Maps



Approximation of Monotone Maps

For any ϱ ∈ P2(R
d) we define

Cϱ =
{
t ∈ L 2(Rd, ϱ) : spt

(
(id, t)#ϱ

)
is monotone

}
.

Lemma

For every ϱ ∈ P2(R
d) absolutely continuous with respect to the

Lebesgue measure and all t ∈ Cϱ there is a sequence of Lipschitz
continuous, monotone maps tk defined on all of Rd, such that

lim
k→∞

‖tk − t‖L 2(Rd,ϱ) = 0.
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Polar Cone of the Set of
Monotone Maps



Some Notation (1/3)

Let Matd(R) be the space of real (d× d)-matrices and

Matd(R,�) :=
{
A ∈ Matd(R) : v · (Av)� 0 for all v ∈ Rd

}
where � stands for either > or >.
The analogous spaces of symmetric matrices will be denoted by

Symd(R) and Symd(R,�).

For all A ∈ Matd(R) we define the symmetric/antisymmetric parts

Asym := (A+ AT)/2 and Aanti := (A− AT)/2.

We denote by Skewd(R) the space of antisymmetric matrices.
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Some Notation (2/3)

Let C∗(R
d;RD) be the space of all continuous functions

f : Rd −→ RD for which lim
|x|→∞

f(x) ∈ RD exists.

We identify C∗(R
d;RD) with the space C (Ṙd;RD) of continuous

functions on the one-point compactification Ṙd of Rd.

We adjoin to Rd a point∞ and define a distance

d(x, y) :=


min{|x− y|,h(x) + h(y)} if x, y ∈ Rd,
h(x) if x ∈ Rd and y = ∞,
0 if x, y = ∞,

where h(x) := 1/(1+ |x|) for all x ∈ Rd. Then |x| → ∞ is equivalent to
d(x,∞) → 0. To g ∈ C∗(R

d;RD) we associate ġ ∈ C (Ṙd;RD) as

ġ(x) :=
{
g(x) if x ∈ Rd,
lim|x|→∞ g(x) if x = ∞.
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Some Notation (3/3)

For u ∈ C 1(Rd;Rd) we refer to the symmetric part ∇u(x)sym for all
x ∈ Rd as its deformation tensor, which is in C (Rd;Symd(R)). Let

C 1
∗(R

d;Rd) :=
{
u ∈ C 1(Rd;Rd) : ∇u ∈ C∗

(
Rd;Matd(R)

)}
,

Mon(Rd) :=
{
u ∈ C 1

∗(R
d;Rd) : u is monotone

}
.

The cone Mon(Rd) contains, in particular, all linear maps

u(x) := Ax with A ∈ Matd(R,>).
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Stress Tensor

Theorem

Assume that there exist a measure F ∈ M (Rd;Rd) with finite first
moment and a measure P ∈ M (Rd;Symd(R,>)) with

G(u) := −
ˆ
Rd

〈u(x), F(dx)〉 −
ˆ
Rd

tr
(
∇u(x)P(dx)

)
> 0

for all u ∈ Mon(Rd). There exists R ∈ M (Ṙd;Symd(R,>)) with

G(u) =
ˆ
Ṙd

tr
(
∇u(x)R(dx)

)
for all u ∈ C 1

∗(R
d;Rd),

ˆ
Ṙd

tr
(
R(dx)

)
= −

ˆ
Rd

〈x, F(dx)〉 −
ˆ
Rd

tr
(
P(dx)

)
.

In fact, we can choose R ∈ M (Rd;Symd(R,>)).
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Positive Cones

Let E a normed vector space. We call positive cone any subset C ⊂ E
with C 6= E with the following properties:

C+ C ⊂ C, λC ⊂ C for all λ > 0, C ∩ (−C) = {0}.

The positive cone C induces a partial ordering > on the space E by

y > x ⇐⇒ y− x ∈ C.
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Positive Functionals

A linear map F : L −→ R on a subspace L ⊂ E is called positive if

F(x) > 0 for all x ∈ L ∩ C.

A linear map F : E −→ R is called functional if it is continuous.

Proposition

Let E be a Banach space, partially ordered by a positive cone C. If
some subspace L ⊂ E contains an interior point of C, then every
positive linear map F0 : L −→ R can be extended to a positive
functional F : E −→ R.
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Gradient Young Measures



Elementary Gradient Young Measures

Let Ω ⊂ Rd be a bounded Lipschitz domain and t ∈ BV(Ω;Rd).
Let Bd be the open unit ball in Matd(R) and ∂Bd its boundary.

We associate to the derivative Dt a triple υ = (ν, σ, µ) with

ν ∈ L ∞
w

(
Ω;P

(
Matd(R)

))
, σ ∈ M+(Ω̄), µ ∈ L ∞

w
(
Ω̄, σ;P(∂Bd)

)
as follows: Consider the Lebesgue-Radon-Nikodým decomposition

Dt = ∇tLd + Dst, Dst ⊥ Ld,

and define νx := δ∇t(x) for a.e. x ∈ Ω and σ := |Dst|. Let further

Dst = dDst
d|Dst| |D

st|, p :=
dDst
d|Dst| ∈ L 1(Ω, |Dst|; ∂Bd).

be the polar decomposition of Dst and define µx = δp(x) for |Dst|-a.e.
x ∈ Ω. We call υ = (ν, σ, µ) an elementary gradient Young measure.
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Weak*-Precompactness (1/2)

Consider a sequence of uniformly bounded maps tk ∈ BV(Ω;Rd).
Extracting a subsequence, we may assume that

tk −→ t in L 1(Ω;Rd),

Dtk −⇀ Dt weak* in M (Ω;Matd(R)),

for some t ∈ BV(Ω;Rd), i.e., tk converges weak* to t in BV(Ω;Rd).

Let υk = (νk, σk, µk) be the elementary gradient Young measure of
Dtk. Since the spaces above are (contained in) dual spaces, there
exists a subsequence and a triple υ = (ν, σ, µ) such that

Jf, υkK := ˆ
Ω

[f(x, ·), νkx ]dx+
ˆ
Ω̄

[f∞(x, ·), µkx ]σk(dx)

:=

ˆ
Ω

ˆ
Matd(R)

f(x,M) νkx (dM)dx+
ˆ
Ω̄

ˆ
∂Bd

f∞(x,M)µkx(dM)σk(dx)

converge to Jf, υK (defined analogously) as k→ ∞ (…)
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Weak*-Precompactness (2/2)

(…) for all test functions f ∈ R(Ω;Matd(R)) with

R
(
Ω;Matd(R)

)
:=


f : Ω̄× Matd(R) −→ R :

the map f is a Carathéodory function with
linear growth at infinity, and there exists
f∞ ∈ C

(
Ω̄× Matd(R)

)
We denote by f∞ the recession function of f, defined as

f∞(x,M) := lim
x′→x
M′→M
t→∞

f(x′, tM′)

t for a.e. x ∈ Ω̄ and all M ∈ Matd(R).

The recession function is positively 1-homogeneous in M.
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Gradient Young Measures

We call a triple υ = (ν, σ, µ) a gradient Young measure and denote
the space of gradient Young measures by G (Ω;Matd(R)). Then

Dt = [id, ν]Ld + [id, µ]σ,

by construction. Moreover, we have

‖∇tk‖ Ld +
∥∥∥∥ dDstk

d|Dstk|

∥∥∥∥ |Dstk| −⇀ [‖ · ‖, ν]Ld + [‖ · ‖, µ]σ

weak* in M (Ω̄) as k→ ∞, which implies that [‖ · ‖, ν] ∈ L 1(Ω).
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Monotone Gradient Young Measures

Proposition (Gradient Young Measures)

Let Ω ⊂ Rd be a bounded Lipschitz domain and suppose that
tk −⇀ t weak* in BV(Ω;Rd) with tk, t ∈ BV(Ω;Rd) monotone. We
denote by υk the elementary gradient Young measure of Dtk.
There exists a subsequence and a gradient Young measure

υ ∈ G (Ω;Matd(R))

such that Jf, υkK −→ Jf, υK for all f ∈ R+(Ω;Matd(R)), where

R+

(
Ω;Matd(R)

)
:=


f : Ω̄× Matd(R) −→ R :

the map f is a Carathéodory function with
linear growth at infinity, and there exists
f∞ ∈ C

(
Ω̄× Matd(R,>)

)
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An Unbounded, Convex Function on Matrices

Lemma

For any γ > 1, the map h : Matd(R) −→ [0,∞] defined by

h(M) :=
{
det(Msym)1−γ if M ∈ Matd(R, >),
+∞ otherwise,

is lower semicontinuous, proper, and convex.
For all M ∈ Matd(R), we have

h∞(M) := lim
t→∞

h(1+ tM)− h(1)
t =

{
0 if M ∈ Matd(R,>),
+∞ otherwise.
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inf-Convolution

Lemma

For n ∈ N and M ∈ Matd(R), we define the inf-convolution

hn(M) := inf
B∈Matd(R)

{
n‖M− B‖+ h(B)

}
.

1. The map hn is lower semicontinuous, proper, and convex,
and hn(M) −→ h(M) monotonically from below.

2. The map hn is Lipschitz continuous with Lipschitz constant n
and has linear growth at infinity:

hn(M) 6 1+ n
√
d+ n‖M‖ for all M ∈ Matd(R).

3. For all M ∈ Matd(R), we have that

h∞n (M) := lim
t→∞

hn(1+ tM)− hn(1)
t = ndist(M,Matd(R,>)).
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Internal Energy Functional

Proposition

Let Ω ⊂ Rd be open and convex, and h given above.
For U ∈ L 1(Ω) non-negative and t ∈ BVloc(Ω;R

d) we define

U [t] :=


ˆ
Ω

U(x)h
(
∇t(x)

)
dx if t monotone,

+∞ otherwise,

using again the Lebesgue-Radon-Nikodým decomposition.

1. The functional U is convex.
2. For tk −⇀ t weak* in BVloc(Ω;R

d) with tk, t ∈ BVloc(Ω;R
d)

monotone, there exists a subsequence such that

U [t] 6 lim inf
k→∞

U [tk].
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Lemma about Determinants

Lemma

Let S be a real, positive semidefinite, symmetric (d× d)-matrix. For
any real skew-symmetric (d× d)-matrix A we have

det(S+ A) > det S > 0.

For det(S) > 0 there is a unique R ∈ Symd(R, >) such that R2 = S.
With C := R−1AR−1 skew-symmetric, we obtain the following identity:(

det(S+ A)
det(S)

)γ

= 1+ γ

ˆ 1

0
det(1+ tC)γ tr

(
(1+ tC)−1C

)
dt,

where the integral on the right-hand side is non-negative.
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Compressible Fluid Equations

Hyperbolic System of Conservation Laws

∂tϱ+∇ · (ϱu) = 0

∂t(ϱu) +∇ · (ϱu⊗ u) +∇π = 0

∂tε+∇ ·
(
(ε+ π)u

)
= 0

 in [0,∞)×Rd

Physical Quantities

• Density ϱ(t, ·) ∈ P2(R
d)

• Velocity u(t, ·) ∈ L 2(Rd, ϱ(t, ·)
)

• Total Energy ε(t, ·) ∈ M+(R
d)

An Equation of State determines the pressure π in terms of (ϱ,u, ε).
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Isentropic Euler Equations

The pressure is a function of the density only:

∂tϱ+∇ · (ϱu) = 0

∂t(ϱu) +∇ · (ϱu⊗ u) +∇P(ϱ) = 0

}
in [0,∞)×Rd (2)

Total energy ε = 1
2ϱ|u|2 + U(ϱ) (with P(ϱ) = U′(ϱ)ϱ− U(ϱ)).

Energy conservation follows formally from (2).

The flow can become discontinuous in finite time!

Entropy Condition (Mathematical Entropy)

∂t

(
1
2ϱ|u|

2 + U(ϱ)
)
+∇ ·

((
1
2ϱ|u|

2 + U′(ϱ)ϱ
)
u
)

6 0

=⇒ Dissipation of Total Energy
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Isentropic Euler Equations

Initial value problem: for given initial data

(ϱ,u)(0, ·) = (ϱ̄, ū).

Global existence of weak solutions in one space dimension.
Uniqueness is open.

Several space dimensions: numerical evidence that there is no
convergence to one particular weak solution: New small-scale
features appear upon every mesh refinement.

=⇒ Consider measure-valued solutions (statistics of solutions)?
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Isentropic Euler Equations

On the analysis side, there is a massive nonuniqueness problem:
Infinitely many weak (“wild”) solutions for isentropic Euler.
Much worse than instability/chaotic behavior!
(De Lellis-Székelyhidi)

Strategy: linear pde plus pointwise constraint

1. construct subsolution (captures the macroscopic features)
2. successively superimpose waves that are highly oscillatory in
the divergence-free component of the momentum

3. limit is an extreme point of the convex set of subsolutions.

The density is not changed in this construction.

The entropy inequality is insufficient to ensure uniqueness!
=⇒ What is the right entropy condition?
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Dafermos’ Entropy Rate Admissibility Condition

Among all weak solutions seek the one that dissipates the total
energy (i.e., the mathematical entropy) at maximal rate.

BUT This seems to pick the “wild” solutions!

Vortex-sheet initial data (quasi-1d)

• there exists a quasi-1d solution: Riemann problem
• there exist infinitely many genuinely 2d solutions...
• that dissipate total energy faster than the quasi-1d solution

This is not a problem of non-smooth initial data!
(Chiodaroli-De Lellis-Kreml)

=⇒ Avoid steepest descent for total energy?
(Anomalous dissipation: weak convergence effect)
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Variational Time Discretization

GOAL Find a variational time discretization in the spirit of
minimizing movements for curves of maximal slope.

Timestep τ > 0, discrete times tk = kτ with k ∈ N0.

Approximate the solution at time tk by (ϱk,uk).

Update (ϱk+1,uk+1) is the minimizer of an optimization problem:

• decrease some energy as much as possible,
• while minimizing the cost associated to the step size.

Lagrangian formulation in terms of transport maps.
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Maximize Entropy Production

For given timestep τ > 0 and data (ϱ,u) we minimize

Work + Internal Energy

• Optimal work and internal energy: Wτ and Uτ

• No work (free transport): W0 = 0 and U0

From the inequality Wτ + Uτ 6 W0 + U0 we obtain

Wτ 6 ∆U := U0 − Uτ (“2nd law”).

In fact, maximize the difference ∆U − Wτ .

By analogy with classical thermodynamics: ∆U − Wτ ∼ θ∆S
=⇒ maximize entropy production ∆S > 0.
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Minimal Acceleration (1/2)

Curves of Minimal Acceleration
Among all smooth curves X : [0, τ ] −→ Rd such that

(X, Ẋ)(0) = (x, ξ) and (X, Ẋ)(τ) = (z, ζ),

find the one that minimizes the acceleration τ
´ τ

0 |Ẍ(t)|2 dt.
=⇒ Uniquely determined cubic polynomials.

z = (z, ζ)x = (x, ξ)
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Minimal Acceleration (2/2)

Acceleration: For x = (x, ξ) and z = (z, ζ) let

a(x, z)2 = 3
4τ 2 |(x+ τξ)− z|2 +

∣∣∣∣ζ − (
ξ − 3

2τ

(
(x+ τξ)− z

))∣∣∣∣2.
Note that

• the first term measures how much the final position z differs
from x+ τξ, which would be the position after a free transport;

• the second term measures the difference between ζ and

w(x, z) = ξ − 3
2τ

(
(x+ τξ)− z

)
,

which is different from the transport velocity

v(x, z) = z− x
τ

(convex combination v(x, z) = 2
3w(x, z) +

1
3ξ).
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Minimal Work

We express fluid states as measures on R2d:

Pϱ(R2d) =
{
γ ∈ P2(R

2d) : x#γ = ϱ
}

with ϱ ∈ P2(R
d).

If µ ∈ Pϱ(R2d) with disintegration µ(dx,dξ) = µx(dξ) ϱ(dx),
then µx describes the distribution of velocities.

Monokinetic states

µ(dx,dξ) = δu(x)(dξ) ϱ(dx) with u ∈ L 2(Rd, ϱ).

Definition
For µ1,µ2 ∈ P2(R

2d) define the minimal work as

W (µ1,µ2)2 := inf

{ ˆ
R2d×R2d

a(x1, x2)2 γ(dx1,dx2) : pi#γ = µi
}
.

Note that W (µ1,µ2) has the dimensions of an energy.
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Internal Energy I

Definition

Let U(r) := κrγ for all r > 0 (with constants κ > 0 and γ > 1).
For ϱ ∈ P2(R

d) we define

U [ϱ] :=


ˆ
Rd
U
(
r(z)

)
dz if ϱ = rLd,

+∞ otherwise.

For any t ∈ L 2(Rd, ϱ) smooth, injective we have
(by change of variables formula)

U [t#ϱ] =

ˆ
Rd
U
(
r(x)

)
det

(
∇t(x)

)1−γ dx.
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Minimization Problem (1st try)

Internal energy does not depend on velocity.
=⇒ Optimal velocity update

ζ = w(z, z)

Simplified minimization problem (monokinetic state):

min

{
3
4τ 2

ˆ
Rd

ϱ|t− (id + τu)|2 +
ˆ
Rd
U(ϱ) det(∇t)1−γ

}
over all t ∈ C 1(Rd) ∩ L 2(Rd, ϱ) with det(∇t) > 0 ϱ-a.e.

Integrand is unbounded, x-dependent, not coercive, not convex.
=⇒ Need to modify the problem
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Internal Energy II

Definition
Let ϱ ∈ P2(R

d) with ϱ = rLd and U [ϱ] < +∞.
Then we define

U [t|ϱ] :=


ˆ
Rd
U
(
r(x)

)
det

(
∇t(x)sym)1−γdx if ∇t ∈ Matd(R, >) a.e.,

+∞ otherwise.

Here Matd(R, >) is the set of strictly positive definite matrices (not
necessarily symmetric). In particular, we use the deformation

∇t(x)sym :=
∇t(x) +∇t(x)T

2 .

Note that for t =: id + τv, we have det(∇t) = 1+ τtr(∇v) + . . .
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Configuration Manifold

Matter is not allowed to interpenetrate (cf. pressureless case)
=⇒ The transport map t should be (essentially) injective.

For existence we need to find the right functional setting:

1. choose transport maps t ∈ L 2(Rd, ϱ) that are monotone,
2. and stresses σ ∈ M (Rd,Rd×d) such that

∇ · σ = ϱa in D ′(Rd), for some a ∈ L 2(Rd, ϱ).

Definition
For any ϱ ∈ P2(R

d) we define

Cϱ =
{
t ∈ L 2(Rd, ϱ) : spt

(
(id, t)#ϱ

)
is monotone

}
.
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Monotone Transport Maps

A subset Γ ⊂ Rd ×Rd is called monotone if

(x1 − x2) · (y1 − y2) > 0 for any pair of (xi, yi) ∈ Γ.

Such a set is called maximal monotone if for any monotone
set Γ′ ⊂ Rd ×Rd with Γ ⊂ Γ′ we have that Γ = Γ′.

Every monotone set has a maximal monotone extension.

Note that
• compositions of monotone maps are not monotone (only in 1d);
• in our case, transports will be perturbations of identity: the map

id + τu is monotone if ‖(Du)−‖ < 1/τ (cf. CFL condition).
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Extension of Monotone Maps

No assumptions on ϱ, so t ∈ Cϱ may not be defined in all of Rd.
We can associate to t a maximal monotone map with domain

Ω = int conv spt ϱ

If ϱ � Ld then we have ϱ(Rd \ Ω) = 0.

Properties of Maximally Monotone Maps defined on Ω

(see Alberti-Ambrosio):

• single-valued except for a codimension-one rectifiable set
(which is negligible w.r.t. Lebesgue measure)

• bounded in L ∞
loc(Ω);

• in BVloc(Ω) (total variation of the derivative can be controlled
by the oscillation, which is finite).
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Closed Convex Cone

Lemma

For every ϱ ∈ P2(R
d) such that ϱ � Ld and for all t ∈ Cϱ there

exists a sequence of Lipschitz continuous (or C 1(Rd)), monotone
maps tk defined on all of Rd, such that

lim
k→∞

‖tk − t‖L 2(Rd,ϱ) = 0.

Lemma
For any ϱ ∈ P2(R

d), the set Cϱ of monotone maps in L 2(Rd, ϱ) is a
closed convex cone, which includes constants and rigid motions.

For all f ∈ L 2(Rd, ϱ) there exist uniquely determined maps t ∈ Cϱ
and a ∈ C⊥ϱ (polar cone; see below) such that

f = t⊕ a (orthogonal decomposition).
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Polar Cone

Lemma
For any ϱ ∈ P2(R

d) we denote by

C⊥ϱ :=
{
a ∈ L 2(Rd, ϱ) :

ˆ
Rd

ϱa · t 6 0 for all t ∈ Cϱ
}

the polar cone of the cone Cϱ of monotone maps in L 2(Rd, ϱ). For
all a ∈ C⊥ϱ there exists ω ∈ M (Rd;Symd(R,>)) such that

∇ · ω = ϱa in D ′(Rd),
ˆ
Rd

tr(ω) = −
ˆ
Rd

ϱa · id.

For any ϱa = ∇ · ω and t ∈ Cϱ we can “integrate by parts”: there
exists a nonnegative measure tr

(
ω(Dt)

)
such that

0 6
ˆ
βRd

tr
(
ω(Dt)

)
= −

ˆ
Rd

ϱa · t.
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Properties of Internal Energy

Lemma
Let ϱ and t 7→ U [t|ϱ] be given as above. Then the internal energy is
convex and lower semicontinuous with respect to the weak*
convergence of monotone maps in BVloc(Ω;R

d), with

Ω := int conv spt ϱ.

Use Jensen inequality with gradient Young measures generated by
sequences in BVloc(Ω;R

d) (see Kristensen-Rindler), and a standard
regularization of g using the inf-convolution; see Rockafellar.

Note: Monotonicity substitutes for coercivity

bounded in L 2(Rd, ϱ) =⇒ bounded in BVloc(Ω;R
d)
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Control of Internal Energy after Transport

Lemma

Suppose that ϱ ∈ P2(R
d) is given with ϱ =: rLd and U [ϱ] < ∞.

For any t ∈ Cϱ with U [t|ϱ] < ∞ there exists a Borel set Σ ⊂ Rd

with ϱ(Σ) = 0 and t|Rd\Σ injective. Then

U [t#ϱ] 6 U [t|ϱ].

Let R(x) ∈ Symd(R, >) such that R(x)2 = ∇t(x)sym for ϱ-a.e. x ∈ Rd.
Defining C(x) := R(x)−1∇t(x)antiR(x)−1, we have

U [t#ϱ]− U [t|ϱ]

= −
ˆ
Rd
P(r, S)

(
det(∇tsym)1−γ

ˆ 1

0
det(1+ tC)1−γT(t, C)dt

)
dx,

T(t, C) := tr
(
(1+ tC)−1C

)
for all t > 0.

The difference vanishes if and only if ∇t(x)anti = 0 for ϱ-a.e. x ∈ R.
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Existence of Minimizers

Proposition

Consider density ϱ ∈ P2(R
d) and velocity u ∈ L 2(Rd, ϱ).

Assume that ϱ =: rLd and U [ϱ] < ∞. Given any timestep τ > 0,
there exists a unique tτ ∈ Cϱ that minimizes the functional

Ψτ [t|ϱ,u] :=
3
4τ 2

ˆ
Rd

∣∣(x+ τu(x)
)
− t(x)

∣∣2 ϱ(dx) + U [t|ϱ].

This minimum is finite. For all Borel maps v : Rd −→ Rd with the
property that tτ + εv ∈ Cϱ for some ε > 0, we have the following
inequality: Let P(r) := U′(r)r− U(r) for r > 0. Then

− 3
2τ 2

ˆ
Rd

〈(
x+ τu(x)

)
− tτ (x), v(x)

〉
ϱ(dx)

−
ˆ
Rd
P
(
r(x)

)
det

(
∇tτ (x)sym)1−γtr

((
∇tτ (x)sym)−1∇v(x))dx > 0.
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Stress Tensor

Proposition

There exists Rτ ∈ M (Rd;Symd(R,>)) with
ˆ
Rd

tr
(
∇u(x)Rτ (dx)

)
=− 3

2τ 2
ˆ
R2d

〈(
x+ τu(x)

)
− tτ (x),u(x)

〉
ϱ(dx)

−
ˆ
Rd
P
(
r(x)

)
det

(
∇tτ (x)sym)1−γtr

((
∇tτ (x)sym)−1∇u(x))dx

for all u ∈ C 1
∗(R

d;Rd). In particular, we have the size control
ˆ
Rd

tr
(
Rτ (dx)

)
= − 3

2τ 2
ˆ
R2d

〈(
x+ τu(x)

)
− tτ (x), x

〉
ϱ(dx)

−
ˆ
Rd
P
(
r(x)

)
det

(
∇tτ (x)sym)1−γtr

((
∇tτ (x)sym)−1)dx.
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Energy Balance

Proposition

With total energy E [ϱ,u] :=
´
Rd

1
2ϱ|u|2 + U [ϱ], we have

E [ϱτ ,uτ ] +
ˆ
Rd

1
6ϱ|wτ − u|2

+

ˆ
Rd

(
P(r, S)D2

(
∇tτ − 1

))
dx+ tr

(
Rτ (dx)

))
= E [ϱ,u].

For all matrices 1+ S ∈ Symd(R, >) and A ∈ Skewd(R) we have

D2(S+ A) :=
ˆ 1

0
det(1+ tS)1−γ

(
(γ − 1)T(t, S)2 + T2(t, S)

)
t dt

+ det(1+ S)1−γ

ˆ 1

0
det(1+ tC)1−γT(t, C)dt > 0,

T2(t, S) := tr
((

(1+ tS)−1S
)2) for all t > 0.

Here C := R−1AR−1 and R ∈ Symd(R, >) such that 1+ S =: R2.
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Approximate Solutions

The transport maps are interpolated linearly in time, the transport
velocities are piecewise constant.
We patch transports together to obtain a global transport map

Xτ,t = tτ,t ◦ tkτ ◦ · · · ◦ t1τ , Ξτ,t = wk+1τ ◦ tkτ ◦ · · · ◦ t1τ
where k = bt/τc (the largest integer not bigger than t/τ ).
Approximate solutions have total energy uniformly bounded.
Lemma
Consider approximate solutions (ϱτ ,uτ ) as above. Then

sup
τ>0

‖ϱτ‖Lip([0,∞),P2(Rd)) 6 (2Ē)1/2,(ˆ
Rd

|x|2ϱτ,t(dx)
)1/2

6
(ˆ

Rd
|x|2ϱ̄(dx)

)1/2
+ t(2Ē)1/2

for all τ > 0 and t ∈ [0,∞). Here Ē is the initial total energy.
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The Space BL1(Rd;RN)

Definition

We denote by Lip(Rd;RN) the vector space of Lipschitz continuous
maps ζ : Rd −→ RN. The Lipschitz constant of ζ ∈ Lip(Rd;RN) is

‖ζ‖Lip(Rd) := sup
x1 ̸=x2

|ζ(x1)− ζ(x2)|
|x1 − x2|

.

We denote by BL(Rd;RN) the subspace of bounded functions in
Lip(Rd;RN). It is a Banach space when equipped with the norm

‖ζ‖BL(Rd) := max
{
‖ζ‖L ∞(Rd), ‖ζ‖Lip(Rd)

}
.

Let BL1(Rd;RN) be the space of ζ ∈ BL(Rd;RN) with ‖ζ‖BL(Rd) 6 1.
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Lipschitz Continuity of Momentum

We denote by MK(R
d;RN) the space of RN-valued Borel measures

m with zero mean and finite first moment, equipped with norm

‖m‖MK(Rd) := sup

{ ˆ
Rd

ζ(x) ·m(dx) : ζ ∈ BL1(Rd;RN)

}
.

The Monge-Kantorovich norm is bounded by the total variation.

Lemma
Consider approximate solutions (ϱτ ,uτ ) as above. Then

sup
τ>0

‖mτ‖Lip([0,T];MK(Rd;Rd)) 6 CĒ

for all t ∈ [0,∞). Here mτ is the approximate momentum.
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Global Existence (1/2)

Theorem

Suppose that initial data ϱ̄ ∈ P2(R
d) and v̄ ∈ L 2(Rd, ϱ̄) is given

with vanishing total momentum and finite internal energy.
For any T > 0 there exist curves

ϱ ∈ Lip
(
[0, T];P2(R

d)
)
, m ∈ Lip

(
[0, T];MK(R

d;Rd)
)

with the following properties:

1. The initial data is attained:

ϱ(0, ·) = ϱ̄, m(0, ·) = ϱ̄v̄.

2. We have m =: ϱv with

v(t, ·) ∈ L 2(Rd, ϱ(t, ·)
)
, for all t ∈ [0, T].
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Global Existence (2/2)

Theorem (cont.)

3. There exist two Young measures

ν1, ν2 ∈ L ∞
w

(
[0, T];M+(Ṙ

d × X)
)
,

where X is a suitable compactification of the set

X := [0,∞)×Rd

of admissible (ϱ, v), such that

∂tϱ+∇ · [ϱv] = 0

∂t(ϱv) +∇ · [ϱv⊗ v] +∇JP(ϱ)K = 0

}
distributionally.

Here the brackets [·] and J·K denote the integration of ν1 and ν2,
respectively, against suitable functions of (ϱ, v).
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Final Remarks

The stress tensor Rτ (Lagrange multiplier of monotonicity contraint)
does not appear in the momentum equation. The term JP(ϱ)K is only
determined by the Young measure for the pressure.

The measure-valued solution satisfies a local energy inequality.

Weak-Strong-Uniqueness: Using the relative entropy method one
can show that the measure-valued solution coincides with the
unique strong solution as long as the latter exists.

A similar time discretization works for the full Euler case and the
pressureless gas dynamics case.
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Thank You
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