
Cross-Platform Mobile Development:
A Study on Apps with Animations

Matteo Ciman, Ombretta Gaggi, Nicola Gonzo
Department of Mathematics

University of Padua
via Trieste 63, 35121 Padua, Italy

{mciman,gaggi}@math.unipd.it

ABSTRACT
The paper presents a comparison between different frame-
works for cross-platform mobile development, MoSync, Ti-
tanium, jQuery Mobile and Phonegap, with particular at-
tention to development of applications with animations. We
define a set of criteria for the evaluation and we develop the
same game as case study app, with the aim to provide an
unbias judgement.

Our analysis recommends Titanium as the best framework
to develop mobile applications with animations.

Categories and Subject Descriptors
D.2.3 [SOFTWARE ENGINEERING]: Coding Tools and
Techniques

Keywords
mobile applications, cross-platform development

1. INTRODUCTION
A mobile application may require to be developed several

times, one for each supported platform, thus dramatically
increasing the required time and skills for developers, and
finally, the cost of production. A solution is represented by
framework for cross-platform development.

Some authors [1] [2] [3] try to highlight a set of criteria
to be met by frameworks of high quality. Heitkötter et al.
[1], compare jQuery Mobile, Sencha Touch, The-M-Project
and Google Web Toolkit+mgwt according to a particular set
of criteria, which includes license and costs, documentation
and support, learning success, user interface elements, etc.
Palmieri et al. [2], evaluate Rhodes, PhoneGap, dragonRAD
and MoSync with particular attention to the programming
environment and the APIs they provide. Raj and Tolety [3]
analyze and classify a set of frameworks for cross-platform
development in four approaches: web, hybrid, interpreted
and cross compiled. They highlight strength and weakness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

of each approach, concluding that it does not exist a pre-
ferred solution for each kind of application, but the decision
about which framework to use should be made considering
the features of the application to be developed.

All the addressed works make a critical analysis of the
chosen frameworks according to criteria which do not al-
ways require to develop any application. They study the
frameworks, the supported operating systems and sensors,
the provided APIs, etc, but they do not try to implement a
case study application to understand the real performances
of the frameworks. Sometimes they interview different devel-
opers, which have different experiences and skills. Therefore
these evaluations may suffer of the bias due to the different
situations in which each developer has used the discussed
frameworks, i. e., a particular framework may be well suited
for a specific application. Moreover, they usually consider
business applications which do not include animations and
transition effects (or they have very poor ones).

In this paper, we try to compare and evaluate perfor-
mances of different cross-platform frameworks using the same
case study, a serious game which aims to help children to
learn letters. The fishes Nemo and Dory race along a path
and the child has to move the Nemo fish to avoid obstacles.
This game requires to implement a lot of animations to move
the two fishes, Nemo between four positions, the obstacles
and an octopus. Moreover, to realized the illusion of the hor-
izontal movement of Nemo, the background is moved during
all the play, changing its speed depending on the result of
the choices of the player.

2. ANALYSIS GUIDELINES
An impartial comparison between different frameworks for

cross-platform development is a challenging goal since eval-
uations are often biased by programmers’ background skills,
framework learning time, specific application, etc. For this
reason, our evaluation assumes that developers, that were
asked to realize the application, already know the program-
ming language used by each framework and have to learn
only how to use the framework tools (SDK, APIs, etc).

For each framework, we consider many factors, i. e., li-
censes and their costs, the variety and quality of APIs avail-
able, the presence of tutorials and the size of the commu-
nity, the complexity of the code needed to implement the
case study application, the usability of the IDE, the list
of supported mobile devices, the support to create appli-
cations with a native user interface and the basic knowledge
in term of programming skills and technologies required by
each framework.

A comparison between frameworks is reported in Table 1.
All frameworks are graded with a number between 0 and 5.

3. MOSYNC
MoSync is a framework developed from MoSync Inc. since

2004. It supports several mobile platforms, and it is partic-
ularly interesting since it produces a real native application
as final product.

The developer can develop a web-app, using HTML, CSS
and JavaScript, or can use C++ or C. The possibility to
choose the preferred solution drastically reduces the basic
knowledge required to developers.

The IDE provided for MoSync allows to test the appli-
cation with the integrated simulator in all the supported
platforms, to easily build the final application file and to
select which are the necessary requirements, i.e. sensors, of
the application. Unfortunately, the IDE suffers of a long
start-up time and lacks of a complete integration with other
tools, e. g., a user interface designer.

The debugger is really poor for the C++ implementation,
while it gives much more functionalities using the JavaScript
and web-view development, like step-by-step analysis.

Although the total amount of supported APIs is really
high, they are not developed for recent versions of the plat-
forms: iOS is supported till version 4.3, Android till version
4, Blackberry is in beta till version 6 and Windows Phone
till version 7.5. But, also for supported versions, not all the
provided functionalities are available through the APIs, e.
g., Bluetooth for iOS and Google Maps for Android. More-
over, the programming language chosen for the development
affects the set of available APIs.

MoSync does not provide any API for animations. For this
reason, it is necessary to build them manually, redrawing the
objects every frame. It is really easy to include other APIs
in the JavaScript implementation, while using C++ it is
essentially impossible to add new libraries.

The documentation is complete only for the JavaScript
implementation, while for C++ is extremely elementary and
sometimes with big misses, i.e. the developer needs to look
into the code of the library to understand the class that
provides image scalability.

The creation of a “native like” application is very easy us-
ing several JavaScript functions that build at run-time the
right GUI. It is even possible to use third party APIs and
features that improve support to native interfaces. Two li-
braries NativeUI (native User Interface only for iOS and An-
droid) and MAUI (single UI for every platform and device)
allow the creation of native GUI in C and C++ applications.

MoSync supports nine mobile operating systems: Android,
Blackberry, iOS, J2ME, Moblin, MeeGo, Symbian, Windows
Phone and Windows Mobile. But, the supported versions
are quite old and the support is not complete.

The test application developed with MoSync was written
in C++, to reach the best performances. Compared with
other frameworks, the MoSync implementation required much
more lines of code and working hours, showing a high com-
plexity of the framework. In particular, the most time con-
suming task is to develop animations that are not natively
provided by the framework.

To conclude, MoSync has shown to be a really wide and
powerful framework. The possibility to develop an appli-
cation using different languages is clearly a positive aspect.
Even the performances of the application are great. Unfor-

tunately, the available APIs are not complete, have a low
level of support and are sometimes not well documented.

4. TITANIUM
Titanium is a cross platform framework developed since

2006 by Appcelerator. It provides the possibility to develop
mobile applications (in particular for iOS and Android) us-
ing JavaScript. Titanium produces a native application, so
performances are very good, even if the deployed applica-
tion contains essentially a bridge between JavaScript calls
and native APIs of the target device.

Titanium requires to developers to know only JavaScript.
All the APIs of this framework can be called simply using
this language, that is a mandatory prerequisite. The Tita-
nium Studio IDE provides several tools for developing and
debugging, but requires several native tools, e.g., the An-
droid DDMS to access to the log of the application, to fully
support the developer.

An high number of APIs are available for this framework.
They are even well documented, containing a description of
every method, its input and output parameters and, some-
times, an usage example. They cover transactions, rotations
and scaling, and the possibility to combine them together.
They do not allow to know the exact position of a moving
object. The use of a timer to change the position of the
object decreases the fluidity of the application.

Considering the main platforms supported by Titanium,
the same application can have completely different User In-
terface if deployed on an iOS or Android device.

The platforms supported by this framework are iOS (from
5.01), Android (from 2.3.32), Blackberry, Tizen and Web
Mobile, but the APIs almost cover Android and iOS.

Compared to the MoSync framework, the application built
with Titanium required much less time and lines of code.
The total lines of code were 37% less, i. e., more than one
quarter less of total amount of time. This clearly show a
simplicity of the framework that decreases the amount of
time necessary to develop an application.

From our experience, Titanium has shown several really
good aspects, e. g., the high number of APIs and its doc-
umentation, that simplify the development an application.
Therefore, Titanium must be considered when developing a
cross platform application, even for the frequent updates of
the platform and APIs.

The negative aspect of this framework relies on the sup-
port essentially limited on iOS and Android.

5. JQUERY & JQUERY MOBILE
jQuery is a JavaScript library that provides several facili-

ties to developers, like DOM manipulation, event handling,
animations and AJAX calls in a cross-browser and easy way.
jQuery mobile is a framework, built on jQuery, that provides
several graphics element designed to be used with mobile de-
vices.

Unlike other frameworks, jQuery and jQuery mobile allow
the developer to built web applications that will work either
on desktop and mobile web browsers, but not native mobile
applications. Therefore the user must access the application
through the web browser.

1only 1.4% of the devices do not have at least this version.
2only less than 4.9% do not reach this minimum version.

This framework requires HTML, CSS and JavaScript as
mandatory programming languages. No other languages are
required, and, due to their enormous diffusion, the require-
ments are extremely low.

jQuery provides a wide set of different APIs for every pur-
pose, e. g., adding or deleting a new element, handling click
events, object’s style manipulation, etc. It also provides a
set of APIs for animations, e. g., fade in/out, animate, etc.,
but they work very well with desktop browsers, but suffer an
high performances degradation in the mobile environment.

Moreover, it does not support specific features of mobile
devices, e. g., Bluetooth, accelerometer, etc., since jQuery
mobile support is limited to what is accessible through web
browsers. This is a big issue, because most of the games
relies on these features to improve the user experience.

A CSS template for Android and iOS is freely available to
build a native User Interface.

jQuery supports the majority of the mobile devices, i. e.,
iOS, Android, Windows Phone3, Blackberry etc., and even
several mobile browsers, i. e., Firefox Mobile, Chrome and
Opera Mobile. Even if all these mobile systems and browsers
are supported, support for complex web applications is only
theoretical due to performance degradation.

The development using jQuery and jQuery mobile has
been fast, thanks to the big number of provided APIs and
plugins freely available. Most time has been dedicated to
cross-browser testing, because there are no automatic tools
able to provide information about compatibility.

To conclude, jQuery and jQuery mobile provide the pos-
sibility to develop a web application either for desktop and
mobile browsers. Several APIs exist but their performances
decrease with mobile browsers. Access to sensors is missing.

6. PHONEGAP
Phonegap is a framework that allows to wrap a web ap-

plication inside a webkit engine that will run on the selected
device looking like a native application.

Phonegap requires HTML, CSS and JavaScript as manda-
tory programming languages. No other languages are re-
quired, and, due to their enormous diffusion and knowledge,
Phonegap requirements are really low.

Phonegap defines several APIs that provide the possibility
to access the most important sensors and tools of mobile de-
vices. In particular, it provides access to the accelerometer,
the camera, geolocalization, contacts, calendar etc. Phone-
gap does not provide any particular API for animations, that
are the core of our case study game, but it can be extended
with other frameworks, i.e. jQuery. The result that we got
from our experience is that even in this case, as in the case
of jQuery Mobile, the application is fluid and very usable if
accessed through a laptop, while it encounters performance
problems if used in a mobile device.

Phonegap does not provide any IDE to develop applica-
tions. The developer has to rely on IDE for native applica-
tions, i.e. XCode for iOS or Eclipse for Android. Moreover,
it does not provide the possibility to have Native User In-
terface, therefore these two criteria are not applicable.

Phonegap supports the most common mobile operating
system: Android, iOS, Blackberry and Windows Phone.
The most complete APIs support is provided for Android

3iOs from version 3., Android from version 2.1, Windows
Phone from version 7.5-8.

MoSync Titanium jQuery Phonegap
Licenses 5 4 5 5

API 3 4.5 2 2
Community 3 5 5 5
Tutorials 4 5 4 5

Complexity 2 5 4 4
IDE 4 5 - -

Devices 2 4 5 4
GUI 4.5 5 3 -

Knowledge 5 5 5 5

Table 1: Final remarks comparison between frame-
works

and iOS.
The total amount of time necessary to develop an applica-

tion with Phonegap is almost the same of a web-application
using jQuery or jQuery mobile: Phonegap simply requires to
change (or to add) very few JavaScript functions (in partic-
ular the ones related to smartphones sensors and features).

To conclude, Phonegap is a powerful framework that al-
lows to wrap a web application into a native one. It pro-
vides access to the most common sensors and tools of the
different smartphones. Actually, the most important issue
regards the performances of the final application, that are
far from the ones of a native application.

7. CONCLUSIONS AND FUTURE WORKS
This paper presents a comparison between different frame-

works for cross-platform mobile development, with particu-
lar attention to development of application which requires
animations. For this reason we use, as case study, a simple
game.

Our evaluation considers MoSync, Titanium, jQuery Mo-
bile and Phonegap. The results are reported in Table 1
which compares the evaluation gained by each framework
against all the chosen criteria.

At the moment, the best framework for development of
mobile applications with animations is Titanium, because
it natively supports, with some limitations, animations and
transition effects, and its performances are good and promis-
ing even for applications more complex than the case study.

Future works will be devoted to the analysis of other
frameworks, e. g., we are currently studying Sencha Touch,
which does not natively support animations but has great
results in terms of performances.

8. REFERENCES
[1] H. Heitkötter, S. Hanschke, and T. A. Majchrzak.

Comparing cross-platform development approaches for
mobile applications. In Proceedings of the 8th
International Conference of Web Information Systems
and Technologies, WEBIST ’12, pages 299–311, 2012.

[2] M. Palmieri, I. Singh, and A. Cicchetti. Comparison of
cross-platform mobile development tools. In 16th
International Conference on Intelligence in Next
Generation Networks, ICIN ’12, pages 179–186, 2012.

[3] R. Raj and S. Tolety. A study on approaches to build
cross-platform mobile applications and criteria to select
appropriate approach. In Annual IEEE India
Conference, INDICON ’12, pages 625–629, 2012.

