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Abstract

We consider a second-order hyperbolic equation on an open bounded domain 2 in
R”, with C'-boundary I' = 90 = T UT, ['oNI'; = 0, subject to Neumann boundary
conditions on the entire boundary I". Here, T'g (unobserved/uncontrolled part) and
I’y (observed/controlled part) are relatively open subsets of I'. The principal part is
of constant coefficients, while the energy level (H'!(€2)—) terms may be variable in
both space and time, and of low regularity Lo (Q). Verifiable geometric conditions
are imposed on the unobserved portion I'g. Then: we first establish a Carleman-type
inequality for H 1’1(62)—s0111’ci0ns of the hyperbolic equation with no interior lower-
order terms. From here, we deduce global uniqueness results for H%'(Q) solutions

*Research partially supported by the National Science Foundation under grant DMS-9804056, and by
the Army Research Office under grant DA AH04-1-0059.
TResearch partially supported by the NSF of China under grant # 19901024.



of the hyperbolic equation satisfying Neumann B.C. on all of I', and Dirichlet B.C.
on I'g, over a time T greater than an explicit time Tp. Ty is optimal if, e.g., ['g is
flat. Finally we obtain continuous observability (or stabilization) inequalities with an
explicit constant. A three-part appendix, of purely geometric nature, provides several
independent approaches leading to various general classes of triples {2, 'y, I"; } which
satisfy the geometric conditions of Section 1, and, more relevantly, the geometric
conditions of the far more general Section 10: see Theorem C.1 in Appendix C. In
particular: T'g may be flat; I'g may be either convex or concave; I'g may be logarithm
convex or concave; etc. In the case of a disk, we can take the unobserved part ['g
to be as close to a half-circumference as we please: an indication that our results in
Section 10 are sharp. Finally, in line with the AMS Conference at the University
of Colorado, we point out throughout some open geometric questions, as well as
some potential extensions which would require geometric methods. Extension of the
fundamental Lemma 3.1 to the case of variable (in space) coefficients of the principal
part has already been accomplished [L-T-Y-Z.1] by means of Bochner’s techniques
in Riemann geometry, in the style of [L-T-Y.1-3], [Y.1].

1 Introduction. Problem statement

1.1 Problem statement. Assumptions. Consequences

Dynamical problem. Let € be an open bounded domain in R” with boundary 92 =T’
of class C, consisting of the closure of two disjoint parts: T'g (uncontrolled or unobserved
part) and I'; (controlled or observed part), both relatively open in I": 9Q =Ty U Ty, T'oN
'y =0. Let v = |11, ..., 1] be the unit outward normal vector on T, and let 8% =V-v
denote the corresponding normal derivative. In this note we consider the following purely
Neumann problem for a second-order hyperbolic equation in the unknown w(t, x):

wy — Aw = F(w) + f in Q= (0,77 x & (1.1.1a)
w(0, ) =wo, we(0, - ) =wr in (1.1.1b)
ow

—_—| = i = 1.1.1
8V2_0 in Y =(0,7] xT. ( c)

In (1.1.1a) we have set
F(w) = qi(t, )w + qa(t, v)w; + g3(t, z) - Vw, (1.1.1d)

subject to the following standing assumption on the coefficients: q1, g2, |g3] € Loo(Q), so
that the following pointwise estimate holds true:

|F(w)| < Op[w? + |[Vw]* +w?], (t,z) € Q. (1.1.2a)



Remark 1.1.1. In effect we could relax the standing assumption on the lower-order
coefficient ¢, and just require ¢u € L,(Q) for p = n+ 1, n > 2, by using a Sobolev
embedding theorem to estimate

1
3
{[emura) < lalmaleul s
S C’||eT¢wHH1(Q). (112b)
We shall set
r = gl + e2lle@ + llasll =) (1.1.2¢)
Theorem 10.1.1a will give the observability /stabilization inequality with an explicit con-
stant of the order of Cec"g, where C'is a generic constant, and r is defined by (1.1.2c). O
Moreover, we assume throughout that the non-homogeneous term f satisfies
f € Ly(Q). (1.1.3)

Main assumptions. In addition to the standing assumptions (1.1.2), (1.1.3), on the
first-order operator F', and on the forcing term f, the following assumption is postulated
throughout Section 9 of this paper:

(A.1) Given the triple {Q, Ty, I'1}, 9Q = I’y UT';, there exists a strictly convex function
d: © — R, of class C3(Q), such that if we introduce the (conservative) vector field

h(z) = [h(x),. .., ho(z)] = Vd(z), x € Q, then the following two properties hold true:
(1)
od
—| =Vd-v=h-v=0o0nTy h = Vd, (1.1.4)
Ovlir,

(ii) the (symmetric) Hessian matrix H4 of d(z) [i.e., the Jacobian matrix Jj, of h(z)] is
strictly positive definite on {2: there exists a constant py > 0 such that for all x € €2

dzlm1; Ty dr1rn 81»1’ ’ &vn
Ha(z) = Jp(x) = : : = : : > pol. (1.1.5)
drnrn ) drnrn % Ce %
L (93:1’ ’ 833” -

A working assumption throughout Section 9, to be later relaxed in our final results of
Section 10, is that d(z) has no critical point on €2
(A.2)
;2£|h(:v)| = ;2£|Vd(x)| =p>0. (1.1.6)



Without loss of generality as far as assumptions (A.1) and (A.2) are concerned, and
for purposes of Eqn. (1.1.8b) below, we may always translate d(z) as to make it positive
on Q: mind(z) =m >0 on Q.

Remark 1.1.2. Assumption (A.1) is due to the Neumann B.C. Assumption (A.2) is
needed for the validity of the key estimate (1.1.15b) which, in turn, is responsible for the
elimination of the interior lower-order term in the final Carleman estimate of Theorem
5.1(ii), Eqn. (5.2). Assumption (A.1) was introduced in [Tr.1, Section 5] in dealing with
a corresponding second-order hyperbolic problem with Neumann homogeneous B.C. on
Iy (uncontrolled/unobserved part of the boundary) and Dirichlet homogeneous B.C. on
I'; (controlled/observed part of the boundary); but it was not investigated in detail. As-
sumption (A.1) is much less restrictive than one would expect at first. Various classes
of triples {Q, g, I'1} satisfying assumption (A.1) and, moreover, also (A.2), are given in
Appendix A through Appendix C, which constitute an intrinsic part of this paper. See,
in particular, Theorem A.2.1, Lemma A.2.2, Appendix B.2, via a constructively geometric
approach; Theorem A.3.2 resting on a conformal mapping approach in the 2-dimensional
case; Theorem A.4.1, based on a perturbation approach valid in any dimension; finally, the
conclusive Theorem C.1 regarding the validity of the far more relaxed geometrical setting
of Section 10. O

Remark 1.1.3. In effect, assumption (1.1.6) is needed to hold true only for z € Ty
(uncontrolled or unobserved part of the boundary I'):

inrf |Vd(z)| =p >0, (1.1.6")
xelyg

for then a critical point of d(x) at a point (necessarily interior) of €2, or at a point z € I’y
(controlled or observed part of I') can always be eliminated, by smoothly redefining locally
d(x) while preserving the positivity condition (1.1.5). O

Preliminary scaling. Assumptions (A.1) and (A.2) above yield, in effect, a full
family of strictly convex functions {ad(x) + b} for all constants a > 0 and b (scaling and
translation of d(z)), each member of which satisfies (1.1.4), (1.1.5), (1.1.6). By translating
and rescaling d(x), with some a > 1, if necessary, we shall then operate a preliminary
choice of ‘normalization’, in order to achieve the following outcomes:

mﬁin d(z) =m >0, po > 2. (1.1.7)
The first condition is only for convenience: we think, however, of m as arbitrarily small,
in order not to deteriorate the threshold time 7j in (1.1.8b) below. The second condition
po > 2 will allow us to automatically verify properties (p;) and (p2) below in (1.1.12) and
(1.1.14), which are a consequence of (A.1). For instance, in the case where Iy is flat, we
can take d(x) = |z — z|?, for some z € R™ just outside 2 on the hyperplane containing 'y



(Fig. A.1, Appendix A.1), and then (A.1), (A.2) are satisfied, along with (1.1.7) where, in
fact, pop = 2. See more details on this case at the end of this Section 1.1 below.

Pseudo-convex function. Having chosen, on the strength of assumption (A.1), a
strictly convex potential function d(z) satisfying the preliminary scaling condition (1.1.7),
we next introduce the pseudo-convex function ¢ : Q x R — R of class C® by setting:

T\ 2
¢(z,t) =d(x) — c(t— 5) ; 0<t<T, ze€Q, (1.1.8a)
where 7' > 0 and 0 < ¢ < 1 are selected as follows. We define first Ty by setting
12 = 4maé< d(zx). (1.1.8b)
re

Let T' > Ty be given. By (1.1.8b), there exists 6 > 0 such that

T? > 4maxd(z) + 46. (1.1.8c¢)

zeQ

For this 6 > 0, there exists a constant ¢, 0 < ¢ < 1 such that

cT? > 4maxd(z) + 46. (1.1.8d)

e

Henceforth, let ¢(z,t) be defined by (1.1.8a) with 7" and ¢ chosen as described above,
unless otherwise explicitly noted. Such function ¢(x,t) has the following properties:

(a) for the constant 6 > 0, fixed in (1.1.8c), we have via (1.1.8d),

T? T?
¢(z,0) = ¢(z,T) = d(x) — cT < maxd(x) — cT < =4, uniformly in = € ;
Q
(1.1.9)
b) there are ¢ty and ¢;, with 0 < tg < L < ¢, < T, say chosen symmetrically about L
2 2
such that
min  ¢(z,t) >0, 0<o<m, (1.1.10)
.’EEQ,tE[to,tl]

since ¢ (x, %) = d(z) > m > 0, under present choice: indeed, we take

m-—o
—cth—=)?=0>0ort)] — — = :
m 0(1 2) o , O 11 5 c

We remark that the property o > —6, 6 > 0, here achieved from (1.1.10), having imposed
o > 0, will be critically invoked in going from Eqn. (6.5) to Eqn. (6.6) below.

Consequences of assumption (A.1), (A.2) and the scaling condition (1.1.7).
Let d(z) be a strictly convex (potential) function provided by assumptions (A.1), (A.2)
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and satisfying the scaling choice (1.1.7): po > 2. It then follows readily that any such d(x)
fulfills automatically the following two properties (p;) and (p2): there exists a function
a(z) € CY(Q), in fact, take

a(r) = Ad(z) — 2c— 1+ k € CHQ), (1.1.11)

for a constant 0 < k < 1 such that

(p1) _
Ad(z) —2c—a(z)=1-k>0, ze€ (1.1.12)

(p2) if we define 7 by
y=a(r)—2c— Ad(z) = —4c—1+ k<0, z€Q, (1.1.13)
the Hessian matrix Hy of any such d(x) satisfies the following inequality for all z €

2Hq(x) + [a(z) — 2¢ — Ad(2)|I = 2Ha(z) + 71

[ 2dy 0, +y 2dz, 0, T 2dyyz, ]
2dzy0, 2dppey +7 - 2dzye,
= >pl, VxeQ, (1.1.14a)
| 2depa 2dz, 2, e 2dgg, 7

for some constant p > 0, by virtue of assumption (1.1.5) and (1.1.13):
P=2p0+7=2py+ (—4c—14+k)>0 for 1 +2(2c—py) <k < 1. (1.1.14b)

We note that positivity of p in (1.1.14b) is obtained, since the constant ¢ was selected
below (1.1.8a) as 0 < ¢ < 1, and, moreover, by the scaling choice (1.1.7) we have py > 2,
so that 2¢ — pp < 0 and then (1.1.14b) is achieved.

In addition, by additional rescaling, if necessary, we shall show below that any strictly
convex function d(z) provided by assumptions (A.1), (A.2), and satisfying the prelimi-
nary scaling condition (1.1.7), and, possibly, additional scaling, fulfills also the following

property (ps):
(ps) noting via (1.1.12) that

6c+ Ad(x) —a(r) =8c+1—k, x€Q, (1.1.15a)

and, moreover, recalling (1.1.10) and Vd = h from (1.1.4), we have that the following



inequality holds true, by virtue of assumption (1.1.6), and of (1.1.13), (1.1.15a):

(

(2c+ Ad — a)|Vd|* + 2H,Vd - Vd — (6¢c + Ad — a)4c? (t —

T
2
T
= (dc+ 1 — k)|Vd|2 + 2H,Vd - Vd — (8¢ + 1 — k)4c? (t - 5) > 3 >0,

V(x,t) € set Q*(c*),
(1.1.15b)

\

for a constant 3; > 0, where the set @Q*(c*) is defined by
Q* (0") ={(z,t) : x€Q, 0<t < T, ¢*(x,t) > 0" > 0}, (1.1.16)

for a constant o* chosen to satisfy 0 < o* < o, see (1.1.10), where in turn the function
¢*(x,t) is defined by

¢*(x,t) = d(x) — ¢ <t— §>2 reQ 0<t<T. (1.1.17)
Since 0 < ¢ < 1, we note, via (1.1.8a), (1.1.17), that
¢*(z,t) > P(x,t), reQ, 0<t<T. (1.1.18)
Thus, if we define, in agreement with (1.1.17), the set Q(o) by
Qo) ={(z,t): z€Q, 0<t<T, ¢(z,t) > 0o >0}, (1.1.19)
we see, since 0 < 0* < g, and by virtue of (1.1.10), that
[to,t1] x Q C Qo) C Q*(¢") C [0,T] x Q, (1.1.20)

see Figure 1 and Figure 2. The point of the set Q*(c*) is twofold: (1) it is a convenient
subset of [0, 7] x € where to require the validity of inequality (1.1.15b); moreover, it is
comparable, in the sense described by (1.1.20), with the set Q(o) in (1.1.19), which instead
is defined in terms of the level surface ¢(z,t) = o, related to the original pseudo-convex
function. All this will be seen in the proof of Theorem 5.1.

A class where properties (p;) = (1.1.12), (p2) = (1.1.14), and (p3) = (1.1.15b)
are fulfilled without rescaling: the radial field case. Consider the special but
important case where the unobserved boundary I'y is flat. Then, take a point z € R™ just
outside Q2 on the hyperplane containing Uy (Fig. A.1, Appendix A.1). Define d(z) = |z—2z/?,
so d(z) > m > 0 on €, as desired. Assumptions (A.1) and (A.2) hold true, and moreover
the constant pp in (1.1.5) is: po = 2; moreover, T > 2 (diameter of 2):

h(z) = Vd(z) = 2(x — z) = a radial field centered at z; (1.1.21a)
|h(2)]? = |Vd(z)|* = 4|z — 2|* = 4d(z), T} = 4max |z — z|% (1.1.21Db)
dee; =2, 1 =1,...,n; Ad(z) =2n =2dim; dye; =0, i # 5 po = 2. (1.1.21c)
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FIGURE 2: USE d(z) = |[r — 2. ATt=0AND t =T,
NO POINT OF z € {) BELONGS TO Q*(¢*), BY VIRTUE OF
(1.1.8D): ¢(2,0) = ¢ (2,L) < max d(z) — ¢ T < —4,
WHERE 0 < 0* < ¢ <m, AND SO (1.1.16) IS VIOLATED.

We now verify the validity of (p1), (p2), (ps) with no rescaling of d(z):

(p1) = (1.1.12); (p2) = (1.1.14). Since now py = 2, then (1.1.7) is satisfied and, as seen
below (1.1.14), (p;) and (ps) are fulfilled.

(p3) = (1.1.15b). We premise verification of (p3) with the following

Claim: When pg > 2c, in particular, in the present radial vector field, we always have
the following estimate, which refers to the key expression in (1.1.15b); by (1.1.5) with
Po > 2c:

2
(4¢+1— k)|Vd|]* + 2HVd - Vd — (8¢ + 1 — k)4c? (t - Z)

2
> (de+1—Fk+40)|Vd]* — (8c+ 1 — k)4c? <t— —) (1.1.22)
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= Bc+1-k)

|Vd|? — 4c? (t— %)2] . (1.1.23)

We now verify (p3). In addition, in the present case of a radial vector field, we make use
of the (lucky) identity |Vd(x)|* = 4d(z), see (1.1.21b), and obtain

Vd? — 4¢ (t - §>2 _4 [d(x) _e <t - §>2

recalling the function ¢*(z,t) defined in (1.1.17). Thus, for the present radial vector field,
we obtain by (1.1.23) and (1.1.24):

= 4¢*(z, 1), (1.1.24)

T 2
(de+1—k)|Vd|>+2HsVd-Vd— (Sc+1—k)dc? (t— 5) > 4(8c+1—k)¢*(z,t). (1.1.25)

We conclude: the requirement (p3) = (1.1.15b) always holds true with no rescaling of
d(z) = |x — z|* in the present radial vector field case, with controllability time 7' > 2
(diameter of €2), which is optimal.

1.2 Rescaling of d(x). Fulfillment of condition (p3) =(1.1.15b) in
general, under assumptions (A.1), (A.2).

Let d(x) be a function satisfying (A.1), (A.2). Then property (p;) = (1.1.12) is always
satisfied with the choice of a(z) as in (1.1.11).

Rescaling d(x). Here the point is the following: On the positive side, rescaling d(z)
will always allow us to achieve also properties (p2) = (1.1.14) (by enforcing the choice
po > 21in (1.1.7)) and, moreover, (p3) = (1.1.15a-b), in fact, even (1.2.1) below. In fact, by
rescaling d(x) more, one can always achieve, by virtue of assumption (1.1.6), the validity
of inequality (1.1.15b) even on the entire cylinder [0,T] x Q = Q:

2
(4c+1—Fk)|Vd|* +2H,Vd-Vd — (8c+1 — k)4c? <t — g) >3 > 0.V (z,t) € Qx[0,T],

(1.2.1)
a stronger, and less desirable, requirement than (1.1.15b), as noted below. This is estab-
lished below. Yet, on the negative side, rescaling d(z) deteriorates the minimal observ-
ability time Tj in (1.1.8b) while keeping 0 < ¢ < 1 fixed and close to 1. Thus, rescaling
d(x) calls for care. We have seen above that: there is no need to rescale d(x) in the special
but important case where d(z) = |x — 2|?, z a fixed point just outside 2, which is relevant
when the unobserved boundary I’y is flat. See Appendix A.1.

10



Generally, if we rescale the original function d(z), i.e., if we replace d(x) by dyew(x) =
ad(x) for a constant a > 1, then:

Vdyew = aVd, |Vdyew|? = a?|Vd|*; Ha,,, (z) = aHa(2), ponew = apo;
(1.2.2)
T2

0,new

=al@; T2, = al? Hy

new

Vinew " Vd

new new new

= &*H,Vd - Vd,

and we can then keep the same constant 0 < ¢ < 1, and close to 1, of the original d(z). We
note that the time T was arbitrary > Ty. Thus, /aT is arbitrary > T new. Thus, in the
critical expression on the left of, say (1.2.1), we have that the first two space terms grow,
after rescaling, by a? and a® respectively, while the worst case time term (on [0,7]), i.e.,
T? > Tg, deteriorates only by a factor a. Thus, (1.2.1) can always be achieved with a > 1
sufficiently large, at the price of deteriorating the original T} in (1.1.8b) into /aTy. More
precisely,

Achievement, in general, of estimate (p;) = (1.1.15b) on Q*(c*) under rescaling
of d(z); indeed, of the stronger estimate (1.2.1). We now establish the following

Claim. Given a function d(z) > 0 satisfying assumptions (A.1), (A.2). Rescale it, if
necessary, with a rescaling factor a > 1 sufficiently large as to achieve the condition

\Vd(z)|* — 4d(z) >0, VzeQ, (1.2.3)

in addition to pg > 2 in (1.1.7). [This can always be done by (1.2.2)]. Then, in fact,
inequality (1.2.1) on the entire cylinder [0,7] x Q@ = @ holds true. Thus, a-fortiori,
property (ps) = (1.1.15b) on the set Q*(c*) is fulfilled.

Proof of Claim. We can first achieve py > 2 in (1.1.7). Thus, by the Claim at the
end of Section 1.1, we obtain that inequality (1.1.23) holds true for z € Q, 0 <t < T"

2
(4c+1— k)|Vd|]* + 2HVd - Vd — (8¢ + 1 — k)4c? (t - %)

> 8c+1—-k)

|Vd[* — 4c (t — g) 2] . (1.2.4)

Next, recalling (1.1.17) for ¢* and for z € Q, 0 < ¢t < T, we obtain:

d(z) — & (t— §>2

= |Vd(2)|* — 4d(z) + 4¢™ (z,1). (1.2.5)

Vd(z)]? — 4¢2 (t— g) — |Vd(2)]? — 4d(z) + 4

11



Then, assumption (1.2.3) used in (1.2.5) yields, by use of (1.2.4),

2
(4c+ 1 — k)|Vd]* + 2H,Vd - Vd — (8¢ + 1 — k)4’ (t - g)

> 4(8c+1—k)¢*(x,t) onQ=(0,T] x £, (1.2.6)
and (1.2.6) establishes (1.2.1), as claimed. O

Remark 1.2.1. The proof in Sections 5 and 6 will markedly simplify if we assumed
the validity of (1.2.1) on the whole cylinder [0, 7] x €, rather than the validity of (1.1.15b)
on its smaller subset Q*(c*). See Remark 5.1. O

2 Main results under assumptions (A.1) and (A.2)

In this section we state our main results under assumptions (A.1) [(1.1.4), (1.1.5)] and
(A.2) = (1.1.6). In Section 10, assumption (A.2) will be suitably relaxed, in fact in many
cases it will be dispensed with altogether. While it is possible to construct interesting
examples of triples {Q2, 'y, 'y} which satisfy assumptions (A.1) and (A.2)—see Appendix
A through Appendix C—nevertheless, assumption (A.2) introduces undesirable limitations
in some key examples, such as {2 = disk. These can be eliminated by increasing “by €’ the
observed boundary I'y, making it non-connected, see Example B.1 in Appendix B. Thus,
omitting assumption (A.2) is a worthwhile endeavor. This will be done in Section 10.

Essentially, the setting of Section 10 will consist of splitting the original domain 2 into
two subdomains ©Q; and Qo Q = Q; U Qy, Q; N Qs # 0, where the present framework
of Section 1, based on assumptions (A.1) and (A.2), applies to each subdomain §2; sep-
arately, ¢ = 1,2. This avoids imposing assumption (A.2) on the entire domain 2. The
corresponding proofs in Section 10 become much more complicated, even though to each
subproblem on €);, we apply the key results of the preceding sections such as Corollary
4.3, obtained under assumptions (A.1) and (A.2). Thus, a separate treatment of the more
general setting (without assumption (A.2)), is to be postponed until Section 10. This is
justified in name of clarity. In conclusion, the most general results of this paper may es-
sentially be obtained from those given below in this section, by replacing assumption (A.2)
with a similar assumption on €2; and {25, however, often a more relaxed condition. See
Section 10. The validity of the setting of Section 10 for large classes of triples {2, g, "1 }
is provided by Theorem C.1 in Appendix C.

2.1 Continuous observability. Global uniqueness

We first list our main continuous observability inequality, and related global uniqueness
result of our treatment in Sections 1 through 9. In the next subsection, we shall present a
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corresponding uniform stabilization result. All these results are obtained under assump-
tions (A.1) and (A.2). In effect, they are derived from a corresponding Carleman-type
estimate to be established in Section 6 (Theorem 6.1), which actually holds true in a more
general setting (that of hypotheses (H.1) = (4.17), (H.2) = (4.18), and (H.3) = (4.19),
which is a-fortiori satisfied by the checkable assumptions (A.1) and (A.2)). Throughout
this paper we introduce

E(t) Z/Q[wf(t)JrIVw(t)|2+w2(t)]dQ= {w(®), w() iz @)oo (2.1.1)

Theorem 2.1.1. With reference to problem (1.1.1), let F' satisfy (1.1.2). Let as-
sumptions (A.1) and (A.2) hold true, so that there is a (coercive) conservative vector field
h(z) = Vd(x) € [C*()]" such that h-v =0 on I'y. Let Iy = '\ Iy and let Ty > 0 be the
constant defined in (1.1.8b). Then

(a) for all T" > T, the following continuous observability inequality holds true for
H"'(Q)-solutions: there exists a constant Cp > 0 such that, with X; = (0,7] x 'y, we

have:
CrE(0 / / w; + w? d21+/ /deQ (2.1.2)

(b) A-fortiori, the following global uniqueness result holds true: Let 7" > T} and let w
be an H'(Q)-solution of problem (1.1a) with f = 0 along with the B.C.

a_w
ov Iz

Then, in fact, w =0 in @ (in fact, w =0 in R; x Q). O

=0 and w|g, =0 whereh-v=0o0nTly ¥ =(0,7] xI}. (2.1.3)

Indeed, we shall first prove the uniqueness statement of part (b) in Theorem 7.1 [as
a direct consequence of the Carleman estimates of Theorem 6.1 for H*?(Q)-solutions], as
supplemented by Section 8, which provides the extension to H>!(Q)-solutions. Next, part
(b) will be used to establish part (a), in Theorem 9.2, by virtue also of the trace Lemma
9.1.

Duality between continuous observability and exact controllability. We now
explain the control-theoretic terminology so far used. Consider the mixed hyperbolic

problem:
(

Utt—A’U:Fl(U) in Q,

(2.1.4a)
'U(O, . ) = 07 Ut<07 . ) = 0 in Qy (214b)
ov v
v g, O _ . 2.1.4
| ol anls, =9 in 3, ( c)

where Fj is the first-order differential operator such as F' in (1.1.1d), satisfying therefore
hypothesis (1.1.2) [and Remark 1.1.1]. Problem (2.1.4) is called exactly controllable in
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the space H'(2) x Ly(2) within the class of Ly(0,T’; Ly(T'1))-controls, for 0 < T < oo,
in case: given such 7' > 0 and given any pair {vgr,v17} € H'(Q) x Ly(Q), there exists
a control function g € Ly(0,T; L2(T'1)) on the universal time interval [0,7], such that
the corresponding solution to problem (2.1.4) satisfies the terminal condition: v(7, - ) =
Vo, T Ut(T, : ) = u,T-

In other words, the input-solution map ¢ — Lrg = {v(T, - ),v(T, - )} of problem
(2.1.4) is surjective:

Lr: Ly(0,T; Ly(T1)) D D(Lr) onto H'(Q) x Lo(9). (2.1.5)

By a standard Functional Analysis result [T-L.1, p. 235], the surjectivity condition (2.1.5)
is equivalent to the condition that the adjoint L3 be bounded below: there exists Cr > 0
such that the following continuous observability inequality holds true:

12| Lo 0,15L0(00)) = Ol 2]l (@) x12(0) L
[y > Crllz| (2.1.6)

for all z € D(L}) C Ly(0,T; Lo(I'1)), so that the left-hand side is finite. Conditions (2.1.6)
turns out to be the counterpart, modulo £.0.t., to inequality (2.1.2) for f =0 (e.g., [L-T.2—
4], [L-T-Y.1], [Tr.1]). Thus, inequality (2.1.2) of Theorem 2.1.1 is the crux in establishing
the exact controllability property for problem (2.1.4), as defined before, on a universal
time 1" > Ty.

2.2 Uniform stabilization

In this section we consider the damped problem

(wy = Aw + Fw in (0,7] x Q= Q; (2.2.1a)
w(0, - ) =wo, we(0, - ) =wr in (2.2.1b)
ow :

ol = 0 in (0,77 x I'y = Xo; (2.2.1c)
ow :

| ol = in (0,7] xI'y = %;. (2:2.1d)

Theorem 2.2.1. With reference to problem (2.2.1), let F' satisfy hypothesis (1.1.2).
(i) Then, problem (2.2.1) is well posed on Y = H(Q) x Ly(£2) in the semigroup sense:
the map
{wg, w1} — e {wo, w1} = {w(t),w(t)}: Y — C([0,T];Y), (2.2.2)

defines a strongly continuous semigroup e~ on Y.
(ii) Let assumptions (A.1) and (A.2) hold true, so that there exists a (coercive) con-
servative vector field h(z) = Vd(z) € [C?(Q2)]" such that h-v =0 on ['y. Let I'; = T'\ [g.

14



Then: the following estimates holds: for T' > Tp, Ty defined in (1.1.8b), there is a constant

cr > 0 such that
T w2
E(T) < — 2
b(n) < [ /F1[<au) ru

We now explain the terminology of the present subsection’s title. Let F' = 0in (2.2.1a).
It then follows readily from inequality (2.2.3) via the dissipation identity (obtained by
multiplying problem (2.2.1) by w; and integrating by parts) that E(7") < ¢z E(0) for some
cy < 1. Or, in semigroup terms, |[eA~¥T|| < Cr < 1 in the uniform norm of £(Y). A
standard semigroup result then yields that: there exist constants a > 0 and M > 1, such
that ||eA~?]| < Me9 ¢t > 0. Thus, the feedback —wy in (2.2.1d) uniformly stabilizes, when
F' =0, the corresponding problem where —wy is replaced by zero, which is a conservative,
energy preserving problem.

s, (2.2.3)

2.3 Literature and overview

Since the inception of this topic, continuous observability /stabilization inequalities for
second-order hyperbolic equations have been established, almost exclusively, in the case
where the unobserved /uncontrolled part I'y of the boundary I is subject to homogeneous
Dirichlet, rather than Neumann, B.C. To begin with, this is the case for the original
uniform stabilization (hence [R.1], exact controllability) results of the wave equation: in
H(Q) x Ly(2) with Neumann Ly(Y)-boundary feedback [C.1], [Lag.1], [Tr.2], [L-T.3] and
in Ly(Q2) x H~'(Q) with Dirichlet Lo(X)-boundary feedback [L-T.1], [L-T.3], [L-T-Y.3].
Moreover, this is the case also for most of the subsequent works aimed at a direct es-
tablishment of continuous observability inequalities (which then, by duality, yield exact
controllability results, without passing through the generally more, or even much more,
demanding stabilization problem): [H.1], [L-T.2], [Li.1-2]. See also an account in [K.1].
An excellent summary of the earlier literature is given in [R.2]. A first exception to the
above statement is paper [Tr.1], which deals also with the observability /controllability
issue of the wave equation subject to homogeneous Neumann B.C. on I'y, though under
Dirichlet control on T'y. It was this reference [Tr.1] that introduced the vector field con-
dition, h-v = 0 on Iy in (1.1.4), of parallelism along I'y, for a coercive vector field h
on {2, see (1.1.5), to obtain continuous observability estimates: in the last step, appeal
to compactness/uniqueness (Holmgren) is made, to absorb an interior lower-order term.
Though several classes of examples were given in [Tr.1], this geometrical condition (A.1)
(i.e., (1.1.4) and (1.1.5)) due to the homogeneous Neumann B.C. on I'y was not analyzed
there.

In the present paper, the inclusion of an energy level term F with coefficients both
space and time dependent produces serious additional difficulties when coupled with the
geometric condition (A.1) in particular on T'.

First, the original Holmgren unique continuation result across the non-characteristic
surface is not available with only L. (Q)-regularity of the coefficients of the energy level
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terms. However, a local unique continuation result of H¥ solutions across a strongly
pseudo-convex surface is available for (linear) differential operators of order m with, say,
real C'-coefficients of the principal part and L..-coefficient of lower-order terms [Ho.1,
Theorem 8.9.1, p. 224]. (A non-characteristic surface is strongly pseudo-convex, but not
conversely.) Furthermore, we refer to [Ho.1-2|, [Ta.2-3| for some very recent references
where at least partial analyticity is needed, and [I.1] for a recent research monograph on
this subject. (If these coefficients were only space dependent, appeal to the unique contin-
uation results for the corresponding elliptic problem [Ho.1, Theorem 17.2.6, p. 14] would
do the job.) A contemporaneous work [Lit.3] provides a much welcome global uniqueness
theorem, say for hyperbolic second-order equations, starting, however, from a local unique-
ness result. Thus, this is a result, proved in [Lit.3] by purely geometric means, that is a
counterpart of the ‘triangle lemma’ in [I.1, Lemma 3.4.6, p. 67], which by contrast is estab-
lished by analytic means. On the other hand, a main goal of the present paper is precisely
to eliminate from the continuous observability /stabilization estimates interior lower-order
terms, thus the need of appealing to external (until now apparently non-existent) global
unique continuation results, to absorb them. This is achieved by virtue of the additional
requirement (A.2) = (1.1.6) on the vector field h, which is responsible for obtaining the key
estimate (1.1.15b), in the treatment of Sections 1 through 9 (or the additional requirement
(A.21) = (10.1.4), which is responsible for the key estimate (10.1.14) in the treatment of
Section 10). In fact, a sub-goal of the present paper is to obtain, a-fortiori, directly, new
global unique continuation results for T° > Tj, from the preliminary Carleman estimates
established this time without lower-order terms. The consequent global unique contin-
uation results in Theorem 7.1 are obtained in precisely the form that is then needed to
eliminate the interior lower-order terms arising, however, from a different source: the goal,
this time, of eliminating the traditional star-shaped restrictions of the literature on the
observed /controlled part I'y of the boundary I'. This step requires Lemma 9.1, Eqn. (9.1),
to control the tangential trace of the solutions to Eqn. (1.1.11) in terms of their normal
and velocity traces, and hence the global uniqueness Theorem 7.1 (and Remark 8.1) to
eliminate the corresponding interior lower-order term in (9.1): see Step 2, in the proof of
Theorem 9.2. Alternatively, if one wishes to retain the star-shaped geometrical conditions
h-v > 0 on the observed/controlled portion I'; of the boundary I', this method has then
the virtue over the literature of yielding an explicit constant in the continuous observabil-
ity /stabilization estimates of the order Ce” where C is a constant and r is the Hilbert
norm of the involved coefficients, see (1.1.2c). This is the case, e.g., in the more general
setting of Section 10, see Theorem 10.1.1.

Second, the further effort in Section 10 to weaken in many cases (including the case
of flat I'y) the geometrical conditions (A.1), (A.2), relies on a domain decomposition 2 =
Q1 UQy, Q1 NQy # (), with consequent cut-off functions y; on each €;. It is because of
the Neumann (rather than Dirichlet) B.C., that these cut-off functions have to be non-
trivially selected as to be, among other features, only time-dependent on a small interior
layer of the boundary I', see (10.2.10), (10.2.11) and Remark 10.2.1. A relevant reference
for general second-order hyperbolic equations giving sharp (geometric optics) sufficient
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conditions for observability/stabilization at the energy H' x La-level (as in the present
paper) is the [B-L-R.1] and its precursor [Lit.1] for first-order hyperbolic systems. A
comparison of techniques in the literature is attempted in the introduction of [L-T-Y.1],
as well as of [I-Y.1], to which we refer. Generally, the geometric optics conditions are not
readily checkable.

Conceptually, this paper is motivated by the desire to give a self-contained treatment of
continuous observability /stabilization inequalities without passing through the preliminary
traditional step of first establishing these inequalities polluted by lower-order terms, as done
essentially in almost all of the literature, including [Lag.1], [B-L-R], [L-T.2-4], [Lio.1-2],
[Ta.1], etc. To this end, we would then seek to introduce an additional degree of flexibility
to the explicit computational treatment of [L-T.4] in obtaining Carleman estimates. The
inspiration for this comes from the Russian literature, in particular [L-R-S.1, Lemma
1, p. 124], which is apparently not well known outside its original circle. This gives a
complicated, yet very useful, pointwise Carleman-type inequality with, apparently, one
further degree of freedom over [L-T.4], and other literature, where the benefits for the
estimates are obtained not pointwise, but after integration on @. In [L-R-S.1] Lemma 1,
p. 124 of this reference is used precisely to obtain unique continuation results (pp. 133-142).
This aforementioned result [L-R-S.1, Lemma 1, p. 124] forms also the basic starting point
in other investigations on inverse problems and on stability estimates for ill-posed Cauchy
problems involving hyperbolic equations and inequalities. See [K-K.1] for the latter, and
references therein for the former.

Comparison with [K-K.1]. The main result of [K-K.1] is an a-priori stability estimate
for H*?(Q)-solutions of a hyperbolic problem such as (1.1.1) and (1.1.2), which in par-
ticular yields uniqueness w = 0 in @ of such solutions, if zero Dirichlet B.C. w|s = 0 is
imposed on the whole boundary I', while zero Neumann B.C. g—qj|gl = (0 is imposed on a
subportion I'y where h-v > 0, h(z) = x —y. Yet the stability estimate in [K-K.1, Theorem
2.2 or Theorem 3.1] is not quite the continuous observability estimate, as it needs to be
extended to H"'(Q)-solutions. Apart from the higher a-priori regularity (H>?(Q) rather
than H"'(Q)) that [K-K.1] requires of the wave equation solution, its main estimate [K-
K.1, Theorem 3.1, p. 101] would yield continuous observability inequalities in the following
two ‘classical’ cases of the mid-eighties: (i) either for the case where w|s, = 0 on the en-
tire boundary I', while the observed portion of the boundary I'y satisfies the (star-shaped)
geometrical condition h - v > 0, h(z) = x — zo; (ii) or else for the case where w|y, = 0
and %|21 =0, with h-v > 0, h(x) = z — xg, on the observed portion of the boundary I'y
(in our present notation) with, in addition, a full H"'(3;)-norm on 3. (In this case, the
passage from H*?(Q) to H"'(Q) solutions is technical, see our Section 8.)

By contrast, our present paper assumes the definitively more challenging and non-
classical B.C. %—“U’|EO = 0 as well on the unobserved portion I'y of the boundary I', and,
moreover, it manages to dispense altogether—in the final estimates (2.1.2), or (10.1.20)—
of the tangential H'-norm on I'; with no star-shaped geometrical condition imposed on
the observed portion I'y; or else, if a star-shaped condition is imposed on the observed
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portion I'y, then the resulting observability constant is ezplicit (and of the order of Ce"Z,
where C'is a generic constant and 7 is the norm in (1.1.2c) on the involved coefficients).

In terms of control rather than observation, the preceding considerations can be ex-
pressed as follows:

Case (i) above in [K-K.1] refers to Dirichlet control on I'y, while w|s, = 0 on T.
Case (ii) above in [K-K.1] refers to Neumann control on I'y, while w|s, = 0 on T'y.
The present paper refers to Neumann control on I'y, while g—";’bo =0 on IY.

The cut-off functions in [K-K.1] are not really needed (as shown in an unpublished
report by the present authors, Fall 1998). By contrast, our present paper requires the choice
of sophisticated cut-off functions, see Remark 10.2.1, to achieve its maximally claimed
generality in Theorem 10.1.1, in addition to a new version of the fundamental pointwise
Lemma 3.1, over [L-R-S.1, Lemma 1, p. 124].

The method of [K-K.1] suitably refined permits to obtain an ezplicit constant in the
corresponding observability /stabilization inequalities [Z.1-3], which has beneficial conse-
quences in semilinear problems, in the style of the present paper.

A key feature of the pointwise Carlemann-type estimate given by [L-R-S.1, Lemma 1,
p. 124] is that the interior lower-order term comes with a controlled ‘right’ sign c73 (as in
our Eqns. (4.21) and (4.26)) in a suitable set in time and space (akin to our Q*(c*)).

For the aforementioned reasons stated at the outset of this subsection, the Neumann
(rather than Dirichlet) problem is technically much more demanding. In our first effort
to the Neumann problem of the present paper (Fall 1998), we also took an approach that
relied, in its starting point, on the pointwise Carlemann-type inequality for C?-solutions of
problem (1.1.1), (1.1.2) given by [L-R-S.1, Lemma 1, p. 124]. This approach led to a sharp
result, precisely the one of our present paper, in the case of a flat unobserved/uncontrolled
boundary Ty. Here, the special feature |Vd(z)|> = 4|z — 2|? noted in (1.1.21a) was useful.
An apparently somewhat similar treatment was carried out in the almost contemporaneous,
and surely independent, work of [[-Y.1], presented at the Colorado’s Conference. However,
in the general case of a curved unobserved/uncontrolled boundary Iy, the approach based
on [L-R-S.1, Lemma 1, p. 124] of both our first Fall 1998 effort and [I-Y.1] inherits unfortu-
nately additional geometrical conditions. For instance, in the case where € is the R2-unit
disk centered at the origin, this method required the uncontrolled /unobserved portion T'g
of the boundary I' to be arbitrarily close to i of the circumference I' (if connected, see
Example B.1.1 in Appendix B).

By contrast, we expect by known control theory results [Lio.1-2], [Tr.1], that 'y should
be arbitrarily close to % of the circumference I". The improvement from i of I to % of
is highly non-trivial and is achieved in our Section 10.

In order to relax the additional geometrical conditions, our present second effort (Spring
1999) obtains another more suitable pointwise Carleman-type estimate for C*-solutions
of problems (1.1.1), (1.1.2) in a form (our present Lemma 3.1), which is a sufficiently
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noteworthy variation of [L-R-S.1, Lemma 1, p. 124] to warrant an explicit, complete proof.
This we provide in Section 3. Building upon this new pointwise estimate of our Lemma
3.1, we are thus able to relax the geometric conditions on I'y when I'y is curved, even in
the framework of Sections 1 through 9, and more so in the much less restrictive setting of
Section 10, at the price of serious additional technical difficulties (see cut-off functions x; of
Section 10.2). It is through the treatment of Section 10 (of which there is no counterpart
either in our first Fall 1998 effort, or in [I-Y.1]) that we are finally able to reach our
goal to increase, in the case of an R2-disk, the unobserved /uncontrolled portion I'y of the
boundary from almost i to almost % of the whole circumference I'. A similar result holds
for the R™-sphere for any n. See Appendix C, Theorem C.1, Fig. C.2. In common with
the original Russian approach, our present methodology shares the key observation and
the benefit of penalizing the interior lower-order term with a controlled ‘right’ sign (our
Eqns. (4.21) and (4.24) with 723 or 723, 5,3 > 0) on a suitable time and space—set
Q*(c*), which may, at worst, be the entire cylinder @ = (0,7] x Q. This then allows
one to drop such interior lower-order term, see the one-paragraph argument below (5.18),
in the proof of the final Carleman estimate, Theorem 5.1, part (ii), Eqn. (5.2), or in the
proof of Theorem 10.4.1, Step 2. This step is the main virtue of all these [L-R-S]-based,
or [L-R-S|-inspired approaches: the elimination of the interior lower-order term in the
final Carleman estimate. As the method accomodates, with no extra difficulty, energy
level terms which may be space as well as time dependent and of low regularity L. (Q),
the resulting global uniqueness result Theorem 7.1 for T' > Ty and H!(Q)-solutions is,
apparently, new. Here, time-dependence prevents appealing to elliptic theory. In the
case of flat Iy, the uniqueness time T is optimal. In general, for Iy curved, the time
Tp of observability /controllability /global uniqueness is subject to scaling, as explained in
Section 1.2, and is not necessarily guaranteed (nor do we expect it) to be optimal. We
finally remark that, in the Neumann case, an additional technical difficulty not present
in the Dirichlet case is the passage from H??(Q)-solutions to H"'(Q)-solutions for the
final Carleman estimates. This step is carried out in Section 8, via an approximation
argument. This step is non-trivial, since finite energy solutions subject to Neumann B.C.
do not produce (in dimension dim €2 > 2) H!-traces on the boundary, see [L-T.5].

This paper leads naturally to some geometrical open questions. To keep in line with
the spirit of the AMS-IMS-STAM Summer Research Conference held at the University of
Colorado, Boulder, June 27-July 2, 1998, these are duly noted. One is the fulfillment of
assumptions (A.1), (A.2) of Section 1, or (A.1i), (A.2i) of Section 10: see the appendices.
Another is the possibility of extending the present paper to the general case where (—A)
is replaced by a strongly elliptic operator with C'-space dependent coefficients. Such an
extension will have to rest on the counterpart of the basic Lemma 3.1 of this paper, given,
however, in terms of a corresponding Riemann metric, as in [L-T-Y.1-3], [Y.1].

The first key step of such an extension—the proof of the basic Lemma 3.1 to this
variable coefficient situation—has been (December 1999) recently carried out successfully
[L-T-Y-Z.1]. Tt uses Bochner’s techniques in Riemann geometry, in the style of [L-T-Y.1-
3], [Y.1], which closely patterns the present proof in the Euclidean environment, thus
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confirming the validity of the aim of the Colorado’s Conference.

3 A fundamental lemma

The starting point of our proofs is the following pointwise estimate. This is a sufficiently
noteworthy variation of a result in the literature [L-R-S.1, Lemma 1, p. 124] to warrant
an explicit proof. Such estimate will then be applied to (smooth) solutions of the wave
equation (1.1.1a). With ¢t € R; and = = [z1,...,2,] € RY, we shall indicate the partial

€T

derivatives as follows: %% f = fu,, etc. [K-K.1], by contast, uses [L-R-S.1, Lemma 1,
p. 124].

Lemma 3.1. Let
w(t,z) € C*(Ry x RY); L(t,x) € C*((Ry x R?); ¢(t,x) € C*intand C'inz (3.1

be three given functions and set (¢, x) = e/®*). Let ¢ > 0 be arbitrary.

Then, the following pointwise inequality holds true

M
02 (wy — Aw)2 — 88_t +div V > =8V, - Vo 4+ 2(AL + by — gb)vf

+2 (gb - % — AL+ Ett> |Vo|? + 4 (Z Emimjvmivzj> + 6°Bu?, (3.2)

ij=1
where we have set

M = Mw)=60*{-20(w? + |Vw|?) + 4V - Vw w;

4+ 2(=202 + 2|V + Y wew + (—2AL, — 203 4 20|V L|* — )w?};  (3.3)
V=W,...,Vj,....,V; (3.4a)

V, = Vi(w)= 292{@% (w? — |Vw|?) — 2wy, (b, — VE - V)

+ 2(|W|2 . %>wmjw ol (IO — 22— A)wQ}, (3.4b)
and, moreover,
A = (6 —ty) — |V + AL — 3, (3.5)

(3.6)

. "9 0
B o= 240 [Z 5 (A )L,) = Z(A+ ) = 2 VU7 + v

J=1
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[(3.6) shows the need for ¢ to be C* in ¢, and C' in x.]

Proof. Step 1. We let v(t, ) = (t, x)w(t, x) = e“w(t, z), (t,2) € Q = (0,T] x .
By direct differentiation, we get

Hwtt = Uy — 2&5'015 + (e? — ﬁtt)’u

(3.7)
mej:cj - U:cj:cj - ngjlvmj + (gi - Emjmj)v7 j - ]_, e ,n
! (3.8)
0Aw = 0wy, = Av—2VL-Vo+ (VI = Al)o. (3.9)
\ Jj=1
Thus, from (3.7) and (3.9) we obtain
62 [wtt — AU)]Q = {[vtt — 2€t'Ut + (61:2 — gtt)v]
—[Av =2V - Vv + (|VL]? — Al)v]}? (3.9a)
= L+ L+ 5 (3.9b)
Here we have set (after adding and subtracting 9v)
]1 = Vtt — AU + AU, ]2 = —2€t’Ut + QVE . VU, ]3 = ¢U, (310)
where A is defined by (3.5). From (3.9b), we obtain
92[wtt—Aw]2 2 2([1]2+Ig[3—|—]1]3). (3].].)
Step 2. With reference to (3.10), we shall prove in this Step 2 that
oL I, = % {—20,[v} + |Vv|* + Av®]| + 40, VL - Vv }
-2 i i {QUI.VE -V — Ly |V|? = 2000, 4 £y 07 — AEI,UQ}
]:1 8$] J J J J J
— 8u VL - VU + 2(AL + L)V} + 4 Llaya Ve Vs,
i,J
— 2(AL — 4| V> — 2 zn: i(Aéz,) — E(Aét) V2. (3.12)
= 8$j ! ot
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Proof of (3.12). From the definitions of I, I5 in (3.10), we obtain after using 2v,v,; =
D (v2), 2uv; = Z(v?), and 20Vv = V(v?):

ot ot
2[1[2 = 2(Utt — Av + A'U)(—2€t'l)t + 2V/L - V'U)

_ 9 5 9 5
= —QKtE(’Ut)—ZAgta(U

)+ 2AV( -V (v?)
+ 4v, VIl - Vv + 4Avvl, — 4AvV L - V. (3.13)
But, with reference to the last three terms in (3.13), we have by direct computations:

4oyVl-Vov = 4%(vtV€ - V) — 4Vl - Vo — 4, VL - Vuy

(3.14a)
= 42 %(émjvmjvt) — 4, V¥, - Vv —2V/ - V(vf); (3.14b)
=1
"9
4AU’Ut£t =4 Z aT(Utgt’Uzj) th (lV’U| ) 4vtV€t . VU, (315)
; J
—4AvVEl- Vv = —4 Z Va0, la, Ve, = —4 Z 8:16 (V2 42, Vs,)
i,j=1 i,7=1
+4Z£“va v$]+2z ewl -(v2). (3.16)
1,j=1 i,j=1

Next, we substitute (3.14), (3.15) and (3.16) into (3.13), thus obtaining, after a re-
arrangement of terms

0 0

2]1]2 = —261«,&(@?) —2A€ta ( )+48 (UtVE VU) 2€t (|VU| )

ot

n 8 ) n 8 )
+ 2A;€Ij8%(v )—2;@@%(%)

= i,j=1 i,j=1

— A0Vl Vo = 40,V - VU + 4 Ly 05,0, (3.17)

2,j=1
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Next, regarding the first four-term group in (3.17) (with 2), we can rewrite as follows:

0 8

0

oy — (0, VL Vo) — %t (|VU|)

- % {=20,(v} + Av* + |Vo[*) + 40,V - Vo } + 2007 + ZUQ%(A&) + 20| V|2
(3.18)

Similarly, regarding the second five-term group in (3.17) (with a%j), we can rewrite as
follows:

2AZ£% o (v?) — 2;&@_@(%)

n 42 5, (0ibyvy,) — 4 Z o, (Vs Ua;) + 2 Z lo; 5 &U 2

i,j=1 i,j=1

Z 5 {2A€mj1)2 — 2&%, vf + 4vt€tvmj — 4y, Z Uy Vg, + Q&gj Z vi}
Lj i=1 i1

- 2i {&i (Aém])] v? 42 (Z e) v? —2 (il ewj> Vol (3.19)

j=1
Substituting (3.18) and (3.19) into (3.17) yields (3.12), as desired.

Step 3. With reference to (3.10) we shall prove in this Step 3 that

9
LI, = a[?z/wvt—z/}tv%[wtt+2A¢]v2—2wvf

n 8 )
—2 Z 8—%(1/%@) + 20V - Vo + 20| V| (3.20)

v

%[21/”)% — ] + {lptt +2A¢ — %|V¢|2} v’

— 2Uwf + 29 — €]|[Vo]* — 2 Z %(gﬁvzjv), (3.21)
j=1 =7

where, in (3.21), € > 0 is arbitrary.
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Proof of (3.20), (3.21). From the definition of I; and I3 in (3.10), we obtain
211 I3 = 2(vy — Av + Av)pv = 20wy — 200 Avv + 2A0*, (3.22)

where

2pvvy = 2 %(wvvt) — 2y — 247 (3.23)
—2¢YvAv = =2 Z YUV, 2,
=1

B "0 2
= -2 Z P, (Yvvg;) +20Vep - Vv + 29|V~ (3.24)

Finally, to obtain (3.20), we insert (3.23) and (3.24) into (3.22) and use —2ivv, =
— %(wtzﬂ) + ¢yv®. Then, the estimate 20V - Vo > —¢|Vu|? — %|V¢|2v2, for € > 0,
used in the penultimate term in (3.20) yields (3.21).

Step 4. With reference to (3.10), we shall prove in this Step 4 that

Wly = —=[—203pv?] +Z 21/;5%11
W Z o (1pla,) | V°. (3.25)

Proof of (3.25). From the definition of I and I3 in (3.10), we obtain

2015 = 2[—20v, + 2V - Voo = —2&1/}%(1}2) + 20V -V (v?), (3.26)
where
0 0 o)
—2€t¢a(v2) = 8t( 20pv?) + { &(2&@&)} v? (3.27)
V-V = 23wl aéj)
=1 !
= 2ii(zpe v2)—2i {i(zpz )] v? (3.28)
- j=1 O; " j=1 Oz . '
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Substituting (3.27) and (3.28) into (3.26) yields (3.25), as desired.

Step 5. With reference to (3.11), in this Step 5 we prove that

0*[wy; — Aw]? > %{ — 20,(v? 4 |V|?) + 40, VL - Vo + 2¢ww — 20,(A + )v* — @Z)tUQ}

-2 Z i[QvaVE -Vov — 61j|Vv|2 — 201050y + E@jvf + Y v — (A + 1/1)5%-@2]
) 8$j

— 80Vl - Vo + 2(AL + by — )v}

+ 2 (1/1 — % — AL+ ett) |Vv|? +4 i Caias; Vi Vg

i,j=1

+ {2141/1 —2 [Z a%((A +)ly;) — %((A + 1/;)@)] - %|V¢|2 + wn} v?. (3.29)

j=1 """

Proof of (3.29). We return to (3.11), where we use (3.12) for 21,15, (3.21) for 2115,
and (3.25) for 2I,1;. Combining all ‘Z2-terms,” all ‘%—terms,’ all |[Vv|?*-terms and all
v’-terms, we arrive at (3.29), as desired.

Step 6. Henceforth, we specialize (3.29) with

v = 0w, 0 = e’ hence v; = Olw; + Lw];
(3.30)
VUp; = Olwg, + Lo w]; [Vo[? = 607377 [ws, + Lo w]?.
Then, the terms under £ in (3.29) become via (3.30):
9] 2 2 - _ 2 2
g 20 (v; + |[Vv|?) + 4v, Zﬁmjvmj + 2¢vv — 20, (A + YP)v® — P
j=1
0
= g{m [ — 20 (w? + |Vw|?) + 4w,V - Vw + 2(2|VE? — 202 + p)ww
(26,2 — 263 — 240, — wt)wQ] } (3.31)
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Proof of (3.31). Using (3.30) in the terms under £ in (3.29) we obtain

0
8t{ 20,(v? + |Vo]?) —|—4Z€ Vg,V + 20000 — 20(A + )0 + o }

7j=1

_ ;{92[_2zt((wt+€tw +]le%”za“’))

+ 4> Loy (wa; + Loyw) (wy + Liw)

=1

+ 20 (Lyw + wy)w — 26(A + P)w* — z/thQ} } (3.32)
_ 9 0| — 20;(w}? + |Vw|?) +4Z€ Wy W
825 t t = z; Wr; Wt

2(=202 + 2|VL* 4+ )wow + (—2AL, — 263 + 24,|VL)? — zpt)wﬂ } (3.33)

after two cancellations: of 2¢f,w? and of 4/, > i Ezjwzjw, and (3.31) is proved.

Step 7. Under the specialization v = 6w as in (3.30), we have that the block of
‘divergence terms’ in (3.29) (modulo the coefficient -2) becomes

Z 8?: [2v,, VL - Vv — L, |Vv| — 20405, + Ly vt + Yz, v — (A + w)EIjUQ]
J

_ 9 [, 2
- Z&UJ{Q [me V- Nw — Ly |Vw|” = 2w, wt+€z]wt

2(|W|2 - %)wzjw 0, (VL2 — 2 - A)wz] } (3.34)

Proof of (3.34). Using (3.30) for v,; and v,,, we preliminarily compute

20, V- Vv = 2%]2%,%7: Oz, w + wy, Zﬁrﬁﬁm,w—i—wzj

i=1
= 20°({y,w + wy,)(|VI*w + V- V). (3.35)
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Next, we use (3.35), as well as the expressions in (3.30) for |Vv|, v,;, v;, and v, into
the left side of (3.34) to rewrite it as

Z %[QU%VE -Vov — ﬁmj|vv|2 _ 26,51)%1),5 + gmjv? + g, v — (A+ 1/1)51;].?)2]
=1 9%

= 3 (26 0t ) (VP + VL V)
83?]' ! !

j=1

n

— Le) 0> (low + wy,)® — 260(Cayw + Wy, )O(Cew + wy)

i=1

+ L, 0% (bw + wy)? + YO(Lyy;w + wy, ) 0w — (A + )b, 0% (3.36)

S i{e? {2|wmjw2 20, V(- Vuw
&vj

j=1
+ 2|Vl Pw,,w + 2V - Vww,, — by, (|VEPw? + |Vwl* + 2wVE - Vw)

— %fﬁmng - %tﬁzjwwt - %fwwmj — %twtwmj

+ EIJE?wQ + Ly, w? + 2040, wwy + w&ij + Yw,,w — (A + z/J)EijQ} } (3.37)

After a cancellation of 20, V/{ - Vww, 2((, ww;, and wémij, then (3.37) becomes (3.34)
as desired.

Step 8. We finally insert (3.31) and (3.34) in the right side of (3.29), recall the
definition of M, V', and B in (3.3), (3.4), and (3.6), respectively, and finally arrive at

92(wtt — AQU)Q — 88—]\5 + div V

2 —8vtV€t -Vov + Q(AE + Ett - ¢)Uf

+2 <¢ — g — A0+ Ett> |Vol* +4 Z ooV, Vr; + Bv?, (3.38)
ij=1
which is precisely the sought-after Eqn. (3.2). The proof of Lemma 3.1 is complete. O
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Remark 3.1. The above proof has been recently extended (December 1999) to the
case where the coefficients of the principal part are variable in space [L-T-Y-Z.1], by using
Bochner’s techniques in Riemann geometry, in the style of [L-T-Y.1-3], [Y.1]. Extension
of the present paper to that variable coefficient case is in progress. ]

4 A basic pointwise inequality
We now make suitable choices in the functions ¢(¢,z) and ¥ (z) involved in Lemma 3.1.
Theorem 4.1. Let
w(t,z) € C*(R; x RY); d(z) € C*(R?), a(z) € C'(R?) (4.1)

be three given functions [at this stage, w and d need not be the solution of Eqn. (1.1.1a),
and the function provided by assumptions (A.1) and (A.2), respectively]. If 7 > 0 is a
parameter, we introduce the functions

ansz[a@—c<p-§>]sza@; (4.2)

Y(z) = Ta(x); O(t,z) = e"b®) = rolba), (4.3)

where ¢(t, x) is defined consistently with (1.1.8a), with a constant 0 < ¢ < 1 selected as in
(1.1.8d). Then, with the above choices, Lemma 3.1 specializes as follows: setting h = Vd:

loy = Tdyy;  |VO? =T|VA? = T2 |h% Ly, = Tdyay; AL =TAL; (4.4)

T
gt = —2c1 (t — E) ) gtt = —207'; ﬁmj = 0, 'lpt = O, |V'lp| = 7'|Voz|, (45)
so that the pointwise estimate (3.2) becomes
M
0% (wy — Aw)? — aﬁ_t +divV > 27[Ad —2c— ajv?

vorfla- £ —Ad- 20} |Vl
! 2T

+ 6> Buw?, (4.6)

n
+ 471 E A2, V2, Uz,

Li,j=1

where M and V' = [V, ..., V,] are given by (3.3) and (3.4b) respectively, as functions of w,
as specialized via (4.4); while for A and B, we now obtain from (3.5), (3.6), via (4.3)—(4.5):

2
A = 7? [402 <t - g) —|Vd|*| +7[2c+ Ad — o] (4.7)
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. T\ 2
B = 27° {[20—1— Ad — o]|Vd|* + 2H4Vd - Vd — (6¢ + Ad — a)4c? (t - E) } + O(T%).

(4.8)

Notice that it is the coefficient { } of the principal part of B that justifies our interest
in property (ps) = (1.1.15b).

Proof. The proof is a direct computation starting from Lemma 3.1 and using the
choice of functions made in (4.2), (4.3). First, A in (3.5) becomes at once the expression
(4.7) via (4.3)-(4.5). We then verify (4.8) for B. By recalling ¢(z) = 7a(z) in (4.3), we
obtain from (4.7), via (4.4)—(4.5):

2
2A4¢ = 27 [402 (t — g) — |Vd|*| + O(1?); (4.9)

dy, + T2 [Ad + 2¢]d, (4.10)

3

2
(A+ ), = 7° [48 (t— g) — |Vd|?

2
%[(A—i— V)] = 73 {[402 (t — g) — |Vd|? Apjo; — (aixj |Vd|2) dzj} + O(T%);
(4.11)
= 8 3 2 T ? 2 2 2
—[(A+ )] = 7 {[4c (t— 5) ~ |VdP| Ad - V(Vd] )~Vd}+(9(7 );
j=1
(4.12)
2
(A+y); = 72 [402 <t - g) — |Vd|* | 4 + 7(Ad + 2¢)4; (4.13)
0 T\?
E[(A—i—zp)ét] = 2c7? ||Vd|? — 1262 <t— 5) +O(72). (4.14)

Finally, one either verifies (or recalls from say [L-T.2]) the following identity, where
h =Vd, and J;, = Hgy are defined in (1.1.5):

1
V(VdP) - Vd =V (h-Vd)-Vd = J,Vd-Vd + 7 Vd-V(VdP), (4.15)

hence
V(|Vd|*) - Vd = 2H,Vd - Vd = 2J,h - h. (4.16)
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Finally, first inserting (4.16) into (4.12), and next inserting the resulting (4.12) along
with (4.9), (4.14), and (4.5) for ¢ in the definition (3.6) of B, we readily obtain (4.8) for
B, as desired. O

The pointwise estimate of interest in Corollary 4.2 below is then obtained for functions
d(z) € C*R}), afx) € CHRY), such that the following three estimates hold true, for
suitable positive constants p > 0, 3 > 0:

(H.1) )
Ad—2c—a>p>0; Vel (4.17)
(H.2)
[ 2dp,0, +7  2dgya, e 2dz,z, |
2d0z, 20z +y - 2dy0z,
>pl, Vz €Q, (4.18)
| 2dy, 0 2dy, 2, coe 2y Y|
where we have set v(z) = a(z) — Ad(z) — 2¢;
(HL3)
T\* _ -
[2¢ + Ad — a]|Vd|* + 2H4Vd - Vd — (6¢ + Ad — a)4c® <t - 5) > (>0

V(t,z) € Q* (%), (4.19)

where Q*(0*) is the subset of [0,7] x Q defined in (1.1.16). But, as we have seen in
Section 1, these three inequalities hold true, in particular, in the case of our interest where
assumptions (A.1) and (A.2) hold true. Then (A.1) provides a strictly convex (positive
potential) function d(x), and we then choose a(z) = Ad(z) —2c— 1+ k as in (1.1.11), to
obtain (when d(z) is, possibly, suitably rescaled, see Section 1.2) properties (p.1), (p.2),
(p.3) listed in (1.1.12), (1.1.14), (1.1.15b), which then verify inequalities (4.17)—(4.19),
respectively. We thus obtain from (4.6):

Corollary 4.2. With 0 < ¢ < 1 chosen in (1.1.8d), let d(z) € C3*(R?), and a(z) €
C'(R?) be two functions such that inequalities (H.1) = (4.17), (H.2) = (4.18), (H.3)
= (4.19) hold true. This is the case, in particular, if d(z) is a (suitably rescaled, see
Section 1.2) strictly convex function provided by assumptions (A.1) and (A.2), and then
a(z) = Ad(z) —2c—1+k, as in (1.1.11) with k subject to (1.1.14b). Let w € C*(R; x R7).
Then, with such choices in (4.2), (4.3) for ¢(t,x) and ¥(z), respectively, Theorem 4.1,
Eqn. (4.6), specializes to

M _ _
0% (wy — Aw)?* — 88—t +div V > 27p[v? + Vo)l + B, 0<t<T, 2€Q, (4.20)
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where, with the constant § > 0, we have via (4.8), (4.19):
Bv? > 2733 + O(T2)|0?, Y(t,z) € Q*(c¥). (4.21)

Moreover, the scalar function M and the vector function V' are given by (3.3) and (3.4), re-
spectively, as functions of w, as specialized via (4.4). In particular, for future use below, we
note that (3.4) yields on the boundary I' = 992, with outward unit normal v = [v1, ..., 1),
the following identity where V{ = 7Vd = Th:

onl': V.v = ZVjuj
j=1

= 292{(10? — V)V v — 2060, Vw - v+ 2(VE-Vw)Vw - v

+2 (|W|2 . r%> wVw - v+ (V2 — 2 — A)w?Vi - y}(4.22)

Moreover, via (4.5) for ¢; and (4.7) for A, we have:

+7(a—Ad—2c¢). O (4.23)

2
(Ve — 2 — A) = 272 [|h|2 — 4c? (t — g)

Notice that, through M in (3.3) and V' in (3.4), the left-hand side of (4.20) is expressed
in terms of w, while instead the right-hand side of (4.20) is still expressed in terms of
v = fw, see (3.30). We no remedy this, and obtain a further corollary involving only w:
it is then this corollary which, of course, will be used in the sequel.

Corollary 4.3. With 0 < ¢ < 1 chosen in (1.1.8d), let d(z) € C3(R?), and a(z) €
C'(R™) be two functions such that inequalities (H.1) - (4.17), (H.2) - (4.18), (H.3) =
(4.19) hold true. This is the case, in particular, if d(z) is any strictly convex function
(suitably rescaled, see Section 1.2) provided by assumptions (A.1) and (A.2), and then
a(z) = Ad(z) —2c—1+k as in (1.1.11), with &k subject to (1.1.14b). Let w € C*(R; x R?).

Then, with such choices in (4.2), (4.3) for ¢(¢,z) and ¥ (z), respectively, Corollary 4.2
becomes: for any 1 > ¢ > 0, we obtain

M
0% (wy — Aw)? = oM +div V > erpf?[wi + |Vw|?] + 6° Buw?,

ot
0<t<T, x€q, (4.24)
where, recalling B from (4.8), we have
B = B—2epr (¢} +|Vo|?) > B — 2eprr; (4.25a)
{ ro= maxg(¢j +[Vel*). (4.25b)
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Thus, for € > 0 suitably small, the cosntant 3 = 3, = (ﬁ — epr) is positive, via (4.19), and
recalling (4.8), (4.19), (4.21), we obtain from (4.25):

Bw® > 273384+ O(m)|w?, vV (t,z) € Q*(c%); (4.26)
B=p0=(B—epr)>0;, B=0O() in Q= (0,T] x Q. (4.27)

Proof. With /; = 7¢; and {,, = T7¢,;, = 7d,, from (4.2), we specialize v; and v,; in
(3.30) and obtain from there that fw; = v; — 07¢,w; Ow,, = vy, — 07d,, w, hence

207 > 0%w; — 27%¢v?; 2|Vu|? > 02| Vuw|* — 272|Vd|*v*. (4.28)
Returning to the right-hand side of (4.20), we then obtain via (4.28), for any 1 > € > 0:
2rplv? + |Vo|?] + Bv? > e2rp[v? + | Vol + Bu? (4.29)

(by (4.28)) > erpf*[w? + |[Vw|?] + Bv® — 2er®p[¢? + |Vd|*|v?, (4.30)

and (4.30) yields (4.24) as desired, via (4.25), as well as (4.26) and (4.27), as described
below (4.25). O

5 Carleman estimates for smooth solutions of Eqn.
(1.1a). First version

The next key result yields a Carleman-type estimate.

Theorem 5.1. With 0 < ¢ < 1 chosen in (1.1.8d), let d(x) € C3(Q), a(z) € C'() be
two functions such that inequalities (H.1) = (4.17), (H.2) = (4.18), (H.3) = (4.19) hold true.
This is the case, in particular, if d(x) is a (suitably rescaled, see Section 1.2) strictly convex
function provided by assumptions(A.1) and (A.2), and then a(z) = Ad(z) — 2¢ — 1 + k,
as in (1.1.11), with k& subject to (1.1.14b). Let ¢(x,t) be the pseudo-convex function
defined by (1.1.8). Let w € C*(R; x R”) be a solution of Eqn. (1.1.1a) [and no B.C.],
under the standing assumptions (1.1.2) for F(w) and (1.1.3) for f. Then, the following
one parameter family of estimates hold true, with p > 0, § > 0, as in (4.17)—(4.19); or
(1.1.14a), (1.1.15b):

(i) for all 7 > 0 sufficiently large, and any 0 < € small:

BT|2+2/ / &7 f2dQ + Cyre” //
> (tep—2C7) /OT/QeQT‘i’[w?HVwF]dQ

+ [27%8 + O(7%) — 207] / 0w dr dt — cpm?e T [E(0) + E(T)], (5.1)
Q(o)
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where (o) is the subset of [0, 7] x Q2 = @ defined by (1.1.19), where we recall from (4.26)
that # depends on e:
(ii) for all 7 > 0 sufficiently large and any ¢ > 0 small,

T t1
BT|s +2 / / e*™ f2dQ > (tep — 2C7)e*™ / / [w? + |Vw|?]dQ dt
0 Q to Q

—Cy ™™ /OT E(t)dt — cre™*[E(0) + E(T)). (5.2)

Here 6 > 0, 0 > 0, and 0 > —§, are the constants in (1.1.9), (1.1.10), while Cr > 0
is a positive constant depending on 7', as well as d. Moreover, the boundary terms BTs,
Y. =[0,7] x I, are defined by

T T
BT|s z/ /dideth:/ /V~dedt, (5.3)
0 Q 0 T

via the divergence theorem, and are explicitly given via (4.22), (4.23), h = Vd and V{ =
TVd = 1h, £, in (4.5) and A in (4.7), and § = exp(7¢) in (4.3), by:

T
BT|s = 27/ /627¢(wf—|Vw|2)h~udet
0 T

T
+ 80’7'/ /627¢ t— Z wta—wdf‘dt
0 r 2 87/

T
+ 47/ /62T¢(h~Vw)a—dedt
0 T 8V

T 2

T
+ 472/ /627¢ |h|2 — 4c? (t - —) + il
o Jr 2 2T

T I T\ 2
+ 27/ / e’ | 272 <|h|2 — 4c? (t — 5) ) +7(a— Ad — 20)] w?h - vdl dt,
o Jr,

(5.4)

ow
—dl'dt
v ov

since h - v =0 on I'y by assumption (1.1.4). Moreover, as in (2.1.1), we have set
B(t) = / W2 (t, 7) + [Vt o) + w(t, £)|d0. (5.5)
Q

(iii) The above inequality (5.2) may be then extended to all w € H**(Q) = Lo(0,T; H*(£2))N
H?(0,T; Ly(9)). O
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Proof. (i) Step 1. With w € C*(R, x R”), we return to inequality (4.24) of Corollary
4.3, supplemented by estimate (4.26) for Bw?, and identity (4.22) for V - v. Invoking the
divergence theorem, we then obtain, with € > 0 fixed and small as in (4.27),

T T T
/ /HQ(wtt—Aw)Qdet— {/MdQ} +/ /V~udet
0 Q Q 0 0 r

> ETp/ /92 w? + |[Vwl|?] det+/ /QQBdeth (5.6)
Next, in view of estimate (4.26) for Bw? which holds true only on the subset Q*(c*) of Q
deﬁned by (1.1.16), split Q [0 T x Q = Q*(0*) U [Q*(c*)]¢ where [ ]¢ denotes the

complement in ). See Figure . Thus, we then obtain by (4.26):

T
/ / 0>Bw?dQdt = / 0% Bw?dx dt + / 0% Bw?dx dt
0o Jo Q* (o) [Q*(o™)]°

> [27°8+ O(T?)] / 0*w?dx dt + / 0> Bw?dx dt.(5.7)
Q* () [Q* (o))

Since the right side of (1.1a) is subject to estimate (1.2), we then obtain

/ / (wy — Aw)?dQ dt < 2Cr U /62wt+|Vw|2—|—w det]w/ /QQdeth

As to the term [ ]§ at the time endpoints, if we recall M from (3.3), as Well as
(4.2)-(4.5), and A from (4.7), we then obtain (73 comes from £3):

],

(by (1.1.9)) < eprie l/ﬂ[w? + |Vwl|? +w2]dﬂ}

T

< cpr? [/ e lwi + |[Vuwl® + wQ]dQ}
Q 0

T

0

(by (5.5)) < crmle ?T[E(0) 4+ E(T))], (5.9)

where in the last two steps we have recalled the critical property (1.1.9) for ¢ at ¢ = 0 and
t =T, as well as the definition of E(¢) in (5.5).

Next, via (4.22), (4.23), supplemented by (4.3)—(4.5), we obtain that the boundary
terms BTy, as defined by (5.3), are explicitly given by (5.4).

Finally, we use (5.7), as well as (5.9), and (5.4) on the left side of inequality (5.6), and
readily obtain for 7 sufficiently large:

T
BT|s + 2/ / e f2dQ — e*™ Bw?dx dt
0o Jo [@*(o™)]
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v

T
(eTp — QCT)/ /ezw[wt2 + | Vw|?]dQ
0 Ja

+ 278 + O(7%)] / e* 0w dx dt
Q*(0*)

— 2Cr /T/ e w?dQ — crme™*[E(0) + E(T))]. (5.10)
o Jo

Step 2. By (4.27), we have B = O(73) on [0,T] x . Moreover, we have that
¢ < ¢* < o*on [Q*(c*)]¢ by the very definition (1.1.16) and (1.1.18). Hence

—/ > Bw?dx dt = O(73)e*™ / wdz dt. (5.11)
[@*(o%)] [@*(a*)I°

Step 3. Recalling the subset Q(o) of [0, T]xQ = @ in (1.1.19), we split Q = [0, T]xQ =
Qo) U [Q(0)]¢, where [ ]¢ denotes complement in Q). Accordingly,

T
/ / 627¢w2dQ = 2" Pwdx dt + / e widz dt. (5.12)
0o Ja Q(0) [Q(a)l°

Moreover, since Q*(c*) D Q(0), see (1.1.20), we have via (5.12) for two right terms of
(5.10):

T
2728 + O(7?)] / e* 0w dr dt — ZC’T/ / e w?dQ
0 Jo

Q*(0*)

> 26+ O] /

2 Pwldx dt — 2Ct /
Q(o)

2™ Pwldx dt — QCT/ e Pwldx dt.
Qo)

Q(o))°
(5.13)

Finally, in the last integral term in (5.13), we use that ¢ < o in [Q(0)]¢, by the very
definition (1.1.19), so that

—QC’T/ 2™ 0w?dx dt > —2CT62”/ widx dt. (5.14)
[Q(o)]e [Q(0)]°
Using (5.14) in (5.13), we then conclude that

T
[27°3 + O(7?)] / " dx dt — 2CT/ / e wdQ
Q*(*) 0 JQ

> 2738+ O(?) — 207 /

2™ Pwldx dt — QC’TeQT”/ w?dz dt. (5.15)
Qo)

[Qo)]°
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Step 4. Using (5.11) and (5.15) in (5.10) yields

T
BT|s, + 2/ / ¥ £2dQ 4+ O(1%)e?™ / w?dx dt + 2C7e*™ / wdz dt
0 JQ [@*(a*)]¢ Qo))

T
> (eTp—2CT)/ /QeQT‘z’[th—l—WwF]dQ
0

+ [27°8 + O(7?) — 2C7] / X 0w dx dt — cpm®e?[E(0) + E(T)]. (5.16)
Q(o)

Finally, we use that, by construction, both [Q*(c*)]¢ and [Q(c)]¢ are subsets of [0, 7] x;

and that, moreover, by the selection process in (1.1.16) through (1.1.20), we have chosen
0 < 0* < 0. Hence, these two facts yield

(’)(7'3)62”*/ dexdt—|—2C’T62”/ wdx dt
[@*(a*)]° (o)l
) T
< (O™ +ZC’T62”]/ /deQ (5.17)
o Jo

T
< Cyre’™ / / w?dQ, (5.18)
0 Q

for all 7 sufficiently large. Inserting (5.18) into (5.16) yields (5.1), as desired.

(ii) We take 7 sufficiently large so that, since § > 0 by assumption, see (4.27), we then
have that the term [2738 + O(7%) — 2C7] is positive, and we then drop the corresponding
lower order interior term involving w? in (5.1). Moreover, we invoke the critical property
(1.1.10) for ¢ on the first integral term on the right side of (5.1). Finally we majorize
Jo w?(t)d2 by E(t), see (5.5). This way, (5.1) readily yields (5.2). O

Remark 5.1. The statement and the proof of Theorem 5.1 use—as a consequence of
assumptions (A.1) and (A.2)—that the principal part of the coefficient B acting on w?
is positive only on the set Q*(0*); see (4.21), (4.27), and, ultimately, estimate (1.1.15Db).
If, instead, through possibly further rescaling of d(z) [and consequent deterioration of the
minimal time 7§, see Section 1.2], we assume, as in (1.2.1), that the principal part of the
coefficient of By, hence of B, is positive on the entire cylinder [0, T] x €2, then the proof and
statement of Theorem 5.1 simplify. In particular: the term e*™° fOT fQ w?dQ is omitted in
(5.1); thus the term —e?™ fOT E(t)dt is omitted in (5.2). The subsequent proof in Section
6 simplifies accordingly. |
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6 Carleman estimate for smooth solutions of Eqn.
(1.1a). Second version

A preliminary equivalence. Let v € H'(Q2). Then the following inequality holds true:
there exist positive constants 0 < k; < ky < 0o, independent of u, such that

k:l/[u2+|Vu|2]dQ§ / |Vu|2dQ+/ W2dT < @/WHWPW, (6.1)
Q Q T Q

where Iy is any (fixed) portion of the boundary I' with positive measure. Inequality (6.1)
is obtained by combining the following two inequalities:

/quQ < {/ |Vu|2dQ+[ quF} ; [ w?dl < 02/[u2 + [Vul?]do. (6.2)
Q 0 I I o

The inequality on the left of (6.2) [ | replaces Poincaré’s inequality, while the inequality
on the right of (6.2) stems from (a conservative version of) trace theory. Thus, for w €
C*(R; x R?), in fact, in H*?(Q), if we introduce

E(t) = /Q (IVw(t)]? + w?(t))dQ + /F w?(t)dl;, (6.3)

with I'y = I"\ Iy, where I'y is defined by (1.4), and recall E(t) from (2.1.1) = (5.5), then
(6.1) yields the equivalence
aE(t) <E&(t) <bE(t), (6.4)
for some positive constant a > 0, b > 0.
We can now state the main result of the present section.

Theorem 6.1. With 0 < ¢ < 1 chosen in (1.1.8d), let d(z) € C3(Q), a(z) € CYHQ)
be two function such that inequalities (H.1) = (4.17), (H.2) = (4.18), (H.3) = (4.19)
hold true. This is the case, in particular, if d(x) is a (possibly, suitably rescaled, see
Section 1.2) strictly convex function provided by assumptions (A.1) and (A.2), and then
a(zr) = Ad(z) —2c — 1+ k as in (1.1.11), with k& subject to (1.1.14b). Let ¢(t,z) be
the pseudo-convex function defined by (1.7) and define (¢, z) = exp(7¢(t,x)) as in (4.3).
Finally, let w € H*2(Q) be a solution of Eqn. (1.1.1a) [and no B.C.], subject to the standing
assumptions (1.1.2) on F(w) and (1.1.3) on f. Then, the following one-parameter family
of estimates hold true, for all 7 sufficiently large, and any € > 0 small as in Corollary 4.3:

T T
BT|s + 2/ /eQT‘bedQ + const¢/ /deQ
o Jo o Ja

> { {g(m’p —207)(t; — tg)e 7T — —C;’Tb TeCTT] e?m — CT7'3€2T6} [E(0) + E(T)]
a

(6.5)

> ks[E(0) + E(T)], for a constant k, > 0, (6.6
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since o > —6, see (1.1.10). L
(a) Here, with h = Vd = V¢, the boundary terms BTy are given in terms of the
boundary terms BTy in (5.4) by

BT|s = BT|s

h T 6.7
+ consty // dE~|—/ / del“ldt+/ |wwt|d21} (6.7)
to JT1 0 JI,
(by (5.4)) = 27// 26 (w? — |Vw|2)h - v dT dt
+ 807'// e (t— Z) wta—wdrdt
ov
+ 47// 279 (b - Vw —dth
81/
+42//2“f’|h|2 4c2 (¢ T2+a
T ; Fe C 2 27_
T T 2
+ 27‘/ /627¢ [272 <|h|2 —402< — —>>
0 T 2

+7(a — Ad — 20)} w?h - vdY%
Trio
4+ const //
¢’{ 0 Jrld

T t1
d2+// ww,|dY +/ /deth}.
0 Jry o], to JTy ! (6.8a)

(b) Moreover, if in addition, w satisfies the pure Neumann B.C. 22|x = 0 in (1.1.1c),
so that Vw = Viaw (tangential gradient), then (6.8a) specializes (with o — Ad — 2¢ =
—4c— 1+ k by (1.1.13)) to

ow

T
BT|s = 27/ /62T¢(wt2—|vtanw|2)h-yd2
0 T

T T\ 2
+ 27/ /627‘Zs [27‘2 (|h|2 — 4c? (t - E) — (4c+1—-Kk)1| w’h-vd2
0o Jr
T t1
+ consty, [/ / |wwy|d¥4 —i—/ / deFldt} .
0 I to I

Proof. Step 1. We return to estimate (5.2) of Theorem 5.1(ii), add the term (rep —

(6.8b)
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e fr w?dl'1dt to both sides, recall (6.3) for £(¢) and obtain

BT|s + (Tep — 2C7)e*™ / / wdlydt + 2 / / ™ f2dQ

> (rep —2C7) 2”/ E(t)dt — Cy e /E(t)dt
0

— crre ?T[E(0) + E(T)). (6.9)

Step 2. In a standard way, multiplying Eqn. (1.1a) by w; and integrating over €
yields, after an application of the first Green’s identity

1 a 2 2 2
2&<@%HWMM+LwWQ

ow

87/ T Q

Notice that on both sides of (6.10) we have added the term ;gt r, w?dl' = fr wwdly.

Recalling £(t) in (6.3), we integrate (6.10) over (s,t) and obtain

E(t) = / {/ —wtdF + /1 wwtd].“l} dr + 2/:[F(w) + flwdQddr.  (6.11)

We apply Schwarz inequality on [F(w) + f]w, recall estimate (1.2) for F(w), invoke
the left side E(t) < 1 £(t) of equivalence (6.4), and obtain

w)gw@+mm+@/Emm (6.12)

E(s) < [Et)+N(D)]+Cr /tS(r)dr, (6.13)

(Cr includes the constant % of equivalence), where we have set

[ i [|2

Gronwall’s inequality applied on (6.12), (6.13) then yields for 0 < s <t < T,

T
0 I

E(t) < [E(s) + N(T)]e“r=2); £(s) < [E(t) + N(T)]eCr=9). (6.15)
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Set t = T and s = ¢ in the first (left) inequality of (6.15); and set s = 0 in the second
(right) inequality of (6.15), to obtain

E(T) < [E(t) + N(T)]eCrT;  £(0) < [E(t) + N(T)]eC. (6.16)

Summing up these two inequalites in (6.16) yields for 0 <t < T,

Et) > w e 1T — N(T) (6.17)
> g[E(T) + B(0)]e"%T — N(T), (6.18)

after recalling the left side of the equivalence in (6.4). Similarly, summing up the left
inequality of (6.15) for s = 0 and the right inequality of (6.15) for s = ¢ and ¢t = T', and
using the equivalence (6.4) yields for 0 <t < T,

B(f) < - [b(E (©) s @) | Npy| e, (6.19)
and hence, by (6.19),
T
—Cyre®™ / E(t)dt > —% Te“TTe?™ [E(0) + E(T)]
0
- % €CTT 27 N (T, (6.20)

Step 3. We insert (6.18) into the first integral on the right side of (6.9) and use (6.20)
and readily obtain (6.5), (6.7), by invoking (6.14) for N (7).

Finally, we recall the critical relation o > 0, 6 > 0, ¢ > —6 from (1.1.9), (1.1.10), so
that [ere?™® — 73¢727¢] is positive for all 7 large enough. Thus, (6.5) yields (6.6). O

7 A global uniqueness theorem with pure homoge-
neous Neumann B.C. on X

We consider the following over-determined problem with I'g in (1.1.4) and T'; =T"\ Ty:

Wit — AU) = F(U)) in (07T] X Q = Qu (71&)
ow =0 in (0, 7] xT'=5%; (7.1b)
ovls

wlg, = 0 in (0,7] x Ty = 3. (7.1c)
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As a corollary of Theorem 6.1, we then obtain the following global uniqueness theorem.

Theorem 7.1. Assume hypotheses (A.1) and (A.2): thus there exists a strictly convex
(possibly suitably rescaled, see Section 1.2) function d(x), which along with the choice
a(x) = Ad(z) —2c¢— 1+ k in (1.1.11) [where 0 < ¢ < 1 chosen in (1.1.8d) and k subject
to (1.1.14b)], satisfies properties (p1) = (1.1.12), (p2) = (1.1.14), (p3) = (1.1.15b), so that
inequalities (H.1) = (4.17), (H.2) = (4.18), (H.3) = (4.19) hold true. Moreover, with
h = Vd as usual, we have that h-v =0 on I'g. Let I'y = I'\ Ty as usual, and let T > T} in
problem (7.1), with T} the constant in the definition (1.1.8b) of the pseudo-convex function
é(x,t) in (1.1.8a). Let w € H**(Q) be a solution of problem (7.1a-b-c). Then, in fact,
w = 0 in @Q; indeed, in R; x €.

Proof. Theorem 6.1 applies under the present assumptions (A.1) and (A.2). Thus
estimate (6.6) holds true, where, because of the B.C. (7.1b), BT is given by (6.8b).
Moreover, we presently have two additional pieces of information: (i) h-v = 0 on Iy
by assumption (A.1), and (i) w|g, = 0 by (7.1c); hence wy|s, = |Vianwl|s, = 0, ¥ =
(0,7] x I'y, o uT'y =TI'. Thus, returning to (6.8b), we see that we now obtain

Wb =0, hence, by (6.6), = E(0) =0, or wy = w; =0,

since f =0 in (7.1). Then, as problem (7.1) is well-posed forward (and backward) in time
as a s.c. group (F being a bounded operator: {wy, w2} € HY(Q) x La(Q) — Lo(Q)), we
then obtain w = 0 in Q); in fact, in R; x §2. |

8 Extension of estimates to finite energy solutions

So far our estimates have been stated and proved only for C?(R; x R”)-solutions, hence
H??2(Q)-solutions (Theorem 5.1(ii)), of Eqn. (1.1.1a), with f € Ly(Q) as in (1.1.3). In this
section, we extend all our previous estimates to finite energy solutions of Eqn. (1.1.1a) in
the following class

ow (8.1)
Wi 5, € Ly(X) = La(0,T; Lo(T)).
In order to achieve this goal, it suffices to extend the validity of estimate (5.1) of Theorem
5.1(i) from H*?(Q)-solutions to finite energy solutions defined by the class in (8.1). Here,
the main difficulty is the fact that finite energy solutions subject to Neumann B.C. do
not produce (in dimension > 2) H!-traces on the boundary [L-T.5]. To overcome this
difficulty, we shall invoke a regularizing procedure inspired from [La-Ta.1].
To this end, we shall make use of the following result.

Lemma 8.1. Let w be a solution of Eqn. (1.1a) in the class (8.1), with f € Ly(Q) as
in (1.1.3). Then, in fact,
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(i)
{w,w,} € C([0,T); HY(Q) x Ly()); (8.2)

(ii) there is a constant Cr > 0, such that

T T 2
/ /Ivmwﬁdrdtsc}{/ /[(a—w> T
o Jr o Jr v

E(0) = [I{w(0, - ),we(0, ) }HIin@yxra@)- (8.4)

dx + E(O)} , (8.3)

where

Proof. (i) To Eqn. (1.1.1a) with f = 0, we associate the B.C.

ow

ov

derived from (8.1b). Then, as is well-known [Las.1], [L-T.6, Chapter 7|, for problem
(1.1.1a) with f =0 and (8.5), the following regularity property holds true:

+w =g € La(X), (8.5)

the map : f =0, g — {w,w;} is continuous :
Ly(X) — C([0,T); H'(Q) x Ly(Q)). (8.6)

(This is so, because the presence of the boundary damping term w; in the B.C. (8.5),
which increases, when dim € > 2, the interior regularity of {w,w;} to H*(Q) x Ly(),
over the case when such w; is absent. [By (1.1.2), F' facts as a bounded linear operator
{wy,we} € HY(Q) x La() — La(Q)]. On the other hand, for Eqn. (1.1.1a) with g = 0 in
(8.5), we have:

the map: g =0, f € Ly(Q)
— {w,w;} € C([0,T); H'(Q) x Ly(2)) is continuous (8.7)

(as seen, e.g., by using the variation of parameter formula, based on the corresponding
s.c. contraction semigroup on H(Q) x Ly(€2), which describes the evolution of (1.1.1a)
and (8.5) with f =0, g =0). Thus, (8.6), (8.7) yield (8.2).

(ii) Conclusion (8.3) follows from the by now classical identity, e.g. [Tr.1], [L-T.2],
[Lio.1-2], obtained by the multiplier m - Vw, where m is a C?(2)-vector field such that
m=v on I, sothat m-v =1, on I'; i.e., by

ow 1 9
/E%m-deE—i-g/E{wt —

|V ianw]|? + <g—f) ] }m cvdS = O(E((0)).  (8.8)
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Since m = (m - v)v + (m - s)s, s being a unit tangent vector on I', then

) ) ) ow\ >
Vw-m=(m- y)a—l: + (m - 3)8_%:7 Vianl = 8_1;)87 |vtanw|2 _ <a_l;)) :

and (8.8) becomes with m - v =1,

/ gw 2d2—2/ gw) () .. d2+/ Ow 2+ 2| d¥ + O(E(0)), (8.9)
b 0s n » ov 0s mes b ov W ’ ’
and (8.3) follows from (8.9) via 2ab < ea® + 1b?, with a = 2% and b = 2%. O

Theorem 8.2. Let f € Ly(Q). Let w € H**(Q) be a solution of Eqn. (1.1.1a) for
which inequality (5.1) holds true, at least as guaranteed by Theorem 5.1(iii). Let u be a
solution of Eqn. (1.1.1a) in the class defined by (8.1): ie., u € HY(Q); 2%, u, € Ly(X).
Then, estimate (5.1) is satisfied by such solution u as well.

Proof. Step 1. Let u be a solution of Eqn. (1.1a) in the class (8.1), and define
accordingly the boundary function g = % +u € Ly(X) as in (8.5) and the interior
function f = Fu+ f € Ly(Q). Let ug € H'(Q) and uy € Ly(€) be the initial conditions
for such solution u. Given these data, there exist sequences { "}, {g" 1220, {uf}>>,,
{uf}e,, such that

e HYMQ), and f*— f= Fu+ fin Ly(Q); (8.10)
g" € H"'(X), and ¢" —g= % +uy in Lo(X); (8.11)
upy € H*(Q), and uj — up in H'(Q); (8.12)
ul € H'(Q), and u} — u; in Ly(9), (8.13)
subject to the Compatibility Relation (C.R.): %Lf +uf =¢"(0) on I'.

Next, we consider the problem corresponding to these smooth data

( 2 .
wiy = Aw™ + f* in Q; (8.14a)
w™(0, - ) =ug; wi(0, - ) =wy in (8.14b)
ow +wy; = g" in X, (8.14c)
\ 8y
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Step 2. It follows a-fortiori from the given regularity of the data in (8.10)—(8.13)
(left), that problem (8.14) admits the following regularity:

{w™ w,wi} € C([0,T); H*(Q) x H(Q) x Ly(Q)). (8.15)
Indeed, g" € H"'(X) and f” € H"(Q) imply a-fortiori [L-M.1, p. 19] that
g" € H'(0,T; Lo(T)) NC([0, T); H2(T)), f* € H'(0,T; Lo()) N C([0,T; H2(€2)). (8.16)

It will suffice to let uff = 0; u} = 0. Then, the problem

(W) — Awp = 1 € Ly(0,T; Ly(R)); (8.17a)
ag‘:")ﬂwp)t = gP € Ly(0,T; Ly(T)), (8.17D)

obtained from differentiating (8.14a,c) in ¢ yields the regularity stated in (8.15) for {w}, w};},
by simply invoking for problem (8.17) the regularity maps (8.6), (8.7), mutatis mutan-
dis. This preliminary regularity of {w! wi} € C([0,T]; H(Q) x L2(Q2)), hence w} €
C([0,T); H b (T)) by trace theory, is then used in (8.14) for the resulting elliptic problem at
each ¢. Elliptic regularity [L-M.1, p. 188] with f*, ¢” as in (8.16) (right yields w” € H?(()
at each t, as desired. Thus, (8.15) is established.

Step 3. Next, multiplying problem (8.14a) by w}’ and integrating by parts yields

[+ 1varoriaa s [ [ g

t t
= /[|u’f|2+|Vug|2]dQ+/ /g”w?df‘dr—i—/ /f”wfder. (8.18)
Q 0 Jr 0 Ja

This, combined with estimate (8.3) then yields

t t ouw™\ 2
//[|w?(t)|2+|Vw”(t)|2]d§2dr—|—//( > dr dr
0 Ja o Jr\ v
t t
+ / /|Vtanw”|2dl“dr+/ /|w?|2drdr
0 r 0 r

T T
< OT{||{ug,u?}||%p(w2(m+ / / 972 + / / If”IZdQ},OStST.
(8.19)
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In fact, integrating (8.18) over fg’ and majorizing its right-hand side yields

(1— %) /Ot/g(wf)dﬁdr—l—/Ot/Q|Vw”|2der—l— (1— %) /Ot/r(wf)dl“dr

I |
< T{Iwb et e + 5 [ [P g [ ] dnraa). s

Next, adding to both sides of (8.20) the quantity

t t 8wn 2
//thanw”|2dFdr+/ /( ) dr dr,
o Jr o Jr \ Ov

and using first inequality (8.3), next (8.5) for 22~ and finally the bound (8.20) for

ov

I3 [o(wp)2dD dr, yields readily (8.19), as desired.

Step 4. The above estimate (8.19), when applied to Cauchy sequences, allows one to
pass to the limit and obtain the following convergence relations at the interior and at the
boundary

w" — w* in H'(Q). (8.21a)
ow™  ow* . ow™  ow* . " ..
50~ 5y B Ly(%); 95 o5 ™ Ly(X); wp — w; in Ly(X). (8.21Db)

From (8.10)—(8.13) and (8.21), passing to the limit on problem (8.14), we obtain that the
limit w* obtained above in (8.21a) satisfies

wy = Aw* + F(u) + f on @ (8.22a)
w*(ov ' ) = Uo, w:(ov ' ) =u; In Q’ (822b)
ov

Comparing problem (8.22) with the problem satisfied by w, by its very definition

uy = Au+ F(u) + f in Q; (8.23a)
w(0, - ) =wup, w(0, - ) =wuy; in (8.23b)
@ + Uy = g iIl E, (8230)
ov
we see that the difference w = w* — w satisfies
o
W = At in Q; (0, - ) =0, @0, - ) =0 in O 8—7“5 i, =0in 3, (8.24)
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and hence
w=w"—u=0in Q. (8.25)

Step 5. Since the solution w™ of problem (8.14) is in H*2?(Q), by Step 1, then w"
satisfies estimate (5.1) of Theorem 5.1(ii) with f there replaced by f = Fu + f now. By
the limit properties (8.21), we obtain that the limit w* = u satisfies estimate (5.1), with
f there replaced by f = Fu + f now. Finally, recalling estimate (1.1.2) for F, we obtain
that estimate (5.1) holds true for the postulated finite energy solution u in the class (8.1)
as well. The proof of Theorem 8.2 is complete. ]

Remark 8.1. As a consequence of Theorem 8.2, estimate (5.2) of Theorem 5.1(ii)
and all subsequent estimates through Section 7 can be extended from H*?(Q)-solutions of
Eqn. (1.1.1a) to finite energy solutions the class (8.1).

9 Continuous observability without geometrical con-
ditions on I'y. Non-explicit constant

Key to the elimination of geometrical conditions on the (controlled or observed) portion
I’y of the boundary T', is the following result from [L-T.3, Section 7.2].

Lemma 9.1. Let w be a solution of Eqn. (1.1.1a) in the class (8.1). Given ¢ > 0,
€0 > 0 arbitrary, given T' > 0 there exists a constant C,, 7 > 0 such that

T—e
/ /thanw|2dE
€ r
T ow\ 9
< -
~ Ce,eg,T{A /1; [(ay) +wt

2 2
ax + ||w||L2(07T;H%+CO(Q)) + ||f||H_%+EO(Q)} .0

(9.1)

Using Lemma 9.1, we shall establish the sought-after continuous observability inequal-
ity.

Remark 9.1. We remark that estimate (9.1) is much sharper than (8.3) in that—
unlike (8.3)—it is given in terms of a lower-order term, below energy level, while (8.3)
contains an energy term E(0). The argument needed to prove (9.1) is much more subtle
than the argument for (8.3). The ‘loss’ of € in the time interval in (9.1) is not critical, as
seen in the proof of Theorem 9.2.
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Theorem 9.2. Assume hypotheses (A.1) and (A.2). Let w € H"'(Q) be a solution of
problem (1.1.1a-b-¢) with f = 0. Then, the following continuous observability inequality
holds true for 7" > T, with T given by (1.1.8b): there exists a constant C'r > 0 such that

/OT /F [w? +wi]d2, > CrE(0). (9.2)

Proof. Step 1. Lemma 9.3. Under hypotheses (A.1) and (A.2), we first establish
the weaker conclusion

/ /1“ w? + wi)dE + ||w||L Omsirh 0 () > CrE(0), (9.3)
1

which is the desired inequality (9.2) polluted by the interior Lo.t ||w]].

Proof of (9.3). To this end, we invoke Theorem 6.1—which holds true under the
present assumptions (A.1) and (A 2), also for H"'(Q)-solutions of class (8.1), by virtue
of the extension Theorem 8.2 and consequent Remark 8.1. We then apply estimate (6.6),
except on the interval [e,T — €], rather than on [0,7] as in (6.6). Thus, we obtain since

f=o L
BT|[57T,5]><F Z k¢E(€), (94)

where BT | 7_qxr is the counterpart of (6.8b) since $2|s; = 0 by (1.1c), with the additional
information that h-v =0 on I'y by (A.1); i.e., with ¥{ = (¢,7 — €) x I'y:

T—e
BT |je;r—qxr = 27’/ / e (w? — |Vianw|?)h - vd%,
€ Fl

T—e T 2
+ 27/ /ew [272 <|h|2—4c2 (t— 5) — (de+1— k)| wh - vdZS
€ I
T—e¢ 31
+ consty [/ |ww,|dXg +/ / defldt} . (9.5)
€ I IN]

Next, by the right side of equivalences (6.4) and (6.18), we obtain

Ele) > @ > % E(0)e 7T — / / lww,|dYs, (9.6)
recalling N(T') in (6.14) via (1.1.1c). We use (9.6) in Finally, we invoke estimate
(9.1) of Lemma 9.1 on the first integral term of (9.5) and recall that 24|y, = 0 by (1.1.1c).
This way, we readily obtain (9.3). O

Step 2. To eliminate the interior l.o.t. in estimate (9.3), we apply the by now standard
compactness/uniqueness argument [Lit.1], [L-T.2], [Lio.1-2]. To this end, we need to
invoke the global uniqueness Theorem 7.1, which has been extended to H"'(Q)-solutions
by virtue of Theorem 8.2 and consequence Remark 8.1. ]
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10 Replacement of assumption (A.2) = (1.1.6) by
virtue of two vector fields

Orientation. As the examples in Appendix A persuasively illustrate, assumption (A.2)
= (1.1.6) introduces undesirable limitations, when enforced along with assumption (A.1)
Accordingly, the purpose of this section is to replace this assumption suitably. This will
be done by using the following strategy. First, from the given domain ) € R", we extract
two overlapping subdomains €2; and €29, to which we can apply, separately, the setting
of Section 1 (including the counterpart version of assumption (A.2) = (1.1.6)), in corre-
spondence to two postulated strictly convex functions dy(x) and dy(z). This leads to the
estimate of Corollary 4.3—FEqns. (4.24), (4.26)—to each subproblem on €2;: see estimates
(10.2.16), (10.2.17) below of Proposition 10.2.1. Next, it is then a delicate matter to com-
bine these estimates (10.2.16) for each separate subproblem to finally obtain the desired
global estimate (10.5.1), hence (10.6.3), for the original problem, this time, however, hav-
ing dispensed with assumption (A.2) = (1.1.6) on all of Q. This latter step requires the
introduction of a suitable cut-off function x,(¢,z) [in (10.2.10) below| for each subproblem
on ;. In particular, each y,(t,z) is space-independent on a small layer of the boundary
I' = 092, so that the cut-off solutions w; corresponding to each subdomain €2;, i = 1, 2, and
the original solution w have same traces on I', see (10.2.14) below, except for a multiplica-
tive time-dependent function. In short: we replace assumptions (A.1), (A.2) in (1.1.4),
(1.1.5), (1.1.6) of Section 1 with assumptions (A.1i), (A.2i) in (10.1.2), (10.1.3), (10.1.4)
below. The latter are weaker than the former in many cases, e.g., when the unobserved
boundary Iy is flat: see Appendix. The advantages of removing assumption (A.2) = (1.1.6)
on all of €2 are multiple. This is illustrated in the Appendix.

10.1 Basic setting using two conservative vector fields of the
same class as in Section 1. Statement of main result. Con-
tinuous observability. Global uniqueness

Postulated setting. We divide the original €2 into two overlapping subdomains {2; and

QQZ
Q=0 UQy, Q1 N Qs = non-empty, (10.1.1)

chosen (in infinitely many ways) as to fulfill the following conditions (following Section 1):
there exist two strictly convex functions d; : Q — R of class C®, i = 1, 2, such that for the

corresponding (conservative) vector fields h;(z) = [hia (), ..., hin(x)] = Vdi(x), x €
), the following three properties hold true for ¢ = 1,2:
(A.1i) (a)
ad;
o = de V= hz -v=20 on Po, hz = de, (1012)

(b) the Hessian matrix H,, of d;(z) [i.e., the Jacobian matrix J,, of h;(x)] is strictly
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positive definite on €;: there exists a constant py > 0, such that for all x € €;, we have

[ 8hi;l 8hi;1 7]
di;zlm1; Tty di;zlrn 83;1 s axn
Ha (@) = Ju(x) = | =] b 2l i=1,2
di;znzl, Tty dlzz'nr'n 8hz,n L (9hm
L Oz’ " Oz,

(10.1.3)
Indeed, after rescaling if necessary (Section 1.2), we may and shall require that py > 2;
(A.21)
i ; =i ; > , = . 1.
mlélsg |hi(z)] Ilélé |Vdi(x)] >p>0, i=1,2 (10.1.4)

The validity of the above setting, comprising hypotheses (A.1i), (A.2i), for large classes
of triples {2, T'y,T'1} is established in Theorem C.1 of Appendix C. This culminates the
analysis in the appendices, carried our by virtue of several different approaches, aimed at
verifying the required geometrical assumptions of the setting of Section 1, as well as of the
setting of the present Section 10.

Pseudo-convex functions. Let d;(z) : @ — R be the C3-functions provided by
the above setting, ¢ = 1,2, and satisfying assumptions (A.1li) and (A.2i). Without
loss of generality, we shall require—after, possibly, translation as in Section 1—that:
ming, d;(z) = m > 0. We then define

Ty; =4maxdi(z), =12 (10.1.5)

CEEQ,‘,

We next define the pseudo-convex functions

2
¢i(z,t) = di(x) — ¢ <t - g) , x€eQ, 0<t<T, (10.1.6a)

where T > T ;, ¢ = 1,2, and the constant 0 < ¢ < 1 is selected as follows. If T > Tp,
there exists a constant 6 > 0 such that [as in (1.1.8¢)]

T? > dmaxd;(x) +46, i=1,2. (10.1.6b)

zeQ;

For such 6 > 0, there exists ¢, 0 < ¢ < 1, such that

cT? > 4maxd;(v) +46, i=1,2. (10.1.6c)

refl;

Henceforth, let ¢;(x,t) be defined by (10.1.6a) with 7" and ¢ chosen above, unless
otherwise explicitly noted. Such constant 0 < ¢ < 1, close to 1, may be taken independent
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of rescaling of d;(x), see Section 1.2. Such functions ¢;(x,t) have the following properties
(as in Section 1):
(a) for the constant 6 > 0 fixed in (10.1.6b), we have

T2
¢i(2,0) = ¢i(x,T) = d;(x) — T < =6, uniformly in z € Q;, i =1,2; (10.1.7)

(b) there are to, t1, with 0 < ¢ty < % < t; < T, say symmetric about %, such that
¢i(x,t) >0>0, 0<o<m, forall (t,x) € [to,t1] X U, 1 =1,2, (10.1.8)
since ¢;(x, Z) = d;(x) > m > 0 in €;: indeed, we take

m—o

Y

T\? T
m—cltij— =] =c>0andt; — =<
2 2 c

as in Section 1.1.
Consequences of above setting. [Assumptions (A.1i), (A.2i)] Let d;(x) : Q; — R,

be the C3-functions satisfying assumptions (A.1i), (A.2i) and the rescaling choice pg > 2.
Then, as in Section 1, it follows that: there exist functions a;(z) € C1(€), in fact, take

oi(z) = Adi(z) — 2c — 14+ k € CHQ) (10.1.9)

for a constant 1+4c—2py < k < 1, to be selected below, such that the following properties
(P1:i), (p2:) hold true:
(P1;i) _
Adi(z) —2c—a;(z) =1—-k >0, ze€, (10.1.10)

(pQ;i)
v = ai(z) — 2c — Ad;(z) = —4c— 1 4k, (10.1.11)

and the Hessian matrix Hy, of d;(x) satisfies the following inequality for all z € ;:

2Hg, (x) + [oui(z) — 2¢ — Ady(x)]] = 2Hg, (x) + 71

i 2di;mlml + Y 2di;1‘1$2 T 2di;mlmn i
2di;£211 2di;$2r2 +y o Zdi;mrn
— >pl, VYxeQy, 1=1,2,
L 2dig,0, 2d;;3,1, o 2digna, 7 ]

(10.1.12)

for some constant p = 2pg 4+ = 2pp —4c— 1+ k > 0, see (10.1.3), for a constant k chosen
as to satisfy: 1+ 4c — 2py < k < 1, which is possible since pg > 2¢, 0 < ¢ < 1, due to the
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choice p > 2. In addition, by additional rescaling, if necessary [at worst by imposing the

rescaling condition: |Vd;(z)|? — 4d;(z) > 0, Vx € Qi =1,2 as in (1.2.3) of Section

1.2], we may require that such d;(x) fulfill, in addition, also the following property (ps.i):
(ps;;) Noting via (10.1.9) that

6c+ Adi(z) —a;(z) =8c+1—k, x€Q, (10.1.13)
we have that the following inequalities hold true, by virtue of assumption (A.2i) = (10.1.4):
(2¢+ Ad; — ;)| Vdi|* + 2Ha,Vd; - Vd; — (6¢ + Ad; — o;)4¢? (t — %)2
= (dc+ 1 — k)|Vdi|2 + 2Hy Vd; - Vd; — Bc+ 1 — k)ac? (t— £)* > 3 >0, (10.1.14)
V (z,t) € set Qf (c"),
for a constant 3 > 0, where the set Q¥(c*) is defined (as in Section 1.1) by
Qi(c")={(z,t) :2€Q, 0<t<T, ¢ (x,t) > " > 0}, (10.1.15)

for a constant o* chosen as to satisfy 0 < 0* < o, see (10.1.8), where the functions ¢; are
in turn defined by

2
o1 (x,t) = di(z) — <t— g) , zeQ, 0<t<T. (10.1.16)

Since 0 < ¢ < 1, we obtain, by (10.1.6a) and (10.1.16), that
oi(z,t) > Pi(x,t), z€Q, 0<t<T. (10.1.17)
Thus, if we define, in agreement with (10.1.15), the set @Q;(o) by
Qi(o) ={(z,t): 2€Q, 0<t<T, ¢;(x,t) >0 >0}, (10.1.18)
we see, since 0 < 0* < o, and by (10.1.8), that:

[to, t1] X ; C Qi(0) C QF(0*) C [0,T] x £, properly
(10.1.19)
by (10.1.7), at t = 0 and ¢t = T": no point z € §2; belongs to Q;(o).

The main result of this paper is the following Theorem 10.1.1, which in many cases
(e.g., when I’y is flat) extends Theorem 2.1.1, by replacing assumptions (A.1), (A.2) with
assumptions (A.1i), (A.2i), i =1, 2.

Theorem 10.1.1. Let the above setting of Section 10.1 based on assumptions (A.1i)
and (A.2i) be in force for a given triple {§2,'g,I'1}. Let Tp; > 0 be the constants defined
by (10.1.5) and let 7" > Tp;. Then
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(a) for all T > Tp;, the following continuous observability inequality holds true for
H"'(Q)-solutions of problem (1.1.1), with F satisfying (1.1.2): there is a constant Cr > 0
such that

CrE(0) < /OT/m[waer]leJr/oT/QdeQ. (10.1.20)

The constant C7 is explicit if in addition we assume geometrical star-shaped conditions on
Fli
hi-v>0, i=1,2 on I'y. (10.1.21)

Such constant Cr is of the order of C’eCTZ, where C'is a generic constant and r is the norm
in (1.1.2¢) on the involved coefficients.

(b) A-fortiori, the following global uniqueness result holds true: let 7' > Tp; and let w
be an H"'(Q)-solution of problem (1.1.1a) with f = 0, along with the B.C.

0
99 —0 and wls, =0 where hi- v =0on Ty, i = 1,2, (10.1.22)
ov s
as in the assumed Eqn. (10.1.2). Then, in fact, w = 0, in @ (in fact, w = 0 in R; x Q).
O

The same comments as those below Theorem 2.1.1 apply. In effect we shall first prove
the uniqueness statement of part (b) in Section 10.6 [as a direct consequence of the Car-
leman estimates of Theorem 10.5.1 for H*?(Q)-solutions]. Next, part (b) will be used to
establish part (a) in Section 10.7.

A discussion was given in Section 1 on several topics including: (i) the role of the set
Qi (0*) in relationship to the set Q;(o); (ii) that in the case where I'y is flat, whereby then
di(z) = |z — z|* =z just outside Q on the hyperplane containing I'y (radial vector field
case), properties (p1.;), (p2:), and (ps;) automatically hold true, with no rescaling needed;
(iii) the issue of possibly rescaling d;(x) as to satisfy properties (p1.), (p2;i), and (ps;i), the
latter one even on the cylinder [0, 7] x €2;, at the price of deteriorating the minimal time
T, of observability, by imposing the rescaling condition (as in (1.2.3)):

Vdi(x)[* = 4di(z) >0, Ve, i=12 (10.1.23)

10.2 The cut-off functions x,(¢,z) and corresponding subprob-
lems for w; = y,w. Preliminary estimate

Definition of cut-off functions y,. Step 1. First, we recall the time-space sets Q;(c) C
Qi (c*) (properly), defined in (10.1.15), (10.1.18) for 0 < ¢* < o, ¢ = 1,2, which are proper
subsets of the basic cylinder @ = (0,7T] x Q. Accordingly, we may introduce C'*-functions
mi(t,x), 0 <my(t,z) <1, on [0,7] x Q, such that

m;(t,z) =1 on Q;(0); supp m; C Q; ("), (10.2.1)
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so that m; = 0 on [QF(0*)]°, the complement of Q}(c*) with respect to [0,7] x €.
Step 2. Next, for x € R”, we define

p(x) = inf |x — y, I' =09, (10.2.2)

yel’

so that the set {x € Q: p(x) < €} is an e-internal layer of the boundary I' = 9€2. For any
€ > 0, let p be the usual mollifier [Kes.1, p. 4]

fee ™ - 1
Iue(aj) _ € "exp <_ 527\1|2) ) |iU| <e€ 7 1= / exp (_ —> dr,
0, lz| > € |z|<1

and then let
p () = (e * p)(z) € C(R"), x € R". (10.2.3b)

It is well known [Kes.1, p. | that, given ¢; > 0, then for all € > 0 sufficiently small,

we have
€1

Sup |p°(z) = p(2)| < 7 (10.2.4)
Step 3. Introduce the following two subsets of [0, 7] on the t-axis:
E;(c) = orthogonal projection of the set );(c) onto the t-axis; (10.2.5)
EI(c*) = orthogonal projection of the set Qf(c*) onto the t-axis, (10.2.6)
see Figure 3. Thus, properties (10.1.19) yield
[to, 1] C Ei(0) C Ef (o) C [0, T] properly. (10.2.7)
We then introduce a function b;(t) € C3°(R; [0, 1]) by setting
1 fort e Ei(o);

bi(t) = { ) fort e R\ E(or). i=1,2. (10.2.8)
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Step 4. Let g(z) be a C*(R; |0, 1])-function such that
1 for s > eq;
g(s) = € (10.2.9)
0 fors< —.
2
Finally, we define the following C'*°-function by setting
X (t,x) =mi(t, 2)g(p"(x)) + [L — g(p*(2))]bi(t), ¢,z €[0,T] x L, (10.2.10)

with €,¢; > 0 as in (10.2.4).

Properties of x,(t,z). First, let 2 € Q satisfy p°(z) <
so that x lies in the -internal layer of I'. Then, g(p‘()
X, (t,2) = b;(t) for all ¢t € [0, 7.

Next, let = € Q satisfy p*(z) > €1, i.e., p(z) > 2¢1. Then, g(p°(z)) = 1 by (10.2.9), and
then x,(t,z) = m;(t,x) on [0, 7.

p(z) < 5 by (10.2.4),

o, ie.,
) = 0 by (10.2.9), and then
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Also, if (z,t) € Q;(0), then: m;(t,x) = 1 by (10.2.1), and b;(¢) = 1 by (10.2.8) and
(10.2.5), and thus y, (¢, z) = m;(t,x) = 1 by (10.2.10).

Let t € [0,T]\ E;(0*): then b;(t) = 0 by (10.2.8) and m;(¢t,x) = 0 for all z € Q by
(10.2.1) and (10.2.6). Hence x,(t,x) = 0. We summarize (see Figure 3):

' bt)  VaeQst @) < orple) < T
vl = 3 (10.2.11)

mi(t,x) YV x € Qs.t. p(z) > e, or plx) > 16
Xi(t,x) = my(t,z) =1 on Q;(0);

L x:(t,x) = 0, VteR\E; (oY), Vo e (10.2.12)

Remark 10.2.1. We can now explain our goal in this section. We shought cut-off
functions which, among other features, are only time dependent (but not space dependent)
on a small interior layer of the boundary I'. This goal is dictated by the fact that we are
dealing with Neumann B.C., and it would not be necessary if we were dealing instead with
Dirichlet B.C. Once the above goal is achieved in (10.2.11), then the Neumann B.C. %
of the corresponding subproblems are readily expressed in terms of ’?9—1;’ as in (10.2.14f). If,
by contrast, x, were also space dependent near I'; it would then polute %.

Dynamical systems for w; = y,w. Let w € C?(R;xR”) be a solution of Eqn. (1.1.1a).
We then introduce new variables on [0,77] x Q:

wi(t,x) = x, (6, x)w(t,x);  filt,z) = x,(t, 2)w(t,z), i=12. (10.2.13)

Then, we see that each term w; satisfies the following problem:

wige — Aw; = F(w;) + fi + [D? = A — F,x,Jw, i=1,2; (10.2.14a)
w;i(0, - ) = w0, wir(0, - ) =w;y, in (10.2.14b)
ki = [D} — A — F, x,] commutator active only on (supp x,); (10.2.14c¢)
Wi = X1(07 : )UJ(O, ’ )7 Wi1 = Xi,t(07 ’ )w(ov : )+X1(07 ’ )wt(()? : ); (10214d)
w;(t,x) = bi(t)w(t,z), ¥V = in an % -internal layer of T', (10.2.14e)

hence
wi(t, z) = b(t)w(t, z); %‘Z" = by(t) % on [0,7] x . (10.2.14f)
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In (10.2.14a), D, = £, while [ , | denote the corresponding commutator of order 1 in

time and space. Moreover, the key relation in (10.2.14e), hence the key trace properties

in (10.2.14f), are a consequence of (10.2.11a): x, = b(t) on an F-internal layer of I'.
Since Yy, is smooth and the commutator in (10.2.14a) is of order 1 in time and space,

we then obtain via (10.2.14a) and (1.2) on F":
(wige — Aw;)?* < Cp{lw}, + |Vwil* + w} + £ + [wi + |Vw|® + w?]},

(t,z) € [0,T) x Q.  (10.2.15)

Preliminary estimate: Counterpart of Corollary 4.3. As constructed above,
each problem w; in (10.2.14), ¢ = 1, 2, satisfies the setting of assumptions (A.1i) and (A.2i),
i.e., the setting of Section 1. As a result, each problem (10.2.14) satisfies the counterpart
of Theorem 4.1/Corollary 4.2/Corollary 4.3, Eqns. (4.24)—(4.27), in particular, we recall
(4.8). We take this result as our present starting point.

Proposition 10.2.1. Let w € C*(R; x R?) be a solution of Eqn. (1.1.1a). Let the
setting of Section 10.1 based on assumptions (A.li) and (A.2i) be in force. Then, each
problem (10.2.14), i = 1, 2, satisfies the following pointwise inequality for € > 0 small:

02 (w; e — Aw;)? — aé\fi 1 div

> erfplw?, + |[Vw’] + 0;Bw?, 0<t<T, z€Q, (10.2.16)

see (4.24), where p > 0 is a constant, and where for ¢ = 1,2 and (10.1.14), we have recalling
(4.8), (4.19), (4.25)—(4.27):

B, = Bz - 26/)7'3(@2,15 + |Vdi|2)

2
2 27‘3{[20—{— Adz — OZZ]|le|2 + 2Hd7de . de - (6C+ Adz — Oéi)402 (t — g) }
+ O(7?) — 2ep7°r
> 2734+ 0O(1%), V (x,t) € set Qf(c¥), (10.2.17)
B=p.=0—epr>0; r=max mgx(ﬁt +|Vdi|?); B; = O(r%), (10.2.18)

where the set QF(c*) is defined in (10.1.15), and § > 0 is a constant depending on € > 0.

Above, 0; = €7 ¢; as in (10.1.6). Moreover, M;, V; are obtained from M and V in (3.3),

(3.4) in the present case: i.e., by replacing ¢ = 7d, ¥ = T, etc., with ¢; = 7d;, ¥, = T,

where d; is given by assumption (A.1i) and o is defined by (10.1.9) so that B; on the left

of (10.2.17) is the counterpart of (4.8), while the estimate in (10.2.17) is due to (10.1.14).
|
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10.3 Proof of Theorem: Carleman estimate for the w;-problem

Building up on Proposition 10.2.1, we obtain the counterpart of Theorem 5.1 (Carleman
estimate, first version) for the w;-problems.

Proposition 10.3.1. Let w € C*(R; x R?) be a solution of Eqn. (1.1.1a). Let the
setting of Section 10.1 based on assumptions (A.1i) and (A.2i) be in force. Let w; = x,w
as in (10.2.13). Let E(t) be defined by (5.5), or (2.1.1), as usual. Then, for € > 0 small as
in (10.2.18), and for all 7 sufficiently large (with er large with respect to Cr in (1.1.2)),
the following estimate holds true:

T T
(BT)uls + Cure®™ | B+ Cor [ [ franas
0 0o Ja
T
= (ETP—ZCT)/ /627¢i[wit+|Vwi|2]det
0 Q

+ 278+ O(7?) — 207] / e*iwidr dt — crre *°[E(0) + E(T)], (10.3.1)
Qi(o)

where Q;(0) is the subset of [0,7] x Q = @ defined by (10.1.18); moreover, the constants
o >0, 6 > 0 are defined in (10.1.8) and (10.1.7), while the constant 5 > 0 is defined
via (10.1.14) for 8 and (10.2.18). In (10.3.1), the boundary term (BT),,|s is defined
(counterpart of (5.3)) by

T T
Ez/ /div v,.dﬂdt:/ /v,..udrdt, i=1,2, (10.3.2)
0 Q 0 r

and is explicitly given below (as in (5.4)), recalling w; = bw, % = big—f on I', by
(10.2.14f); as well as h; - v =0 on Iy by (10.1.21)):

(BT )u

T
(BT)uw;ls = 27 / / e (wi , — [Vw|?b}(t))h; - v dldt
0 1N

T . T ow
+ 807/0 /FeQT@ (t— E) wi,t%b?(t)dr dt

! 27 ow
+ 4r e ™% (h; - Vw) — b7 (t)dl" dt
0 T ov

T 2
T i
+ 47‘2/ /627@’ [|hi|2 — 4 <t— —> + &
0 r 2 2T

57

ow ,
ZU B2 (t)dr
WS b; (t)dl dt




T T\ 2
+ 27/ / e [272 <|hi|2 —4c? (t— —) )
o Jry 2

+ 7(a; — Ad; — 2(:)] w?b3(t)h; - v dTy dt. (10.3.3)

(ii) The above inequality (10.3.3) may be extended to H*?(Q)-solutions.

Remark 10.3.1. For 7 sufficiently large as to obtain [27°8 + O(7%) — Cr] > 0, see
(10.2.18), we reach one of our goals and drop the integral term involving w?, accordingly,
from inequality (10.3.1). O

Proof. Step 1. We return to Eqn. (10.2.16) of Proposition 10.2.1, which we now
integrate over [0, 7] x Q. By use of the divergence theorem, we obtain the counterpart of
(5.6) for € > 0:

T T T
/ / 07 (wi e — Aw;)*dQ dt — [/ MidQ} +/ /Vi -vdldt
o Ja Q o Jo Jr

> €Tp/ /02 (w7, + | Vw|? det+/ /923w dQ dt, (10.3.4)

with p > 0. Moreover, M; and V; are the counterpart of Eqns. (3.3) and (3.4), as specialized
to the two cases ¢ = 1,2. With reference to (10.3.4), we now define (BT),,|s by (10.3.2),
and then obtain, via the counterpart of (5.4), that (BT).,|s coincides with the expression
given by (10.3.3) [which is the counterpart of (5.4)]. In doing so, we use two ingredients:
(a) that h; - v =0 on Iy, i = 1,2 by assumption (10.1.2), so that integration where h; - v
occurs is restricted to I'y only; (b) that by (10.2.14f) w; = b;(t)w, %% = b;(t) 22 on an
interior strip of I" and for all 0 <t < T, where b;(t) is defined by (10.2.8).

Step 2. We next estimate the first term on the left side of inequality (10.3.4). We
shall prove that

/ / (Wi — Auwy) det<cT{/ / 2, 4 [V d 2t
+/ > fd:vdt+62”/ E(t dt+/ /fdet} (10.3.5)
Qi(o) 0

where the subset Q;(o) of [0,T] x Q is defined in (10.1.18). In fact, to prove (10.3.5), we
introduce the following simplified notation on [0,77] x §2:

ei(t,) = wl(t,x) + |Vwi(t, z)* + wi(t,z); (10.3.6)

e(t,r) = wi(t,z)+|Vw(t,z)|* +w?(t x); (10.3.7)
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Ei(t)E/Qei(t,x)dQ; E(t) E/Qe(t,x)dﬂ. (10.3.8)

As in the proof of Theorem 5.1, Step 3, we further split @ = [0, T|xQ = Q;(0)U[Qi(0)]°,
where [ | denotes complement with respect to @, and the set Q;(o) is defined by (10.1.18).
Moreover, we have

¢i(t,z) < o on [Q;(0)]° by (10.1.18); e;(t,x) < const e(t, x)
in particular on [@;(0)]° by (10.2.10), (10.2.13); (10.3.9)

ei(t,z) = e(t,z) on Q;(o) by (10.2.12), i.e., x, =1 on Q;(0).

We next invoke inequality (10.2.15), as well as (10.3.6)—(10.3.9), recall §; = €™ and
estimate
T
/ / 9?(71)1'715,5 — sz)QdQ dt
o Jo

< CT{/OT/Qef[e,»(t,x)+f,?+e(t,x)]dﬂdt} (10.3.10)

IN

C’T{/ e*™i[es(t, z) + elt, x)]dazdt—l—/ ¥ e;(t, x)
Qi(0) [Qi (o)
T
~|—e(t,x)]dxdt~|—/ /ffdet} (10.3.11)
0 Q

(by (10.3.9)) < C’T{/ ™2, (t, x)dx dt
Qi(o)

T
—i—const/ eQTae(t,x)d:cdt—l—/ /ffdet} (10.3.12)
[Qi(0)]° 0o Ja

C’T{Z/ ew’iei(t, x)dx dt
Qi(o)

T T
+ const €2TU/ /e(t, x)det—l—/ /ffdet}. (10.3.13)
o Ja 0o Jo

Finally, we estimate, since Q;(0) is a subset of [0, 7] x Q, via (10.3.6):

IN

/ X iei(t, x)dr dt = / T w?(t, x) + w},(z,t) + [Vwi(z, t) |’ dx dt
Qi(o) Qi(o)
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T
< / e*™iwldr dt + / / 2o [w, + [Vw;|?]dQ dt,
Qi(o) 0 JQ
(10.3.14)
by majorizing the integral term on Q;(c) but only for the integrand [w7, +|Vw;|?]. Finally,
we insert (10.3.14) into the right side of (10.3.13) and obtain (10.3.5) by invoking (10.3.8).

Step 3. Next, we use the counterpart of inequality (5.9) in the present case, to obtain,
recalling (10.1.7) for ¢; at t =0and t =T"

T T
H / MidQ,} < epr? { / e w3, + | Vwg|? + w}]dS; (10.3.15)
Q; 0 Q; 0
(by (10.1.7)) < epr®e™™[E;(0) + Ei(T)] (10.3.16)
(by (10.2.13)) < cpre™[E(0) + E(T))], (10.3.17)

where E;(t) and E(t) are defined by (10.3.8), and where in the last step we have recalled
w; = x,w from (10.2.13).

Step 4. Thus, inequalities (10.3.5) and (10.3.17) used on the left side of estimate
(10.3.4), yield

T T
Cre?™ / E(t)dt + Cr / / F2dQvdt + (BT),,
0 0 Q

3
T T

> (erp— Cp) / / e w}, + [Vw|*JdQ dt + / / e*™% BawdS) dt
0 Q 0 Q

- C’T/ e*™iwidr dt — crre ™ [E(0) 4+ E(T)). (10.3.18)
Qi(o)

Step 5. In this step, we refine (10.3.18) to arrive at (10.3.1) by estimating the integral
term containing B; in (10.3.18). To this end, we proceed as in the proof of Theorem 5.1,
Step 1. We split now [0,7] x Q = QF (c*)U[Q}(c*)]°, where [QF(c*)] is the complement in
[0, 7] x € of the set Q(c*) defined by (10.1.15). It is here that we use the critical property
that B; is strictly positive on Q}(c*) noted in (10.2.17) via (10.1.14). We compute

T
/ / ¥ BawldQdt = / > Byw?ida dt + / e*™ Byw?ldx dt (10.3.19)
0o Jo Q; (o*) (@ (0*)]°
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(by (10217)) > 276+ O(2)] / €2 s
Qi (%)

+ / > Byw?ldz dt. (10.3.20)
CHESIE

As to the last term on the right of (10.3.20), we estimate as in the proof of Theorem 5.1,
Step 2, recalling from its definition in (10.2.18) that B; is O(73), and that ¢; < ¢F < o*
in [QF(c*)], by the very definition of (10.1.15) and by (10.1.17),

—/ e*™ Byw?dx dt < 073/ e’ il dx dt (10.3.21)
[Q(0*)]¢ (@7 (a%)]°
T
< o7 / e widz dt < Cr%e”™ / / wdz dt, (10.3.22)
[Q} (o*))° 0 Je

majorizing w? by const w?, and [Q}(c*)]¢ by [0,T] x Q. Next, we insert (10.3.20) in the
right side of (10.3.18), move the last term of (10.3.20) on [Q;(c*)] to the left side of
(10.3.18), and apply for it estimate (10.3.22). We obtain

T

0

T T
017'362”’*/ /deth~|—C’T62”/ E(t)dt+C’T/ /ffdeH—(BT)ng
0o Jo 0 Jo
T
> (GTP—CT)/ /eQT(bi[wzt—l—WwiP]det
0o Ja

+ [27°8 + (9(7‘2)]/ X P dx dt
Qj (o*)

— C’T/ AT Pwdr dt — crrie *T[E(0) + E(T)]. (10.3.23)
Qi(o)

Finally, we use the following estimates:

(i) Regarding the first two terms on the left of (10.3.23), we use that, by selection,
0 < o* < o, see (10.1.15)—(10.1.19). Thus, for all 7 sufficiently large, the first term is
absorbed by the second, and we obtain

T T
Cr3e’™ / / w?dQdt < Oy pe®™ / E(t)dt. (10.3.24)
0 Q 0

(ii) Regarding the integral terms on Qf(c*), Q;(0), we see that since QF(c*) D Q;(0),
we have that for all 7 sufficiently large, as in Step 3 in the proof of Theorem 5.1,

25+ 00 [

e*iwidr dt — Oy / e*™iwldx dt
Q7 (%)

Qi(o)
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> [27’35—1-(9(7'2)]/

20 dt — Oy / Eowldedt (10.3.25)
Qi(0)

Qi(o)
= 278+ O(r%) - Cr] / i da dt, (10.3.26)
Qi(o)

since, on @Q;(0), we have that x, = 1, by (10.2.12), hence w; = w by (10.2.13). Thus, using
(10.3.24) and (10.3.25) in (10.3.23), we arrive at the derived estimate (10.3.1). The proof
of Proposition 11.3.1 is complete.

10.4 Carleman estimate, first version, for the w-problem

The counterpart of Theorem 5.1(ii) is now:

Theorem 10.4.1. Let w € H*?(Q) be a solution of Eqn. (1.1.1a). Let the setting of
Section 10.1 based on assumptions (A.1li) and (A.2i) be in force. Then

(i) for all 7 > 0 sufficiently large (with er large, as compared to the constant Cr in
(1.1.2)), the following one-parameter family of inequalities holds true:

T t1 T
BT|s + 2Cr / / f2dQdt > 2(erp — 2Cr)e*™ / E(t)dt — 20 7e*™ / E(t)dt
0 Q to 0

— 2erm?e P [E(0) + E(T)), (10.4.1)
where )
t1
BT|s =Y (BT)uls +2(erp — 2Cr)e™™ / / w?dldt, (10.4.2)
i=1 to JT1

with (BT)y,|s is defined in (10.3.2), (10.3.3); while £(¢) and E(t) are defined by (6.3) and
(5.5), respectively.

(ii) By virtue of Theorem 8.2 and Remark 8.1, the above estimate (10.4.1) may be
extended to H(Q)-solutions of (1.1.1a) in the class (8.1).

Proof. Step 1. We recall property (10.1.8): ¢; > o > 0 on [tg, t1] X ;; finally, that
[to, 1] X ; C Q;(0) by (10.1.19), where w; = w on Q;(0) by x, = 1 on Q;(0), see (10.2.12)
and (10.2.13). Thus, we estimate the first terms on the right side of (10.3.1) for ¢ = 1, 2:

2 T
Z/ / e w?, + |Vw;|*|dQ dt
i=1 /0 JQ ’

2 t1
(by (10.1.8)) > Z/ /eQT”[wftJeriP]indt
i=1 Yt J 7
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2 2
(as w; = w on Q;(0) D [to, t1] X ) = 7’ Z/ / [wi + |Vw|?|dS; dt
i=1 Jto S

t1
(by (10.1.1)) > 62”/ /[wt2—|—|Vw|2]det, (10.4.3)
to Q

where the last step follows, since the integral terms over €);, i = 1, 2, collects also contri-
butions on the non-empty portion 2; N Qs, see (10.1.1).

Step 2. With 7 sufficiently large as to have the coefficients [27%8 + O(7%) — Cr| > 0,
so that Remark 10.3.1 applies, we sum up Eqn. (10.3.1) of Proposition 10.3.1 for i = 1, 2,
and obtain also by virtue of (10.4.3),

T T
20, 7™ / E(t)dt+ Cor Y / / frAQdt +> (BT).,
0 ; JOo JO P

3

t1
> 2(erp — QCT)eQT”/ /Q[wt2 + [Vw[2]dQ dt — 2cpm3e ™ [E(0) + B(T)](10.4.4)
to

Step 3. Finally, adding to both sides of inequality (10.4.4) the term

t1
[2(67/)— QC’T)eQT“/t /F w2dF1dt] ,
0 1

and invoking the definition of £(t) in (6.3), we readily obtain the desired inequality (10.4.1),
with BT|x, as in (10.4.2). O

10.5 Carleman estimate, second version, for the w-problem

Our main final step in establishing Theorem 10.1.1 is the following counterpart of Theorem
6.1, Eqn. (6.6).

Theorem 10.5.1. Let w be a H*?(Q)-solution of problem (1.1.1), including the
Neumann B.C. on ¥. Let the setting of Section 10.1, based on assumptions (A.li) and
(A.2i), be in force. Then:

(i) for € > 0 small as in (10.2.18), and for all 7 > 0 sufficiently large (with er large as
compared to the constant Cr in (1.1.2)), the following one-parameter family of inequality
holds true: there is a constant ki, > 0, depending on the pseudo-convex functions, such
that

BTs: + / ' / P2AQdt > by [E(0) + B(T)], (10.5.1)
0 Q

63



where, recalling (10.4.2) for BT'|s, we have

T
ng = BT|E+C¢/ |wwt|dF1dt
0

It
T
< const {/ /[w2+wf]d1“1dt
o Jry

T
+ Z/ / e27oi (Wi — |V ianw]|?]b7h; - l/dF1dt} )
i 0 Iy

(10.5.2a)

(10.5.2b)

Proof. Same as the proof of Theorem 6.1. First we note that, with the Neumann
B.C. (1.1c), 22 = 0 on ¥ in force now, we have that the term N(T) in (6.14) specializes

’ N(T) :/OT/QdeQJrz/OT/Fl lww,|dE; . (10.5.3)

Thus, with reference to estimate (10.4.1) of Theorem 10.4.1, and recalling (6.18), we obtain

t1
2(etp — QCT)eQT”/ E(t)dt

> 2(erp — 207)e¥ () — to) {g[E(T) + B(0)]e 0" — N(T)} . (10.5.4)

Moreover, recalling (6.20), we obtain

TeCTT

a

—2C, re*™ / ' E(t)dt > —Cyre*™ {b[E(T) + E(0)] —2N(T)} . (10.5.5)

Adding up (10.5.4)—(10.5.6), we can estimate the right-hand side (RHS) of (10.4.1) as

follows:

t1
RHS of (10.4.1) = 2(67p—20T)62”/ E(t)dt

to
T
— 2C, e’ / E(t)dt — 2crme*™[E(0) + E(T)] (10.5.6)
0

b
> { |:<€Tp - 2CT) (tl - to)CLGiCTT - Cl,T_ TGCTT 627—0
a

- ZCTT‘Q’e_QT‘S} [E(T) 4+ E(0)] — constg N(T). (10.5.7)
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We now use critically that 0 < o, 6 > 0, see (10.1.8), (10.1.6), that, for large T,
[T7e2™ — 73e727] is positive. We then obtain that: there exists a critically positive constant
kis > 0, and a constant k4 (also positive, but this is not critical) depending on the pseudo-

convex functions ¢;, such that for 7 sufficiently large we have:

Then, using (10.5.8) in (10.4.1), moving N(T') on the left side of (10.4.1) and invoking
(10.5.3) for it, we readily find estimate (10.5.1). Moreover, BT is given by (10.5.2a).

We now establish (10.5.2b): for this, we return to (10.4.2) for BT|x, and (10.3.3) for
(BT)u,|s, with 22 =0 on (0,7] x I': thus, in (10.3.3), we see that the 3 terms (2nd, 3rd,
and 4th) which 1nv01ve 8“’ on [0, 7] x I vanish. That is, for 8“’ = 0 on X, we obtain from
(10.3.3),

T
(BT)w,ls = 27 / / e (w7, — b7 (t)|Vw|*)h; - vdly di
o Jry
T T\ 2
+27/ / i [27‘2 |hi|? — 4c? (t— —)
o Jr, 2
+7(0; — Ad; — 2@} w?bZ (t)h; - v dTly dt, (10.5.9)
where |Viaaw| = |[Vw| since 22 = 0 on T', and where, by (10.2.14e), near I' we have
P 2
wi, = {a(bi(t)w)} = (b(t))w* + b2 (t)w] + 2b;(t)b(t)wwy, (10.5.10)

in an <-internal layer of I'. Thus, substituting (10.5.10) into the first integral of (10.5.9)
readily yields (10.5.2b) by recalling also (10.4.2). The proof of Theorem 10.5.1 is complete.
O

10.6 Global uniqueness: Theorem 10.1.1(b)

Let w € H"!(Q) be a solution of Eqn. (1.1.1a) with f = 0, satisfying 22 =0 on %, as in
(1.1.1c), and, in addition, w|s, = 0, where h; - v =01in 'y, ¢ = 1,2, as in (10.1.22). Then,
Vianw = 0 on X as well, and thus BT|sx = 0 by (10.5.2b) of Theorem 10.5.1(ii). Thus,
estimate (10.5.1) with f = 0 yields E(0) = 0, hence w = 0 in @, in fact in R; x €, as in
the proof of Theorem 7.1. O

10.7 Continuous observability: Theorem 10.1.1(a)

To complete the proof of Theorem 10.1.1(a) and thus obtain the final estimate (10.1.20)
from estimate (10.5.1) already proved with BT |y satisfying (10.5.2b), we proceed as in the
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proof of Theorem 9.2. that is, we invoke Lemma 9.1 on the interval [e, T — €|, € > 0 small,
see (9.4) and ff. In particular, we make use of the global uniqueness already established,
in Section 10.6, as stated in Theorem 10.1.1(b), to absorb the interior l.o.t., as in Step 2 in
the proof of Theorem 9.2. This way the constant Cr in (10.1.20) is not explicit. However,
if we assume also (10.1.21) that is

hi-v>0 on I'q, (10.7.1)

then we may drop the terms

T

/ / e (—|Vianw|?)hi - vdS <0, i=1,2, (10.7.2)

o Jr,

in (10.5.2b) and obtain
T
BT|s < const/ / [w? + w;]dldt, (10.7.3)
0o Jr

as desired, with an explicit constant Cr- of the order Ce®™ | where r is defined by (1.1.2c).
The proof of Theorem 10.1.1(a) is complete. O

Appendix A:
Classes of triples {Q),I'g,I'1}, 002 =T = I’y UT'; satisfying
assumptions (A.1) and (A.2). Setting of Section 1.

Orientation. Let Q C R” be an open, bounded domain with boundary 02 =1 =T U T},
I'oNT; = (; Ty is the uncontrolled or unobserved part of the boundary, while I'; is
the controlled or observed part of the boundary. The purpose of Appendices A through
C is to illustrate the claim that: assumptions (A.1) and (A.2) of Section 1, or their
counterpart version (A.li) and (A.2i) of Section 10, hold true for large classes of triples
{Q,Ty,T'1}. Moreover, in some subcases—typically when 'y is flat—it is possible to satisfy
the additional assumption (10.1.21): h; -v > 0 on I'y, ¢ = 1,2, in the setting of Section
10, although in many cases this requirement A - > 0 on I'y in addition to the setting of
Section 1 is incompatible with the requirement (A.2) = (1.1.6) that the inf |h(z)| over Q
be positive.

We shall provide a few approaches addressing these assumptions and present a few
rather general results illustrated by canonical examples. Several other illustrative examples
may be given where the unobserved boundary T’y is given analytically by the common
elementary functions. However, an exhaustive analysis of these geometrical assumptions,
or even a presentation of the most general results within each approach, is beyond the
scope of the present Appendices.
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A.1 The case where 'y is flat: Explicit construction of h(z) for
the setting of Section 1 and the setting of Section 10

In this special but important case where I’y is flat, we can readily consider the setting of
Section 1 and the setting of Section 10 in one shot. Another approach for the setting of
Section 10 will be given in Appendix C.

Setting of Section 1. Let the triple {Q,To,I'1} be given, @ C R", where Ty is
assumed flat. Then, we take any point o on the hyperplane containing Iy, with zy ¢ €,
and define the radial field h(z) = 2(x —x0) = 2Vd(x) where d(z) = ||z —z||*. See Fig. A.1.
Then, the Jacobian matrix J,(z) of h is twice the identity matrix; h- v = 0 on I'p; and
|h(z)| > p >0,V x e Q. Accordingly, see (1.1.21b), the time Ty = 2x (diameter of ) is
then optimal in this case. Thus, assumptions (A.1) and (A.2) hold true for this large, yet
special class. However, the additional requirement h - v > 0 on I'; is incompatible, in this
case, with the condition that inf|h(z)| over € be positive.

Setting of Section 10. Now we decompose 2 = Q; U Qs, Q1 N Qs # (). Let 21 and
x5 be two points in common to Iy and Iy, with z; at a finite distance from €; and z»
at a finite distance from €. See Fig. A.2. We then define h;(z) = 2(z — x;) = 2Vd;(x),
di(z) = ||z —z;]|?, i = 1,2. Then, assumptions (A.1i) and (A.2i) of Section 10 are satisfied:
hi-v = 0 on I'y, since each z; lies on the hyperplane containing the flat I'y; J,, = 2(Identity),
and ||hi(z)|| > p > 0, Vz € Q;. Moreover, in this case, we may also satisfy assumption
(10.1.21): h;-v >0on Ty, i=1,2.

Lh(z) x Q

70 !

To

Fi1c. A.1: SETTING OF SECTION 1: THE REQUIRED VECTOR FIELD h =
2(x — xo) SATISFYING (A.1), (A.2) WHEN I’y IS FLAT

Fic. A.2: SETTING OF SECTION 10: THE REQUIRED VECTOR FIELDS
h; = 2(x — x;) SATISFYING (A.li), (A.2i), AND (10.1.21): h;-v > 0 ON
Iy
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A.2 A first approach where I'j is curved: Explicit construction
of h(x,y), 2-dimensional case. Setting of Section 1

Orientation. In this section we consider the two-dimensional case, dim () = 2, where
the construction of the required vector field h(x) is most transparent. However, the given
treatment admits a natural generalization to higher dimensions as well. See Appendix B.2.

In the two-dimensional case, our approach will, in particular, encompass the following
result.

Theorem A.2.1. Let the uncontrolled (or unobserved) boundary I'y satisfy the fol-
lowing assumptions:
(i) Ty is described by the graph

filz) @<z <@, y=0; (A.2.1)
y =
fo(z) mo <z <24, Yy <O, (A.2.2)
where the functions f;(z) are of class C® and satisfy
filz1) = fa(z1) = 05 fi(z1) = —00; fi(z1) = 00;

é,(a?l) = —00; 5/(371) = +00; f;(ﬂ?) 7é 07 Tg < x < T, L= 1727

(A.2.3)

so that the graph of I'y does nowhere have horizontal tangent, while it has vertical tangent
at xq.

(ii) Both fi(z) and fa(x) are logarithmic concave on xo < x < x1; equivalently (Remark
A.2.1), they satisfy the following conditions:

% <§1Eg> >0 and % (ﬁg) >0, onzo < < 1. (A.2.4)

Then, there exists a conservative vector field h(x,y) = {hi, ha}, constructively defined in
a neighborhood of T'y \ {z1,0} [the boundary I'y with the point (z;,0) removed] by:

i)

hl (CC)

=== ha(y) =y, forzg <z <15 Yy > —€(r — 29);5 (A.2.5a)
fi(z)
fa(z)
hl (CC) = 5
5(x)
for a sufficiently small € > 0, such that on its domain of definition specified above, we
have:

(a)

ha(y) =y, for zo <z < 215 y < ez — 21), (A.2.5b)

wim)
h-v=0onTy Juz,y) = dz \ fi(x)

0 1

> 0, (A.2.6)
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where ¢ = 1 for y > 0, and ¢ = 2 for y < 0; and moreover,

(b)

2

h = Vd, where d(z,y) = / " h(€)de + y? +C (A.2.7)

If the graph of I'y is symmetric with respect to the z-axis, i.e., if fi(z) = —fa(x), then we
may take € = 0 in (A.2.5).

(c) Finally, the above vector field h(x,y) can be extended by continuity in the triangular
region: €(x—x1) <y < —e(x—x1); Tp < x < x1, as well as for x < zg, so that the condition
Jn(z,y) > 0 is preserved. O

Remark A.2.1. Let f € C? either f(z) > 0 or f(x) < 0. Define

= In|f(z)|, so that G'(x S
G(z) =In|f(x)|, so that G'(x) o)~ Flo) (A.2.8)
Then [concerning assumptions (A.2.4)] we have that

in which case G(z) is strictly concave and so f(z) is logarithmic concave.

If f"(z) < 0 (f is concave) and, without loss of generality modulo a translation,
f(z) > 0, then condition (A.2.9) is satisfied. Similarly, if f”(z) > 0 (f is convex) and,
without loss of generality modulo a translation, f(z) < 0, then condition (A.2.9) is satisfied
as well.

For the purposes of Figure A.3, which illustrates a possible graph I'y covered by The-
orem A.2.1, we note that f(z) = sinz, —§ <z < 5, and f(z) = cosz, 0 < x < 7 are
logarithmic concave; i.e., satisfy (A.2.9). But they are neither convex nor concave. O
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cosine-like curve

concave curve:

S y=h(), f1(2)>0, f1(2)<0

Zo Z1 x

convex curve:
y=fa(z), f2(2)<0, f3/ (x)>0

sine-like curve

AN

flat

Fic. A.3. A POSSIBLE CONFIGURATION OF ['y COVERED BY THEOREM
A.2.1. Q MAY BE ON EITHER SIDE OF ['.

Geometrical description of the approach encompassing Theorem A.2.1. Let
{Q,Ty,T1}, 00 =T =ToUTy, Ty and T'; relatively open in I', To NIy = (. Let the
(non-intersecting) curve I'y be given explicitly as a level set by the equation

Iy ={(z,y) € R*: {(x,y) =0}, (€ C> (A.2.10)
with |V/| # 0 on Iy, for a suitable domain in (z,y).

Assumption (A.1) of Section 1. As exemplified by the statement of Theorem A.2.1, we
shall explicitly construct a conservative vector field h = {hq, ho}, such that the following
conditions are satisfied:

h-v=0onTy Jy(z,y) > 0 near [p; (A.2.11)

Jpn, being the Jacobian matrix of h. Moreover, it will be possible to extend smoothly such
h(z,y) so that Jy(x,y) > 0 on Q, as well.

This way, condition (A.1) of Section 1 is satisfied. In fact, the constructed vector field
will be, near I'y, of the form hy = hyi(z), he = ha(y), i.e., with first (second) component
depending only on the first (second) coordinate, as in the statement of Theorem A.2.1.
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Assumption (A.2) of Section 1. Depending upon the given unobserved/uncontrolled
boundary I'y, the constructed vector field A~ may vanish at one point Py of I'y. This is the
case if I'g has a U-turn, as in the case of Theorem A.2.1, where h(z;,0) = 0. Then, the
present setting of Section 1, assumption (A.2) can be satisfied only by restricting I'y; that
is, by removing from I'y a small neighborhood, on I'y, of the pathological point Py € I',
and assigning it instead to the observed/controlled boundary I';. This way, neither the
resulting, new 'y nor the resulting, new observed boundary I'; are connected. See also
Remark 1.1.3. In Appendix C below, we will be able, in many cases, to avoid the above
situation and overcome the related difficulty. To do this it will be necessary to rely on
the 2-vector field setting of Section 10. This way, we will be able to keep, as unobserved

boundary, the original portion I'y, even if it has a U-turn, and still fit the setting of Section
10. See Theorem C.1 in Appendix C.

First setting: Nowhere horizontal and nowhere vertical tangent to I'y. We
shall at first introduce our geometrical construction of A in the case where I'y, the graph
of ¢, has nowhere horizontal and nowhere vertical tangent in the (z,y)-plane. Thus, the
slope of T'y is finite and either always positive, or else always negative. Locally the domain
) may lie on either side of I'y. In this case, the construction of the required vector field h
goes through the following two steps:

Y Y
F() 1—‘0

Fic. A.4: FIRST SETTING FOR I'j

Step 1: Definition of h on I'y. Let P = (z,y) € I'g. Then, {¢,,¢,} is a vector
orthogonal to I'y at P, and thus {—/,, {,} is a vector tangent to I'y at P. Multiplying this
tangent vector either by %, or else by ;—: respectively, we obtain two vectors

h=XP— {—yﬁ—y, y} , and respectively, h _y P— {:U, —xi—m} , (zy) €Ty, (A.2.12)
T Yy

which are also tangent to I'y at P. Geometrically, the points

/ ly
X:{$+y£—y,0},andY:{O,ijxg—}, (A.2.13)

@ y
are the intersection points of the tangent line i_—ez = ﬂé_z—y to I'y at the point P with the

z-axis and the y-axis, respectively. In many cases, the following assumption is satisfied
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by ¢(z,y), and this is surely the case, at least locally, by the Implicit Function Theorem,
which is valid under our assumptions:

either the term (—y ﬁ—Z) (x) is only a function of x;
for (z,y) € T'y: (A.2.14)

or else the term (—x g—:) (y) is only a function of y.

Assumption (A.2.14) holds true in particular (but not exclusively, see examples A.2.1
and A.2.2 below) when

(A.2.15)

either I'g : {(z,y) =y—f(z) =0, a <x < b; orelse I'y: l(z,y) =x—g(y) =0, c <y < d,

in which case, we obtain, respectively,

with finite f'(x) # 0, or finite ¢'(y) # 0, respectively, as assumed.

0 a(y Y FO:E(QZ’y):Ov OI‘ny(l’),
(71 E)(y):g/(y) { \ or z = g(y)
P

Y

o

Fi1G. A.5: DEFINITION OF h :X-J5 OR h :Y-ﬁ FOR P €T

Step 2: Extension of h near I'y. We now extend h, defined by (A.2.12) on Iy, to
any point P = (z,y) € 2 near the graph of I'y of /. The horizontal and vertical lines
through P meet 'y at points P, and P,, respectively, on T'g. Let X}, and X, [respectively,
Y;, and Y,] be the intersections of the tangent lines to I'y at P, and P, with the z-axis
[respectively, with the y-axis|
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FO : g(l’,y) = 07 ory = f(‘r)v

¢ (1) Yo or x = g(y)
(—= &) =355 \\P:J — IV

P (e !

F1g. A.6: DEFINITION OF h = {h; :E, ho :C_b} FOR P NEAR I'(:
A_é: HORIZONTAL COMPONENT OF X_])Dv, C_b = VERTICAL COMPONENT
OF Xh‘ﬁh OR ELSE, DEFINITION OF h = {h _EF ha _GH} EF—
HORIZONTAL COMPONENT OF Y v Py GH VERTICAL COMPONENT OF YhPh

At such nearby point P = (x,y), we define the vector field h = {hq, ha} by either

— 14
hy = horizontal component of X, P, = (—y g—y> (), in particular, JJ:,((CU)), a <z <b
T T

hy = vertical component of X, P, = vy;
(A.2.17)
or, respectively, by

—

hy = horizontal component of Y, P, = x;

— ‘.
hs = vertical component of Y, P, = (—x £—> (y), in particular, g/((y))) c<y<d.
y )

The Jacobian matrix of A is then either

d l, d f(w))

B ) 0 — 0

J, = | dx ( Y €z> () , in particular, J, = | dx <f'($) , (A2.19)
0 1 0
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for (A.2.17), or else

1 0 1 0
Jn = d / , in particular, J, = . (A.2.20)
3 ¥
dy ‘, dy \ g'(y)

for (A.2.18), respectively.

Lemma A.2.2. Let £ € C? and assume hypothesis (A.2.14) with £, # 0, or £, # 0,
respectively, unless a cancellation occurs, in particular, let either one of the situations in
(A.2.15) hold true, with f € C3, f'(x) # 0; or g € C3, ¢'(y) # 0, respectively, unless a
cancellation occurs.

(a) Assume, moreover, that either

i — é—y x in par icuari /(@) = _—f(x)f”(x) a<zx
i (v @ =0 panticnor 2 (£05) =1 - Rt 0, a < <ib£21>

i.e., f(x) is logarithmic concave, see Remark A.2.1; or else

4 b L oartieddar L (SWY Z_ 9Wd'@W)
dy ( ﬁy) () >0, in particnlar 2. <9’(y)> =1 e T esvEY
(A.2.22)

respectively, i.e., g(y) is logarithmic concave, see Remark A.2.1. Then:
(i) the Jacobian matrix Jj, is positive definite near I'y, in either case;

(ii) the vector field h = {hq, ho} defined in (A.2.17), or respectively (A.2.18), satisfies
h =XP,or h =Y P for (z,y) = P € Ty, respectively, and thus h - v =0 on [y;

(iii) the function d(z,y) € C* defined near 'y either by

ly e x? Ly
d(z,y) = —y— | (z)dxr + =, or else by d(z,y) = — + —x— | (y)dy,
Ly 2 2 l,
(A.2.23)
satisfies the first two conditions (i) = (1.1.4) and (ii) = (1.1.5) of assumption (A.1)
in Section 1.

(b) The conclusion of part (a) applies, in particular, if either (b;) f(z) is convex:
f'(x) >0, a <x <b;orelse (by) f(x) is concave: f’(z) <0, a < z < b. Similarly, for
9(y)-

Proof. (a) The proof of (a) is contained in the construction of h.
(b) To prove (b), we notice that f(z) can be translated without loss of generality. Thus,
if f(z) is convex [respectively, concave] we can always assume that f(z) < 0 [respectively,
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f(z) > 0] so that in either case we have: f(z)f"(z) <0, a <z < b, and condition (A.2.21)
holds true. O

Examples. Lemma A.2.2 can be used to construct many examples, in fact even more
general than those admitted by Lemma A.2.2 itself, in the sense that (as in some of the
examples below) the slope of I'y may be infinite. These are given in Appendix B.

Second setting: The case of Theorem A.2.1. We next generalize the construction
leading to Lemma A.2.2 to the case where the boundary I'y has a U-turn (such as in the
situation covered by Theorem A.2.1, and such as in the case of examples B.1.1, B.2.2
below). In particular, 'y (locally) bounds either a convex, or a concave domain. After an
appropriate choice of axes, we are let to the situation depicted in Fig. A.7, where I'y has
nowhere horizontal tangent.

y=f1(z), f1(x)>0, f{'(z)<0

Zo

y=fa(z), f2(z)<0, f3'(x)>0

Fic. A.7: ) MAY BE ON EITHER SIDE OF I'y: ABCDE, wiTH ABC A
CONVEX CURVE AND CDFE A CONCAVE CURVE. AB AND DFE ARE FLAT.

We notice that the key assumption, beside (A.2.4), in particular convexity /concavity,
that I'g has nowhere a horizontal tangent can be rephrased as follows: there exists a point
O—in the setting of (A.2.1), (A.2.3), on the z-axis, in fact, see Fig. A.7—such that the

radial field OP is entering or exiting Q0 (locally) through Ty: 0-15 v < 0 on Iy, or else

OP v > 0 on I'y. The tangent line at z; is vertical. In the present case we define a
vector field h in €2 locally near Iy, following the geometric ideas and construction leading
to Lemma A.2.2, suitably adapted, thus establishing Theorem A.2.1.

Proof of Theorem A.2.1. Case 1. (symmetric case) If fo(z) = — f1(x), 20 < z < 1,
then the construction leading to Lemma A.2.2 can be applied, to obtain a vector field
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h = {hi, ha},
_ fi(2) _ fa(2)
filz)  fi(z)’

The vector field h in (A.2.24) is tangent to I's. We next verify that the positivity
condition of the Jacobian matrix:

hl (l‘)

Ty < x < X1, h1($1) = 0, hg(y) =1. (A.2.24)

d ( fi(z) Silz) f1'(x)

Jp >0on g < x < x, where o (f{(x)) =1 Tk >0, rog <z <,
(A.2.25)

can be extended up to x = x;. Atz = x1, we have fi(z1) =0, fi(x1) = —o0, f'(z1) = —00,

by (A.2.3). Near z1, setting x = ¢1(y) to be the inverse of y = f1(x), so that z = g:(fi(z)),

then the chain rule shows that

i) __ g) r < Ty, T near T
F1(2)]2  4@) <1, 1- (A.2.26)

From here, one can prove that

fi(@) 7 (x) - ygi(y)

lim ————~ = — lim
a—ar [ fi(z)]? =0 g1(y)
thus extending the validity of the positivity condition J, > 0 in (A.2.25) up to = = xy, as
required. To show (A.2.27), we simply use the Taylor formula with remainder in the form
of Lagrange to the functions ¢/ (y), g/ (y) where g;(0) = -+ = 0, and for some 7, and ¢,

fi(z1)
comprised between 0 and y, we have:

=1, (A.2.27)

2
/ n n y " " nr
91(y) = 91 (0)y + g1 (Uy)?é N (y) = 91(0) + 97" (¢)y- (A.2.28)
Using (A.2.28), one readily shows

1/ /!
lim y9,1 (?J) _ 9},(0)
v—0 g1(y) g7(0)

=1, (A.2.29)

and (A.2.27) (right) follows.

Case 2. (Local symmetry near the vertex point x1) If fi(x) = —fa(z) only near
x = w1, say, r1 — 6 < x < xq, for some small 6 > 0, we define h on the set z; — ¢ < x <
x1, folz) <y < fi(z), as in Case 1. Instead, for zp < z < ;1 — 8, where fi(x) # — fo(z),
we define h, consistently, as follows:

hle) = }C}Eg ha(y) =y, o <@ <=6 y > files —0); (A.2.30)
ha(z) = zg;, holy) =y, o <z <z1—0, y < fo(w1 — 0). (A.2.31)
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Then, in the strip: {zo < x <z =6, fo(r1 —06) <y < fi(x1 — 6)} we extend the original
hi(z) in (A.2.30) and (A.2.31) smoothly (as done in Example B.1.1) to obtain a global
C?-function.

v="h(z) hin (A230): b (2)=22 b (y)=y
h extended !
smoothly
h in (A.2.24)
AN
T1 T
x1—06

h in (A.2.31): hl(m):%%, ha(y)=y
2 x
Fic. A.8: DEFINITION OF h IN THE CASE OF LOCALLY SYMMETRIC I'j
NEAR z1: f1(z) = —fo(z), o1 — 6 <z < 1.

Case 3. (general case) If generally fi(x) # — fo(x), we first consider a small triangular
domain 7 with one vertex at z1: 7 ={zg <z <z, e(x —x1) <y < —e(xz — 1)} for a
small € > 0.

h1(1)=%%,h2(y)=y
1

y=f1(z)

y=—e(x—x1)
h extended smoothly S
—

h1(1)=;zgzg,h2(y)=y

Fi1G. A.9: DEFINITION OF h IN THE GENERAL CASE.

We then define h first outside the triangular domain that is for: zy < x < z7, and
either y > —e(x — x1) or else y < e(x — z7), as in (A.2.30), (A.2.31). Next, we extend
hy smoothly across the triangular domain. This is possible since hy(z1) = hao(0) = 0 at
(‘CC17 0) .
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A.3 A second approach where I'j is curved: Conformal mapping
methods, 2-dimensional case. Setting of Section 1

Assumption (A.1) in (1.1.4), (1.1.5) of Section 1. In this subsection we point out
the possibility of using conformal mapping methods to obtain, in the 2-dimensional case,
a smooth conservative vector vield h(z,y) such that the two conditions in (A.2.11) [i.e.,
assumption (A.1) of Section 1] are satisfied. The approach presented here is based on the
following well-known result.

Theorem A.3.1. [B-C, p. 294]| Suppose that a transformation
w = f(z) =u(z,y) +iv(z,y), z=x+1y (A.3.1)

is conformal on a smooth arc Cy, and let I'y be the image of Cy under the transformation:
o = f(Cp). Assume that there exists a scalar function d(u,v) € C3, h = Vd # 0, which
along 'y in the (u,v)-plane, satisfies

0d =Vd-v=h-v=0 only, (A.3.2)

ovlir,

v = unit normal vector to I'y. Then, the function defined by
8(z,y) = d(u(z,y),v(z,y)) € C°, (A.3.3)

along Cj in the (x,y)-plane, satisfies

06
—| =Vé-n=0 C A.3.4
| =ven=oma, (A3.4)
n = unit normal vector to Cj. O
v 8(z,y)=c !
- vd
f(2) v
/\ To
conformal
d(u,v)=c

Fig. A.10: CONFORMAL MAPPING FROM C; TO Iy
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Thus, the idea of the present approach is as follows:

Step 1. In the (u,v)-plane, select a curve I'y for which a scalar function d(u,v) € C?
is known to exist, such that assumption (A.1) of Section 1 is satisfied: this means that
such d(u,v) satisfies the boundary condition (A.3.2), as well as the positivity condition

duu d’ll/l)

uv d’U'l}

Ha(To) = Jn(To) = [ ] (Ty) > 0. (A.3.5)

Here, H4(I'o) is the Hessian matrix of d(u,v), evaluated on I'y, h = Vd. To this end, we
may use Sections A.1 and A.2. In particular, we may take, in the simplest case, I'y = line
segment, the case of Section A.1; or else I'y = part of a circumference as in Section A.2
(Example B.1.1), etc.

Step 2. If f(z) is any conformal mapping from Cj in the (x,y)-plane onto I'y in
the (u,v)-plane, Theorem A.3.1 already yields a function 6(z,y) which fulfills half of
assumption (A.1) of Section 1, concerning the arc Cy, namely condition (A.3.4). Therefore,
it remains to select the conformal mapping f(z) [or the arc Cy| such that the resulting
function 6(x,y) constructed via (A.3.3) satisfies also the positivity condition

611 6zy
Hs(Co) = Jvs(Co) =

zy 6’yy

on Cy. Once this is established, then, by continuity, Hs > 0 in a neighborhood of the
arc Cp as well, and §(z,y) can then be extended smoothly to all of €2 while preserving
positivity of the Hessian matrix Hs.

The positivity condition (A.3.6) may, in turn, be tested according to any of the following
well-known equivalent characterizations:

(a) the principal minors have positive determinant: 6,, > 0 and det Hs > 0 on Cy;

(b) the eigenvalues A\; and As of the matrix Hs(Cp) are both positive: Ay, Ay > 0;

(c) the determinant and the trace of the matrix Hs(Cp) are both positive:

det H5(Co) = >\1>\2 > 0; tr H5(Co) = )\1 + )\2 = [(5zm + 6yy](00) > 0. (A37)
Test (c) is the most useful here, in view of the well-known identity [B-C.1, p. 298],
8 () + byy (2, y) = [duu(1,v) + duw (u, V)] (), (A.3.8)

which can be easily derived from (A.3.3), where, moreover, [dy, + di,] > 0 on Ty, by
assumption (A.3.5) in Step 1, via test (c) applied this time to the matrix H4(I'y). Hence,
by conformality, the trace tr Hs(Cp) in (A.3.8) is always positive on Cjy, as desired in
(A.3.7). In view of this, we see then that the positivity condition (A.3.6) for the matrix
Hs(Co) holds true if and only if det Hs(C) > 0. Overall, the above argument has thus
shown the following result.

79



Theorem A.3.2. Let I'y be a curve (in the (u,v)-plane) for which assumption (A.1)
of Section 1 holds true [this means that both (A.3.2) and (A.3.5) are fulfilled]. Let f(z)
be a conformal mapping of an arc Cj in the (x,y)-plane onto I'.

Then Cj satisfies assumption (A.1) of Section 1 as well [i.e., both conditions (A.3.4)
and (A.3.6)] if and only if: det Hs(Cp) > 0.

A full exploration of the conformal mapping approach here proposed, and related Rie-
mann mapping theorem, remains to be done; in particular, it would be desirable to char-
acterize explicitly classes of conformal mappings as well as classes of arcs Cy satisfying
Theorem A.3.2 and mapping Cj onto elementary curves Iy (straight segments, portions
of circumferences, etc.) for which assumption (A.1) of Section 1 is satisfied [as in Sections
A.1 and A.2]. Here, we confine ourselves to analyzing the simplest case. Specific examples
in Appendix B.3 show positive features (Example B.3.2) as well as limitations (Example
B.3.4) of this approach over the method of Appendix A.2.

The case where [ is a straight segment. Let [y be a segment in the (u, v)-plane,
say
Io: u=ug>0; vy <v<uw. (A.3.9)

Step 1. From Section A.1, we know that the function

d(u, v) %H(u, 0) — (g, 0% = %[(u — o) + 07 (A.3.10)

satisfies assumption (A.1) of Section 1 on I'y: i.e., (A.3.2) as well as (A.3.5).

Step 2. Let f(z) asin (A.3.1) be a conformal mapping as required by Theorem A.3.2.
According to (A.3.3), we define the function 6(x,y) via (A.3.8) by

26(x,5y) = (u(z,y) — uo)? + v*(z, y). (A.3.11)

We obtain the relevant partial derivatives

O = (U — up)uy + V05 Oy = (U — up)uy + VUy; (A.3.12)
bzw = U2 + V2 + (U — Ug)Upg + VUpa; Oyy = u§ + U; + (u — up)Uyy + VUyy; (A.3.13)
Ozy = Oya = Ugly + (U — Up)Ugy + VpVy + VU, (A.3.14)

By the Cauchy-Riemann equations:
Uy = vy, u, = —v, and hence | f'(z)|* = u} + v = u +v) #0, (A.3.15)

by conformality. We next evaluate (A.3.13), (A.3.14) on a curve Cj which is mapped into
Lo, i.e., such that u(x,y) = up > 0. Then (A.3.13), (A.3.14) specialize to:
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on Cy:

= ' (2)P 4+ vvaa; by = |f'(2)]* + vy, (A.3.16)
61‘1/ = 61/1 = VVgy; (A.3.17)
babyy — 05y = |f'(2)|* = 0*[v2, + 03] (A.3.18)

Eqn. (A.3.17) is obtained from (A.3.14) after a cancellation w,u, + vyv, = 0 by the
Cauchy-Riemann equations. Moreover, Eqn. (A.3.18) is obtained after using (twice) that
v is harmonic: vy, + vyy = 0.

A specialization of the general Theorem A.3.2 to this case where Iy is given by (A.3.9)
is given next.

Corollary A.3.3. Assume that f(z) is a conformal mapping of Cy onto I'y, where T’y
is the straight segment in (A.3.9). With reference to (A.3.18), we have that the curve Cp
satisfies assumption (A.1) of Section 1 [i.e., both Eqns. (A.3.4) and (A.3.6)] if and only if

det Hs(Co) = Orabyy — 62 = | [/ (2)[" = 0* (v}, +02,) >00n Cp. O (A.3.19)

With reference to test (a) above, we remark in passing that condition (A.3.19) clearly
implies 6., > 0, see (A.3.16), via

[/ (2)* = vosa] [l (2)]* + vvsa] > v*vz, >0, (A.3.20)

where the only option possible is for both terms in the square brackets to be positive.
[lustrations are given in Appendix B.3.

Assumption (A.2) = (1.1.6) of Section 1. In preparation for our discussion on the
setting of Section 10, we now identify the point(s) ¢ on the boundary Cy, if any, where the
conservative vector field Vé constructed by (A.3.3) in Theorem A.3.1 [or its specialization
(A.3.11) of Corollary A.3.3] vanishes: Vé(c) = 0, and hence violates assumption (A.2) =
(1.1.6). This will then allow us, in the subsequent Appendix C, to remedy the situation
by falling into the setting of Section 10. To this end, we recall the following well-known
relationship [B-C.1, p. 296],

Vé(z,y)| = [Vd(u, v)] |f'(2)] (A.3.21)

between the gradients of the function §(x, y) and d(u,v) respectively [which can be readily
shown from (A.3.3) via the Cauchy-Riemann equations]. From (A.3.21) since f(z) is
conformal, we obtain

Corollary A.3.4. With f(z) a conformal mapping of the curve Cj in the (z,y)-plane
onto the curve I'y in the (u,v)-plane, we have that the boundary point z = (z,y) € Cj is
a critical point of the function 6, i.e., Vé(x,y) = 0 if and only if the point w = f(z) =
(u,v) € Ty is a critical point of the function d, i.e., Vd(u,v) = 0. O

In the setting of Section A.2 [as well as its 3-dimensional generalization B.2] and of the
subsequent Section A.4 (see Corollary A.4.2), we have that: there is at most one critical
point for d(u,v) on T.
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A.4 A third approach where I'y is convex or concave: Multidi-
mensional case. Setting of Section 1

Assumption (A.1) in (1.1.4), (1.1.5) of Section 1. The present section gives a result
which shows, in the n-dimensional space, that assumption (A.1) of Section 1 holds true,
in the case where: (i) the set € is convex (respectively, concave) near Iy, and (ii) a radial
vector field exists which is entering (respectively, exiting) through T'y.

From our inquiries within geometric circles at the conference at the University of Col-
orado, Boulder, and elsewhere, it appears that a version of the statement of Theorem A.4.1
may perhaps be known. However, we were neither given, nor were we able to find, specific
references to it. In a related context, the perturbation formula (A.4.6), (A.4.7) was com-
municated to the first author by D. Tataru, and it appears in his unpublished manuscript,
where an argument is given based on Poisson brackets to verify the pseudo-convex prop-
erty. By contrast, our direct proof and computations below verify the positivity condition
on the Hessian matrix under perturbation.

Theorem A.4.1. Consider the triple {Q, Ty, 1}, Q CR", T =T ULy, [ NI = ¢,
where the surface Iy is given explicitly, as a level set, as in (A.2.10), by the equation,

To={z=(21,...,2,) ER": () =0}, L €O, (A4.1)

with VZ # 0 on I'y (for a suitable domain in (xq,...,x,)). Assume that:
(i) the Hessian matrix H, of ¢ is non-negative definite on I'y:

61‘11‘17 e 7£$1In

H(Tp)

(To) > 0 (A.4.2)

which is a characterization for the surface z = ¢(z) to be convex [F1.1, Theorem 36, p. 114]
or having convex epigraph, or for the set {2 being a convex set near Iy [F1.1, Proposition
3.5, p. 108], so that ¢(x) < 0 for € Q near I'y. Moreover, the gradient V¢ points toward
the exterior of 2.

(ii) there exists a point zp € R", outside of §2, such that

Ody

1
T e = Vdyv = (z—x0)-v < 0 on I'y; where dy(z) = §||:v—x0||2, Vdy(z) = z—x0; Ha, = 1,
0

(A.4.3)
where v is the unit outward normal vector to I'y, thus pointing in the same direction of
Vi(x).

Alternatively, in place of (A.4.2) and (A.4.3), respectively, assume H,(I'g) < 0 and
Vdy-v > 0 on I'y with v(x) still outward in the same direction of V/(z), but now with

T — xg) making an acute or right angle with v(x), tor x € 1.
ki igh le with fi r
[The proof below works for the product (Vdp - v)H,(I'g) > 0, see (A.4.31) below.]
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Then, there exists a scalar function d(x), defined explicitly below in (A.4.6)—(A.4.7) in
a layer (collar) of T'y, such that the following two conditions are satisfied:

(a)
od

Fln, = Vd-v=0on I (A.4.4)

(b) the Hessian matrix of d, evaluated on I'y, H4(I'y), is positive definite:

dl‘ll‘u ety dl‘ll‘n
Ha(Ty) = : : (I'p) > 0; in fact, Hq(T9) > (1 —€)I. (A.4.5)
N .

Thus, assumption (A.1) of Section 1 holds true for d(z). The scalar function d(x) is defined
on 2, near 'y, as a ‘perturbation’ of dy(z) as follows:

d(z) = dy(x)+ 2(x),

(A.4.6)
od, 1
= —(— |ltk+ ) \? k=-— A4.7
2(x) ( 5 ) + AL7, ik ( )
. . . ad . 8d0
where A is a sufficiently large parameter, while (8_1/0) denotes an extension of 2 ) e
from I'g : ¢ =0 to a layer (collar) of I'y within 2, defined by:
d 14 1
near [y : 0 v (A.4.8)

=Vd-v=Vd- (kV{), wherev = ik k

v )

Remark A.4.1. Figure A.10 illustrates two typical cases covered under Theorem
A.4.1. On the other hand, the assumptions of Theorem A.4.1 exclude the case where )
is an annulus, say 1 < |lz|| < 2, with I'y the internal sphere ||z|| = 1, and =z the origin.

O

FIG. A.10: THEOREM A.4.1: CASE 1: £ =22 +y? — 1; He(Ty) > 0;
(r — o) - v(z) <0; CASE 2: £=1—12%—y* He(Ty) <0; (x —x0) - v(x) >0
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Proof. (a) We first establish (A.4.4). Direct computations show that:

on I'y:
W = %g—f = kVL-kVE=1, (A.4.9)
(%)

v 0

since, on I'y : v = kV/{ (by (A.4.8); and ¢ = 0. Then, returning to (A.4.6), (A.4.7), we
obtain, by virtue of (A.4.9), (A.4.10):

od o 8d0 0z _8d0 82d0 8d0 6/)/'
on Lo avlr, 81/+8y}0_5_(81/2>/w ov 81/ (A-4.11)

Clody 0dy]
-5 auL o, (A.4.12)

and (A.4.4) is established.
(ii) We now prove (A.4.5). First, for convenience, set

(k)
v

near I'g: p = — % k, so that, by (A.4.7), z = pf + \* near I,. (A.4.13)
v
We shall now use the diadatic product notation
a1b1 a1b2 s albn
ai
AB=| @ |[b1,....by) = asby agby -+ azbn | (A.4.14)
n anby apbs -+ a,b,

Step 1. Proposition A.4.2. In the notation of (A.4.14), and with reference to z in
(A.4.13), the Hessian matrix H, of z is given by

(a)
near Ty : H, = pHy + (H, + VL ® Vp+ Vp @ VO + 2MH, + 2AVE R Vi (A.4.15)

(b)
onTo:H, = pHe+ VLR Vp+ Vp® VI + 2AVI® VL. (A.4.16)

Proof of Proposition A.4.2. In the notation of (A.4.14), we can rewrite the Hessian
matrix H, of z as follows:

_ i -
(93:1 9 9 Rr121y+ -+ RT1Zn
z z . .
i Zenx1y - RnTn
| Oz,
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From (A.4.13) we have

Vz = V(pl+ M?) = pVIL+(Np+ 2\MVY, (A.4.18)
and hence, using (A.4.18) in (A.4.17), we find
H, =V ® [(Vp+pVI+2)MVI). (A.4.19)

Next, we verify that
V® (UVp) =VIL® Vp+lH,, (A.4.20)

and hence that

V& (pVl) =VpR VIi+pHy; V& (V) = VIR VI + IH,. (A.4.21)

Then (A.4.20), (A.4.21), used in (A.4.19), yield (A.4.15), from which (A.4.16) follows
upon setting £ = 0 on I'y. We now verify (A.4.20): we compute

i Uy, Doy + Doy - - - s Loy Dy + UDya,
81‘1
0
| Bz, | ConDoy +EPrrzns -+ s bon Dy Py
(A.4.22)
0,
= [prly e ,p:c,,] + EHp, (A423)
L gz'n,
and (A.4.20) follows from (A.4.23). Proposition A.4.2 is proved. 0

Step 2. Lemma A.4.3. For z € R”, and with reference to (A.4.16), we have
on Tg: (Hox,2)gn = p(Hew, 2) g + 2(VE - 2)(Vp - x) + 20V - 2)%, (A.4.24)
where (, )gn is the inner product in R”, and “” denotes the usual dot product.
Proof. We first note that for any two vectors A and B in R", we have
((A® B)r,z)gn = (A-2)(B - z), VaxeR" (A.4.25)

This can be readily verified from the definition (A.4.14). Thus, specializing (A.4.25), we
obtain

(Vl@ Vp)z,x)pn = (Vp@ Vl)z,2)pn = (VL -2)(Vp - 2) (A.4.26)
(VL@ VO)x,x)pn = (VL - x)2 (A.4.27)
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Then, using (A.4.26), (A.4.27) in (A.4.16) yields (A.4.24), as desired. O

Step 3. Proposition A.4.4. Assume hypotheses (A.4.2) and (A.4.3) on I'y: % <0
and Hg > 0 on I'y (hence p > 0 on I'y by (A.4.13) since k > 0 by (A.4.8)). Then, with
reference to (A.4.28), for any ¢, > 0, there exists A\, > 0, in fact A\, = ﬁ, such that, for
all A > A, and all x € R", we have:

1
onTo: (Huz,z)m > ol [Vp| P2l + [%— —} (Ve > ez’

€0

€ = €omax | Vpll]. (A.4.28)
0

Proof. We preliminarly have

2(VL-2)(Vp-z) > —e(Vp-2)* — ;(Vﬁ -x)?, (A.4.29)
and hence
2(VL-2)(Vp-z) +2X(VL-z)* > {m - H (VL) — eo(Vp - 1)°. (A.4.30)

Returning to (A.4.24) on I'g, where p > 0 and H, > 0 on Iy, or else p < 0 and H, < 0,
respectively; or more generally, pH, > 0, by assumption, we finally obtain via (A.4.30),

1
onTy: (H.w,2)pn > —eo(Vp-2)* + [2)\ — E—} (V- x)? (A.4.31)
0

V

—eoll [Vpl [I*2])* = —ell], (A.4.32)

by the Schwarz inequality, for all A > ﬁ Thus, (A.4.32) establishes (A.4.28), as desired.
O

Step 4. We return to (A.4.6) and obtain that, under the given assumptions (A.4.2),
(A.4.3), Proposition A.4.4 holds true, and then (A.4.28) yields, since Hq, = I (identity):

onl'g:Hg=Hay +H.,>1—e€l. (A.4.33)
Then, (A.4.32) proves property (ii) in (A.4.5). Theorem A.4.1 is established. O
Assumption (A.2) = (1.1.6) of Section 1. In preparation for our discussion on

the setting of Section 10, we now identify the point(s) on the boundary I'y, if any, where
the conservative vector field Vd constructed in Theorem A.4.1 violates assumption (A.2)
= (1.1.6). This will then allow us, in the subsequent Appendix C, to remedy the situation
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by devising a strategy [based on splitting 2 as the union of two overlapping subdomains
Qy, Qo Q = QO Uy and the employment of two vector fields], which will then fit the
setting of Section 10.

Corollary A.4.2. Under the assumptions of Theorem A.4.1, the scalar function d(x)
there constructed has the following third property: its gradient Vd|r,, once restricted on
the boundary I'y, vanishes at the unique point x € T'y, if such exists on I'y, where the
vector field Vdo(z) = = — o (see (A.4.2)) is orthogonal to I'g. In symbols: for = € I'y,

Vd(z) = 0 <= (x — zo) parallel to normal v(z) at = € Iy,
i.e., orthogonal to I'y at z, (A.4.34)
and such point x € I’y is unique, if it exists on I'y.

Proof. The proof is a direct computation, starting from the definition of the function
d(z) in (A.4.6), (A.4.7). The gradient Vd of d is:

Vd = Vdy+ Vz=Vdy— <%> kYL — (Y <— % k) —2MVL. (A.4.35)

Its restriction on I'y, where ¢ = 0, is then, recalling k from (A.4.7):

ad \%4
on Po : th’*o = Vd0|1"0 - a—yoh"ol/, (W) = L. (A436)
To

Thus, if z € T'y, since Vdy(z) = x — o (see (A.4.2)), we obtain
for x € Ty : Vd(z) = (x — x0) — [(x — z0) - v(z)|v(x). (A.4.37)

Thus, for x € I'y, we obtain Vd(z) = 0 in (A.4.36) if and only if (A.4.34) holds true. Such
point z € I'g in (A.4.34) is unique, if it exists on 'y, since [y is convex (concave).

In fact, if 'y is described, say, by the level set ¢(x,y) = f(x) —y = 0, with f(z) a
convex function defined on a convex set K of R"™!, choose the axes so that: the origin
0 is the point f(0) = 0; f(xz) > 0; on Q near I'y we have {(z,y) = f(z) —y < 0. Let

—

Yo ¢ (0,y0), with yo < 0, be a point outside of Q such that Y5O is orthogonal to Iy.
Pick any other point P : (z, f(z)) on I'y, with normal 7 = {V f(z),—1}. We claim that

YO‘JB: {z, f(x)—yo} cannot be orthogonal to I'y; i.e., that Yy P cannot be parallel to 2. This

is so since the last coordinates, —1 and [f(x) — yo|, of 7 and Yy P have opposite sign, while
Vf(z)-x > f(x) > 0,s ince, by convexity of f(z), we have: f(0)— f(z) > Vf(z)-(0—2x)
[F1.1, Prop. 3.6a, p. 111]. O
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Appendix B:
Illustrations satisfying the setting of Section 1

B.1 Illustrations of approach of Section A.2

In this subsection, we provide illustrations of the approach of Section A.2 and its extension
to the 3-dimensional case.

Two-dimensional illustrations. Example B.1.1. Let () be the two-dimensional
ellipsoidal region: i—;—i— Z—; < 1in the (z,y)-plane, surrounded by the ellipse I" : z—z—l— Z—; =1.
Define

Fo={(z,y) €T : 0<xy <ax<z9<a}; 1 =T\Ty. (B.1.1)

Yy

Region 1 Region IT

Region II1

Fic. B.1: UNCONTROLLED PART ['y AND CONTROLLED PART [I';, 0 <
T < Toa<a
Here, x; and xy are fixed points, arbitrarily close to 0 and a, respectively. It is as-
sumption (A.2) = (1.1.6) of Section 1 that imposes the constraint zs < a: indeed, the
vector field h constructed below in (B.1.5) vanishes at the point {x = a,y = 0}, thus
violating (A.2) =(1.1.6) of Section 1. It is then necessary (under the present or similar
constructions) based on the one-vector setting of Section 1 to ‘cut off” an arbitrarily small
portion of the boundary I'" around the point {a,0} to assign to I'j, in order to achieve
condition (A.2) = (1.1.6): see (B.1.9) below. Thus, Iy is still ‘almost’ 3 of the boundary
I', in line with known control theoretic results for second-order hyperbolic equations, but
I’y must miss a small arc around (a,0) in our present construction, based only on Section
1.
In Section C below we shall refine the present analysis by having I'g connected and
almost % of the boundary I'; i.e., the present portion I'{ will be dispensed with. Here we
have, recalling (A.2.12).

0, 2 @ a2 a2
_yZ_?;_; ﬁ_l _x—;,0§x§a7 (x,y) € Iy. (B.1.2)

This yields the expression h{’(x) of the vector field h in (B.1.6b) below, where the addi-
tional assumption (A.2) = (1.1.6) of Section 1 [not guaranteed by Lemma A.2.1] forces the
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constraint: zs < a; thus, the need to extend smoothly and suitably h{’(z). This is done
below.

Lemma B.1.1. The following function d(z,y) € C®

( 2
di(z) + %, —a<z<axg; (B.1.3a)
2
dz,y) =1 d'(z) + % 0<a << <a; (B.1.3b)
%
d'(z) + 5 o <z < a, (B.1.3¢)
\
satisfies assumption (A.1) of Section 1, where
( aQ(x—x1)3 CL2 ($—$1)2
d’ = - 7 14 — | ==t
@) - ( " w%) 2
a? x?
+ (xl— —>x+1— L@z, —-1<z<ag; (B.1.4a)
I 2
72
di(z) = 5 = a’Inz 1 <z < o (B.1.4b)
2 RV
| d'T(z) = % —a’lnx — M 1y <z <a, (B.1.4c)

for 0 < e sufficiently small, say 3e(a — 22)? < 1, as to obtain (B.1.8¢c) below.

Proof. We use the ideas leading to Lemma A.2.1 to construct d(z,y), starting from
(B.1.2) to obtain the component h{(x) below and then extend smoothly. Here we verify
the requirements of assumptions (A.1) and (A.2):

(a) d(x,y) € C3: using also the formulas below in (B.1.6), (B.1.8), one checks directly
that

d'(z1) = d"(z1); (d")(z1) = (d") (z1); (d)"(21) = (d"")"(22); d"(22) = d""(2);
(dH)'(:L‘Q) — (dHI)/(l‘g); (dII)//($2) —_ (dIH)"((L‘g).

(b) The gradient h(z,y) = (hy1, he) = Vd(z,y) is given by

hi(z) —a<zxz<m (B.1.5a)
hi(z) =< hl(z) z1<z<ze;  holy) =y; (B.1.5b)
hi''(z) ze<z<a (B.1.5¢)



hi(z) = — x_i'(x — 1)
a? a?
+ (1—|— —2) (x—x1)+21— — <0, —a<z<uzg; (B.1.6a)
2
hi'(z) = - % <0 21 <z < a9 (B.1.6b)
2
| M'(@) = z- % —e(z—22)’ <0 7 <z <a (B.1.6¢)
The Jacobian matrix Jj, of h is given by
hi(z) 0 _
In(z,y) = = positive definite on €2, (B.1.7)
0 1
where
( 2a® a?
(M)(@) = ——(@—a)+ (1 + P) >0, —a<z<wz; (B.l.8a)
1 1
2
@) =< (y(z) = 1+ % >0, v <1<y  (B.LSH)
2
(R (z) = 1+ % ~3e(z — 12)? > 0, 2 <1 <a, (B.1.8¢)
\

for 3e(a — z2)* < 3, as desired.
(c) h-v=0on [y indeed, for (z,y) € T, see (B.1.2), we have that hf(x) in (B.1.6b)
is the active component and then (:v — ‘;—2,y> . (;—2, b%) = i—z -1+ ‘Z—z = 1, as required.
(d) For all (z,y) € 2, we have by (B.1.6),
(2, y)| > [P (z)] > p > 0. (B.1.9)
[Notice that each term in (B.1.6a-b-¢) is non-positive on its specific range.]

Remark B.1.1. As pointed out at the outset, the first two requirements (i) = (1.1.4)
and (ii) = (1.1.5) of assumption (A.1) are satisfied also by taking z» = a in which case the
region III vanishes and I'j is connected.

Remark B.1.2. We remark explicitly that, in the present example, we have h-v > 0 on
'={(z,y) €T1: —a<z<x},butnoton 'l =T\ T} ={(z,y) €1 : 22 <z < a}.
Indeed, condition h - v > 0 on all of I'y and condition (A.2) = (1.1.6) appear to be
incompatible. O

Example B.1.2. (non-convex 2) We now let € be a region exterior to the critical
part of the boundary I'y U I'] of Example B.1.1: see Fig. B.2.
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Fic. B.2: EXAMPLE B.1.2

This case is actually simpler than Example B.1.1: here the counterpart of Lemma B.1.1
is that: the function d(z,y) € C?, with gradient Vd = h = (hy, hs):

d"(z) + hi(z) 0<a <z<z<gq (B.1.10a)

d(z,y) =

v
2
, 5 hlz) =
¥

dHI(:U) + h{H(x) Ty <z < 3. (B.l.lOb)
2

ha(y) = y, with d’'(x), d'""'(x) defined by (B.1.4b-c), hence hi’(x), hi{''(x) defined by
(B.1.6b-c), except that now 3e(zs — 22)? < 1, satisfies assumption (A.1) of Section 1.
Again, the first two requirements (i) = (1.1.4) and (ii) = (1.1.5) of assumption (A.1) are
fulfilled also with xo = a, in which case h;(z) = x — ‘;—2, O0<z <z<uzx3 h(y) =y R

does the job. O

Example B.1.3. (parabola) Here {(z,y) = x — 1 +4* = 0 and then —yﬁ—z = 2% =
2z — 2, (z,y) € I'y. Then
hi(z) =2x —2, ha(y) =y (B.1.11)

provides the required vector field h(x,y), h|(xz) = 2 > 0, which satisfies assumption (A.1)
everywhere within, or without the parabolic sector. However, to satisfy also assumption
(A.2) we must exclude the vertex point {x = 1,y = 0}, as in Example B.1.1.

Example B.1.4. (hyperbola) Here £(x,y) = 22 —3?>—k? = 0 and then —y ﬁ—z =x— %,

(z,y) € I'o. Then
2

hi(z) =z — %, holy) =y, |x|>€e>0 (B.1.12)

provides the required vector field h(z, y), h;(x) = 1+k?/x* > 0, which satisifies assumption
(A.1) everywhere within, or without, the hyperbolic sector, away from the y-axis.
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Fic. B.3: EXAMPLES B.1.3 (PARABOLA) AND B.1.4 (HYPERBOLA)

Example B.1.5. (logarithm) Here f(z) = Inz, so that

_ f@)
F(a)

provides the required vector field, however, under the constraint z > é, whereby then
hi(z) = 14 Inx > 0, as required. We note, however, that if the same curve is viewed
as y = f(x) = e, then the test of Lemma A.2.2 [which requires a suitable choice of the
coordinate axes| fails in x [but the test of Lemma A.2.2 works in y, as seen from the
analysis above for z = Iny]|, as now the vector {1,y}, J’f,((?) = 1, suggested by Lemma A.2.2
does not satisfy the positivity condition of its Jacobian matrix. However, that test can
be easily modified to yield a positive conclusion. For (z,y) € 'y, described by y = e”, we
take the tangential vector h = {e” - 1,e” - y} [instead of {1,y}], which we then extend to
all (z,y), y > 0, as h = {e”,y*}. Then this vector field h satisfies assumption (A.1) of
Section 1 for the exponential curve y = e on any finite interval in x.

hi(z)

=zlnz, ho(y)=y (B.1.13)

o |=

I
|
|
|
|
,1JI
|

FiG. B.4: EXAMPLE B.1.5 (LOGARITHM) AND B.1.6 (CUBIC)

Thus, h(z) satisfies assumption (A.1) for z > 1.
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Example B.1.6. (cubic) Here f(z) = z® so that

flz) 1
h = == ho(y) = B.1.14
1(‘7:) f’(l‘) 3 z, 2<y) Yy ( )
provides the required vector field h(z,y), as hi(z) = 3 >0

Example B.1.7. (sine and cosine) Here f(z) = sinz, —§ < z < §; or else f(z) =
cosx, 0 < x < m. Then the vector field

f(z) tanzx
hi(z) = = h = B.1.15
1( ) f’(.’L’) _cotz Q(y) Y ( )
provides the required vector field so that hj(z) = 1/cos’z, or else h}(z) = 1/sin’z,

respectively, are positive in the indicated intervals

y1 To Y

N

%

F1c. B.5: EXAMPLE B.1.7 (SINE AND COSINE)

B.2 Three-dimensional analysis: Extension of Section A.2

In this subsection we extend the analysis of Section A.2 from the 2-dimensional to the
3-dimensional case. Let I'y be a 3-dimensional surface described as a level set:

Lo ={(z,y,2) € R* : {(z,y,2) =0}, L€, (B.2.1)

with |V/] # 0 on I'y. Let P = (z,y,2) € ['y. Assume that I'y displays symmetry with
respect to the z-axis [or else to the y-axis; or else to the z-axis, respectively]. Then, we seek
the point X [or else the point Y; or else the point Z, respectively] of intersection between
the tangent plane at P and the z-axis [or else the y-axis; or else the z-axis, respectively].
We then consider the vector fields

= 14 l,
XP = {—%,y,z}, P = (z,y,2) € Iy, £, #0; (B.2.2)
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— l, l,

YP = {x, — %,z} , P=(z,y,2) € Lo, £, #0; (B.2.3)
Yy

— ly 14

ZP::{@%—ﬂiﬂﬂ},}%4@%@€Fm&#0, (B.2.4)

respectively. Thus, in each case, the corresponding vector X P, Y P, ZP is tangent to I’y
at P.

In many cases, at least one of the following conditions is satisfied by ¢(z,y, 2):

for (z,y,z) € [y, then

[ cither the term (— y%ﬂ) (x) is only a function of x; ¢, # 0;

T

or else the term (— %) (y) is only a function of y; £, # 0; (B.2.5)

Y

L;

or else the term (— M) (z) is only a function of z; ¢, # 0.
\

Then, in either case, we extend the boundary vectors )(_]5, ﬁ, ZP in (B.2.2)-(B.2.4)
to all points (z,y, z) near Iy as follows: define a vector field h(z,y, z) = {h1, ha, h3}, where

hmmz(—%g?&)@%hmn:%hdaza (B.2.6)
or else

o) = ) = (= 255 ) 0, o) = 5 (B.2.7
or else

fmm:xﬂmwzymm@:<—%3?@)@% (B.2.8)

respectively. An extension of Lemma A.2.2 is then:

Lemma B.2.1. Let ¢ € C? and assume hypothesis (B.2.5) with either ¢, # 0, or
¢, # 0, or £, # 0, respectively, unless a cancellation occurs. Assume, moreover, that on
Iy, either

d yly + 20, ‘ d xly + 20, ‘
% |:— T:| (CC) > 0, or dy |:— gy :| (y) > O,

J 0+ ol (B.2.9)
or — [ 2 } (z) >0,

respectively. Then:
(i) the Jacobian matrix Jj, of the vector field h defined in (B.2.6)—(B.2.8), respectively,
is positive definite on, and near, I'¢;
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(ii) the vector field h = {hy, ho, h3} defined in (B.2.6)—(B.2.8) respectively, satisfies

— — —

h=XP,or h=YP,or h=ZP for P € Iy, respectively, and thus h-v =0 on I'y;
(iii) the vector field h(z,y, 2) is conservative, h = Vd, where the function d(z,y, z) € ¢3
defined near I'y by

( yly, + 2z, T )
/ (— yT) (x)dx + ) + 5 for h in (B.2.6); (B.2.10)
2 2
d(z,y,2) = % +/ <— M) (y)dy + % for b in (B.2.7); (B.2.11)
2 2
% + % —i—/ <— M) (2)dz, for hin (B.2.8); (B.2.12)

satisfies the first two conditions (i) = (1.1.4) and (ii) = (1.1.5) of assumption (A.1) of
Section 1. O

Illustrations. Example B.2.1. (ellipsoid) Here I'y : {(z,y, 2) = T4z =0,
Then, for (z,y, z) € Iy, we find
yly+ 20, a® <y2 22) a?

- - +Z )=2—- —, 0<z<a, (B.2.13)

b2 2 x

a function only of z, and the first condition in (B.2.5) is satisfied. Then, according to
Lemma B.2.1,

hi(z) =z — o ho(y) =y, hs(z)=2z2, Jp= 1 (B.2.14)

provides the required vector field, b (x) = 1—1—:—3 > 0, 0 < z < a, which satisfies assumption
(A.1) of Section 1, for any 0 < p < z < a. An analysis as in Example B.1.1 could be carried
out, extending the corresponding functionn d(x,y, z) to the entire ellipsoidal region.

Example B.2.2. (elliptic paraboloid) Here ¢(z,y, z) = i—i + ‘Z—i — £ = 0 with symme-
try with respect to the z-axis. Accordingly, we test the third condition in (B.2.5). For

(x,y,z2) € Ty, we find
xly + yl 2 qy?

a function only of z. Thus, the first condition of (B.2.5) is satisfied. Then, according to
Lemma B.2.1,

h(z) =z, ho(y) =y, hs(z)=2z J,= 1 (B.2.16)
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provides the required vector field, h4(z) = 2 > 0, which satisfies assumption (A.1) of
Section 1.

Example B.2.3. (hyperbolic paraboloid) Here ¢(z,y,2) = 2—; — ‘Z—j — 2 =0, with

symmetry with respect to the z-axis. Accordingly, we test the third condition in (B.2.5).
For (z,y,2) € T'y, we find

xly + yb 2 P

a function only of z. Thus, the same definition as in (B.2.16) provides the required vector
field, which satisfies assumption (A.1) of Section 1.

2

Example B.2.4. (hyperboloid of one sheet) Here, ¢(x,y, z) = i—z + g—j -5 -1=0,
with symmetry with respect to the z-axis. Accordingly,
aly +yly (:v2 y2> c?

2, z

a function only of z. The third condition of (B.2.5) is satisfied. Then, according to Lemma
B.2.1,

1
2
hi(x) =z, ha(y) =y, hs(z) =2+ %; Jp = 1 (B.2.19)

2
C
1-5

provides the required vector field, which satisfies assumption (A.1) of Section 1, for |z| >
¢

2

Example B.2.5. (hyperboloid of two sheets) Here {(z,y,2) = % + g—; -5 4+1=0,
with symmetry with respect to the z-axis. Accordingly,

em g 2 2 2 2
L +yy:C_(w_+y>:Z_C_ 0< 2 (B.2.20)

l, z \a® b2 z’

a function only of z. Thus, the third condition of (B.2.5) is satisfied. Then, according to
Lemma B.2.1,

1
2
C
hi(z) =z, hay) =y, ha(z)=2——; Jp= 1 (B.2.21)
‘ 1+5

provides the required vector field, which satisfies assumption (A.1) of Section 1, for z > 0.
O
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z c<0

Fic. B.6: EXAMPLES B.2.3 (HYPERBOLIC PARABOLOID), B.2.4 (HYPER-
BOLOID OF ONE SHEET), B.2.5 (HYPERBOLOID OF TWO SHEETS)

B.3 Illustrations of the conformal mapping approach of Section A.3

In this subsection we provide a few illustrations of the conformal mapping approach pre-
sented in Section A.3 to obtain 2-dimensional curves C, where assumption (A.1) of Section
1 holds true.

Example B.3.1. We take the conformal mapping
f()=2"=u+iv, u(z,y)=2"-y% wv(z,y) =2z, (B.3.1)
which maps the hyperbola Cp:

Cy:x® —y* =ug, up> 0 onto the line I'y: u = uy > 0. (B.3.2)

We test condition (A.3.19) of Corollary A.3.3, with u, = 2z, v, = 2y, Uy =0, vy = 2,
on Cy:
(i)
1f'(2)]* = v*(vl, +07) = (4" + 97 — 4oy -4 = 16(2" + ¢* + 162%°)
= 16[(uo + ¥*)* + y* + 16(uo + y*)y* > 0. (B.3.3)

Thus, the assumption of Corollary A.3.3 is satisfied. Then, Corollary A.3.3 yields the
following: any finite portion of the hyperbola 2% — y* = ug, ug > 0 satisfies assumption

97



(A.1) of Section 1, thus re-proving by conformal mapping methods the result of Example
B.1.4. More precisely, the function

6(z,y) = %[(u(w, y) — ug)® + v (x,y)] = %[( 2y —ug)? + 4277 (B.3.4)

[see (A.3.11) plus (B.3.1)] satisfies assumption (A.1) of Section 1 for any portion Cj of the
hyperbola, with corresponding vector field h = Vd given by (see (A.3.12) in a different
notation 6(x,y)]

hi = 6, = (u—up)ug +vv, = 2(z3 + 22y® — 2y — upx);
{ hy = 6,= Eu — uo))uy + v, = 2((2x2y — 2y +y?). | (B:35)
Example B.3.2. Here we take the conformal mapping
flz) =€ =u+iv, u(z,y)=e"cosy, v(z,y)=e"siny, (B.3.6)
which maps the curve
Co: e’ cosy = ug # 0 onto the line I'g : u = uy. (B.3.7)

We test condition (A.3.19) of Corollary A.3.3, with u, = u, v, = Vg = v, Uy =
e* cosy, on Cy:
(i)

I/ (2)|* = v* (Vg + vgy) = ¥ — ¥ sin® y(e*)

= McosPy =e*ud >0, wuy#O0. (B.3.8)

Thus, the assumption of Corollary A.3.3 is satisfied. Then, Corollary A.3.3 yields the
following: any finite portion of the curve Cy : €* cosy = ug, or x = In(ug/ cosy) satisfies
assumption (A.1) of Section 1, with function (see (A.3.11)),

1 1

o(z,y) = 5[(u(:c, y) — up)? + v (z,y)] = 5(62m — 2upe” cosy + ul), (B.3.9)
and vector field h = V4§ given by (see (A.3.12)),
hi = 6, = €** —uge®cosy; hy = 0y = upe” siny. (B.3.10)

Remark B.3.1. By contrast, if we apply the test of Lemma A.2.2 to the curve
Co: l(z,y) =e"cosy —uy =0, or x = —Incosy = g(y) for say, up = 1, we find a worse
conclusion. Indeed, we find that on the curve Cj, where cosy = e™*, we have

i (1)

o= 1—2—e? =1+In(cosy) — cos’y, (B.3.11)
0
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and thus

>0 for 0 < |yl < ys;
d ( gly) lyl <wm (B.3.12)
dy

gW /)l | <0 fory <yl < g (B.3.13)

for some point y;, where e = cosy; < %, x1 = 0.79681 .. ..
This is a result less precise than the one obtained above by conformal mapping.

Fic. B.7: PLOT OF e“cosy =1

Example B.3.3. Again we take the conformal mapping f(z) = €* in (B.3.7), which
this time we view as a mapping from the family of vertical lines in the (z,y)-plane onto
the family of circles centered at the origin in the (u,v)-plane:

Co:x =29 onto Ty : u? + v? = %0, (B.3.14)

Specialize to xg = 0, so that for the unit circle Iy we make take, according to Example
B.1.1, Eqn. (B.1.2),

1 1
d(u,v) = E(u2 +v*) —Inu, Vd=h= {u — E’U} (B.3.15)

to satisfy assumption (A.1) of Section 1, for 0 < u < 1. Then, according to Section A.3,
Theorem A.3.2, we take

1 1
6(£7 y) = §[UQ($7 y) + U2($7 y)] - lnu(x, y) = 5621 - ln(ez COs y)? (B316)
whose gradient vector field is then
h=V6={6:06,} ={e® —1,tany}. (B.3.17)
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On Cj, where x = 0, this vector field satisfies (in agreement with Example B.1.1 and
Theorem A.3.2, the orthogonality condition

on Cy : hlg, = {0, tany}, so that k- v =0 on C. (B.3.18)

Moreover, the Hessian matrix Hs is (since 8., = 2€2*, 8,y = 0, 6, = 1/ cos? y,

2e%® 0 2 0
H,s(Co) = 1 (Co) = 1 > 0, (B319)
cos?y cos?y

provided —% < y < % in which case Iy is arbitrarily closed to a half-circumference (in
agreement with Example B.1.1, while Cj is arbitrarily close to the straight segment: x = 0,
I < y < T

2 2

Example B.3.4. Here, we take the conformal mapping

1 . T —y

which maps the unit circle Cy

(B.3.21)

DN | —

Cy: (z—1)*4y* =1 onto the straight line I'y : v =

We test condition (A.3.19) of Corollary A.3.3 and after straightforward computations we
obtain that on Cjy:

3
1F ()] = vl +02, >0 iff 162'(2z —3) >0, ie, iffz> 3 (B.3.22)

Thus, only the portion of the circle Cy : (z,y) € Cp with 3 < < 2 satisfies the test.
Thus, in this case, this mapping f(z) does not provide an optimal result. As we know,
“the optimal case” is when Cj is arbitrarily close to half-circle, which would require z > 1
on Cp. Thus, in this example, we may take in the (x,y)-plane any finite segment u = %,

vg < v < vy, while in the (u,v)-plane the arc Cy is limited by % <x<2.

Appendix C:
Illustrations of the setting of Section 10: Assumptions
(A.1i) and (A.2i)

Sections A.1 through B.2 have provided large classes of triples {€, 'y, I'; } where assump-
tion (A.1) of Section 1 is satisfied. Throughout those illustrations, we have also noted,
however, that the additional requirement of fulfilling also assumption (A.2) = (1.1.6) of
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Section 1 imposes geometrical limitations on the allowed triples {€, g, 'y}, which are
covered by Theorem 2.1.1, under hypotheses (A.1) and (A.2). The setting of Section 10
is meant to relax these geometrical restrictions, by mitigating the impact of assumption
(A.2).

The multi-faced treatment of the entire Appendix (A, B, C) then culminates with the
following result, which shows that the setting of Section 10 does apply to large classes of
triples {Q, I'p, I'1 }, constructed by various techniques.

Theorem C.1. Let {Q,T, "1} be given with [y UT'; =T, ToNT'; = (). Assume that it
satisfies: (i) either the setting of Sections A.1 and A.2 (or its 3-dimensional generalization
in Section B.2); in particular, Theorem A.2.1, Lemma A.2.2, or Lemma B.2.1; (ii) or else
the setting of Section A.4, in particular, Theorem A.4.1; (iii) or else the setting of Section
A.3, in particular, Theorem A.3.2. Thus, in all these cases there exists (constructively)
a scalar function d € C? (called é in Section A.3) such that the conservative vector field
h = Vd satisfies assumption (A.1) [i.e., both conditions (1.1.4) and (1.1.5)] of Section 1.
Moreover, in all these cases, there is at most one point P € Iy (called Cj in Section A.3)
such that: h(P) = Vd(P) = 0; so that assumption (A.2) = (1.1.6) of Section 1 fails.

Then, it is possible to split 2 as the union of two overlapping subsets 2,2 as in
(10.1.1) of Section 10, such that both assumptions (A.1i) [i.e., both conditions (10.1.2)
and (10.1.3)] and (A.2i) = (10.1.4) hold true.

Proof. The case where T is flat. This case was already treated (by the simplest
method) and illustrated in Section A.1, thus providing a special but important subclass
of triples {Q, Ty, "1} where the setting of Section 10 is fulfilled, and thus Theorem 10.1.1
holds true.

Another method which employs the technique of Section A.4 is illustrated in Fig. C.1.

To

/critical point for xi

Q F-———————————~- 1

ﬂ _____________ mo
o X\_ _________ -
\ critical point for xq

critical point for xo

Fic. C.1: DECOMPOSITION OF {2 WITH FLAT I'y, AS REQUIRED BY THE
SETTING OF SECTION 10, ACCORDING TO THE CONSTRUCTION OF TWO
VECTOR FIELDS PROVIDED BY THE METHOD OF SECTION A .4.
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The case where I'y has a U-turn with one critical point for d(z) on I'; (ac-
cording to Section A.2 paragraph below (A.2.11); Corollary A.3.4; Corollary
A.4.2). We begin by illustrating the idea in the case where T'y is arbitrarily close to a
half-circumference.

The case where I'j is arbitrarily close to a half-circumference. We now show
how it is possible to take the unobserved (or uncontrolled) portion I'y of the boundary
of the unit disk to be arbitrarily close to a half-circumference. To this end, we need the
setting of Section 10. This analysis, therefore, improves upon that of Example B.1.1, which
was only based on the setting of Section 1, whereby the sub-boundary I'y obtained there
was non-connected.

Sections A.2 and A.4 have provided two distinct geometrically intrinsic ways of con-
structing conservative vector fields h = Vd, which both satisfy Assumption (A.1) of Section
1, but have a critical point for d on the mid-point of I'y (point D in Fig C.3).

Method of Section A.2. With reference to Fig. C.2, let 2; be the circular sector
OAB, and let €2y be the circular sector OA’B’. Thus, €25 is the mirror image of Q; with
respect to the z-axis, and we shall then confine on the description of ;. The axis OA
makes an angle € with the positive y-axis. The positive n-axis makes an angle $ with the
positive y-axis, and an angle § with the positive {-axis. The axis OB makes an angle 7
with the z-axis and an angle 7 with the positive {-axis. We have that € = ; U Qy, the
circular sector OAB’'BA’, which is arbitrarily close to the half-disk, while Q; N Qy # ), as
required. We claim that we can take I'y = arc AB’BA’ as the unobserved or uncontrolled
portion of the boundary. We now verify assumptions (A.1i) in (10.1.2), (10.1.3) and (A.2i)

= (10.14),i=1,2.

Regarding ;. Given a point P = (£,n) [with respect to the orthogonal system (£, )]
on the arc AB (= boundary of §2;), by the analysis of Section A.2 and its specialization
in Example B.1.1, we begin by taking the boundary vector field hy = {hy1,hi2} =XP,
where X is the point of intersection of the tangent line to I'y at P with the &-axis. Next,
as in Section A.2, Eqn. (A.2.17), we extend h; to all of the circular sector OAN containing
Qy, as follows: let P' = (&,n') [with respect to the orthogonal system (&,7)] be in ;.
Then, take hy = {h1 1, h12}, where [still with respect to the (£,7) axes]:

{ hip = horizontal component X F' of )(_]5;

hi, = vertical component F'P' =1 .

Then, as seen in Section A.2, this vector field hq, which is defined geometrically, satisfies

assumption (A.1;) in (10.1.2), (10.1.3). Moreover, such a vector field X P= h; vanishes
only at the boundary point N of intersection between the circumference and the &-axis;
which is not a point in €;. Thus, for all P € arc AB = boundary of €2, the vector field
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XP has a length which is bounded away from zero. Thus, h; satisfies assumption (A.2;)
= (10.1.4), as well.

The analysis for 25 is symmetric. In conclusion: Theorem C.1 and hence Theorem
10.1.1 hold true with I'o = arc AB'BA’ arbitrarily close to the half-circumference.

F1g. C.2: DECOMPOSITION OF A CIRCULAR REGION WITH 'y ARBITRAR-
ILY CLOSE TO A HALF-CIRCLE, AS REQUIRED BY THE SETTING OF SECTION
10, ACCORDING TO THE CONSTRUCTION OF TWO VECTOR FIELDS PRO-
VIDED BY THE METHOD OF SECTION A.2.
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Method of Section A.4. This is illustrated in Fig. C.3. The circular region
Q) = ABCDFEFGH LA with boundary I'g = ABCDEFG is split as the union of two over-
lapping subdomains ; = ABCDEHA and Qy, = CDEFGLC, as required by (10.1.1).
The mid-point D of Ty is the original critical point for the scalar function d(x), constructed
through Eqns. (A.4.6), (A.4.7), with respect to the original external point x¢ (see Corollary
A42).

Next, we replace xy with x; [respectively, xo with xs] and produce, accordingly, a
function d; (x) [respectively, a function dy(x)], defined by the counterpart of Eqns. (A.4.6),
(A.4.7), where this time do(x) is defined as dy;(7) = ||z — 21]|* in the first case, and as

2

do2(z) = 3|lz — 22||* in the second case. We claim that:

the vectors required by the setting of Section 10 are hi(z) = Vdi(x) and he(z) =

Indeed, they satisfy assumption (A.1li) [i.e., both conditions (10.1.2) and (10.1.3) by The-
orem A.4.1.

Moreover, the critical point for di(z) is F' € Ty (see Corollary A.4.2), where F ¢ €,
and similarly the critical point for do(z) is B € I'y, where B ¢ Q. Thus, |hi(z)| =
|Vdy(x)] > p1 > 0 for all z € Qy; and similarly, |ho(x)| = |Vda(x)| > p2 > 0 for all z € Q.
Thus, h;(z) satisfy also assumption (A.2i) = (10.1.4). Our claim is established. Thus,
Theorem C.1 is proved in this case, and then Theorem 10.1.1 holds true.

Thus, Theorem C.1 and Theorem 10.1.1 hold true with 'y = ABFG arbitrarily close
to a half-circle.

The general case where 'y has a U-turn and satisfies either Theorem A.2.1 or
Lemma B.2.1, or else Theorem A.4.1 requires only minor modifications over the case of I'y
being close to a half-circumference. O
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critical point for x;

critical point for xg

€/2

Qo

Fig. C.3: DECOMPOSITION OF A CIRCULAR REGION WITH 'y ARBITRAR-
ILY CLOSE TO A HALF-CIRCLE, AS REQUIRED BY THE SETTING OF SECTION
10, ACCORDING TO THE CONSTRUCTION OF TWO VECTOR FIELDS PRO-
VIDED BY THE METHOD OF SECTION A .4.
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