Integrali multipli e di superficie

Integrali doppi

Enunciamo e dimostriamo un paio di risultati concernenti gli integrali doppi.

Proposizione 1 Sia $A \subset \mathbb{R}^2$ di misura nulla $e \ f : A \to \mathbb{R}$ limitata. Allora $f \in R(A)$ e

$$\iint_A f(x,y) \, dx dy = 0.$$

Dim. Sia $\varepsilon>0$ fissato. Poiché A è di misura nulla, esistono $Q_1,\dots,Q_{n_\varepsilon}$ rettangoli tali che

$$A \subset \bigcup_{i=1}^{n_{\varepsilon}} Q_i$$
, $\sum_{i=1}^{n_{\varepsilon}} |Q_i| < \varepsilon$.

Siano ora $Q = [a, b] \times [c, d] \supset A$ un rettangolo contenente tutti i rettangoli Q_i e \widetilde{f} l'estensione di f a Q,

$$\widetilde{f} = \begin{cases} f(x,y) & \text{se } (x,y) \in A, \\ 0 & \text{se } (x,y) \in Q \setminus A. \end{cases}$$

Poiché f è limitata, esiste M > 0 tale che $|\widetilde{f}(x)| \leq M$ per ogni $x \in A$. A partire dai rettangoli Q_i , $i = 1, \ldots, n_{\varepsilon}$, costruiamo una suddivisione \mathcal{D} di Q,

$$\mathcal{D} = \{ (x_{\ell}, y_k) : a = x_0 < x_1 < \dots < x_L = b, \ c = y_0 < y_1 < \dots < y_K = d \}$$

tale che esistano rettangoli $Q_{\ell,k}=[x_{\ell-1},x_{\ell}]\times[y_{k-1},y_k]$ per cui valga (si veda la figura 1)

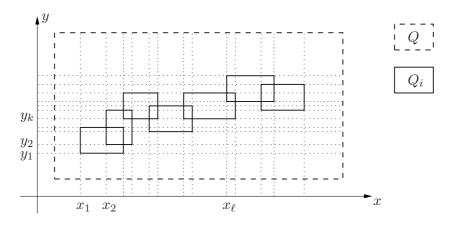


Figura 1: La suddivisione nella dimostrazione della proposizione 1

$$\bigcup_{\ell,k} Q_{\ell,k} = \bigcup_{i=1}^{n_{\varepsilon}} Q_i.$$

Allora

$$-M\varepsilon < -M\sum_{i=1}^{n_{\varepsilon}} |Q_{i}| \leq \sum_{\ell,k} |Q_{\ell,k}| \inf_{Q_{\ell,k}} \widetilde{f}(x,y) = s(\mathcal{D}, \widetilde{f}) \leq$$

$$\leq S(\mathcal{D}, \widetilde{f}) = \sum_{\ell,k} |Q_{\ell,k}| \sup_{Q_{\ell,k}} \widetilde{f}(x,y) \leq M\sum_{i=1}^{n_{\varepsilon}} |Q_{i}| < M\varepsilon,$$

da cui discende sia l'integrabilità di \widetilde{f} in Q, e quindi quella di f in A, sia il fatto che l'integrale di f in A è nullo.

Teorema 1 Sia $\Omega \in \mathbb{R}^2$ dominio normale rispetto ad uno degli assi. Allora Ω è misurabile.

Dim. Per fissare le idee assumiamo che Ω sia normale rispetto all'asse y, cosicché esistono un intervallo $[a,b] \subset \mathbb{R}$ e due funzioni $g_1,g_2 \in \mathcal{C}^0([a,b])$ tali che

$$\Omega = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], g_1(x) \le y \le g_2(x)\}$$

Allora la frontiera di Ω è l'insieme unione dei grafici di g_1 e g_2 , che sono di misura nulla perché le funzioni sono integrabili in [a,b], e dei segmenti congiungenti i punti $(a,g_1(a))$ e $(b,g_1(b))$ rispettivamente con i punti $(a,g_2(a))$ e $(b,g_2(b))$, ed in quanto segmenti sono di misura nulla. Se ne deduce che $\partial\Omega$ è un insieme di misura nulla e quindi Ω è misurabile.

Integrali tripli per fili

Come esempio di integrazione per fili, calcoliamo il volume di una sfera di centro l'origine e raggio R > 0. Essa è descritta da

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in B_R(0, 0), -\sqrt{R^2 - (x^2 + y^2)} \le z \le \sqrt{R^2 - (x^2 + y^2)} \right\},$$

e quindi, in particolare, è un dominio normale rispetto all'asse z. Allora

$$|S|_3 = \iint_{B_R(0,0)} \left(\int_{-\sqrt{R^2 - (x^2 + y^2)}}^{\sqrt{R^2 - (x^2 + y^2)}} dz \right) dx dy = 2 \iint_{B_R(0,0)} \sqrt{R^2 - (x^2 + y^2)} dx dy.$$

Passando in coordinate polari nel piano si ottiene

$$|S|_3 = 2 \iint_{[0,R]\times[0.2\pi]} \rho \sqrt{R^2 - \rho^2} \, d\rho d\varphi = \frac{4}{3}\pi R^3.$$

Integrali tripli per strati

Il teorema che segue fornisce un metodo generale per integrare per strati in un sottoinsieme D di \mathbb{R}^3 indipendentemente dal fatto che D sia o no un parallelepipedo.

Teorema 2 Sia $D \subset \mathbb{R}^3$ dominio di integrazione delimitato dai piani z = a e z = b, a < b. Fissato $z \in [a, b]$, sia D_z la proiezione delle prime due coordinate della sezione orizzontale di quota z di D, cioè

$$D_z = \{(x, y) \in \mathbb{R}^2 : (x, y, z) \in D\}.$$

Se $f: D \to \mathbb{R}$ è continua e per ogni $z \in [a, b]$ la sezione D_z è misurabile, allora vale la seguente formula di integrazione per strati

$$\iiint_D f(x, y, z) dxdydz = \int_a^b \left(\iint_{Dz} f(x, y, z) dxdy \right) dz.$$

Esempio 1 Come esempio di integrazione per strati, ricalcoliamo il volume di una sfera di centro l'origine e raggio R. Detta S la sfera, essa è delimitata dai piani z = -R e z = R. La proiezione S_z delle prime due coordinate della sezione orizzontale di quota $z \in [-R, R]$ è

$$S_z = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < R^2 - z^2\},$$

che è un cerchio sul piano xy di centro l'origine e raggio $\sqrt{R^2-z^2}$. Allora

$$|S|_3 = \int_{-R}^R \left(\iint_{S_z} dx dy \right) dz = \int_{-R}^R |S_z|_2 dz = \pi \int_{-R}^R (R^2 - z^2) dz = \frac{4}{3} \pi R^3.$$

Solidi di rotazione

Il volume di un solido di rotazione può essere calcolato tramite il

Teorema 3 (di Pappo) Sia $\Omega \subset \mathbb{R}^2$ misurabile, contenuto nel semipiano xz con $x \geq 0$. Allora il volume del solido S generato dalla rotazione di Ω attorno all'asse z di un angolo $\alpha \in [0, 2\pi]$ è

$$|S|_3 = \alpha |\Omega|_2 x_B = \alpha \iint_{\Omega} x \, dx dz$$
,

dove x_B è l'ascissa del baricentro di Ω .

Dim. Si osservi che in coordinate cilindriche

$$S = \left\{ (\rho, \varphi, z) \in \mathbb{R}^{\geq 0} \times [0, 2\pi] \times \mathbb{R} : (\rho, z) \in \Omega \,, \ \varphi \in [0, \alpha] \right\},$$

e quindi con il teorema di cambiamento di variabile risulta

$$|S|_3 = \iiint_S dx dy dz = \int_0^\alpha \iint_{(\rho,z)\in\Omega} \rho \, d\rho dz = \alpha |\Omega| x_B,$$

come si voleva. \Box

In pratica il teorema di Pappo afferma che il volume generato dalla rotazione di un insieme misurabile $\Omega \subset \mathbb{R}^2$ è pari al prodotto dell'area di Ω per la lunghezza della curva percorsa dal baricentro durante la rotazione. Il teorema non vale se Ω non è interamente contenuto nel semipiano $x \geq 0$: si pensi, ad esempio, ad un insieme misurabile la cui ascissa del baricentro è nulla (si veda l'osservazione 1 sull'analogo teorema 4 di Guldino).

Esempio 2 Fissati $0 < a \le R$, calcoliamo il volume del settore sferico generato dalla rotazione attorno all'asse z dell'insieme Ω compreso tra l'arco di circonferenza di equazione $x^2 + z^2 = R^2$ con $0 \le x \le a$, $z \ge 0$, e il segmento della retta di equazione $z = (\sqrt{R^2 - a^2}/a)x$ (si vedano le figure 2 e 3),

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : (\sqrt{R^2 - a^2}/a)\sqrt{x^2 + y^2} \le z \le \sqrt{R^2 - x^2 - y^2}, \ x^2 + y^2 \le a^2 \right\}.$$

Per calcolare il volume di S, usiamo il teorema di Pappo e calcoliamo

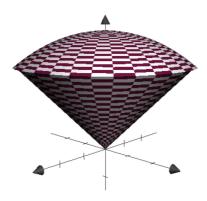


Figura 2: Il settore sferico dell'esempio 2

$$\iint_{\Omega} x \, dx dz = \int_{0}^{a} \left(\int_{(\sqrt{R^{2} - a^{2}}/a)x}^{\sqrt{R^{2} - x^{2}}} x \, dz \right) \, dx = \int_{0}^{a} x \left(\sqrt{R^{2} - x^{2}} - \frac{\sqrt{R^{2} - a^{2}}}{a} x \right) \, dx$$

$$= -\frac{1}{3} (R^{2} - x^{2})^{3/2} \Big|_{0}^{a} - \frac{\sqrt{R^{2} - a^{2}}}{3a} x^{3} \Big|_{0}^{a} = \frac{1}{3} \left[R^{3} - (R^{2} - a^{2})^{3/2} - \sqrt{R^{2} - a^{2}} a^{2} \right]$$

$$= \frac{R^{2}}{3} (R - \sqrt{R^{2} - a^{2}})$$

Allora

$$|S|_3 = \frac{2\pi}{3}R^2(R - \sqrt{R^2 - a^2}).$$

Superfici di rotazione

Il teorema che segue è l'analogo del teorema di Pappo per le superfici di rotazione.

Teorema 4 (di Guldino) Sia $\gamma:[a,b]\to\mathbb{R}^2$, $\gamma(t)=(x(t),z(t))$, curva regolare semplice contenuta nel semipiano xz tale che x(t)>0 per ogni $t\in]a,b[$. Allora l'area della superficie Σ generata

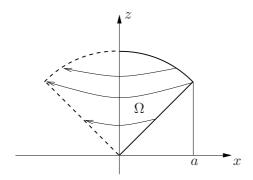


Figura 3: L'insieme Ω la cui rotazione genera il settore sferico alla figura 2

dalla rotazione del sostegno di γ attorno all'asse z di un angolo $\alpha \in [0, 2\pi]$ è

$$|\Sigma| = \alpha L(\gamma) x_B = \alpha \int_{\gamma} x \, ds \,, \tag{1}$$

dove $L(\gamma)$ è la lunghezza di γ e x_B è l'ascissa del baricentro di γ .

Dim. Se $\gamma(t) = (x(t), 0, z(t))$, una parametrizzazione di Σ è data da

$$\sigma(t,\varphi) = (x(t)\cos\varphi, x(t)\sin\varphi, z(t))$$
 $(t,\varphi) \in [a,b] \times [0,\alpha]$.

Allora

$$\partial_t \sigma(t,\varphi) = \left(x'(t) \cos \varphi, x'(t) \sin \varphi, z'(t) \right), \qquad \partial_\varphi \sigma(t,\varphi) = \left(-x(t) \sin \varphi, x(t) \cos \varphi, 0 \right).$$

Poiché

$$\partial_t \sigma(t,\varphi) \wedge \partial_{\varphi} \sigma(t,\varphi) = -x(t)z'(t)\cos\varphi \,\mathbf{i} + x(t)z'(t)\sin\varphi \,\mathbf{j} + x(t)x'(t)\,\mathbf{k}$$

si ha

$$\|\partial_t \sigma(t,\varphi) \wedge \partial_\varphi \sigma(t,\varphi)\| = x(t) \|\gamma'(t)\| \neq 0$$

essendo γ regolare e x(t) > 0 per ogni $t \in [a, b]$. Allora

$$|\Sigma| = \iint_{[a,b]\times[0,\alpha]} x(t) \|\gamma'(t)\| dt d\varphi = \alpha \int_{\gamma} x ds,$$

come si voleva \Box

Analogamente al teorema 3, il teorema di Guldino afferma che l'area della superficie generata dalla rotazione del sostegno di una curva piana γ regolare è pari al prodotto della lunghezza di γ per la lunghezza della curva percorsa dal baricentro durante la rotazione.

Osservazione 1 Si noti che il teorema 4 di Guldino in generale non vale se $\gamma(t) = (x(t), 0, z(t))$ verifica $x(t_1) < 0 < x(t_2)$ per qualche $t \in]a, b[$, cioè se l'asse attorno a cui il sostegno della curva ruota ha intersezione non vuota con il sostegno stesso. Ad esempio, il segmento che unisce i

punti (1,0,1) e (-1,0,-1) genera con una rotazione completa attorno all'asse z una superficie conica a due falde che evidentemente non ha area nulla. Però il baricentro del segmento coincide con (0,0,0), che non è coinvolto nella rotazione, e quindi (1) non vale. Per calcolare l'area della superficie ottenuta consideriamo i due segmenti congiungenti l'origine con (1,0,1) e con (-1,0,-1): siamo nelle condizioni di poter applicare il teorema di Guldino a ciascuna delle due superfici Σ_1 e Σ_2 ottenute. I due segmenti misurano entrambi $\sqrt{2}$ ed evidentemente i baricentri sono rispettivamente (1/2,0,1/2) e (-1/2,0,-1/2). La superficie $\Sigma=\Sigma_1\cup\Sigma_2$ ha allora area

$$|\Sigma| = |\Sigma_1| + |\Sigma_2| = 2\pi\sqrt{2} \cdot \frac{1}{2} + 2\pi\sqrt{2} \cdot \frac{1}{2} = 2\sqrt{2}\pi$$
.

Teorema della divergenza in \mathbb{R}^2

Il teorema della divergenza in \mathbb{R}^2 è una conseguenza delle formule di Green nel piano. Innanzitutto diamo la seguente

Definizione 1 Un sottoinsieme $\Omega \subset \mathbb{R}^2$ è un dominio di Green se

- 1. Ω è la chiusura di un aperto connesso;
- 2. la frontiera di Ω è costituita dall'unione disgiunta di un numero finito di sostegni di curve di Jordan regolari a tratti, orientate in modo tale da percorrere $\partial\Omega$ tenendo Ω a sinistra;
- 3. Ω è decomponibile tramite un numero finito di "tagli" paralleli agli assi in un numero finito di domini semplici rispetto ad entrambi gli assi.

Ricordiamo che in un dominio di Green Ω valgono le formule di Green: se $f \in \mathcal{C}^1(\Omega)$ allora

$$\iint_{\Omega} \partial_x f \, dx dy = \int_{\partial \Omega^+} f \, dy \,, \qquad \iint_{\Omega} \partial_y f \, dx dy = -\int_{\partial \Omega^+} f \, dx$$

dove $\partial\Omega^+$ è la frontiera di Ω orientata come nella definizione 1. Nel seguito, dato un dominio di Green $\Omega \subset \mathbb{R}^2$, indichiamo con $\mathbf{n}^e(P)$ la normale a $\partial\Omega$ esterna ad Ω in un suo punto P.

Teorema 5 (della divergenza in \mathbb{R}^2) Siano $\Omega \subset \mathbb{R}^2$ un dominio di Green e $\mathbf{F}: \Omega \to \mathbb{R}^2$ un campo vettoriale limitato e di classe \mathcal{C}^1 . Allora

$$\iint_{\Omega} \operatorname{div} \mathbf{F} \, dx dy = \int_{\partial \Omega} \langle \mathbf{F}, \mathbf{n}^e \rangle \, ds \,. \tag{2}$$

Dim. Poiché Ω è un dominio di Green, valgono le formule di Green, e quindi se $\mathbf{F} = (F_1, F_2)$, si ha in particolare

$$\iint_{\Omega} \partial_x F_1 \, dx dy = \int_{\partial \Omega^+} F_1 \, dy \,, \qquad \iint_{\Omega} \partial_y F_2 \, dx dy = -\int_{\partial \Omega^+} F_2 \, dx \,.$$

Sommando le due formule si ottiene

$$\iint_{\Omega} \operatorname{div} \mathbf{F} \, dx dy = \iint_{\Omega} \left(\partial_x F_1 + \partial_y F_2 \right) dx dy = \int_{\partial \Omega^+} F_1 \, dy - F_2 \, dx \,. \tag{3}$$

Si ricordi ora che $\partial\Omega$ è unione disgiunta di un numero finito di curve di Jordan regolari a tratti, siano esse $\gamma_1, \ldots, \gamma_k$, con $\gamma_j(t) = (x_j(t), y_j(t)), t \in [a_j, b_j]$. Allora (3) si scrive

$$\iint_{\Omega} \operatorname{div} \mathbf{F} \, dx dy = \int_{\partial \Omega^{+}} F_{1} \, dy - F_{2} \, dx = \sum_{j=1}^{k} \int_{\gamma_{j}} F_{1} \, dy - F_{2} \, dx$$

$$= \sum_{j=1}^{k} \int_{a_{j}}^{b_{j}} \left[F_{1}(\gamma_{j}(t)) y_{j}'(t) - F_{2}(\gamma_{j}(t)) x_{j}'(t) \right] dt$$

$$= \sum_{j=1}^{k} \int_{a_{j}}^{b_{j}} \left\langle \mathbf{F}(\gamma_{j}(t)), (y_{j}'(t), -x_{j}'(t)) \right\rangle dt .$$

Essendo γ_j orientata in modo da lasciare Ω alla propria sinistra, il vettore $(y_j'(t), -x_j'(t))$ è un vettore normale esterno a $\partial\Omega$ (si veda la figura 4). Se ne deduce che vale

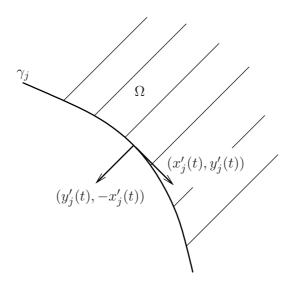


Figura 4: Normale esterna

$$\iint_{\Omega} \operatorname{div} \mathbf{F} \, dx dy = \sum_{j=1}^{k} \int_{a_{j}}^{b_{j}} \langle \mathbf{F}(\gamma_{j}(t)), \mathbf{n}^{e}(\gamma_{j}(t)) \rangle \|\gamma_{j}'(t)\| \, dt \,,$$

e quindi (2).

Teorema della divergenza in \mathbb{R}^3

In questo paragrafo enunceremo il teorema della divergenza in \mathbb{R}^3 e lo dimostreremo per domini normali rispetto a tutti gli assi. Prima di tutto ci serve una definizione di dominio di Green in \mathbb{R}^3 .

Definizione 2 Un sottoinsieme $\Omega \subset \mathbb{R}^3$ è un dominio di Green se

- 1. Ω è la chiusura di un aperto connesso;
- 2. la frontiera di Ω è costituita dall'unione disgiunta di un numero finito di superfici ammissibili senza bordo orientabili ;
- 3. Ω è decomponibile tramite un numero finito di "tagli" paralleli ai piani coordinati in un numero finito di domini semplici rispetto a tutti gli assi coordinati.

Analogamente a quanto fatto per i domini di Green in \mathbb{R}^2 , nel seguito, dato un dominio di Green $\Omega \subset \mathbb{R}^3$, indichiamo con $\mathbf{n}^e(P)$ la normale a $\partial\Omega$ esterna ad Ω in un suo punto P.

Teorema 6 (della divergenza in \mathbb{R}^3) Siano $\Omega \subset \mathbb{R}^3$ un dominio di Green e $\mathbf{F}: \Omega \to \mathbb{R}^3$ un campo vettoriale limitato e di classe \mathcal{C}^1 . Allora

$$\iiint_{\Omega} \operatorname{div} \mathbf{F} \, dx dy dz = \iint_{\partial \Omega} \langle \mathbf{F}, \mathbf{n}^e \rangle \, dS \,. \tag{4}$$

Dim. Dimostreremo il teorema assumendo Ω semplice rispetto a tutti gli assi. Se $\mathbf{F} = (F_1, F_2, F_3)$ e $\mathbf{n}^e = (n_1^e, n_2^e, n_3^e)$, (4) si riscrive

$$\iiint_{\Omega} \left[\partial_x F_1 + \partial_y F_2 + \partial_z F_3 \right] dx dy dz = \iint_{\partial\Omega} \left(F_1 n_1^e + F_2 n_2^e + F_3 n_3^e \right) dS, \tag{5}$$

dove in tal caso $\partial\Omega$ è un'unica superficie ammissibile. Se proviamo che valgono

$$\iiint_{\Omega} \partial_x f \, dx dy dz = \iint_{\partial\Omega} f n_1^e \, dS \,, \qquad \iiint_{\Omega} \partial_y f \, dx dy dz = \iint_{\partial\Omega} f n_2^e \, dS \,,$$

$$\iiint_{\Omega} \partial_z f \, dx dy dz = \iint_{\partial\Omega} f n_3^e \, dS \,, \tag{6}$$

comunque si scelga una funzione $f:\Omega\to\mathbb{R}$ di classe \mathcal{C}^1 , allora prendendo $f=F_1$ nella prima uguaglianza, $f=F_2$ nella seconda e $f=F_3$ nella terza, e sommando membro a membro le tre uguaglianze così ottenute, si deduce (5). Essendo Ω normale rispetto a tutti gli assi, possiamo limitarci a provare l'ultima uguaglianza, (6). Siano allora $D\subset\mathbb{R}^2$ chiuso e misurabile e $g_1,g_2:D\to\mathbb{R}$ continue tali che

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, g_1(x, y) \le z \le g_2(x, y)\}.$$

Integrando per fili si ottiene

$$\iiint_{\Omega} \partial_z f(x, y, z) \, dx dy dz = \iint_{D} \left(\int_{g_1(x, y)}^{g_2(x, y)} \partial_z f(x, y, z) \, dz \right) \, dx dy$$

$$= \iint_{D} \left[f(x, y, g_2(x, y)) - f(x, y, g_1(x, y)) \right] \, dx dy . \tag{7}$$

Si noti poi che la frontiera di Ω è composta da

$$\Sigma_{1} = \{(x, y, z) \in \mathbb{R}^{3} : (x, y) \in D, \ z = g_{1}(x, y)\},$$

$$\Sigma_{2} = \{(x, y, z) \in \mathbb{R}^{3} : (x, y) \in D, \ z = g_{2}(x, y)\},$$

$$\Sigma_{0} = \{(x, y, z) \in \mathbb{R}^{3} : (x, y) \in \partial D, \ g_{1}(x, y) \leq z \leq g_{2}(x, y)\}.$$

Nella parte verticale Σ_0 la terza componente del versore normale esterno \mathbf{n}^e è nulla, mentre in Σ_1 e Σ_2 si ha rispettivamente

$$\mathbf{n}^e = \frac{(\partial_x g_1, \partial_y g_1, -1)}{\sqrt{1 + (\partial_x g_1)^2 + (\partial_x g_1)^2}},$$

$$\mathbf{n}^e = \frac{(-\partial_x g_2, -\partial_y g_2, 1)}{\sqrt{1 + (\partial_x g_2)^2 + (\partial_x g_2)^2}}.$$

Se ne deduce che

$$\iint_{\partial\Omega} f n_3^e dS = \sum_{i=0}^2 \iint_{\Sigma_i} f n_3^e dS = \iint_{\Sigma_1} f n_3^e dS + \iint_{\Sigma_2} f n_3^e dS$$
$$= -\iint_D f(x, y, g_1(x, y)) dx dy + \iint_D f(x, y, g_2(x, y)) dx dy.$$

Confrontando quanto appena ottenuto con (7) si ottiene (6), come si voleva.

Un'applicazione del teorema della divergenza consente di dimostrare la seguente

Proposizione 2 (formula di integrazione per parti) Siano $\Omega \subset \mathbb{R}^3$ un dominio di Green, $\mathbf{F} : \Omega \to \mathbb{R}^3$ un campo vettoriale di classe \mathcal{C}^1 limitato e $g : \Omega \to \mathbb{R}$ anch'essa di classe \mathcal{C}^1 e limitata. Allora

$$\iiint_{\Omega} \langle \nabla g, \mathbf{F} \rangle = \iint_{\partial \Omega} \langle g\mathbf{F}, \mathbf{n}^e \rangle - \iiint_{\Omega} g \operatorname{div} \mathbf{F}$$
 (8)

Dim. Applichiamo il teorema della divergenza al campo vettoriale

$$\Omega \ni (x, y, z) \mapsto g(x, y, z) \mathbf{F}(x, y, z)$$
.

Si ottiene

$$\iiint_{\Omega} \operatorname{div}(g\mathbf{F}) \, dx dy dz = \iint_{\partial \Omega} \langle g\mathbf{F}, \mathbf{n}^e \rangle \, dS \,, \tag{9}$$

dove \mathbf{n}^e indica al solito il versore normale esterno. Poiché, se $\mathbf{F} = (F_1, F_2, F_3)$, si ha

$$\operatorname{div}(g\mathbf{F}) = \partial_x(gF_1) + \partial_y(gF_2) + \partial_z(gF_3)$$

$$= (\partial_x g)F_1 + (\partial_y g)F_2 + (\partial_z g)F_3 + g(\partial_x F_1 + \partial_y F_2 + \partial_z F_3)$$

$$= \langle \nabla g, \mathbf{F} \rangle + g \operatorname{div} \mathbf{F},$$

(8) segue immediatamente da (9).

Esercizi

1. Sia $D = \{(x,y) \in \mathbb{R}^2 : 1 \le ye^x \le 2, 2 \le xy + x \le 3\}$. Calcolare, ricorrendo ad un opportuno cambiamento di variabili, l'integrale:

$$\iint_D e^x |xy - 1 - y| \frac{e^{2x}y^2}{x^2(1+y)^2} \, dx dy.$$

(Attenzione: verifica dell'iniettività difficile!)

2. Sia D l'insieme dei punti del secondo quadrante del piano xy soddisfacenti alle seguenti condizioni:

$$y - (8 - 4e^{1/2})x^2 \ge 0$$
, $y - 2 \le -e^{|x|}$.

Determinare il volume del solido generato dalla rotazione di D attorno all'asse y.

3. Si calcoli l'area della superficie Σ parametrizzata da

$$\sigma(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, \qquad (u, v) \in [0, 1] \times [0, 2\pi].$$

(Tale superficie è detta *elicoide*, si veda la figura 5)

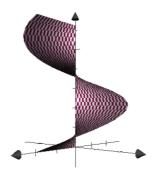


Figura 5: Elicoide

4. Si disegni la superficie Σ parametrizzata da

$$\sigma(y,\vartheta) = (\sqrt{y^2 + 1}\cos\vartheta, y, \sqrt{y^2 + 1}\sin\vartheta), \qquad \vartheta \in [0,2\pi], \ |y| < 1,$$

e si calcoli il flusso del campo vettoriale

$$\mathbf{F}(x, y, z) = x^2 \mathbf{i} + y/2 \mathbf{j} + x \mathbf{k}$$

uscente da Σ , orientata in modo che nel punto (1,0,0) il versore normale coincida con i.

5. Si consideri il sottoinsieme Σ di \mathbb{R}^3 formato dall'intersezione della calotta sferica di equazione $x^2 + y^2 + z^2 = 4$, z > 0, con il cilindro $(x - 1)^2 + y^2 < 1$ (finestra di Viviani).

- 1. Lo si disegni e se ne dia una parametrizzazione.
- 2. Si dimostri che è una superficie regolare e se ne scriva l'equazione del piano tangente e un vettore normale in $(1,0,\sqrt{3})$.
- 3. Si trovi il suo bordo, si dimostri che è una curva regolare a tratti e se ne calcoli un vettore tangente in $(1, 1, \sqrt{2})$.
- 4. Si calcolino l'area e il baricentro di Σ , supponendo la densità di massa costante.
- 5. Si calcoli il flusso del campo vettoriale $\mathbf{f}(x, y, z) = \mathbf{k}$ attraverso Σ , orientata in modo che il versore normale abbia prodotto scalare positivo con \mathbf{k} .
- $\mathbf{6.}$ Sia E l'insieme che in coordinate cilindriche è descritto da

$$E = \left\{ (\rho, \vartheta, z) : \rho \leq (2-z)(1+\cos\vartheta) \,, \ 0 \leq z \leq 1 \right\}^1.$$

Si calcoli direttamente e senza usare il teoremi di Gauss e di Stokes il flusso uscente del rotore del campo vettoriale

$$\mathbf{F}(x,y,z) = y\,\mathbf{i} + (x-z)\,\mathbf{j} - (x+y)\,\mathbf{k}$$

attraverso la superficie laterale di ${\cal E}.$

7. Siano $\mathbf{F}(x,y,z) = y\,\mathbf{i} + x\,\mathbf{j}$ un campo vettoriale in \mathbb{R}^3 e Σ la porzione di superficie di equazione z = xy con $1 \le x \le \sqrt{2-y^2}$ (si veda la figura 6), orientata in modo che il versore normale abbia prodotto scalare positivo con il terzo versore \mathbf{k} della base canonica di \mathbb{R}^3 . Si calcoli il flusso di \mathbf{F} attraverso Σ .

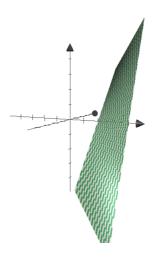


Figura 6: La superficie dell'esercizio 7

¹La curva la cui equazione polare è $\rho=a(1+\cos\vartheta)$, con a>0, è detta cardioide.

8. Si calcoli la circuitazione del campo vettoriale

$$\mathbf{F}(x, y, z) = x^2 \,\mathbf{i} + x \,\mathbf{j} + y \,\mathbf{k}$$

lungo la circonferenza sul piano z=0 di equazione $x^2+y^2=4$ percorsa in senso antiorario, sia mediante un calcolo diretto, sia usando il teorema di Stokes.

9. Si calcoli il flusso del campo vettoriale

$$\mathbf{F}(x, y, z) = ye^{x+y}\mathbf{i} - xe^{x+y}\mathbf{j} + xy\mathbf{k}$$

uscente dalla frontiera del solido

$$S = \{(x, y, z) \in \mathbb{R}^3 : |y| \le x \le 2 - |y|, \ 0 \le z \le x + y\}.$$