Algebra 2 - 5 febbraio 2014

Nome e Cognome: Matricola:

Es 1	Es 2	Es 3	Es 4	Es 5	Es 6	Tot

Risolvere ciascun esercizio su una pagina nuova

- 1. Supponiamo che un gruppo G agisca su un insieme Ω . Provare che se $\omega \in \Omega$, allora la cardinalità dell'orbita di ω tramite G coincide con l'indice dello stabilizzatore di ω in G.
- 2. Siano F ed E due campi, con $F \leq E$ e sia $u \in E$.
 - (a) Si provi che u è algebrico su F se e solo se il grado [F[u]:F] è finito.
 - (b) Si provi che se [F[u]:F]=n allora ogni elemento di F[u] si scrive in uno e un solo modo nella forma $a_0+a_1u+\cdots+a_{n-1}u^{n-1}$ con $a_0,\ldots,a_{n-1}\in F$.
- 3. Sia $F = \mathbb{Z}/7\mathbb{Z}$ il campo di ordine 7. Su $G = F \times F^*$ si definisca un'operazione ponendo, per ogni $(a, x), (b, y) \in G, (a, x)(b, y) = (a + xb, xy).$
 - (a) Si provi che, con tale operazione, G è un gruppo.
 - (b) Si provi che ponendo, per ogni $u \in F$ ed ogni $(a, x) \in G$, $(a, x) \cdot u = xu a$ si definisce un'azione di G sull'insieme F.
 - (c) Si provi che il nucleo di questa azione è il sottogruppo identico, concludendo che G è isomorfo ad un sottogruppo di S_7 .
 - (d) Per (c) possiamo identificare G con un sottogruppo di S_7 . Si provi che G contiene un 7-sottogruppo di Sylow di S_7 .
 - (e) Si determini $n_7(S_7)$, il numero di 7-sottogruppi di Sylow di S_7 .
 - (f) Denotato con P un 7-sottogruppo di Sylow di S_7 , si dimostri che $N_{S_7}(P) \cong G$.
- 4. Si considerino i seguenti due polinomi in $\mathbb{Q}[x]$: $f_1(x) = x^3 2$ e $f_2(x) = x^4 3$. e siano E_1 ed E_2 i rispettivi campi di spezzamento.
 - (a) Provare che $f_1(x)$ e $f_2(x)$ sono irriducibili in $\mathbb{Q}[x]$.
 - (b) Determinare $[E_1:\mathbb{Q}]$.
 - (c) Determinare $[E_2:\mathbb{Q}]$.
 - (d) Provare che $i\sqrt{3} \in E_1 \cap E_2$.
 - (e) Determinare $[E_1 \cap E_2 : \mathbb{Q}]$
 - (f) Sia E il campo di spezzamento di $f_1(x)f_2(x)$. Determinare $|E:\mathbb{Q}|$.
- 5. Sia $f(x) = x^3 + 6x^2 + x + 1 \in F[x]$ con $F = \mathbb{Z}/7\mathbb{Z}$ e sia A = F[x]/(f(x)).
 - (a) Fattorizzare f(x) in F[x].
 - (b) Determinare l'ordine di E, un suo campo di spezzamento.
 - (c) Quanti sono gli ideali massimali dell'anello A?
 - (d) Quanti sono gli elementi invertibili dell'anello A?