Algebra 2 - 6 luglio 2012

Nome e Cognome:

MATRICOLA:

Es 1	Es 2	Es 3	Es 4	Es 5	Es 6	Es 7	Tot

Risolvere ciascun esercizio su una pagina nuova

- 1. Ricordiamo che se H è un sottogruppo e x è un elemento del gruppo (moltiplicativo) G, il coniugato di H mediante x è il sottogruppo $xHx^{-1} := \{xhx^{-1} \mid h \in H\}$. Consideriamo l'intersezione N di tutti i coniugati di H in G. Dimostrare che
 - (a) N è un sottogruppo normale di G;
 - (b) ogni sottogruppo normale di G contenuto in H è contenuto in N.
- 2. Si completi la definizione: Dato il numero intero n>1, il numero complesso z è una radice primitiva n-esima di 1 se ...
 - (a) Si dimostri che se z è una radice 9^a primitiva di 1, allora $z^6 + z^3 + 1 = 0$;
 - (b) si trovi il polinomio minimo di z su \mathbb{Q} ;
 - (c) si dica se $\mathbb{Q}(z)$ è il campo di spezzamento su \mathbb{Q} del polinomio $x^9 1$.
- 3. Siano p un numero primo e G un gruppo finito.
 - (a) Si completi la definizione: Un p-sottogruppo di Sylow di G è ...
 - (b) Consideriamo il gruppo (diedrale) D delle simmetrie di un poligono regolare di 60 lati. D ha ordine 120, ha un sottogruppo normale ciclico $N=\langle a\rangle$ di ordine 60, e risulta $D=\langle b\rangle N$ dove b ha ordine 2 e $bxb^{-1}=x^{-1}$ per ogni $x\in N$. Si dimostri che
 - i. ogni sottogruppo di N è normale in D;
 - ii. $\langle b \rangle \langle a^{15} \rangle$ è un 2-sottogruppo di Sylow di D;
 - iii. i 2-sottogruppi di Sylow di D sono 15.
- 4. Sia $u = \sqrt{2}(1 + i\sqrt{3})$.
 - (a) Verificare che u è algebrico su \mathbb{Q} .
 - (b) $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{2}, i\sqrt{3})$?
 - (c) Trovare il polinomio minimo f(x) di u su \mathbb{Q} .
 - (d) Controllare se $\mathbb{Q}(u)$ contiene il complesso coniugato \bar{u} di u.

- 5. Sia $G = \langle a \rangle$ un gruppo ciclico (moltiplicativo) di ordine n > 1.
 - (a) Dimostrare che se $a^r \in G$ risulta $\langle a^r \rangle = \langle a^d \rangle$, dove d = MCD(r, n).
 - (b) Quanti sono i sottogruppi di un gruppo ciclico di ordine 100?
- 6. Sia $F = \mathbb{Z}/2\mathbb{Z}$.
 - (a) Si elenchino i polinomi irriducibili di grado 2 di F[x];
 - (b) Si elenchino i polinomi irriducibili di grado 4 di F[x].
- 7. Si consideri l'insieme G delle matrici

$$G = \left\{ \left[\begin{array}{cc} a & 0 \\ b & 1 \end{array} \right] \mid a, b \in \mathbb{Z}/7\mathbb{Z}, \ a \neq 0 \right\}.$$

- (a) Si verifichi che G è sottogruppo di $GL(2, \mathbb{Z}/7\mathbb{Z})$;
- (b) Si verifichi che $\phi: G \to (\mathbb{Z}/7\mathbb{Z})^*$ definita da

$$\left[\begin{array}{cc} a & 0 \\ b & 1 \end{array}\right] \mapsto a$$

è un omomorfismo suriettivo.

- (c) Si descriva il nucleo di ϕ .
- (d) Qual è l'ordine di G?