Analisi Funzionale 1 - a.a. 2013/2014

Terzo appello

Esercizio 1

Siano H spazio di Hilbert infinito dimensionale separabile e $\{e_n\}_{n\geq 1}$ una sua base hilbertiana. Siano

$$V_n = \operatorname{span}\{e_1, \dots, e_n\}$$

e V_n^{\perp} il suo ortogonale.

- 1. Provare che se $T \in \mathcal{K}(H)$, allora $T(B_H)$ è chiuso.
- 2. Provare che $T \in \mathcal{L}(H)$ è compatto se e solo se

$$\lim_{n \to +\infty} \sup_{\substack{x \in V_n^{\perp} \\ \|x\| \le 1}} \|Tx\| = 0.$$

Svolgimento

- 1. Sia $Tx_n \to y$ in H, $\{x_n\}_{n\geq 1} \subseteq B_H$. Essendo H riflessivo, si ha $x_{n_k} \rightharpoonup x \in B_H$ per qualche sottosuccessione $\{x_{n_k}\}_{k\geq 1}$. Allora $Tx_{n_k} \to Tx = y$.
- 2. Sia T compatto. Per ogni $n\geq 1$ sia $x_n\in V_n^\perp,\, \|x_n\|\leq 1,$ tale che

$$||Tx_n|| \ge \sup_{\substack{x \in V_n^{\perp} \\ ||x|| \le 1}} ||Tx|| - 1/n.$$

Essendo T compatto, si ha $Tx_{n_k} \to Tx$ con $x_{n_k} \rightharpoonup x$, per qualche sottosuccessione $\{x_{n_k}\}_{k\geq 1}$. Ma allora

$$x\in \bigcap_{n\geq 1} V_n^\perp\,,$$

essendo V_n^{\perp} chiusi sia forti che deboli e $V_{n+1}^{\perp} \subset V_n^{\perp}$. Allora $(x, e_n) = 0$ per ogni n, e quindi x = 0 e $||Tx_n|| \to 0$, e si conclude.

Sia ora

$$\lim_{n \to +\infty} \sup_{\substack{x \in V_n^{\perp} \\ \|x\| < 1}} \|Tx\| = 0.$$

Per ogni $x \in B_H$ si ha

$$||TP_{V_n}x - Tx|| = ||TP_{V_n^{\perp}}x|| \le \sup_{\substack{x \in V_n^{\perp} \\ ||x|| \le 1}} ||Tx||,$$

da cui $TP_{V_n} \to T$ in $\mathcal{L}(H)$, e si conclude perché TP_{V_n} ha rango finito.

Esercizio 2

1. Si enunci e dimostri la forma analitica del teorema di Hahn-Banach.

Sia ora data $f \in L^{\infty}(\mathbb{R})$. Si dice che f ha limite essenziale uguale a λ in x = 0 e si scrive

$$\operatorname{ess\,lim}_{x\to 0} f(x) = \lambda\,,$$

se esiste una funzione $\tilde{f}: \mathbb{R} \to \mathbb{R}$ tale che $\tilde{f}(x) = f(x)$ per q.o. $x \in \mathbb{R}$ e per cui valga

$$\lim_{x \to 0} \tilde{f}(x) = \lambda.$$

2. Provare che esiste un funzionale lineare e continuo φ su $L^{\infty}(\mathbb{R})$ tale che

$$\langle \varphi, f \rangle = \operatorname*{ess\,lim}_{x \to 0} f(x)$$

qualora il limite essenziale esista finito.

3. Provare che tale funzionale non esiste su $L^1(\mathbb{R})$.

Svolgimento

- 1. Omesso.
- 2. Consideriamo l'insieme

$$G = \left\{ f \in L^{\infty}(\mathbb{R}) : \underset{x \to 0}{\text{ess lim }} f(x) \text{ esiste finito} \right\}.$$

G è un sottospazio vettoriale. Infatti, siano $f_1, f_2 \in G$ e $\alpha, \beta \in \mathbb{R}$, e si considerino \tilde{f}_1 e \tilde{f}_2 tali che $\tilde{f}_1(x) = f_1(x)$ e $\tilde{f}_2(x) = f_2(x)$ per q.o. $x \in \mathbb{R}$ e per cui esistono finiti

$$\lim_{x \to 0} \tilde{f}_1(x) = \lambda_1, \qquad \lim_{x \to 0} \tilde{f}_2(x) = \lambda_2.$$

Allora $\alpha \tilde{f}_1 + \beta \tilde{f}_2$ coincide q.o. con $\alpha f_1 + \beta f_2$ e

$$\lim_{x \to 0} \alpha \tilde{f}_1(x) + \beta \tilde{f}_2(x) = \alpha \lambda_1 + \beta \lambda_2 \in \mathbb{R},$$

grazie alla linearità del limite. Sia ora $\varphi:G\to\mathbb{R}$ definito da

$$\langle \varphi, f \rangle = \operatorname{ess \, lim}_{x \to 0} f(x)$$
.

Allora φ risulta essere lineare e facilmente si verifica che $|\langle \varphi, f \rangle| \leq ||f||_{\infty}$ per ogni $f \in G$. La conclusione si ottiene applicando il teorema di Hahn-Banach.

3. Un tale funzionale φ non può essere continuo per la topologia di L^1 . Per provarlo, sia $\{f_n\}_{\geq 1}$ una successione di funzioni continue a supporto compatto tali che $f_n(0) = 1$ e $||f_n||_1 \to 0$, ad esempio

$$f_n(x) = \chi_{[-1/n,1/n]} (1 - n|x|).$$

Allora $\langle \varphi, f_n \rangle = 1$ per ogni n, mentre $||f_n||_1 \to 0$, e si conclude.

Esercizio 3

1. Si enuncino i teoremi di Banach-Steinhaus e della mappa aperta.

Siano E ed F spazi di Banach, $T \in \mathcal{L}(E,F)$ e T^{\star} il suo operatore aggiunto.

- 2. Provare che se im T è chiuso, allora anche im T^{\star} è chiuso.
- 3. Provare che se $T \in \mathcal{K}(E, F)$, allora $\overline{\operatorname{im} T}$ è separabile.
- 4. Provare che se $T \in \mathcal{K}(E, F)$ e im T è chiuso, allora T ha rango finito.

Svolgimento

- 1. Omesso.
- 2. Supponiamo im T chiuso, e sia $\{f_n\}_{n\geq 1}\subset F^*$ tale che $T^*f_n\to \varphi$ in E^* . Allora

$$\langle \varphi, x \rangle_{E^*, E} = \lim_{n} \langle T^* f_n, x \rangle_{E^*, E} = \lim_{n} \langle f_n, Tx \rangle_{F^*, F}$$
,

e quindi $\{f_n\}_{n\geq 1}\subset F^*$ converge puntualmente in im T. Essendo im T chiuso ed F di Banach, il teorema di Banach-Steinhaus ci assicura che il limite puntuale ψ appartiene a $(\text{im }T)^*$. In particolare, ψ definisce un funzionale lineare e continuo da im T in \mathbb{R} , e quindi per Hahn-Banach può essere esteso ad un funzionale lineare a continuo su F. Chiamiamo ancora ψ tale funzionale. Per definizione si ha

$$\langle \varphi, x \rangle_{E^*, E} = \langle \psi, Tx \rangle_{F^*, F} = \langle T^* \psi, x \rangle_{E^*, E}$$
,

e quindi $\varphi = T^*\psi$, da cui la chiusura di im T^* .

3. Si osservi che se $A \subseteq F$ è totalmente limitato, allora è separabile. Infatti, per ogni $n \ge 1$, siano $x_1^n, \ldots, x_{k(n)}^n \in A$ tali che

$$A \subseteq \bigcup_{j=1}^{k(n)} B_{1/n}(x_j^n) \,.$$

Allora

$$\bigcup_{n>1} \left\{ x_1^n, \dots, x_{k(n)}^n \right\}$$

è un insieme numerabile denso in A. Infatti, fissato $x \in A$ e $\varepsilon > 0$, si sceglie $n \ge 1$ tale che $1/n < \varepsilon$. Allora esiste x_j^n tale che $||x - x_j^n|| < 1/n$, e si conclude. A questo punto si scrive $\overline{\operatorname{im} T}$ come unione numerabile di insiemi totalmente limitati (immagini delle palle chiuse di E di centro 0 e raggio $n \ne 1$), e si conclude.

4. Poiché è im T è chiuso ed F completo, im T stesso è uno spazio di Banach e quindi la restrizione di T ad im T,

$$\widetilde{T}: E \to \operatorname{im} T$$
, $\widetilde{T}x = Tx$,

è una mappa aperta essendo continua e suriettiva. Allora che $T(B_1^E(0))$ contiene una palla aperta di im T, palla aperta che risulta essere relativamente compatta essendo tale $T(B_1^E(0))$. Ne consegue che necessariamente im T ha dimensione finita.

Esercizio 4

Siano E uno spazio di Banach, V un suo sottospazio e si definisca

$$V^{\perp} = \left\{ f \in E^{\star} : \langle f, v \rangle = 0 \ \forall v \in V \right\}.$$

- 1. Si provi che V^{\perp} è chiuso nella topologia debole * di E^* .
- 2. Fissata $f_0 \in E^*$, si provi che esiste $g_0 \in V^{\perp}$ tale che $||f_0 g_0|| = \inf_{g \in V^{\perp}} ||f_0 g||$.

Svolgimento

1. Proviamo che $E^* \setminus V^{\perp}$ è aperto. Se $f_0 \in E^* \setminus V^{\perp}$, esiste $v \in V$ tale che $\langle f_0, v \rangle \neq 0$. Per fissare le idee assumiamo che $\langle f_0, v \rangle > 0$. Allora

$$W = \left\{ f \in E^{\star} : \langle f, v \rangle > 0 \right\}$$

è un aperto per la topologia $\sigma(E^*, E)$ contenente f_0 e contenuto in $E^* \setminus V^{\perp}$, che quindi risulta aperto.

2. Proviamo che la mappa $E^* \ni g \mapsto ||f_0 - g||$ è inferiormente semicontinua rispetto alla topologia $\sigma(E^*, E)$. La conclusione poi segue dal teorema di Weierstrass perché l'insieme

$$\{\varphi \in V^{\perp} : ||f_0 - \varphi|| \le \inf_{g \in V^{\perp}} ||f_0 - g|| + 1\}$$

risulta essere chiuso per $\sigma(E^*, E)$, essendo intersezione di chiusi, e limitato, dunque compatto per $\sigma(E^*, E)$, da cui l'esistenza del minimo per $g \mapsto ||f_0 - g||$. Dobbiamo provare che, fissato $\lambda \in \mathbb{R}$, l'insieme

$$S_{\lambda} = \left\{ g \in E^{\star} : ||f_0 - g|| \le \lambda \right\}$$

è chiuso per $\sigma(E^*, E)$, cioé $E^* \setminus S_{\lambda}$ è aperto. Sia $g_0 \in E^* \setminus S_{\lambda}$, cioè tale che $||f_0 - g|| > \lambda$. Allora esiste $x \in B_E$ tale che $||\langle f_0 - g_0, x \rangle|| > \lambda$. L'insieme

$$W = \{g \in E^* : |\langle f_0 - g, x \rangle| > \lambda \}$$

è un aperto per la topologia $\sigma(E^*, E)$ contenente g_0 e contenuto in $E^* \setminus S_{\lambda}$, che risulta quindi aperto. Infatti, se $g \in W$, allora

$$||f_0 - g|| \ge |\langle f_0 - g, x \rangle| > \lambda,$$

da cui $g \notin S_{\lambda}$.