Algebra 2 - Secondo compitino - 21 gennaio 2014

Nome e Cognome:

MATRICOLA:

Es 1	Es 2	Es 3	Es 4	Es 5	Es 6	Tot

Risolvere ciascun esercizio su una pagina nuova

- 1. Siano α e β algebrici su un campo F. Si provi che anche $\alpha + \beta$ è algebrico su F.
- 2. Sia $F = \mathbb{Z}/p\mathbb{Z}$ con p primo e sia $f(x) \in F[x]$ un polinomio irriducibile di grado n. Si provi che f(x) divide $x^{p^n} x$.
- 3. Sia G un gruppo con la proprietà che ogni sottogruppo è finitamente generato.
 - (a) Sia $\{H_{\lambda}\}_{{\lambda}\in\Lambda}$ una catena di sottogruppi propri. Provare che $K=\cup_{{\lambda}\in\Lambda}H_{\lambda}$ è un sottogruppo di G. Usare il fatto che K è finitamente generato per provare che $K=H_{\lambda}$ per un opportuno ${\lambda}\in\Lambda$.
 - (b) Dedurre che se $G \neq \{1\}$ allora G contiene almeno un sottogruppo massimale.
- 4. Nell'anello degli interi di Gauss $\mathbb{Z}[i]$ si consideri il sottoinsieme

$$J = \{(x - 2y) + i(2x + y) \in x, y \in \mathbb{Z}\}.$$

- (a) Si provi che J è un ideale di $\mathbb{Z}[i]$.
- (b) Si provi che J è l'ideale principale generato da 1 + 2i.
- (c) Si dica se J è un ideale massimale di $\mathbb{Z}[i]$.
- (d) Si consideri l'ideale I generato da 5+5i. Determinare I+J e $I\cap J$.
- 5. Sia $F = \mathbb{Z}/5\mathbb{Z}$ e si consideri il polinomio $f(x) = x^3 + 2x + 1 \in F[x]$.
 - (a) Si provi che f(x) è irriducibile.
 - (b) Sia u una radice di f(x) in una opportuna estensione e sia K = F[u]. Determinare |K|.
 - (c) Si provi che per ogni $b \in K \setminus \mathbb{Z}/5\mathbb{Z}$, si ha F[b] = K.
 - (d) Si provi che K contiene E un campo di spezzamento su $\mathbb{Z}/5\mathbb{Z}$ del polinomio $x^{31}-1$.
- 6. Sia $f(X) := x^4 x^2 3 \in \mathbb{Q}[X]$.
 - (a) Provare che f(x) è irriducibile in $\mathbb{Q}[X]$.
 - (b) Sia u uno zero reale di f(x) (mostrare che esiste). Esprimere l'inverso di u e di u^2 come polinomi in u.
 - (c) Da $u^2(1-u^2) = -3$ dedurre che $1-u^2$ non è un quadrato in $\mathbb{Q}(u)$.
 - (d) Mostrare che $\mathbb{Q}(u)$ non è un campo di spezzamento per f(x) su \mathbb{Q} .
 - (e) Mostrare che un campo di spezzamento per f(x) su \mathbb{Q} ha grado 8.