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Abstract

We consider a general second-order hyperbolic equation defined on an open bounded domain 2 C R”
with variable coeffecients in both the elliptic principal part and in the first-order terms as well. At
first, no boundary conditions (B.C.) are imposed. Our main result (Theorem 3.5) is a reconstruction, or
inverse, estimate for solutions w: under checkable conditions on the coefficients of the principal part, the
H'(Q) x Ly(Q)—energy at time t = T, or at time ¢t = 0, is dominated by the L2(X)-norms of the boundary
traces ég,—“; and w;, modulo an interior lower-order term. Once homogeneous B.C. are imposed, our
results yield—under a uniqueness theorem, needed to absorb the lower order term-continuous observability
estimates for both the Dirichlet and Neumann case, with an explicit, sharp observability time; hence,
by duality, exact controllability results. Moreover, no artificial geometrical conditions are imposed on
the controlled part of the boundary in the Neumann case. In contrast with existing literature, the first
step of our method employs a Riemann geometry approach to reduce the original variable coefficient
principal part problem in £ C R™ to a problem on an appropriate Riemann manifold (determined by
the coefficients of the principal part), where the principal part is the Laplacian. In our second step, we
employ explicit Carleman estimates at the differential level to take care of the variable first-order (energy
level) terms. In our third step, we employ micro-local analysis yielding a sharp trace estimate, to remove
artificial geometrical conditions on the controlled part of the boundary, in the Neumann case.
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1 Introduction. Dual Problem: Continuous Observability Inequalities.
Literature

Standing assumptions. (H.1): Let 2 C R™ be a bounded, open domain with boundary I' = 9 of class
C?. Let T'g and T'y be open disjoint subsets of I" with I' = I'g UT;. Let

Aw = — En: a% (aij(x) 37“;) , z=[z1,...,Tn] (1.1)

3,j=1

be a second-order differential operator, with real coefficients a;; = aj; of class C, satisfying the uniform

ellipticity condition:
n

Z a;j ()& > aifiz, z €, (1.2a)
=1

i,j=1
for some positive constant a > 0. Assume further that

n

Z a;]($)£lfj >0, V.’EER”, 62(51962,'--,570 ERn, 5750 (12b)

2,j=1

(H.2): Let Fi(w) be a linear, first-order differential operator in all variables {¢,z1,...,z,} on w with
Lo (Q)-coefficients, thus satisfying the following pointwise estimate: there exists a constant Cp > 0 such
that

|F1(w)|? < Cr[w? + |[Vw|? + w?],V t,z € Q, (1.3)

where Q = (0,7] x Q and w(t, z) € C1(Q). Let (0,T) xI; =3%;, i =0,1;(0,7] x ' = . [Lower regularity
than L., can be assumed for the zero order term, depending on the dimension n via Sobolev embedding,
but we shall not insist on this detail.]

Dirichlet control. We consider the Dirichlet mixed second-order hyperbolic problem in the unkown
w(t,z) and its dual homogeneous problem in (¢, z):

( Wit + Aw = Fl(w) in Q;
Y+ AP = F () in Q;
’LU(O, : ) = Wo, wt(oa : ) =w; in
4 w(Ta . ) = ’d)Oa wt(Ta . ) = wl in Qa (14)
w|20 =0 in 20;
Y|l =0 in X,
| wix, =u in Xy;

with control function u € L2(0,T; Ly(T'1)) in the Dirichlet B.C., where F(1) is a suitable first-order differ-
ential operator, depending on the original operator Fj, and satisfying the same pointwise bound such as
(1.3) for Fi.

Continuous observability inequality in the Dirichlet case. As our first goal, we seek to establish—
under a suitable additional assumption—the following a-priori inequality for the homogeneous Dirichelt
y-problem (1.4): there exists a constant Ty > 0, depending upon the triple {2, T, I'1} and the coefficients
a;;, such that for all ' > Tp, there is a constant c¢r > 0 for which

/T/ — 2d21 > cr|{o, Y1} : (1.5)
o Jr, \Ova =z : HL(Q)x La(Q)



In (1.5), 59,/—“; = D i o105 %Vi is the co-normal derivative, where v = [vi,...,1,] is the unit outward
J= J

normal on I'. Eqn. (1.5) is the continuous observability inequality for the 1-problem (1.4) in the established
terminology of [2]. As is well-known, e.g., [10], [13], [27], inequality (1.5) for the -problem (1.4) is, by
duality or transposition, equivalent to the exact controllability property of the non-homogeneous w-problem
(1.4) at time T, on the space L2(Q) x H~1(Q), within the class of Ly (0, T; Ly(I'1))-controls; in other words,
such exact controllability is the property that the map L:

{ {u,wo =0, w; =0} = Lyu = {w(T, - ),w(T, - )} is surjective (16a)
.6a

from LQ(O, T; Ly (Fl)) onto LQ(Q) X H_l(Q),
with {w(T, - ),w(T, - )} solution of the w-problem (1.4) at ¢ = T'; while inequality (1.5) is a restatement
[27] of the following standard [24, p. 235] inequality from below of the corresponding adjoint:
IL7zl Ly(0,75L2(0)) = erllzl Loy xa-1(0) (1.6b)
which is well known to be equivalent to the surjectivity property (1.6a).

Remark 1.1. The converse (trace regularity) of inequality (1.5) always holds true, for any 7" > 0 [12],
[11],[19]. O

Neumann control. Here we let T'g # (), [o N T'; = (), and consider the Neumann mixed second-order
hyperbolic problem in the unknown w(¢, z) and is dual homogeneous version in ¥ (¢, x):

[ wu + Aw = Fi(w); (i + AP = F(3)) in Q;
w(0, - ) =wo, we(0, - ) =w1; | (T, -) =10, ¥s(T, - ) =11 in
{ wls, =0; Y Pz, =0 in %o; (1.7)
ow o O _ _
{ azl_ua \ |:(91/_A+B1/J:|21_0 1n21,

with control function u € Ly(0,T; L2(I'1)) = L2(X1) in the Neuman B.C. where F' is a suitable first-order
differential operator depending on Fj, and satisfying the same pointwise estimate such as (1.3) for F} and
[ is a suitable function, depending on Fj.

Continuous observability inequality in the Neumann case. As our second goal we seek to
establish—under a suitable additional assumption—the following a-priori inequality for the homogeneous
Neumann -problem (1.7): there exists a constant Ty > 0, depending upon the triple {Q2,T9,I'1} and the
coefficients a;;, such that for all ' > Tp, there is a constant ¢z > 0 for which

T
/ [ utass > erllvo i}y @craian (18)

where Hf (Q) = {f € H'(Q) : f|r, = 0}, whenever the left-hand side is finite. This is the continuous
observability inequality for the 1-problem (1.7) [2]. Again, by duality or transposition, inequality (1.8) is
equivalent (see e.g., [10], [14], [15]) to the exact controllability property of the non-homogeneous w-problem
(1.7) at time T', on the space H%O(Q) x Lo(2), within the class of Ly(0,T; L2(I'1))-controls; in other words,
such exact controllability is the property that the map Lp:

{ {u,wp = 0,w; =0} = Lyu = {w(T, - ), w(T, - )} is surjective (1.98)
.9a

from LQ(O,T; Lg(Fl)) onto Hll‘o X LQ(Q),

2



with {w(T, - ), w¢(T, - )} solution of the w-problem (1.7) at ¢ = T, while inequality (1.8) is a restatement
[14] of the following standard [24, p. 235] inequality from below of the corresponding adjoint:

| L2 Lo (0,13L5(T1)) = CT||Z||H§O x La(Q)> (1.9b)

which is well known to be equivalent to the surjectivity property (1.9a) [14].

Remark 1.2. The converse of inequality (1.8) is false for dim Q > 2, and is true for dim Q = 1 [16],
for any 7' > 0. a

Literature. Our results are more general than just continuous observability estimates, or—by duality—
exact controllability statements. The latter are generally obtained in the literature through the former [2],
on the basis of the standard Functional Analysis result [24, p. 235] quoted before. One exception is the
approach pursued by W. Littman, who seeks exact controllability results directly, without passing through
continuous observability inequalities [20], [21], [22].

A detailed analysis of the various methods used in the literature to establish continuous observability
inequalities, such as (1.5) and (1.8), along with a description of their virtues and shortcomings was already
given in our previous announcement [18] of the present paper. They are:

(i) (By now classical) differential multipliers—h - V4, div h—used after [11], in [13], [5], [14], [19],
[27] in 1986, where h(z) is a coercive vector field. They have been successful in proving the continuous
observability inequalities (1.5) and (1.8) in the case where A = —A (or in the case of constant coefficients
a;j of the principal part). However, these original differential multipliers tolerate additional terms only
below the energy level; i.e., a zero-order operator F' is fine, but a truly first-order operator F' causes the
method to fail.

(ii) Pseudo-differential multipliers, micro-local analysis, propagation of singularities initiated in [20] and
culminated into the general treatment in [1]. However, it is not an easy matter to verify in applications
and examples the (sharp) sufficient condition that all rays of geometric optics hit the effective controlled
part 3 = (0,7] x I'1 of the lateral boundary ¥ of the cylinder @ at a non-diffractive point. Moreover,
the method uses C*™ data and I, at least at present. Extension to other non-hyperbolic models, such as
plate-like problems, seems a serious issue.

(iii) General pseudo-differential multipliers derived from pseudo-convex functions [6] for general evolution
equations [25]. These techniques with pseudo-differential Carleman multipliers proposed in [25], which in
prior literature [6] were applied to solutions with compact support (thereby not accounting for boundary
traces which are instead critical for continuous observability equalities) are unifying across several evolution
equations. However, they require the existence of a pseudo-convex function, a property which essentially
can be verified mostly if not exclusively in the case of constant coefficients a;; of the principal part A.
Moreover, at least in [25], the control is taken to be active on the entire boundary T'.

(iv) Subsequent specific, corresponding differential multipliers versions (much more flexible than classi-
cal differential multipliers in (i)), tuned to second-order hyperbolic equations [17], [8], [3]. In the specific
concrete analysis of differential Carleman multipliers tuned to second-order hyperbolic equations, the draw-
back of the existence of pseudo-convex function remains, of course, while now a more detailed analysis—this
time at the differential rather than pseudo-differential level—allow the control to act on a suitable part of
the boundary. These differential Carleman multipliers can be viewed as a non-trivial generalization of the
original differential multipliers h - V1), ¥ div h in (i), over which they possess an added flexibility via the
parameter 7 below, which allows to handle also those first-order terms F' as in (1.3), that original multipliers
could not deal with.

The general, technical, sharp approach in [1] which follows the dynamics along bi-characteristics—the
carriers of energy—did not seal the problem. Other approaches, mentioned above, made connections with
other ideas in the P.D.E.’s area, such as pseudo-convex functions and injected new enlightening into the



continuous observability inequalities. Even this further development does not seal the problem, and the
infusion of other ideas is possible. In this scenario, recently Riemann geometric methods were introduced and
combined with classical differential multipliers as in (i), to establish continuous observability inequalities,
such as (1.5) and (1.8) [28]. This method has the virtue to allow variable coefficients a;;(z) of the principal
part A, subject to certain verifiable assumptions. However, in its original form [28], this approach also
cannot handle genuine first-order energy level terms F. The reason will be explained in Remark 4.2.1
below. Moreover, the treatment in [28] required unnecessary geometrical conditions.

Contribution of the present paper. In this paper we present a successful combination of three
key ingredients which allow to establish the validity of the continuous observability inequalities (1.5) and
(1.8) in the case of (a) variable coefficients a;;(x) of the principal part A, subject to verifiable conditions,
and (b) genuine first-order, energy level terms Fij, and (c) with no artificial geometric conditions in the
Neumann case. These three ingredients are: (1) the Riemann geometric approach to [28]; (2) the Carleman
differential multipliers used in [17], which now replace the original classical differential multipliers of [28],
though in the Riemann metric; (3) the pseudo-differential approach in [15] which led to an Lo- estimate of
the tangential derivative (gradient) of the solution w in terms of Ls-boundary estimates of w; and
modulo lower-order terms; see Lemma 6.2 below.

It is ingredient (2) that permits to add a bonafide first-order operator Fj as in (1.3), to the result of
[28]. Further, it is ingredient (3) that permits the elimination of geometrical conditions present in [28] in
the Neumann case.

The present approach provides the optimal time for the validity of the continuous observability inequal-
ities (1.5) and (1.8), as is the case with pseudo-convex functions.

Our new main differential multiplier is (see (4.2.2) below)

emé@h) [(Vg¢, Vgw)g — prwi] (1.10)

al/A’

in the Riemann metric (R”,g) below, where ¢ is the pseudo-convex function defined in (3.6a) below.
Additional multipliers in the proof below are

w |divoe™V ¢ — %(ewd)t) s we™® (1.11)

see Lemma 4.2.2 with m = p defined in (4.2.14).

2 Riemannian Metric Generated by the Principal Part A

Recalling the coefficients a;; = aj; of A, let A(z) and G(x) be, respectively, the coefficient matrix and its
inverse

A(2) = (a;j(2));  G(z) = [A@)] ! = (gij(2)), i,5=1,...,n; z €R". (2.1)
Both A(z) and G(z) are n x n matrices. A(z) is positive definite for any z € R® by assumption (1.2b).

Riemannian metric. Let R™ have the usual topology and « = [z1, %2, - . ., 5] be the natural coordinate
system. For each z € R”, define the inner product and the norm on the tangent space R? = R" by

9(X,Y) = Z 9ij ()i, (2:2)
3j=1
X, = (X, X), VX = Zaz = Y- Zﬂz 5 € R, (2.3)



It is easily checked from (1.2b) that (R",g) is a Riemannian manifold with the Riemannian metric g.
We shall denote g = > 7, gijdzidz;. (If A(z) =1, ie., A= —A, then G(z) = I, and g is the Euclidean
R"™-metric.)

Euclidean metric. For each z € R™, denote by
" 1
XY:ZQ,L/B,“ |X|O:(XY§ Zal— Y Z:Bl ERn (24)
i=1

the Euclidean metric on R™. For z € R", and with reference to (2.1), set

Alz)X = Z Za” j 63:, Zaz G]R” (2.5)

i=1 \j=1
Thus, recalling the co-normal derivative defined below (1.5), we have

Z Zan v = (A(z)Vow) - v. (2.6)

81/"4 i=1 \j=1

In (2.6), and hereafter, we denote by a sub “0” entities in the Euclidean metric. Thus, for f € C1(Q) and
X=3" o (ac)[%_ a vector field on R,

Vof = Z 0F 9 ind divo(X) =Y 6?(9&) (2.7)
=1

Oz; Oz;’ z;

denote gradient of f and divergence of X in the Euclidean metric.

Further relationships. If f € C1(), we define the gradient Vyf of f in the Riemannian metric g,
via the Riesz representation theorem, by

X(f) = (Vgfs X)g, (2-8)

where X is any vector field on the manifold (R",g). The following lemma provides further relationships
[28, Lem. 2.1].

Lemma 2.1. Let x = [z1,22,. .., 2y be the natural coordinate system in R™. Let f,h € C1(Q). Finally,
let H, X be vector fields. Then, with reference to the above notation, we have

(a)

(H(z), A(z)X(z))g = H(z) - X(2), =R (2.9)
(b)
Z Za” 67 (9(271‘ = A(z)Vof, z€RY (2.10)

(c) If X =116 8%1-’ then by (2.8) and (2.10),

X(f) =(Vgf, X)g = (AVof, X)g=Vof - X =) & %; (2.11)
i=1 *



(d) By (2.6) and (2.10),
VA

(e) by (2.8), (2.10), (2.9),
<vgf7 vgh>g = ng(h) = (A(z)Vof, vgh>g =Vof - Vgh = Vof - A(z)Voh,
rz e R (2.13)

(f) If H is a vector field in (R™, g) (see e.g., (2.16) below),
(Vof, Vy(H(F))y = DH(Vof,Vof) + ydivo(|V,f2H) )

— SIVeiB@divo(H)(@), @ e R, (214)

where DH 1is the covariant differential discussed below;

(g9) by (1.1), (2.7), (2.10),

Aw = — Z 3%1 (Zl aj () gz) = —divo(A(z)Vow) = —divo(Vew), w € C*(9). (2.15)

Covariant differential. Denote the Levi-Civita connection in the Riemannian metric g by D. Let

- ) & 0
H= hy —; X = — 2.1
; k aiL'}g, gfk 6:1:]9, ( 6)

be vector fields on (R”, g). The covariant differential DH of H determines a bilinear form on R? x R?, for
each z € R”, defined by
DH(Y,X)=(DxH,Y),, VX, Y€eR], (2.17)

where Dx H is the covariant derivative of H with respect to X. This is computed as follows, in the notation
of (2.16), (2.11), by using the axioms of a connection,

DxH = ZDX <hk —> ZX hi —+thDX< )
= ZX hk — + Z hi&iDa)oa; (86k) ; (2.18)

kyai=1

where by definition, see (2.11),
oh 0 = 0
X (hi) = (Vghy, X)g = X - Vohy = Z& ]f, D9 (B—wk) => T} 2y’ (2.19)
i =1

I‘fk being the connection coefficients (Christoffel symbols) of the connection D,
n

1 Ogkp | Ogip  Ogik N |
T = 526”1’ ( Oz; * YA (943) = ()™ 220




Inserting (2.20) into (2.19), and then (2.19) into (2.18) yields

DxH = ZX (hi) 5~ +z (Z hp&I zk) - ez [ )+ i hkgirfk} % (2.21)

L

= k=1 k=1
Finally, inserting (2.21) into (2.17), we obtain by (2.2), (2.16), and (2.19) for X (hy):
PHOGK) = (DxH X =3 | X000+ 37 meeirt| 60, (2.22)
£,5=1 |_ k=1 J
8h£ n i
(by (219)) = Z 3o O o 96 T D heayTi | k- (2.23)
ij=1 | =1 9% k=1

Thus, in R? x R? DH( -, - ) is equivalent to the n X n matrix

", dhy - .
(mij = Z 9z, 9 + Z hkgeg'rfk) y LJ=1...,n. (2.24)

=1 " k=1

Hessian in the Riemannian metric g. Let f € C?(R"). By definition, the Hessian of f with respect
to the metric g is

D*f(X,X) = (Dx(Vgf),X)q (2.25)

= Z & (Z gZ 96+ ) fkgejl“fk> & (2.26)

ij=1 k=1

where, by (2.10), f; = (V4f)s is the £-th coordinate of V4 f:
(vgf)g=fg:};aepa—%, £=1,2,...,n. (2.27)

To prove (2.26), we recall (2.21) with H = V4 f, hence with coordinates hy = (V4f), = f; as in (2.27),
and obtain by (2.19):

=1 | i=1 k=1
Thus, (2.2), (2.16) for X and (2.28) yield

Z 9tq [E&ah + Z Fe&iTs ] (2.29)

Dx Z lig af" T ] (2.28)

(Dx(Vqf), X)g

7q_ kl 1
6 n
- Z g@qéz ff gq Z gqukgil—‘fké.q (230)
£,q,i=1 £,q,k,i=1
- Z & <Z 9eq oz ) §q + Z & (Z gqukrfk> g (2.31)
1,q=1 i,q=1 £,k=1



and (2.31) proves (2.26), as desired with ¢ = j.
Thus, by (2.26), we have that

D2f is positive on R? x R if and only if the

n n

. Ofe

n X n matrix | mg;; = Z % gej + Z kaZijk , (2.32)
=1 """ k=1

i,7=1,...,n, is positive, with f; given by (2.27).

3 Main Results. Preliminaries

Let the domain 2 and the elliptic operator A in (1.1) be given satisfying the standing assumption (H.1)=(1.2).
The additional hypothesis which we shall need to establish the continuous observability inequalities (1.5)
and (1.8) is the following.

Main assumption (H.3). We assume that there exists a function vy : & — R of class C? which
is strictly convex on (2, with respect to the Riemannian metric g defined in Section 2. For purposes of
Eqn. (3.4) below, we translate v(x) as to make it non-negative on (2, and set

0 <wv(x) = vo(z) — minvy(z). (3.1)
z€N
This assumption means that the Hessian of v in the Riemannian metric g is positive on Q, as defined by

(2.25), (2.32):
D*»(X,X)(z) >0, YzeQ, X eR. (3.2a)

Since ) is compact, it follows from (3.2a) that there exists a positive constant p > 0 such that
D*v(X,X) >2p|X|2?, VzeQ, XeR;. O (3.2b)

Under assumption (H.3), we then take the vector field

h(z) = Vgu(z) =) Za,-j(w);—::j 6‘;, (3.3)

i=1 \j=1

defined as the gradient of v(x) with respect to the Riemannian metric g, see (2.10).
Section 8 below will provide some non-trivial illustrations where the standing assumption (H.1) as well
as the main assumption (H.3) are guaranteed to hold true.

Main results. Continuous observability inequalities. We are now in the position to state our
main results concerning the validity of the continuous observability inequalities (1.5) and (1.8) for the
Dirichlet and the Neumann case, respectively. First, define

1
maxv(x)\ 2
zeQ ( )

p

To =2 ; p asin (3.2b). (3.4)

Remark 3.1. Both Theorems 3.1 and 3.2 below require a uniqueness continuation result for the
hyperbolic ¢-problem (1.4), respectively (1.7), with over-determined B.C.:

o

= 0 for Theorem 3.1; v|y = 0 for Theorem 3.2, (3.5)
Ovals,



which asserts that, then, ¥ = 0 in @, for T as given. This uniqueness continuation result is needed
to absorb the lower order term from estiamtes (5.2.13), respectively (7.1), though a (by now standard)
compactness/uniqueness argument. Known uniqueness continuation results include the following cases:

(a) The case where the coefficients a;; of the principal part are (time-independent) and of class C1(),
as assumed; while the coefficients of the first-order operator F' in (1.4a), or (1.7a), are analytic in time
and in Lo (Q), as assumed in (1.3). In this case, the required uniqueness continuation result, noted above,
follows from [26, Section 5.1, p. 882], see also [7].

The subcase, where the coefficients of F' are also time-independent and in L (Q), appears also in [9,
Corollary 3.4.3, p. 63]. Here, another approach is as follows. The aforementioned uniqueness continuation
results for the hyperbolic over-determined problem can, in turn, be reduced [1] to a corresponding second-
order over-determined elliptic problem to which we apply [6, Theorem 17.2.6, p. 14].

(b) The case of (real) analytic data covered by Homgren-John’s theorem [9, p. 52|, [6].

(c) The case where —A = A/ag, with ag € C1(§), time-independent, ag > 0, but the coefficients of F
possibly time-dependent in Lo, (Q), which is covered by [9, Theorem 3.4.1], with the boundary I'g convex.
This is particularly relevant in the Neumann case of Theorem 3.2. O

Theorem 3.1. (Dirichlet case) Let 2, A, and F' satisfy the standing assumptions (H.1)=(1.2), (H.2)=(1.3).
Let assumption (H.3)=(3.2) hold true and define h(z) by (3.3). Let T > To, see (3.4). Assume that
h(z) -v(z) <0 for x € Ty, where we recall that v(x) = [v1(x),...,vn(z)] is the unit outward normal vector
to T, and where h(z)-v(z) = Y i, hi(z)v;(z) is the dot product in R™. Assume the uniqueness continuation

o

Boa = 0, as described in Remark 3.1 above. Then,

property of the over-determined problem (1.4) with

b
the observability inequality (1.5) for the Dirichlet 1/J-problelm (1.4) holds true.

Theorem 3.2. (Neumann case) Let 2, A, and F satisfy the standing assumption (H.1), (H.2). Let
assumption (H.3) hold true and define h(x) by (3.3). Let Tg and T'1 be given, T = TgUTy, Ty # 0, ToNTy =
0, and h(z) - v(z) < 0 for x € Ty. Let T > Ty, see (3.4). Assume the uniqueness continuation property
of the over-determined problem (1.7) with ¥|yx, = 0, as described in Remark 3.1. Then, the observability
inequality (1.8) for the Neumann 1)-problem (1.7) holds true.

Remark 3.2. Tp, defined in (3.4), is sharp even in the case of constant coefficients with a radial vector
field. If v(x) is the square of the distance function, then p = 1 and Tj is equal to the diameter of (.

Carleman estimates. The results of Theorems 3.1 and 3.2 can be shown as a consequence of suitable
Carleman estimates for Eqn. (1.4a) with no boundary conditions imposed, which we now describe.

Let v : © — R be the strictly convex function, with respect to the Riemannian metric g, provided by
assumption (H.3). Define the function ¢: Q@ x R — R by

) (36&)

where T' > Tp, see (3.4), and c is a constant chosen below as follows. Let T' > Ty be given. By (3.4), there
is § > 0 such that

pT? > dmaxv(zx) + 46.
zeQ

For this ¢, there is then a constant ¢, 0 < ¢ < p, such that

cr? > 4mgécv(:v) +44, 0<c<p. (3.6b)

Henceforth, let ¢ be defined by (3.6a) with the above ¢ as in (3.6b) unless otherwise explicitly noted.
Such function ¢(x,t) has then the following properties:



(i)
¢(z,0) < —6 and ¢(z,T) < —d uniformly in z € Q; (3.6¢)
ii) there are to and ¢; with 0 < tg < L < t; < T such that
2

)
i ) > —— 3.6d
0 Gt (3.6d)
since ¢ (z, %) = v(z) > 0 for all z €
(iii) recalling (3.3),
T
Vgp =Vgv=h; ¢(z,t) = —2¢ (t - 5) , i = —2¢; ¢i(z,0) =cT; ¢(z,T) = —cT. (3.6¢)

The important property (3.6¢c) will be invoked in the proof of Eqn. (4.2.26) of Lemma 4.2.5 leading to
Theorem 3.3, Eqn. (3.9a). The important property (3.6d) (in fact, only the weaker property: min ¢(z,t) >
o > —4 is actually needed) will be invoked in going from Eqn. (3.9a) to Eqn. (3.9b) in the statement of
Theorem 3.3 (Carleman estimates, first version), but not before (3.9a).

The following result is a counterpart of [17, Theorem 2.1.1].

Theorem 3.3. (Carleman estimates, first version) Assume (H.1), (H.2), and (H.3). Let f € Ly(Q).
Let w be a solution of the second-order hyperbolic equation

wy + Aw = Fi(w) + f in Q (3.7)
[with no boundary conditions imposed], within the following class:

w e HYY(Q) = Ly(0,T; HY(Q)) N H(0,T; La(Q))

(3.8a)
we, 2P € Ly(0,T; Ly(T)). (3.8b)
vy
Let ¢(x,t) be the function defined by (3.6a), and Ct a generic constant.
Then, for T > 0, the following one-parameter family of estimates holds true:
cr [,
(BTw)lz + TT/Qe ¢f2dQ + TCT COTLStT”/LU“%([O’T];L2(Q))
C _
> (p —c— TT) / e™[|Vgw|2 +wildQ — C(1 + 7)e *7[E(T) + E(0)] (3.9a)
Q
151
> <p _e— %) % [ E(t)dt — C(1+7)e 5T [B(T) + E(0)], (3.9)
to
where the boundary terms (BTy)|s over ¥ =1[0,T] x I" are given by
ow ow 1
— To 27 _ il Zy— T¢
(BTW)|s /Ee () ~ Grurlas + /E - [QM (1+c)e ] ix)
+%/ ew; — |Vow|2]h - vdS, (3.10)
b

with p(x,t) a suitable function depending on ¢, defined in (4.2.14) below. Moreover, we have set for
convenience

B(t) = By(t) = /Q [V g(t, 2)[2 + wi(t, 2)]d2, (3.11)

10



and we recall that h(w) = (h, Vow)g = (Vgv, Vow)g = Vow - h by (2.8), and (2.11), with h the vector field
defined by (3.3). O

Remark 3.3. By (2.13), (1.2a), we have
a|Vow(t,z)|* < |ng(t,ac)|g = Vow(t,z) - A(z)Vow(t,x)
< a|Vow(t,z)|?, z€Q, (3.12)

where a > 0 is the constant in (1.2a). Thus, by (3.11) and (3.12) we have that

E(t) is equivalent to ||{w(t),wt(t)}||%{% @xIa@) i wly, =0, To#D0. (3.13)
0
We shall henceforth use (3.13) freely, particularly for t =0 and t =T. a
Remark 3.4. Property (3.6c) is used to obtain (3.9a). Property (3.6d) is used to obtain (3.9b). O

The proof of Theorem 3.3 is given in Section 4. The counterpart of [17, Theorem 2.1.2] is

Theorem 3.4. (Carleman estimates, second version) Assume the hypotheses of Theorem 3.3. Then,
for all T > 0 sufficiently large, there exists a constant kg > 0 such that the following one-parameter family
of estimates holds true:

= C
BTw)ls+ - /Q €™ f2dQ + Cr const: w7, 0,7:L.(a))

> e % {(p—c— @) ¢ ;—(ti—t)) - C(1 +T)e—%} [E(T) + E(0)] (3.14)
T
> kg [B(T) + EQO), (3.15)
Cr a generic constant, where the boundary terms (BTy,)|s over ¥ = (0,T] x T are given by

ow

(BTy)|s = (BTw)|s + const¢,7/ — w| dX, (3.16)
= |O0va
with (BT)y|x. defined by (8.10).
(b) Assume, further, that the solution w of (3.7) satisfies
wly, =0, ¥g = (0,7] x Ty, and that h(z) - v(z) <0, z € Ty, (3.17)

with h = Vg¢ = Vgv by (8.6e), and v(x) the unit outward normal vector at z € T'.

Then, estimate (3.15) holds true for T > 0 sufficiently large, with the boundary terms (BT)y|s Te-
placed by (BT )y|s, , i-e., evaluated only on ¥1 = (0,T] x Ty, while the boundary terms (BT)y|s, evaluated
on Y9 = (0,T] x Ty are negative: (BT)w|s, < 0 (see (6.2) below for the precise expression of
(BT )uls,)- o

The proof of Theorem 3.4 is given in Section 5.1. Estimate (3.15) of Theorem 3.4 then readily yields
Theorem 3.1 on the continuous observability inequality (1.5) in the Dirichlet case for ¥ = w with f = 0,
Y|s =0and h-v <0 on I'y. This is done in Section 5.2. However, to prove Theorem 3.2 on the continuous
observability inequality in the Neumann case for ¢ = w with f =0, ¢|g, =0, g # 0, and h-v < 0 on
Ty, an additional non-trivial step is needed. This is provided by a key result of [15] which will be quoted in
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Lemma 6.2 below. Combined with Theorem 3.4, this result will permit us to obtain the following theorem,
which may be viewed as the main estimate (at the energy level) of the present paper, the counterpart of
[17, Theorem 2.1.5].

Theorem 3.5. Assume (H.1), (H.2), (H.3) and that f € L2(Q). Let w be a solution of Eqn. (3.7) in
the class (3.8).

(a) Then, the following estimate holds true. There exists a constant kg, > 0 for T sufficiently large
such that, for any eg > 0:

T ow \? 2 2 2
/0 /1“[(%) + w; d2+c0nst¢,T/Qf dQ+C¢,so||w||L2(O’T;H%+EO(Q))

> ko [E(T) + E(0)]. (3.18)

(b) Assume, further, that the solution w of (8.7) satifies hypothesis (3.17).
Then, estimate (3.18) holds true with [ replaced by fl“l' a

Not only does estimate (3.18) imply the continuous observability inequality (1.8) for ) = w, under the
required assumption (3.17):
oY

Plg, =0, To#£0, h-v<0onTy and —| =0,
Ovals,

by dropping E(T') in (3.18) and by absorbing the lower-order interior term by compactness/uniqueness.
Moreover, (3.18) implies also an inverse, or recovery, estimate for the following closed loop problem with
explicit dissipative feedback in the Neumann B.C.

(wy + Aw = Fl(w)

(3.19a)

w(0, - ) =wo, we(0, - ) =w1 (3.19Db)

wly, =0 (3.19¢)
ow

\ 6I/A 21 ( )

Part (i) of the following result is standard (perturbation of the dissipative case F; = 0, handled by
Lumer-Phillips theorem); part (ii)—a recovery, or inverse, estimate—follows from Theorem 3.15 via com-
pactness/uniqueness, see Remark 3.1.

Theorem 3.6. With reference to the closed loop problem (3.19), we have:

(i) when Ty # ¢, under assumptions (H.1) and (H.2) for A and F1, problem (3.19) generates a s.c. semi-
group {wo, w1} € Y — {w(t),wy(t)} € C([0,T];Y), Y = HE () x La();

(ii) when Tg = ¢, the same result, under (H.1), (H.2), holds true, with Y = H'(Q) x La(Q) replaced
now by its proper subspace

Y, = {[ul,m] €Y : u1dl +/ ugd) = 0} , (3.20)
Iy Q
topologized by (see (4.1.1) below)

{ur, us} |2, = /Q [V gt [? + u2]de, (3.21)
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which is a norm on Yy (but only a semi-norm on'Y ). The operator [_[14 (I]] , with domain
— 2 1 Ouy
D=1 [ui,u2]) € H*(Q) x H(Q): — = —u2 (3.22)
vy

is dissipative on Yy, since, by (4.1.1) below

0 I u1 U1 — [ 2ar
(Lol ), - o =

moreover, it is mazximal dissipative on Yy, since

AP IRERETE 029
A {/Fuldr‘—l—/gwdﬂ} =/Ff1dI‘+/Qf2dQ, (3.25)

so that, given [f1, fo] € Yo, Eqn. (8.24) has a unique solution [u1,us] € D for A > 0, which, moreover,
satisfies the side condition of Yy in (3.20), by virtue of (3.25).

(#4i) under the additional assumption (H.3), and the uniqueness continuation property of Remark 3.1,
the following inequality holds: for all T sufficiently large, there erists a positive constant kg » > 0 such that

/0 ' /F 1 (%)del > { ::ig)) (3.26)

Remark 3.5. When F; = 0 in (3.19a), estimate (3.26) implies (is equivalent to) uniform stabilization
of problem (3.19): there exist constants M > 1, a > 0 such that E(t) < Me *E(0), where \/E( - ) is the
Y = H}, () x Ly(2)-norm (case (i)), or the Yp-norm in (3.21) (case (ii), where Remark 3.3 is relevant) of
the solution {w,w;} of (3.19). O

means, via (4.1.1) below,

4 Proof of Theorem 3.3: Carleman estimate (first version)

4.1 Preliminaries

We collect here below a few formulas to be invoked in the sequel.

A Green’s formula. Below, in the proof of Proposition 4.2.1, Eqn. (4.2.7), as well as of Lemma 4.2.2,
Eqn. (4.2.12), we shall make use of the following Green’s formula. Let z(z) € C*(Q). Then, the following
identity holds true:

/(.Aw)z dQ = / (Vgw, Vgz),dQ — / z Ll dr. (4.1.1)
Q Q r Ova
In fact, to prove (4.1.1), we write by recalling (2.15) for Aw, and the usual divergence formula [14, (A.1)]
/(Aw)z aQ = —/ z divo(Vqw)dQ2 (4.1.2)
Q Q
= / Vow - VozdQ — / z2Vgw-vdl. (4.1.3)
Q r
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Then, recalling identity (2.11), and (2.12) for %, we see that (4.1.3) leads to (4.1.1), as desired.

An identity. Let ¢ be the function in (3.6a). Let H = €"®h, with h = V,¢ by (3.6e). Finally, let
X = Vgyw. Then, the following identity to be invoked in the proof of Proposition 4.2.1, Eqn. (4.2.9) holds
true:

DH(X,X) = (DxH,X), = <Dvgw(eT¢h), vgw>g (4.1.4)

= 7e™h(w)]? + e? D% (V yw, V,w), (4.1.5)
where we have recalled (2.22), and where h(w) = (Vqw, h)4 by (2.11).
Proof of (4.1.5). We preliminarily compute, by using the axioms of the connection D,
DxH = Dx(e™®h) =X V(™) h+e*Dxh
= 7€™®X -Vop h+e™®Dxh. (4.1.6)
Thus, (4.1.6) yields by (2.11),
(DxH,X), =1e"X(¢)(h, X)y + €"*(Dxh, X). (4.1.7)

As to the second term in (4.1.7), with h = V4¢ by (3.6e), we have, recalling definition (2.25) of Hessian of

¢:
(Dxh, X), = (Dx(V,6), X), = D*$(X, X). (4.18)

As to the first term in (4.1.17), we have with X = V w, h = V¢, recaling (2.8) or (2.11):
X(¢) = (Vg$, X)g = (h, X)g = (h, Vqw)g = h(w). (4.1.9)
Thus, (4.1.8) and (4.1.9), used on the R.H.S. of (4.1.7) yields for X = Vgw, h = V4¢:
(DxH,X), = me"h(w)]* + e?D?*¢(X, X), (4.1.10)
which, in turn, proves (4.1.5).

A second identity. Let ¢ be the function in (3.6a). The following identity, to be invoked in the proof
of Proposition 4.2.1, Eqn. (4.2.11), holds true

1

d
(Vgw, Vy[e™?prwy]) g = TP Prwih(w) + 2 e, E|ng|g. (4.1.11)

Proof of (4.1.11). Since ¢; does not depend on z, by (3.6e), invoking identity (2.13), we obtain
(Vow, Vgle™ i)y = Vole™ o] - Vow
= 1€ ?PwVop - Vyw + €™ ¢ Vow; - Vw, (4.1.12)
where, with h = V¢ by (3.6e), and recalling (2.11), we have

Voo - Vew = (Vgp, Vow)g = (h, Vow)g = h(w); (4.1.13)
1d
Vow, - Vgw = (Vgw, Vow)g = o %|vgw|§. (4.1.14)

Inserting (4.1.13) and (4.1.14) in (4.1.12) yields (4.1.11), as desired.
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4.2 Energy Methods in the Riemann Metric

We will complete the proof of Theorem 3.3 through several propositions. The strategy follows closely the
proof of [17, Section 2] for constant coefficient principal part (A = —A), except that it is carried out in the
Riemann metric g defined by (2.2), rather than in the Euclidean metric as in [17]. The close parallelism
between the present treatment and that of [17] will be emphasized in the intermediate results as well. The
counterpart of [17, Proposition 2.2.1] is

Step 1. Proposition 4.2.1. Let w be a solution of Eqn. (3.7) within the class (3.8). Then the
following identity holds true, where ¥ =[0,T] xT'; Q = [0,T] x Q:

9 1
/ ¢ “’[h(w) twt]dz+§/ef¢[w§—|vgw|§]h-udz
2 )

1 .
= /Qe'”’ﬁDz(ﬁ(ng,ng)dQ + E/Q [w} — |ng|§] divg(e™h)dQ

1 d
T3 /Q [w] + [Vqulz] 2 (€¢)dQ+7 /Q e [h(w)dQ

T

— 27'/QeT¢h(w)¢twtdQ + [/Q e [h(w) — %¢twt] wtdﬂ]

0

- [ /Q e7¢¢t|vgw|§dﬂ}: _ /Q [Fi(w) + fle™[h(w) — wigl)dQ. (4.2.1)

In (4.2.1), we have h(z) = Vg¢ = Vgu(z), see (3.3), (3.6e), while D®¢( , ) is the Hessian (as
defined in (2.25)) of the function ¢ in (3.6a); finally, h(w) = (h, Vow)y = (Vgv, Vow)g = Vow - h by (2.8),
and (2.11), with the vector field h defined by (3.3).

Proof. We multiply both sides of Eqn. (3.7) by the following main multiplier
e‘r¢(.’l},t) [h(w) — ¢twt]) (42.2)

counterpart of the one in [17, Eqn. (2.2.1a)] and integrate over @ = [0, 7] x 2 by parts.

Left-hand side. We shall show below that on the left-hand side (L.H.S.) of (3.7) we obtain, recalling
Lemma 2.1(b)—(e),

LHS = / /wtte ¢[Vg¢ ) ¢twt]d9dt

= = ivg(e™® ¢ -7 TP h(w)prw
_ 2/Q [d o(e?h) + 2 (e ¢t)]dQ /Qe h(w)$ewrdQ

T

- 1/ e™wlh - vdY + [/ e™® [h(w) - 1¢twt] wtdQ] , (4.2.3)
2 /s Q 2 0

where Vg¢ = h by (3.6e), so that Vyp(w) = h(w) = (Vew,h)y = Vow - h by (2.8), (2.11). Indeed,
integrating by parts in ¢, and recalling that V¢ = h(z) is time-independent, we compute

/ / wye ™ h(w)dtdQ = { /Q eT¢wth(w)dQ]:
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- T/QeT¢d>twth(w)dQ—/Qe'rd’wth(wt)dQ. (4.2.4)

Now the last term in (4.2.4), where h(wy) = h - Vow; by (2.11), is rewritten, by the usual formula for
divergence [14, (A.1)], as

1 1
/Q e™wih(wy)dQ = 5 /Q e7¢h(wt2)dQ=§ /Q e™h - Vo(w?)dQ

1 1
= - / e"wih - vdS — = / w2divo(e™h)dQ. (4.2.5)
2 /s 2 Jo

Similarly, integrating by parts in ¢, we compute

T 1 T d
/ / wye P dt dQ = < / / e™py — (w?)dt dS
aJo 2 JaJo dt

1 T d
- {5 /Q e7¢¢twt2dﬂ] -3 / w? 5 (e e™¢:)dQ. (4.2.6)

0
Using (4.2.5) in (4.2.4) and subtracting off (4.2.6) yields (4.2.3), as desired.
Right-hand side. Multiplying the right-hand side (R.H.S.) [—Aw + Fj(w) + f] of Eqn. (3.7) by the

multiplier in (4.2.2), e™®[h(w) — ¢;w;], and integrating over Q = [0,T] x £, we obtain
RHS. — / / (Aw)e™h(w) — dan]dQ dt + / [Fy(w) + fle™ [h(w) — duwn]dQ
= / e™[h(w) — ¢twt — dE — / |ng|§eT¢h cvdE
b

1 d
+3 /Q Vw2 {divo(eT¢h) - (eT%t)}dQ - /Q €™ D2p(V w, V yw)dQ

T
—T/q; e™[h(w)]2dQ + T/QeT¢¢twth(w)dQ + % [/{; eT¢¢t|ng|§dQ]0

+ / Fy(w) + fle[h(w) — dannldQ, (4.2.7)
Q

where D?( , ) is the Hessian (see (2.25)) of the function ¢ defined by (3.6a).
Proof of (4.2.7). Indeed, using Green’s formula (4.1.1) with z = e™®[h(w) — ¢;w;], we compute

~ [ (Aw)eihtw) - duular = [ &lntw) - guur] 5 d

- / (Vyw, V[ h(w)]) 4dQ + / (V, V€7 $ewe]) 42 (4.2.8)
Q Q
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As to the first integral over (2 on the right-hand side of (4.2.8), we obtain from Lemma 2.1(f), Eqn. (2.14),
with H = e"®h, as well as by identity (4.1.5),

1 :
(Vaw, Vyle™h(w)]))y = D(e™h)(Vow, Vyw) + 3 divo(|Vyw|2e™h)
1 2 s T
- §|ng|g divo(e™h)
(by (4.1.5)) = 7¢™h(w)]? + e D%} (V w, V,w)

1 1 o
+3 d1v0(|ng|Ze *h) — 2 |ng|3 divo(e™h). (4.2.9)

We next integrate (4.2.9) over Q, apply the divergence theorem [, divo(zh)dQ = [.zh - vdl with
z= |ng|ge”i’ to the third term of (4.2.9) and obtain

/oT /QWQU” Vgle™h(w)])gdQ dt

1 T T
= 5/e ¢|vgw|§h-yd2+7/ e [h(w)]%dQ
) Q

1 .
+ /Q eT¢D2¢(ng,ng)dQ—§ /Q IVqwl? dive(e™h)dQ. (4.2.10)

As to the second integral term over € on the right-hand side of (4.2.8), we invoke identity (4.1.11) and
integrate by parts,

T
/ / (Vqw, vg[eT¢¢twt]>ng
0 Q

1 T
(by (4.1.11)) = 7 / e™ prwih(w)dQ + - / / eT¢¢ti|vgw|§dtdQ

T

= 746T¢¢twth(w)dQ+% [/Q eT¢¢t|ng|3dQ]

0
-3 Q|vgw|ga(e $1)dQ. (4.2.11)

Next, after (4.2.8) has been integrated over [0,77], we insert (4.2.10) and (4.2.11) into it and obtain
(4.2.7), as desired.

Finally, we combine the L.H.S. = (4.2.3) with the R.H.S. = (4.2.7), and we thus obtain (4.2.1). The
proof of Proposition 4.2.1 is complete. O

Step 2. The following lemma will be invoked repeatedly for various suitable choices of the function
m(zx,t).It is the counterpart of [17, Lemma 2.2.2].

Lemma 4.2.2. Let w be a solution of Eqn. (3.7) in the class (3.8). Let m(z,t) be C'-function defined
over Q. Then the following identity holds true

/Q(wt2—|ng|3)mdQ = /q)w(ng,ng)ng—/watmtdQ
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_ /Q[F1(w)+f]wmdQ+ Uﬂwwtmdcz]:—/zwma—dz-

Proof. We multiply both sides of Eqn. (3.7) by wm and integrate by parts, invoking the Green formula
(4.1.1). This way, (4.2.12) is obtained. ]

Proposition 4.2.3. Let w be a solution of Eqn. (3.7) in the class (3.8). Then the following identity
holds true:

ow 1 Oow 1
¢ — —dY+ = —dY+ = [ €?w? - |V,w|?h-vdE
/Ze [h(w) — ¢rw] v dx 5 /sz oA 5 /Ee [wi — |Vgwl|i]h-v

= / €™ D%p(V yw, V w)dQ — 2c / e Pw?dQ + 7 / e h(w) — wip]?dQ
Q Q Q
1 1 1
+ 5/Qw<vgw,vgu>ng— E/wat,utdQ - E/Q[Fl(w) + flwpd@Q

- /Q[Fl (w) + fle™[h(w) — $rw,]dQ + [a(t)]g, (4.2.13)

where h(w) = (Vqw, h), by (2.11), D*¢( , ) is the Hessian of ¢ (see (2.25)) and where we have set

p(z, t) = divg(e™®h) — % (e™¢y) = eT¢[T|Vg¢|g —7¢2 — A + 2d]; (4.2.14)
TP 1 1 T 2 1
a(t) = [ ePw |h(w) — 5 drwe| dQ — 5 | €| Vow[gdQ + 5 [ wiwp dSL. (4.2.15)
Q 2 2 Ja 2 Ja

Proof. We apply Lemma 4.2.2 with the choice m = p in (4.2.14), and obtain from (4.2.12),

1 o
- /Q [w? — |V yw[2)divo("*h)dQ

1 d 1 1
- —/Mﬁ—Ww@—kﬂ@MQ+i/wWwﬂ%MMQ—i/wwwM
2 Jo dt 2 Jo 2 Jo

1

1 T 1 ow
- E/Q[Fl(w)Jrf]wudQ+ 3 [/Q wwtudﬁ]o - i/zwu@dil. (4.2.16)

Inserting (4.2.16) into the right-hand side of (4.2.1), to replace the second integral term over @, yields after
a cancellation,

ow 1 1 ow
™ [h — —d —]——/ w2 — qh.vd +—/ —d
/e [h(w) d)twt]ay b 2 e ?[w; |ng|g] vd% 5 w N by

d
= | o Ve + [ v G(ertand
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1 1
+5 / w{Vgw, Vou)gdQ — 5 / wwipedQ
Q Q

tr /Q e h(w)]2dQ — 27 /Q ¢"h(w)prundQ

1 T y 1 T
2 [/Q wwtudﬂ]o + {/ﬂe {h(w) — Eqbtwt} wtdﬂ]o

1 T
-3 [/Q eTqqu)t|ng|£2]alﬂ}0 — E/Q[Fl(w) + flwpdQ

+

- /Q[Fl(w) + fle7[h(w) — wi]dQ. (4.2.17)

We next combine the second, the fifth, and the sixth term on the right-hand side of (4.2.17) in a perfect
square, as follows:

/Q wE%(eT%t)dQ—QT /Q e piwih(w)dQ + 7 /Q e™[h(w)]?dQ

= 7'/ e™[h(w) — ¢ywy)?dQ — 20/ e w?dQ, (4.2.18)
Q Q
expanding 4 (e™¢;) = e™[1¢? + ¢u] = e™[1¢? — 2c], see (3.6e). Using (4.2.18) into the right-hand side of
(4.2.17) yields (4.2.13) via (4.2.15), as desired. m]
The following result is the counterpart of [17, Theorem 2.2.4].

Step 3. Theorem 4.2.4. (Final identity) Let w be a solution of Eqn. (3.7) in the class (3.8). Then
the following identity holds true:

(BTy)|ls = /QemsD%S(ng,ng)dQ—2p/QeT¢|ng|3dQ
+ (-0 /Q |V g2 + wPldQ + 7 /Q e™lh(w) — pow,2dQ
4 /Q w [<p+ 0% () - %ut] iQ
+ / w<ng,%Vg,u— (p+c)Vg(eT¢)> dQ
Q g

+ [ i)+ o | (o 07 = ] a0

- /Q [Fi(w) + fle™[h(w) — prun]dQ + BE)[T, (4.2.19)
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where p is defined by (4.2.14). Moreover, the boundary term (BT,)|s is given by

0 0 1
BTl = [t - ol g s+ [t [Du- o+ oee|as
4 % /E eOw? — |Vywl2lh - v dE, (4.2.20)
and [(t) is defined by
B(t) = a(t) — (p+ c)/ e P ww dQ, (4.2.21)
Q

where a(t) is defined in (4.2.15).

Proof. We return to the first two integral terms in @ on the right-hand side of identity (4.2.13) and
rewrite them, after adding and subtracting, as

/ €™ D2p(V yw, V w)dQ — 2¢ / e™wldQ
Q Q
= /eT¢D2¢(ng, ng)dQ—Qp/ eT¢|ng|3dQ
Q Q
+ 2p/ eT¢|ng|3dQ - 20/ e™widQ
Q Q
= /eT¢D2¢(ng,ng)dQ—2p/ eT¢|ng|§dQ
Q Q
+(o=e) [ NVguliaQ oo | etuiaq

+(p+c) / e[|V w2 — w}]dQ. (4.2.22)
Q
Next, we apply Lemma 4.2.2, Eqn. (4.2.12) with the choice m = €™, and obtain

[ e*1v5ul; - uflaQ
Q

ow
= ww )dQ — / w, Vg( dQ + / —— we™?dx
/ t 9 >g 5 8VA

- [ /Q wtweT¢dQ]:+ /Q [F1(w) + flwe™dQ. (4.2.23)

We then use (4.2.23) into the last term of (4.2.22) after inserting (4.2.22) into (4.2.13) and obtain
(4.2.19). O

Step 4. Henceforth, we concentrate our analysis on the right-hand side (R.H.S.) of the fundamental
identity (4.2.19) of Theorem 4.2.4. So far, the parameter 7 > 0 has been arbitrary. The next lemma
and its proof show the key virtue of the free parameter 7 entering the present multiplier (4.2.2) in dealing
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with the general first-order differential operator Fj(w) as in (1.3): choosing 7 sufficiently large permits the
absorption of a bad energy level term, which arises precisely because Fj(w) is of order one.

Lemma 4.2.5. Let w be a solution of Eqn. (3.7) in the class (3.8). With reference to some selected
terms on the right-hand side of identity (4.2.19), we have:
(i) For any € > 0, we have recalling (1.3) and h(w) = (h, Vqw)y with h = V¢:

. / e h(w) — drwr]2dQ — / [F1(w) + fle™[h(w) — drwn]dQ
Q Q

C
> (7= 5F) [ e¥lhw) - dutaq - § [ fut + [9gul + u? + e,

(4.2.24)

where Cr is the constant in (1.3).
(i) Next, for any € > 0, we have

[+ 0852 L] ag [ (05, [ 0] a2

g

+ /Q[F1 (w) + flw {(p +c)em® — % N] dQ

€ rhr 2 9 9 T const, 9
> —§/Qe lwi +|Vgul; + f°1dQ — — lwleqora @) (4.2.25)

where const, is a constant depending on T.
(i1i) Furthermore, recalling (4.2.21) and (4.2.15), we have

BOIFI < COL+7)e 7 [BO) + BT + [wllqo oy (4.2.26)

where the constant C is independent of T or T, and where E( - ) is defined in (3.11).

Proof. For both (i) and (ii) we use the inequality 2ab < ea? + 1 b2, where a denotes “energy terms”:
wy, |Vgwlg, Fi(w); while b denotes “lower-order terms” (i.e., w). Here, we recall (1.3) for F(w) as well as
(4.2.14) for p and (3.6e).

(iii) Here we use (3.6¢) in estimating «(t) and S(¢) in (4.2.15) and (4.2.21); see also (4.2.14) for p.

Remark 4.2.1. In the second integral over Q on the left-hand side of (4.2.24), both factors F;(w) and
[h(w) — ¢ywi)?, h(w) = (h, V w)y by (2.11), are energy level, when F} is a general first-order operator. The
virtue of the free parameter 7 is seen in the first term on the right-hand side of (4.2.24), in making the
coefficient 7 — % > 0 after ¢ > 0 has been fixed, and dropping that term, see next result. O

Step 5. We complete the proof of Theorem 3.3. As explained in the above Remark 4.2.1, with € > 0
given in Lemma 4.2.5, we select the parameter 7 as 7 = % so that 7 — % = g—f > 0 drop the first term
on the R.H.S. of (4.2.24), then use the remaining version of inequality (4.2.24) along with (4.2.25) in the
right-hand side of identity (4.2.19), We obtain

const,

(BTw)| +T
5 €

lwliZ o,y L0 + E/Q ™ £2dQ
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> /eT¢D2¢(ng,ng)dQ—2p/ eT¢|ng|_(2]dQ
Q Q

+(p—c—9 /Q eV w2 +w?dQ — |[BH)]. (4.2.27)

Next, we invoke assumption (H.3), in the form of Eqn. (3.2b), so that the first two terms on the right side
of (4.2.27) vanish; moreover, we recall (4.2.26) for [3(t)]¥, and thus obtain the desired inequality (3.9a) from
(4.2.27), where € = % Then, inequality (3.9a) yields (3.9b), by recalling property (3.6d) of ¢. Theorem
3.3 is proved. O

5 Proof of Theorem 3.4: Carleman estimates (second version); and of
Theorem 3.1 (Dirichlet case)

5.1 Proof of Theorem 3.4

Having already established Eqn. (3.9) of Theorem 3.3, as proved in Section 4, we obtain then Eqn. (3.14)
of Theorem 3.4, by simply using in the integral j;‘j)l E(t)dt on the R.H.S. of (3.9b) the inequality

E(0)+ E(T)
2

A(T):/OT/QdeQ+2/OT/F

But all this follows directly from [17, Lemma 2.3.1] which yields for T > ¢ > s > 0:

E(t) > e 0T _ A(T), 0<t<T; (5.1.1)

T
ds + Cr / Jwll2, - (5.1.2)
0

ow
vy w

B(t) < [B(s) + A(T)]e ), B(s) < [B(t) + A(T)]er ) (5.1.3)

in its proof [17, Eqn. (2.3.6)]. Next, the inequality on the right of (5.1.3) with s = 0, and that on the left
with ¢t =T and s =t yield then

E(0) < [B() + A(T)]e%T;  B(T) < [B(t) + A(T)}e 7. (5.1.4)

Summing up these two inequalities in (5.1.4), we arrive at (5.1.1), as desired.
Thus, using (5.1.1) into the integral over [to,¢1] on the right side of (3.9b), we obtain

(BL)| + [@+ (p—c— @) e—%“(tl—to)} | ra
by T T Q

+2/T/ 8ww d¥ 4+ TCr const,||wl|2
— nst, [|w ,
0 r aV.A ¢ T C([0,T;L2(92))
. t—t .
> e % { (p —c— %) % e T — (1 4+ 1)e” 52} [E(T) + E(0)], (5.1.5)
from which (3.14) of Theorem 3.4 is obtained, via (3.16). The proof of Theorem 3.4 is complete. O
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5.2 Proof of Theorem 3.1 (Dirichlet case)

Let v be a solution of the ¢-problem in (1.4) (including the B.C. 9|y, = 0). We want to apply Theorem 3.4
to it.

Step 1. First, we deal with the values of |Vg¢|g and h(¢) on the boundary T', respectively, as required
by (BT,)| in (3.10).
b

Lemma 5.2.1. Let ¢ be the solution of problem (1.4) [including the B.C. 1|x, = 0]. then, in this case,
the boundary term (BTy)|s. defined by Eqns. (5.16) and (3.10) reduce to

(BTl = (BT =3 [ & (‘91”) LR (5.2.1)

Ovy

where, via (2.5), we define v(x),

_ (Zam ) ai — A2)v(a). (5.2.2)

=1

to be the normal of the submanifold I' in the Riemannian metric g.
Proof. Given x € R", the vector Vg1 (z) has the decomposition into direct product in (R}, g(x)) as
1 0 0
> YA LY (z) = ( —w) va+ a—fs. (5.2.3)

g lvalg [val2 Ova

V(o) = (Vo)

|VA|9

Here, by (5.2.2), (2.9), (2.12),
o

(Vgb(x),va(2))g = (Voo(z), A(z)v(z))y = Vth () - v(z) = e

Moreover, Y (z) € R} satisfies (Y (z),v4)g = 0; consequently, by (2.9) and (5.2.2), Y (z)-v(z) = (Y (z),va(z))q =
0, that is, Y (z) € I'y, the tangent space of I at . Therefore, if s denotes a unit tangent vector, then, by
(2.11):

(5.2.4a)

0
Y(#) = (V). s)y = Vo(o) -5 = 20 (5.2.40)
is the tangential gradient. Thus, (5.2.4a-b) show the right side of (5.2.3). By (5.2.3), (2.11), we have
1
|Vg¢|_(2, = <v9w’vgw>9 = Vg’lb(’l,b) = |VA(~'E)|2 <Vg¢($)7VA($)>52; + Y(lb) (525&)
g
_ 1 (%)2 (5.2.5b)
valz)lz \Ova) ’

since |y, = 0, hence Voyp L T' and hence Y (¢p) = Vo¢p - Y = 0 by (2.11). Similarly, h(z) has the
decomposition into direct product

_ { h(a), 2AE) va(z) .
e = (Mo ), oy + 2 (5:2:6)
where Z(z) € I';. Moreover, by (5.2.2), (2.12), (2.11), we have
% = (A(z)Vo) - v(z) = Vb - A(z)v(z) = Vo - va(z) = (Vb va)g, (5.2.7)
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since the matrix A(z) is symmetric. Hence, by (2.11), (5.2.2), (5.2.6), (5.2.7), (2.9),

h) (@) = <vgw,h>g=<h(x),%> (Voo va(@)g + (Votb, Z()), (5.2.8)
a@)3/,
(h@),va@)y [0\ (h(z), A@)u(a)), O
A¥) (@) (o) 2 (3%4)_ @B ua
 h(@) v(@) (89

since, as before, 9|5, = 0, hence, Voyp L T, and (Vg9, Z)y = Voo - Z = 0, via (2.11).
Finally, we return to definition (3.10) for BT‘ (written for 1), use here ¥|x, = 0, hence 1; = 0, as well

by
as (5.2.5) and (5.2.9), to obtain
(BTy)ls = / o 20 h(¢)dS — 1/ €™V y|2h - v dX (5.2.10)
v » 6VA 2 » 97lg
ad) ) ; / ( = )
= e’ ) R ) 5.2.11
/2 (3%4 IVAI2 2 Js vg II/AI2 ( )

Then, (5.2.11) yields (5.2.1), as desired. ]

Step 2. Completion of the proof of Theorem 3.1. In the Dirichlet case, to obtain the continuous
observability inequality (1.5) from inequality (3.15) of Theorem 3.4 already proved, it suffices to return to
(5.2.1); since h(zx) - v(x) < 0 for x € T'y by assumption, we readily have from (5.2.1),

1 -
Z T¢ b >
5 a:EI‘IlT,lOai(t<T (e |VA ) / /1“1 (81/,4) d¥ > (BTy)|s. (5.2.12)

Then (5.2.12) used on the left-hand side of inequality (3.15) yields (when the parameter 7 > 0 is large
enough) and f = 0:

T o\’ 2
/0 /1“1 (@) d% + kal[¥l15 0,152, (0)) = F1E(0), (5.2.13)

where k1, ko > 0 are constants.

To get the sought-after inequality (1.5) from (5.2.13), we only need to drop the low order term
k2||¢||%,([0,T}; Ly(@) B (5.2.13). This may be done, as usual, by a compactness/uniqueness argument [19],
[14], see Remark 3.1. O

6 Proof of Theorem 3.5: Main inverse inequality

We prove the specialized version of Theorem 3.5 for w solution of Eqn. (3.7) within the class (3.8), which
moreover satisfies hypothesis (3.17).

Step 1. Lemma 6.1. Let w solve (3.7) and satisfy (3.17): w|x, =0 and h-v < 0 on T'g.
(a) Then, in this case, the boundary terms (BT)y|s: defined by (3.16), (3.10) reduce to

(BTw)lz = (BTw)ls, + (BTw)lz:s (6.1)
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(BTw)ls, = (BTw)|s, = - / /FO (z) <§Z> dy. < 0; (6.2)

2
6'UJ 2
< — .
(BT o{/ A [(M) (8) fup|dn + ul? (OTWO(Q»} (63)

for any €9 > 0, where %—1;’ denotes, as before, the tangential gradient (derivative) of w on T, so that (%—’;’)2 =

| Vtangentialw |(2) -
(b) Moreover, if in addition, w satisfies also g}—“ﬂgl =0, then
L 2
(BTw)ls, = (BTy)|s, = / / < ) ] h-vds O (6.4)
I Os
Proof. We return to (3.16), (3.10): we then see that BT,, and BT, coincide on %y = (0,7T] x Ty, since
wt|s, = 0 by assumption. We may divide BTy, |x as in identity (6.1), where BTy|x, is given by (6.2) by

virtue of the same argument of Lemma 5.2.1 (culminating in Eqns. (5.2.10) and (5.2.11) carried out this
time on Xg). Similarly, from (3.16), (3.10), where h(w) = (V4v, V w),4, we readily obtain

,
)l = / / eOw? — |Vowlh - vds

Whena
4 T 2
il < o [ [ [(B2) oo
+ |||

(BTw)ls,

=0 (6.5a)

IN

dx

(6.5b)

, in general,
L2(0TH2+E°(Q))} ©
\

by use of trace theory applied to w € I';. Next, the decomposition (5.2.3) of Vw in normal and tangential
components yields by virtue of (5.2.5a)
%w\ > ow
— ] , when —
Os ovals

1 ow \2 . 82_w 2 (6.6b)
va@p \ova) "\ a5 )
since, from (5.2.3), Y (z) € I'y, the tangent space of I" at z, we have Y (w) = Vow - Y = (%—’;’)2 by (2.11),

(5.2.4b). Then, (6.6a) and (6.6b), used in (6.5a) and (6.5b), yield (6.4) and (6.3), respectively. Lemma 6.1
is proved. O

=0; (6.6a)

on Fl : |ng|3 =

Step 2. The following result is taken from [15, Section 7.2]. It is proved by micro-local analysis. It is
critical in eliminating artificial geometrical conditions of the earlier literature on the controlled part I'; of
the boundary in the Neumann case.

Lemma 6.2. Let f € La(Q) and let w be a solution of Eqn. (3.7) in the class (3.8).
(a) Then, for any € >0, eg > 0, and T > 0, there exists a constant Cc e, 7 > 0 such that

[IG) e [ ]G+
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(b) Moreover, if w satisfies in addition hypothesis (3.17): w|s, =0 and h-v < 0 on Ty, then inequality
(6.7) holds true with T' replaced by T';. O

Step 4. We next use Lemma 6.2, Eqn. (6.7)_to eliminate the tangential derivative from the estimate
(6.3) [or identity (6.4)] of the boundary terms (BT,,) evaluated over [¢,T — €] x I';.

Proposition 6.3. Let f € Ly(Q) and let w be a solution of Eqn. (3.7) in the class (3.8). Moreover, let
w satisfy hypothesis (8.17). Then, for all T > 0 sufficiently large, there exists a constant kg > 0 such that

[ G

Proof. We apply Theorem 3.4, estimate (3.15), over [e, T — €| X I rather than [0,7] xI' = X. In so doing,
we use hypothesis (3.17) to invoke (6.2) and conclude that (BTy)|e7—gxr, < 0. Moreover, we invoke
(6.3) for (BTw)| e,T—gxT; and use the key estimate (6.7). Finally, the right-hand side of (3.15) becomes
ky-[E(e) + E(T — )] But

Hlam+ [ erértaq-+ Orlul > ko [B(T) + BO).  (68)

Ly (0,T; H2+60(Q)) -

E(€) + E(T — €) > [E(0) + E(T)]e 7€ — 2A(T). (6.9)

This can be proved as in the case of (5.1.1): by using the inequality on the right-hand side of (5.1.3) with
s = 0 and ¢ = ¢, and the inequality on the left-hand side of (5.1.3) with ¢t =T and s = T' — ¢, and summing
up the resulting inequalities. This yields (6.9). Then (6.8) is obtained. O

Step 5. Completion of the proof of Theorem 3.5. The sought-after inequality (3.18) of Theorem 3.5
now follows at once from (6.8) of Proposition 6.3, by further majorizing its left-hand side. Theorem 3.5 is
proved. O

7 Proof of Theorem 3.2: Neumann case

We return to inequality (3.18) of Theorem 3.5(b), written for the solution w = 1 of problem (1.7), with the
boundary integral over I'j, since by assumption (3.17) holds true: ¢|x, = 0 and h-v < 0 on I'g. Moreover,
on Y, it suffices to take f = 0 in (1.7), i.e., %|El = 0. Then, as f = 0, (3.18) becomes the following
inequality:

/E GRS + k2 > kyE(0), (7.1)

c([o,1) Hz+€0(9)) -

where k1, k2 > 0 are constants. Finally, by a compactness/uniqueness argument again, see Remark 3.1, we
obtain the desired inequality in (1.8).

Remark 7.1. Given the t-problem (1.7), say with 8 = 0, the proof of Theorem 3.5 uses (6.4) and
(6.5a), (6.6a) rather than (6.3) and (6.5b), (6.6b), a streamlined procedure. O

8 Some illustrations where Assumptions (H.1) and (H.3) on A hold true

Example 8.1. Let Q C R? be a bounded domain. Assume that A is defined by
0 1+4y5  Ou 0 zy> ou
Au = o T 206 9. Ta \T 26 5,
Or \1+z?+yb Ox Ox \1+ %2+ 4% Oy

0 zy3 ou 0 14+22 Ou
+a_y(1+:c2+y6 %)+8_y<1+x2+y6 6_y>' (8.1)
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Set

1445 zy®
1+$2+y6 1+$2+y6
Az, y) = (aij) = s ) . (8.2)
Ty 14z

1+.’L‘2+y6 ].+.’L‘2+y6

Then, det A(z,y) = 1/(1 + 22 +4°) > 0, V(z,y) € R?, and A(z,y) is strictly positive definite on the
bounded domain 2. Thus, assumption (H.1) is verified.
The inverse of A(zx,y) is

1+ 22 —acy3
. (8.3)

G(a:,y) = (gZ]) = A_1($7y) = < 3 6
—zy® 14y
Consider the Riemannian manifold (R, g), where the Riemannian metric g is defined in the natural
coordinate system (z,y) via (8.3) by
g =1+ 2%)dzdr — zy’dz dy — zyPdydz + (1 + %) dy dy. (8.4)

Consider the surface in R? given by

M = {(m,y,z)|z:f(w,y) = 1‘732_ 13/4}’

with the induced Riemannian metric gas. Then the (projection) map ®(z,y, z) = (z,y), for any (z,y, z) €
M, determines an isometry from M to (R?, g). The Gaussian curvature of (R, g) at (z,y) is therefore

k(z,y) = the Gaussian curvature of M at (z,y, z)

(2275) (227];) B <3a;gy)2 _ —3y” <0, V(z,y)e R2. (8.5)

@] T

Since, by (8.5), the Gaussian curvature is non-positive, the function defined by
v(z) = dg(ac,a:o), zg fixed € R?, (8.6)

i.e., as the square of the distance dy(z, o), in the Riemann metric of (8.4), from z to a given fixed point
zo € R?, is in fact strictly convex on (R?,g) [29, p. 108]. Thus, assumption (H.3) also holds true in this
case. a

Example 8.2. Let 2 C R" be a bounded domain and a; > 0 constants, : = 1,2,...,n. Consider the
operator on R”,

n
2_2
Au = — | Y | T (8.7)
— ox; 5 o ox; L~ Qx; 5 9 O0x;
= 1+Zak$k i7#j 1+Zak$k
k=1 k=1
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Set

1+ E a,2 2 —a1a9x1xL2 -+  —A1GpT1Ty
2, 2
—aga1T271 1+ a;x; -+ —Q2anT2Tn
1 1#£2
Az) = (ay5) = ———— : (88)
1+ E aiwi
k=1
2 2
\—analmnxl —Qpa9Tp, Ty - 1+E a;
Then, the inverse of A(z) is
2,.2
14+ afz] ai1a2z122 -+ Q10,T1Tn
1 2,.2
a201T2T1 +a3x5 -+ G20,T2Tn
-1 .
G(z) = (g;5) = A (z) = (8.9)
2,2
0nA1TnT1 Qp02TRT2 -+ 14 arzs

Consider the Riemannian manifold (R", g), where the Riemannian metric g is determined in the natural
coordinate system x = (z1,22,...,Z,) via (8.8) by

n

g = Z gijd.’Bid:Ej = Z (5ij + aiajmiwj)dwidmj, (8.10)
,7=1 5,j=1

where §;; is 1 if ¢ = j, and 0 if ¢ # j. It follows that
n
D giilki = Y (64 + siajmizy)&t; > |5, V@, €= (61,62, 6n) €R™. (8.11)
5,j=1 1,j=1

It is easily checked from the above inequality that (R™, g) is a complete non-compact Riemannian manifold.
Let M be the hypersurface in R**! given by

M = {[wl,xg,.. s Ty Tyt 1) | Trp1 = Za, }, (8.12)

with the induced Riemannian metric in R”. Then, by [28, Lemma 3.1], M is of everywhere positive sectional
curvature. It is easily verified from (8.10) that the map ® : M — (R", g), defined by

(I’(p)ZIE:[Iﬂl,...,II}n], Vp:[xl,---,$n,$n+1]€M,

is an isometry between M and (R",g). Thus, (R",g) itself is of everywhere positive sectional curvature.
Since (R", g) is a non-compact, complete Riemannian manifold of everywehre positive sectional curvature,
then there exists a C* strictly convex function v(x) on (R",g) by [4]. Assumptions (H.1) and (H.3) are
verified.
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