
 

 

 
 

 
Matteo Dalla Riva  ha studiato matematica presso l’Università degli Studi 
di Padova ed è ora un professore di analisi dell’Università degli Studi di Pa-
lermo. 
Martina Pittarello  è attrice e lettrice di professione, ha lavorato nel teatro 
e nel cinema. Collabora con musicisti per reading teatrali e registrazioni di 
podcast e audiolibri. 
Gabriele Grotto  è batterista e filmmaker. La sua ricerca musicale è orien-
tata verso il jazz, la sperimentazione e l’improvvisazione integrando teatro, 
video, cinema e letteratura. 
 

Abstract: Kilvas è un reading a due voci. C'è una narratrice, Martina Pitta-
rello, che racconta la storia di una congettura matematica, dei personaggi 
che la incontrano e delle loro ambizioni, delle conferenze dove viene di-
scussa e delle città che le ospitano, dei progressi veri e di quelli fasulli fino 
alla sua parziale soluzione e a un epilogo spietato e ineluttabile. E poi c'è un 
professore, Matteo Dalla Riva, che si inserisce con delle spiegazione divul-
gative dove si interroga su cosa sia la matematica e come essa si sviluppi. 
Raccontando di funamboli e bolle di sapone, arriva a discutere di spazi con 
infinite dimensioni. La batteria di Gabriele Grotto accompagna tutta la nar-
razione. 
 

Prerequisiti:  nessuno specifico prerequisito. 

Sabato 1° febbraio 2025, alle 15.45 
Aula P300, via Luzzatti  

Zoom: https://unipd.zoom.us/j/88600246508   
ID riunione: 886 0024 6508 

Kilvas 
Reading di e con Matteo Dalla Riva 
Voce narrante di Martina Pittarello 

Interventi musicali di Gabriele  Grotto 
 

Associazione 
Patavina 
Mathesis 
 

5 dicembre 2025

Aula 2AB45 ore 15:30 - Torre Archimede via Trieste 63 Padova

Il Trasporto Parallelo

di Levi-Civita

e la Precessione del pendolo di Foucault

Franco Cardin
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La natura tesse i suoi motivi con il �lo pi�u lungo,
perci�o ogni minimo frammento di sto�a rivela la struttura dell'intero arazzo.

Richard Feynman

TULLIO LEVI-CIVITA
nasce a Padova il 29 marzo del1873, in via Daniele Manin, 7.
In seguito, e �no alla �ne del 1918, abita in via Altinate, 14.

via Daniele Manin, 7 via Altinate, 14 3/51







































































ω2 := g
ℓ , Ωz := Ω · Ẑ = |Ω| sin α

Equazioni del sistema linearizzato:{
mẍ = −mω2x + 2mΩz ẏ

mÿ = −mω2y − 2mΩzẋ

ζ := x+iy ∈ C ∼ R2, ζ̈+2iΩz ζ̇+ω2ζ = 0, ζ = eλt, λ2+2iΩzλ+ω2 = 0

λ± = −iΩz ± i
√

Ω2
z + ω2

ζ(t, c1, c2) = e−iΩzt︸ ︷︷ ︸
precessione dei p.ti apsidali

(c1ei
√

Ωz
2+ω2t + c2e−i

√
Ωz

2+ω2t)︸ ︷︷ ︸
ellisse sul piano C∼ {OXY }

eiϑ, ϑ = −Ωzt ,
2π

24 ore
= |Ω|, T = 24 ore = 2π

|Ω|
: periodo diurno

per t = T : ϑ = −ΩzT︸ ︷︷ ︸
< 0, in senso orario nell’emisf. sett.

= −��|Ω| sin α · 2π

|��Ω|
⇒ ϑ = −2π sin α
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La non evidente natura puramente geometrica di questo

fenomeno fu intuita da Foucault e rimarcata da Louis Poinsot

(1777-1859) 1, esattamente nel dibattito scientifico seguito alla

collocazione del pendolo nell’Osservatorio Astronomico e

successivamente nel Pantheon.

In una memorabile discussione sul pendolo con Foucault e Binet

all’Acadèmie des Sciences, Parigi, 17 février 1851,

Poinsot osservò:

“Ce mouvement, dis-je, est un phénomène purement géométrique, et
dont l’explication doit être donnée par la simple géométrie, comme l’a
fait M. Foucault, et non par des principes de dynamique, qui il n’y

entrent pour rien”.

”Questo movimento, dico, è un fenomeno puramente geometrico, e la
cui spiegazione deve essere data dalla geometria semplice, come fece
Foucault, e non da principi di dinamica, che non hanno alcuna parte
in esso”.

1Giancarlo Benettin con pazienza e passione ha ritrovato questo fatto

storico su Poinsot, leggendo con cura l’antica letteratura.
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Il nostro obiettivo:

Mostrare che questa precessione corrisponde

all’angolo ϑ (di olonomia, questo è il nome)

associato al

trasporto parallelo di un generico vettore iniziale V (0),
lungo l’intero parallelo γ,

situato alla latitudine α :

ϑ = ̂V (0), V (2π)
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Questo vettore trasportato V si manterrà tangente alla sfera,

percorrendo il parallelo terrestre γ.

Interpretazione: dobbiamo pensare a V come appartenente,

individuante, il “piano di oscillazione” e quindi rappresentante

infine il suo moto di precessione.

' :µf- .

± >
y
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Consideriamo una sfera di raggio unitario S2 –la Terra– e la curva

chiusa γ, il parallelo alla fissata latitudine α. La longitudine è

denotata da φ,

[0, T = 24 ore] ∋ t 7→ γ(t) = n(t)︸ ︷︷ ︸
!!

=

cos α cos φ(t)
cos α sin φ(t)

sin α

 , γ(0) = γ(T ) .

Consideriamo la terna mobile (e1, e2, n), evolvente lungo γ(t),
e1 è tangente a γ, come lo è ṅ,

(e1, e2) è una base per TP S2.

' :µf- .

± >
y
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La terna mobile (e1, e2, n) su Tγ(t)S
2 :

[0, T ] ∋ t 7→ γ(t) = n(t) =

cos α cos φ(t)
cos α sin φ(t)

sin α

 , γ(0) = γ(T ) .

ṅ = cos α(− sin φ, cos φ, 0)φ̇

nel conto che segue

φ(t) può esser preso arbitrario,

cioè differente dalla rotazione

staz. terrestre φ(t) = φ(0) + 2π
T t ,

solamente serve: φ(T ) − φ(0) = 2π

' :µf- .

± >
y

e1 = (− sin φ, cos φ, 0)
e2 = (− sin α cos φ, − sin α sin φ, cos α)
n = γ

ė1 = (− cos φ, − sin φ, 0)φ̇
ė2 = − sin α φ̇ e1
ṅ = cos α φ̇ e1

Ora, mettiamo in evidenza la struttura di ė1 sul piano (e2, n)
(ovviamente, e1 · ė1 = 0). 43/51



e1 = (− sin φ, cos φ, 0)
e2 = (− sin α cos φ, − sin α sin φ, cos α)
n = (cos α cos φ, cos α sin φ, sin α) = γ

ė1 = (− cos φ, − sin φ, 0)φ̇ ,

=
(

− (sin2 α + cos2 α)︸ ︷︷ ︸
1

cos φ, − (sin2 α + cos2 α)︸ ︷︷ ︸
1

sin φ, sin α cos α − sin α cos α︸ ︷︷ ︸
0

)
φ ,

= sin α (− sin α cos φ, − sin α sin φ, cos α)︸ ︷︷ ︸
e2

φ̇ − cos α (cos α cos φ, cos α sin φ, sin α)︸ ︷︷ ︸
n

φ̇ ,

= sin α φ̇ e2 − cos α φ̇ n .
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Attenzione: c’è il nuovo angolo θ !

θ è tra il vettore V e il versore tangente e1 di γ .

Considereremo la nostra Legge del Trasporto Parallelo :

V̇ = −(V · ṅ)n

quindi V · V̇ = 0 e prendiamo |V0| = |V | ≡ 1 .

Rem: ė1 = sin α φ̇ e2 − cos α φ̇ n , ė2 = − sin α φ̇ e1

V = cos θ e1 + sin θe2 ,

V̇ = − sin θ θ̇e1 + cos θ ė1︸︷︷︸ + cos θ θ̇e2 + sin θ ė2︸︷︷︸ ,

= − sin θ θ̇e1 + cos θ(sin α φ̇ e2 − cos α φ̇ n) + cos θ θ̇e2 − sin θ sin α φ̇ e1 ,

= −(θ̇ + sin αφ̇) sin θe1 + (θ̇ + sin αφ̇) cos θe2 − cos θ cos αφ̇ n .

Stiamo imponendo che V si propaghi secondo V̇ = −(V · ṅ)n ,

dobbiamo avere:

θ̇+sin α φ̇ = 0 e V̇ = −(V · ṅ)︸ ︷︷ ︸
−(cos θ e1+sin θe2)·(cos α φ̇ e1)

n = − cos θ cos α φ̇ n .
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Cosa ci sta dicendo

θ̇ + sin α φ̇ = 0 ?

Prendendo θ(0) = 0 e ricordando che φ(T ) − φ(0) = 2π,

0 =
∫ T

0
θ̇(t) dt +

∫ T

0
sin α φ̇(t) dt, 0 = θ(T ) + sin α (φ(T ) − φ(0))︸ ︷︷ ︸

2π

Otteniamo l’angolo di Foucault atteso (vedi slide 35):

θ(T ) = −2π sin α = ϑ

• Questo calcolo è stato proposto, con modalità diverse, da

John Oprea nel 1995.
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• Il ruolo del trasporto parallelo, in un contesto di

approssimazione adiabatica, risultò evidente fin dal 1918, poco

dopo la pubblicazione di Levi-Civita (1917), per

Johann Karl August Radon (1887-1956).

Come sottolineato in Arnol’d-Kozlov-Neishtadt 2, purtroppo

non vi è traccia del suo lavoro in letteratura,

il contributo di Radon fu riportato da Felix Klein (1849-1925)

in:

Dritter Hauptteil II, J. Radons mechanische Herleitung des

Parallelismus von T. Levi-Civita del suo volume3 di opere del

1926.

2Sec. 6.4.3 di Arnol’d V. I., Kozlov V. V. and Neishtadt A. I.,

Mathematical aspects of classical and celestial mechanics.Third edition.

Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, xiv+518 pp.,
Berlin, 2006.

3Felix Klein (1849-1925), Vorlesungen über höhere Geometrie. Die

Grundlehren der mathematischen Wissenschaften, Band 22, Verlag von

Julius Springer, viii+405 pp., Berlin, 1926.
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Un’approssimata traduzione dal tedesco di Klein, 1926:

Di seguito, si tenterà di derivare il trasporto parallelo da un’ovvia considerazione
meccanica. Questa idea trae origine da J. Radon ed è pubblicata qui per la prima
volta.
La rotazione del piano di oscillazione del pendolo di Foucault è stata utilizzata
ripetutamente per chiarire le condizioni in questione. Viceversa, vogliamo partire
da un problema meccanico equivalente che dovrebbe condurci al trasporto
parallelo.
Queste idee coinvolgono naturalmente superfici dello spazio euclideo
tridimensionale; infine, si mostrerà come considerazioni corrispondenti possano
essere applicate anche alla geometria “interna” di una varietà Riemanniana
generale (inizialmente bidimensionale).
Se, nell’esperimento di Foucault, immaginiamo la Terra ferma, ma al suo posto un
osservatore con un pendolo che si muove lungo una circonferenza parallela, allora
entra in gioco la rotazione della direzione di oscillazione, nota dalla meccanica.
Se l’osservatore usa questa direzione per orientarsi invece di una bussola, potrà
anche dire di considerarla spostata parallelamente da un punto all’altro. Noterà
quindi, dopo una rivoluzione completa, che la direzione è cambiata rispetto

all’ambiente circostante “di casa” e, se possiede sufficienti conoscenze di geometria
e meccanica, concluderà che la superficie terrestre non può essere piana.
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Arnol’d V. I., Kozlov V. V. and Neishtadt A. I.:
In Riemannian geometry (and therefore also in general relativity theory) a
fundamental role is played by the Levi-Civita connection (the definition of which
is rather difficult), which defines parallel transport of vectors along a manifold
with a Riemannian metric. Radon noted in 1918 that the most physically natural
definition of this (quite non-obvious) transport is provided by the theory of
adiabatic invariants. Namely, let us place at a point of the manifold some
oscillatory system, for example, let us suspend a Foucault pendulum over this
point, or consider in the tangent space at this point a Hooke elastic system with
potential energy proportional to the square of the distance from the original point.
Under appropriate initial conditions the system will perform an eigen-oscillation in
the direction defined by some (any) vector of the tangent space. We now slowly
and smoothly transport our oscillatory system along some path on our manifold.
It follows from adiabatic theory that the oscillation will remain (in the adiabatic
approximation) an eigen-oscillation. Its direction (polarization) will rotate

somehow during the motion of the point along the path. It is this rotation (which
proves to be an orthogonal transformation of the initial tangent space into the
terminal one) which is the Levi-Civita parallel transport (or connection). It is
interesting that Radon’s theory was not understood by geometers (because they
were not familiar with adiabatic invariants) and therefore was unfairly forgotten.
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1. Introduction

Parallel transport and developments in the theory of isometric immersions – between the 19th
and 20th centuries – are intriguingly intertwined, as we will see later. Notably, the history of
isometric immersions is not widely known, and many aspects of it remain unclear. In their recent
book dedicated entirely to this subject, Han Qing and Hong Jia-Xing write:

In 1873, Schlaefli made the following conjecture: Every n-dimensional smooth
Riemannian manifold admits a smooth local isometric embedding in Rsn , with
sn = n(n + 1)/2. It was more than 50 years later that an affirmative answer was
given for the analytic case successively by Janet and Cartan; they proved in 1926–
1927 that any analytic n-dimensional Riemannian manifold has a local analytic
isometric embedding in Rsn . Schlaefli’s question for the smooth case when n = 2
was given renewed attention by Yau in the 1980’s and 1990’s. For the global
isometric embedding, Nash in 1954 and Kuiper in 1955 proved the existence
of a global C 1 isometric embedding of n-dimensional Riemannian manifolds in
R2n+1. ( [24], p. XI)

The final work of Nash and Kuiper marked a turning point on the matter. Its local version
answers a question asked by young Henri Lebesgue, whose partial solution led to the Lebesgue
integral. This is carefully told in the Bourbaki seminar talk by Gustave Choquet [14]. The right

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/
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Grazie per l’attenzione (e la pazienza!)
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