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Abstract. Given a finite non-cyclic group G, call σ(G) the least number of

proper subgroups of G needed to cover G. In this paper we give lower and
upper bounds for σ(G) for G a group with a unique minimal normal subgroup

N isomorphic to Am
n where n ≥ 5 and G/N is cyclic. We also show that

σ(A5 o C2) = 57.

1. Introduction

Given a finite non-cyclic group G, call σ(G) the least number of proper sub-
groups of G needed to cover G set-theoretically. This notion has been introduced
the first time by Cohn in 1994 in [5]. We usually call “cover” of G a family of
proper subgroups of G which covers G, and “minimal cover” of G a cover of G
consisting of exactly σ(G) elements. If G is cyclic then σ(G) is not well defined
because no proper subgroup contains any generator of G; in this case we define
σ(G) = ∞, with the convention that n < ∞ for every integer n. In [15] Tomkin-
son showed that if G is a finite solvable group then σ(G) = q + 1, where q is the
least order of a chief factor of G with more than one complement. The behavior
of the function σ has been intensively studied for the almost simple groups. The
alternating and symmetric groups have been considered by Maróti in [12]. In [2]
Britnell, Evseev, Guralnick, Holmes and Maróti studied the linear groups GL(n, q),
PGL(n, q), SL(n, q), PSL(n, q). In [10] Lucido studied the Suzuki groups. In [9]
Lucchini and Maróti found an asymptotic formula for the function which assigns to
the positive integer x the number of positive integers n at most x with the property
that σ(S) = n for some non-abelian simple group S.

If N is a normal subgroup of a finite group G then σ(G) ≤ σ(G/N), since every
cover of G/N can be lifted to a cover of G. We say that G is “σ-primitive” if
σ(G) < σ(G/N) for every non-trivial normal subgroup N of G. Since every finite
group has a σ-primitive epimorphic image with the same σ, the structure of the
σ-primitive groups is of big interest. It was studied by Lucchini and Detomi in [8].
They proved for instance that every σ-primitive group is a subdirect product of
monolithic groups (i.e. groups with only one minimal normal subgroup). This and
other partial results lead us to believe that the monolithic groups have a crucial
role in this story. In the same paper Lucchini and Detomi conjectured that every
non-abelian σ-primitive group is monolithic. This motivates us in the study of the
function σ for the monolithic σ-primitive groups.

Let us consider a monolithic σ-primitive group G. If soc(G) is abelian then it
is easy to prove that soc(G) is complemented in G and σ(G) = c + 1, where c
is the number of complements of soc(G) in G. Let now n,m be positive integers
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with n ≥ 5. Suppose that soc(G) = Amn and that G/ soc(G) is cyclic. Write
soc(G) = T1 × · · · × Tm = Tm, with T = An, and define X := NG(T1)/CG(T1).
Then either X ∼= An (“even case”) or X ∼= Sn (“odd case”). In the even case
G ∼= An o Cm (cfr. [1], Definition 1.1.8 and Remark 1.1.40.13). These groups have
been studied in [13] obtaining lower and upper bounds for σ(G) and its exact value
in the case n ≡ 2 mod (4).

Consider now the odd case. Let γ ∈ G be such that γ soc(G) generatesG/ soc(G),
so that G = 〈Tm, γ〉. Since

Tm < G ≤ Aut(Tm) ∼= T o Sym(m),

every element of G has the form (x1, . . . , xm)γk with x1, . . . , xm ∈ T and k an
integer. Moreover γ itself is of the form (y1, . . . , ym)δ with y1, . . . , ym ∈ Aut(An),
and δ ∈ Sym(m) is an m-cycle since G acts transitively on the m factors of Tm. γ
can be chosen in such a way that each yi is either 1 or equal to τ := (12) ∈ Sn−An.
Since we are in the odd case the number of indices i ∈ {1, . . . ,m} such that yi = τ is
odd. It is easy to show that γ is conjugate to (1, . . . , 1, τ)δ in G. Therefore we may
choose γ to be (1, . . . , 1, τ)δ and clearly it is not restrictive to choose δ := (1 · · ·m).
It turns out that G is the semidirect product

Amn o 〈γ〉.
Let us fix some notation. Let C := CG(T1). Let U be a maximal subgroup of

G supplementing the socle N of G. U is called “of product type” if U = NG(M ×
Ma2 × · · · ×Mam) with M a maximal NU (T1)-invariant subgroup of T1 (cfr. [1],
Remark 1.1.40.20) and a2, . . . , am ∈ Aut(An). In this case M = NU (T1) ∩ T1 and
NU (T1)C/C is a maximal subgroup of NG(T1)/C ∼= Sn (cfr. [1], Remark 1.1.40.21)
whose intersection with T1C/C is MC/C ∼= M , so that M is of the form K ∩ An
with K maximal in Sn. U is said to be of “diagonal type” if U = NG(∆) where ∆ =
∆1×· · ·×∆m/q, where q is a prime divisor of m and ∆i = {(x, xαi1 , . . . , xαiq ) | x ∈
An}, where αik ∈ Aut(An) for k = 1, . . . , q. In this case we also say that U is of
“diagonal type q”. It turns out that every maximal subgroup of G supplementing
the socle is either of product type or of diagonal type.

In this paper we establish the following result, generalizing the results in [12]
about σ(Sn) (which corresponds to the case m = 1). The arguments we use involve
the same covers of Sn considered in [12], and this is why the results have similar
flavour: in particular, we obtain an exact formula for σ(G) when n is odd with
some exceptions, and an asymptotic formula when n is even.

Theorem 1. Let m,n be positive integers, and let G := An o C2m as above. Let
ω(x) denote the number of prime factors of the positive integer x. The following
holds.

(1) Suppose that n ≥ 7 is odd and m 6= 1 if n = 9. Then

σ(G) = ω(2m) +

(n−1)/2∑
i=1

(
n

i

)m
.

(2) If n = 5 then

10m ≤ σ(G) ≤ ω(2m) + 5m + 10m.

If n = 5 and every prime divisor of m is either 2 or 3 then

σ(G) = ω(2m) + 5m + 10m.
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(3) Suppose that n ≥ 8 is even. Then(
1

2

(
n

n/2

))m
≤ σ(G) ≤ ω(2m) +

(
1

2

(
n

n/2

))m
+

[n/3]∑
i=1

(
n

i

)m
.

In particular σ(G) ∼
(

1
2

(
n
n/2

))m
as n→∞.

(4) If n = 6 then

σ(G) = ω(2m) + 2 · 6m.

Here the upper bound for σ(G) is always given by the cardinality of a cover
consisting of the ω(2m) maximal subgroups of G containing its socle and suitable
maximal subgroups of product type, NG(M×Ma2×· · ·×Mam), where theNSn

(M)’s
cover Sn −An.

We also compute σ(A5oC2) (corresponding to the even case when (n,m) = (5, 2)),
which is not computed in [13]. Similarly as above and as in the results in [13], a
minimal cover of A5 oC2 consists of the maximal subgroups containing the socle and
a family of subgroups of product type corresponding to a cover of A5 (consisting of
the normalizers of the Sylow 5-subgroups and four point stabilizers).

Theorem 2. σ(A5 o C2) = 1 + 4 · 5 + 6 · 6 = 57.

Compare this result with the corresponding odd case: σ(A2
5 o C4) = 1 + 5 · 5 +

10 · 10 = 126. Note that A5 o C2 is the easiest example of a non-almost-simple
monolithic group with non-abelian socle.

2. Preliminary lemmas

In the present section we collect some technical lemmas which will be useful in
the next section.

Let n be a positive integer and let c1, . . . , ck ∈ {1, . . . , n} be such that c1 + ...+
ck = n. A “(c1, . . . , ck)-cycle” will be an element of Sn which can be written as the
product of k pairwise disjoint cycles of length c1, . . . , ck. An “intransitive subgroup
of Sn (resp. An) of type (c1, . . . , ck)” will be the biggest subgroup of Sn (resp. An)
acting on {1, . . . , n} with k given orbits of size c1, . . . , ck. It is clearly isomorphic
to Sc1 × · · · × Sck (resp. (Sc1 × · · · × Sck) ∩An).

Proposition 1 (Stirling’s formula). For all positive integers n we have
√

2πn(n/e)
n
e1/(12n+1) < n! <

√
2πn(n/e)

n
e1/(12n).

The following lemma is shown in the proof of lemma 2.1 in [11].

Lemma 1. For a positive integer n at least 8 we have

((n/a)!)
a
a! ≥ ((n/b)!)

b
b!

whenever a and b are divisors of n with a ≤ b.

Lemma 2. Let n 6= 9, 15 be an odd positive integer, and let a ≥ 3 be a proper
divisor of n. Then (

n− 1

2

)
!

(
n− 3

2

)
! ≥ (n/a)!a · a!.
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Proof. Proceed by inspection for 21 ≤ n ≤ 299, using lemma 1. Assume n ≥ 300.
Let us use Stirling’s formula. We are reduced to prove that√

π(n− 1)((n− 1)/2e)(n−1)/2
√
π(n− 3)((n− 3)/2e)(n−3)/2 ≥

≥ 2
√

2πn/a
a
(n/ae)n

√
2πa(a/e)a.

Using the inequalities π ≥
√

2π and n− 3 ≥ a we are reduced to prove that

(n− 1)1/2(n− 1)(n−1)/2(n− 3)(n−3)/2 ≥ 2/(2e)2
√

2πn/a
a
(2n/a)n(a/e)a,

and using n− 1 ≥ n− 3 we obtain:

(n− 1)1/2(n− 3)n−2 ≥ (2/(4e2))(2πn/a)a/2(2n/a)n(a/e)a.

Using the inequality 3 ≤ a ≤
√
n we obtain:

(n− 1)1/2(n− 3)n−2 ≥ (2/4e2)(2πn/3)
√
n/2(2n/3)n(

√
n/e)

√
n.

Take logarithms and divide by n, obtaining

(1/2n) log(n− 1) + ((n− 2)/n) log(n− 3) ≥ (1/n) log(2/4e2) + (1/2
√
n) log(2π/3)+

+(1/2
√
n) log(n) + log(2n/3) + (1/

√
n) log(

√
n/e).

Since
√
n− 1 ≥ 2/4e2 and (1/2

√
n) log(2π/3) ≤ 1/

√
n we are reduced to show that

log(n− 3) ≥ (2/n) log(n− 3) + (1/
√
n) log(n) + log(2n/3).

Since n ≥ 300 we have that (2/n) log(n−3)+(1/
√
n) log(n) < 0.37, hence it suffices

to show that log(n− 3) ≥ 0.37 + log(2n/3), i.e. n− 3 ≥ (2/3)e0.37 · n. This is true
since (2/3)e0.37 < 0.97. �

Corollary 1. Let n ≥ 11 be an odd integer. Then the order of an intransitive max-
imal subgroup of Sn (resp. An) is bigger than the order of any transitive maximal
subgroup of Sn (resp. An) different from An.

Proof. The imprimitive case follows from the lemma noticing that ((n+1)/2)!((n−
1)/2)! ≥ ((n − 1)/2)!((n − 3)/2)!, and if n = 15 then ((n + 1)/2)!((n − 1)/2)! ≥
(n/a)!aa! for a ∈ {3, 5}. By [11] the order of a primitive maximal subgroup of An
or Sn is at most 2.6n and ((n+ 1)/2)!((n− 1)/2)! ≥ 2.6n. �

Lemma 3. Let n, a, b be positive integers, with a > b.

(1) Suppose n is odd. Let K be an intransitive maximal subgroup of An. If
(n2 − 1)a ≥ 4ae2(a−b)n2b, then |K|a/b ≥ |An|.

(2) Suppose n is even. Let K be a maximal imprimitive subgroup of An of the
form (Sn/2 o S2) ∩An. If na ≥ 2aea−bnb, then |K|a/b ≥ |An|.

Proof. We prove only (1), since the proof of (2) is similar. Suppose n is odd.
Since the smallest intransitive maximal subgroups of An are the ones of type ((n−
1)/2, (n+ 1)/2), what we have to prove is the following inequality:

(1/2)a/b((n− 1)/2)!a/b((n+ 1)/2)!a/b ≥ n!/2.

Since e
a/b

6(n−1)+1
+

a/b
6(n+1)+1 ≥ e1/12n for every positive integer n, using Stirling’s for-

mula we see that it is sufficient to show that

(1/2)a/b((n− 1)/2e)a(n−1)/2b
√

(π(n− 1))a/b((n+ 1)/2e)a(n+1)/2b
√

(π(n+ 1))a/b ≥

≥ (1/2)(n/e)n
√

2πn.
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Re-write this as follows:

((n2 − 1)/4e2)a(n−1)/2b(π/2)a/b(n2 − 1)a/2b((n+ 1)/2e)a/b ≥

≥ (1/2)(n/e)n
√

2πn.

In other words:

((n2 − 1)/4e2)an/2b(π(n+ 1)/2)a/b ≥ (1/2)
√

2πn(n/e)n.

Since π(n+ 1)/2 ≥ (1/2)
√

2πn we are reduced to prove that

((n2 − 1)/4e2)an/2b ≥ (n/e)n,

i.e.

(n2 − 1)a ≥ (n/e)2b(4e2)a = 4ae2(a−b)n2b.

�

Lemma 4. Let n be an odd positive integer at least 5, let a be a (2, n − 2)-cycle
in Sn, and let b be a (n − 1)-cycle in Sn. No primitive maximal subgroup of Sn
contains a, no imprimitive maximal subgroup of Sn contains b, and no intransitive
maximal subgroup of Sn contains both a and b.

Proof. The second and the third statement are clear. If a primitive subgroup of
Sn contains a then it contains the transposition an−2, thus it contains An by the
Jordan theory (cfr. for example [4], Theorem 6.15 and Exercise 6.6). �

In the rest of this section we will use the notations which we fixed in the intro-
duction.

Lemma 5. Let 1 ≤ k < 2m be an integer coprime to 2m. In the following let
the subscripts be identified with their reductions modulo m, and let b1 := 1, b2, . . .,
bm ∈ Sn, x1, . . ., xm ∈ An. Let M be a subgroup of An. The following holds.

(1) Suppose k < m. For d ∈ {1, . . . ,m} define τd to be τ if d > m − k,
and 1 if d ≤ m − k. Then the element (x1, . . . , xm)γk ∈ G belongs to
NG(M ×M b2 × · · · ×M bm) if and only if

ηd := bdxdτdb
−1
d+k ∈ NSn(M), ∀d = 1, . . . ,m.

Moreover in this case

η := η1η1+kη1+2k · · · η1+(m−1)k =

= x1τ1x1+kτ1+k · · ·x1+(m−1)kτ1+(m−1)k ∈ NSn
(M)−An.

(2) Suppose k > m. For d ∈ {1, . . . ,m} define τd to be τ if d ≤ 2m− k, and 1
if d > 2m− k. The element (x1, . . . , xm)γk ∈ G belongs to NG(M ×M b2 ×
· · · ×M bm) if and only if

ηd := bdxdτdb
−1
d+k−m ∈ NSn(M), ∀d = 1, . . . ,m.

Moreover in this case

η := η1η1+k−mη1+2(k−m) · · · η1+(m−1)(k−m) =

= x1τ1x1+k−mτ1+k−m · · ·x1+(m−1)(k−m)τ1+(m−1)(k−m) ∈ NSn
(M)−An.

(3) If NSn(M) contains η (which depends only on x1, . . . , xm), then there exist
a2, . . . , am ∈ An such that

(x1, . . . , xm)γk ∈ NG(M ×Ma2 × · · · ×Mam).
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Proof. Assume first that k < m. The element

(x1, . . . , xm)γk = (x1, . . . , xm−k, xm−k+1τ, . . . , xmτ)δk

belongs to NG(M ×M b2 × · · · ×M bm) if and only if

(Mx1 ×M b2x2 × · · · ×M bm−kxm−k ×M bm−k+1xm−k+1τ × · · · ×M bmxmτ )δ
k

=

= M ×M b2 × · · · ×M bm ,

if and only if

M bm−k+1xm−k+1τ × · · · ×M bmxmτ ×Mx1 ×M b2x2 × · · · ×M bm−kxm−k =

= M ×M b2 × · · · ×M bm .

In other words:

bm−k+1xm−k+1τ, bm−k+2xm−k+2τb
−1
2 , . . . , bmxmτb

−1
k ,

x1b
−1
k+1, b2x2b

−1
k+2, . . . , bm−kxm−kb

−1
m ∈ NSn(M).

For d ∈ {1, . . . ,m} define τd to be τ if d > m−k, and 1 if d ≤ m−k. The conditions
we have are the following:

ηd := bdxdτdb
−1
d+k ∈ NSn(M), d = 1, . . . ,m.

Observe that since k and m are coprime,

{τ1, τ1+k, τ1+2k, . . . , τ1+(m−1)k} = {τ1, . . . , τm}.

Now

η := η1η1+kη1+2k · · · η1+(m−1)k =

= x1τ1x1+kτ1+k · · ·x1+(m−1)kτ1+(m−1)k ∈ NSn
(M)

is an odd element of Sn since η ≡ τk mod (An) and k is odd (being coprime to
2m).

Point (2) follows easily from point (1) by noticing that ((x1, . . . , xm)γk)−1 =

(x−11 , . . . , x−1m )γ
k

γ2m−k.
Let us prove point (3). Suppose that the normalizer of M in Sn contains η.

Assume that k < m (the case k > m is similar). For fixed elements b2, . . . , bm ∈ Sn
define ηd := bdxdτdb

−1
d+k, for d = 1, . . . ,m, and now choose b2, . . . , bm in such a

way that η1+k, η1+2k,. . . , η1+(m−1)k ∈ NSn(M). Let η1 be the element of Sn such
that η1η1+k · · · η1+(m−1)k = η. Then since η ∈ NSn

(M), also η1 ∈ NSn
(M). Now, a

suitable power of (x1, . . . , xm)γk is of the form (y1, . . . , ym)γ, with y1, . . . , ym ∈ An.
Since the element (y1, . . . , ym)γ ∈ G belongs to NG(M ×M b2×· · ·×M bm) we have

bmymτ, y1b
−1
2 , b2y2b

−1
3 , . . . , bm−1ym−1b

−1
m ∈ NSn(M).

We may choose a2 := y1, a3 := y1y2,. . . , am := y1y2 · · · ym−1. In this way we get
M bi = Mai and ai ∈ An, for i = 2, . . . ,m. �

From the proof of this proposition it easily follows that:

Corollary 2. If M ≤ An, b2, . . . , bm ∈ Aut(An) and NG(M ×M b2 × · · · ×M bm)
contains an element of the form (x1, . . . , xm)γ with x1, . . . , xm ∈ An then there
exist a2, . . . , am ∈ An such that M bi = Mai for i = 2, . . . ,m.
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Lemma 6. Let r be a divisor of m, and let x1, . . . , xm ∈ An, a1 := 1, a2, . . . , am ∈
Sn. Let M be a subgroup of An. The element (x1, . . . , xm)γr ∈ G belongs to
NG(M ×Ma2 × · · · ×Mam) if and only if the following conditions are satisfied:

am−r+ixm−r+iτa
−1
i ∈ NSn

(M) ∀i = 1, . . . , r;

aixia
−1
r+i ∈ NSn

(M) ∀i = 1, . . . ,m− r.
In particular

xixi+rxi+2r · · ·xi+m−rτ ∈ NSn
(M)ai ∀i = 1, . . . , r.

Now assume that m is odd. Then the element (x1, . . . , xm)γ2 ∈ G belongs to
NG(M ×Ma2 × · · · ×Mam) if and only if the following conditions are satisfied:

am−1xm−1τ, amxmτa
−1
2 ,

x1a
−1
3 , a2x2a

−1
4 , . . . , am−2xm−2a

−1
m ∈ NSn(M).

In particular
x1x3 · · ·xmτx2x4 · · ·xm−1τ ∈ NSn

(M).

Proof. The element (x1, . . . , xm)γr = (x1, . . . , xm−r, xm−r+1τ, . . . , xmτ)δr normal-
izes M ×Ma2 × · · · ×Mam if and only if

(M ×Ma2 × · · · ×Mam)(x1,...,xm−r,xm−r+1τ,...,xmτ)δ
r

= M ×Ma2 × · · · ×Mam ,

in other words

Mam−r+1xm−r+1τ × · · · ×Mamxmτ ×Mx1 ×Ma2x2 × · · · ×Mam−rxm−r =

= M ×Ma2 × · · · ×Mam ,

and this leads to what is stated.
Now assume m is odd. The element

(x1, . . . , xm)γ2 = (x1, . . . , xm−2, xm−1τ, xmτ)δ2

normalizes M ×Ma2 × · · · ×Mam if and only if

(M ×Ma2 × · · · ×Mam)(x1,...,xm−2,xm−1τ,xmτ)δ
2

= M ×Ma2 × · · · ×Mam ,

in other words

Mam−1xm−1τ ×Mamxmτ ×Mx1 ×Ma2x2 × · · · ×Mam−2xm−2 =

= M ×Ma2 × · · · ×Mam ,

and this leads to what is stated. �

Lemma 7. Let r be a divisor of m. The element (x1, . . . , xm)γ normalizes

∆ := {(y1, . . . , ym/r, yb211 , . . . , y
b2,m/r

m/r , . . . , y
br,1
1 , . . . , y

br,m/r

m/r ) | y1, . . . , ym/r ∈ An}

if and only if (here b1i = 1 for all i = 1, . . . ,m/r)

br,m/rxmτbi1 = bi−1,m/rx(i−1)m/r ∀i = 2, . . . , r

and

xjbi,j+1 = bi,jx(i−1)(m/r)+j ∀i = 2, . . . , r, j = 1, . . . ,m/r − 1.

In particular
x1 · · ·xmτ = [x1 · · ·xm/r−1(br,m/rxmτ)]r.

For b ∈ Sn let lr(b) be the number of elements s ∈ Sn such that sr = b. Then

|{(x1, . . . , xm)γ ∈ NG(∆) | x1 · · ·xmτ = b}| = lr(b) · |An|m/r−1.



8 MARTINO GARONZI

In particular this number is 0 if b ∈ An or if r is even.

Proof. It is a direct computation. The element (x1, . . . , xm)γ belongs to NG(∆) if
and only if for every y1, . . . , ym/r ∈ An the element

(y
br,m/rxmτ

m/r , yx1
1 , . . . , y

xm/r

m/r , y
b21xm/r+1

1 , . . . , y
b2,m/rx2m/r

m/r , . . . ,

y
br,1x(r−1)m/r+1

1 , . . . , y
br,m/r−1xm−1

m/r−1 )

belongs to ∆, and this leads to the stated conditions.
Using these conditions we see that for every 1 ≤ i ≤ r − 1,

x1 · · ·xm/r−1br,m/rxmτ =

= bi,1x(i−1)m/r+1x(i−1)m/r+2 · · ·x(i−1)m/r+m/r−1xim/rb−1i+1,1,

and
x1 · · ·xm/r−1br,m/rxmτ = br,1x(r−1)m/r+1 · · ·xm−1xmτ.

It follows that
(x1 · · ·xm/r−1br,m/rxmτ)r = x1 · · ·xmτ.

The last two statements follow easily from the first two. �

3. Proof of Theorem 1

In this section we prove Theorem 1 for m ≥ 2 (the case m = 1 is proved in [12]).
The next definition was introduced in [12].

Definition 1 (Definite unbeatability). Let X be a finite group. Let H be a set of
proper subgroups of X, and let Π ⊆ X. Suppose that the following four conditions
hold on H and Π.

(1) Π ∩H 6= ∅ for every H ∈ H;
(2) Π ⊆

⋃
H∈HH;

(3) Π ∩H1 ∩H2 = ∅ for every distinct pair of subgroups H1 and H2 of H;
(4) |Π ∩K| ≤ |Π ∩H| for every H ∈ H and K < X with K 6∈ H.

Then H is said to be definitely unbeatable on Π.

For Π ⊆ X let σX(Π) be the least cardinality of a family of proper subgroups
of X whose union contains Π. The next lemma is straightforward so we state it
without proof.

Lemma 8. If H is definitely unbeatable on Π then σX(Π) = |H|.
It follows that if H is definitely unbeatable on Π then |H| = σX(Π) ≤ σ(X).
Let us fix the notations.

Notations 1. Let n,m be positive integers, with m ≥ 2 and n ≥ 5. Let A,B be
two fixed subsets of Sn−An, and let C be a fixed subset of An. For a prime divisor
r of m define Ωr to be the set

{(x1, . . . , xm)γr | x1x1+rx1+2r · · ·x1+m−rτ ∈ A, x2x2+rx2+2r · · ·x2+m−rτ ∈ B}.
If m is odd let

Ω2 := {(x1, . . . , xm)γ2 | x1x3 · · ·xmτx2x4 · · ·xm−1τ ∈ C}.
For a prime divisor r of 2m let Hr be the pre-image of 〈γr〉 via the projection
G→ 〈γ〉. Let Π be a fixed subset of Sn −An, and let

Ω1 := {(x1, . . . , xm)γ | x1 · · ·xmτ ∈ Π}.
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Assume that n ≥ 5 is odd. Let K1, . . . ,Kt be the intransitive maximal subgroups
of An. Let Σ be the subset of Sn consisting of the (k, n− k)-cycles where 1 ≤ k ≤
n−1, and let Π be a fixed subset of Σ. Call I := {i ∈ {1, . . . , t} | NSn(Ki)∩Π 6= ∅}.
Let

L := {NG(Ki ×Ka2
i × · · · ×K

am
i ) | i ∈ I, a2, . . . , am ∈ An}.

Let A be the set of the (2, n− 2)-cycles of Sn, let B be the set of the (n− 1)-cycles
of Sn, for m odd let C be:

• the set of the n-cycles of Sn if either n ≥ 7, or n = 5 and m 6∈ {5, 7};
• a subset of S5 consisting of 12 5-cycles, two in each Sylow 5-subgroup, if
n = 5 and m ∈ {5, 7}.

If m is even or (n,m) = (5, 3) let C = ∅. We have |A| = |An|/(n − 2), |B| =
2|An|/(n − 1), |C| = 2|An|/n if n ≥ 7 or n = 5, m 6∈ {3, 5, 7}, |C| = 12 if n = 5,
m ∈ {5, 7}, and |Ωr| = 2

(n−1)(n−2) |An|
m if r 6= 2 or m is even, while if r = 2 and m

is odd then |Ωr| = (2/n)|An|m. Suppose we are in one of the following cases:

(1) n = 5 and Π = {(2354), (4521), (4132), (1253), (4531), (3245), (1352),
(2314), (4125), (3541)};

(2) n ≥ 7 and Π = Σ.

Let r1, . . . , rω(2m) be the distinct prime factors of 2m. By Lemma 5 and Corollary
2 the family H := L∪{Hr1 , . . . ,Hrω(2m)

} covers G if n 6= 5. In fact the odd elements
of Sn are covered by the intransitive maximal subgroups of Sn.

Proposition 2. With the notations and assumptions above, we have:

(1) If (n,m) 6= (5, 3), H is definitely unbeatable on Ω := Ω1∪Ωr1∪· · ·∪Ωrω(2m)
.

(2) L is definitely unbeatable on Ω1.

Proof. We will verify the four conditions of Definition 1 for both H and L. Lemmas
4 and 6 imply that if H is a maximal subgroup of G of product type and r is a
prime divisor of m then H ∩ Ωr = ∅; in particular H ∩ Ω = H ∩ (Ω1 ∪ Ω2). If
H ∈ L then H ∩ Ω2 = ∅. Moreover Ωr ⊂ Hr for every prime divisor r of 2m and
Hr ∩Hs ∩ Ω = ∅ for every two distinct prime divisors r, s of 2m. All this implies
that the first three conditions of Definition 1 hold for H if they hold for L. We will
check them now.

Recall first that if K is a subgroup of An and x1, . . . , xm, a2, . . . , am ∈ An then
(x1, . . . , xm)γ ∈ NG(K ×Ka2 × · · · ×Kam) if and only if

amxmτ ∈ NSn
(K), x1 ∈ Ka2, x2 ∈ a−12 Ka3, · · · , xm−1 ∈ a−1m−1Kam.

(1) We show that Ω1 ∩H 6= ∅ for every H = NG(Ki ×Ka2
i × · · · ×K

am
i ) ∈ L.

Choose the element (x1, . . . , xm)γ in the intersection in this way: x1 = a2,
x2 = a−12 a3,. . . , xm−1 = a−1m−1am and xm such that x1 · · ·xmτ ∈ Π ∩
NSn(Ki).

(2) We show that Ω1 ⊆
⋃
H∈LH. Given (x1, . . . , xm)γ ∈ Ω1 choose i ∈ I

such that x1 · · ·xmτ ∈ NSn(Ki) and a2 = x1, a3 = x1x2,. . . , am =
x1x2 · · ·xm−1. Then choose H := NG(Ki ×Ka2

i × · · · ×K
am
i ).

(3) We show that Ω1∩NG(Ki×Ka2
i ×· · ·×K

am
i )∩NG(Kj×Kb2

j ×· · ·×K
bm
j ) = ∅

for NG(Ki × Ka2
i × · · · × K

am
i ) 6= NG(Kj × Kb2

j × · · · × K
bm
j ) belonging

to L. If (x1, . . . , xm)γ belongs to the stated intersection then x1 · · ·xmτ ∈
NSn

(Ki) ∩NSn
(Kj) ∩Π with i 6= j (which is impossible) or i = j and

xk ∈ a−1k Kiak+1 ∩ b−1k Kibk+1
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for k = 1, . . . ,m, where a1 := 1. This easily implies that Kak
i = Kbk

i for
k = 2, . . . ,m, contradiction.

We now prove that |H ∩ Ω| ≥ |H ′ ∩ Ω| for every H ∈ H, H ′ maximal subgroup
of G with H ′ 6∈ H. Note that this indeed proves condition (4) of Definition 1 for
both H and L since for every prime divisor r of 2m and every H ∈ L we have
Hr ∩ Ω1 = ∅ and H ∩ Ωr = ∅.

First we prove that if K 6∈ {Ki | i ∈ I} is a subgroup of An of the form R ∩An
where R is a maximal subgroup of Sn (cfr. section 1) then

|Ω ∩NG(Ki ×Ka2
i × · · · ×K

am
i )| ≥ |Ω ∩NG(K ×Kb2 × · · · ×Kbm)|.

Notice that since the right hand side of this inequality is zero if K is intransitive
(this can happen if n = 5), we may assume that K is transitive. As we have already
noticed this inequality re-writes as

|Ω1 ∩NG(Ki ×Ka2
i × · · · ×K

am
i )| ≥ |(Ω1 ∪ Ω2) ∩NG(K ×Kb2 × · · · ×Kbm)|.

The size of Ω1 ∩ NG(L × La2 × · · · × Lam) in general (for a subgroup L of An
and some a2, . . . , am ∈ Sn) is |L|m−1 · |NSn

(L) ∩ Π|, and if m is odd the size of
Ω2 ∩NG(L× La2 × · · · × Lam) is |L|m−1 · |L ∩C|. Therefore we have to show that

|Ki|m−1 · |NSn
(Ki) ∩Π| ≥ |K|m−1 · |NSn

(K) ∩ (Π ∪ C)|. (∗)

• Suppose n = 5. The transitive maximal subgroups of A5 have order 10.
Moreover the only intransitive maximal subgroups of A5 whose normalizers
in S5 intersect Π are the five point stabilizers. If m is even or m = 3
then C = ∅ and |NS5(Ki) ∩ Π| = |NS5(K) ∩ Π| = 2 for every i ∈ I, thus
(∗) is true. If m 6∈ {5, 7} is odd then |NSn

(K) ∩ (Π ∪ C)| = 6 and (∗)
becomes 12m−1 · 2 ≥ 10m−1 · 6, which is true for m ≥ 8. If m ∈ {5, 7} then
|NSn

(K) ∩ (Π ∪ C)| = 4 and (∗) becomes 12m−1 · 2 ≥ 10m−1 · 4, which is
true.

• Suppose n = 7. The left hand side is at least 72m−1 ·12. Since the transitive
maximal subgroups of S7 different from A7 have size 42 and contain 20
elements of Π ∪ C, it suffices to show that 72m−1 · 12 ≥ 21m−1 · 20, i.e.
(72/21)m ≥ 40/7, which is true for m ≥ 2.

• Suppose n = 9. The smallest maximal intransitive subgroup of A9 is the
one of type (4, 5), it has size 1440 and the size of the intersection of its
normalizer in S9 with Π is the smallest possible, 3! · 4! = 144. Thus the left
hand side of (∗) is at least 1440m−1 · 144. The right hand side is at most
max(216m−1 · 72, 648m−1 · 432) (note that the maximal subgroups of A9

isomorphic to Aut(PSL(2, 8)) are not of the form R ∩A9 with R maximal
in S9: cfr. section 1). Therefore it suffices to show that 1440m−1 · 144 ≥
648m−1 ·432, and this is true for m ≥ 3. If m = 2 then C = ∅ and it suffices
to show that 1440 · 144 ≥ 648 · 288 (recall that the imprimitive maximal
subgroups of S9 contain 144 9-cycles and 288 (6, 3)-cycles), which is true.

• Suppose n ≥ 11. Then |Ki| ≥ |K| by Corollary 1, and the inequality
|NSn

(Ki) ∩Π| ≥ |NSn
(K) ∩ (Π ∪ C)| is proved in claim 3.2 of [12].

Now we prove that if NG(∆) is a maximal subgroup of G of diagonal type (its
existence implies that m is not a power of 2 by Lemma 7) and i ∈ {1, . . . , t},
a2, . . . , am ∈ An then

|Ω ∩NG(Ki ×Ka2
i × · · · ×K

am
i )| ≥ |Ω ∩NG(∆)|.
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The right hand side is at most |NG(∆)| ≤ 2m|An|m/p, where p is the smallest
prime divisor of m, hence we are reduced to prove that |Ki|m−1 · |NSn(Ki) ∩Π| ≥
2m|An|m/p. Since if Ki is of type (k, n−k) then |NSn

(Ki)∩Π| = (k−1)!(n−k−1)!,
we obtain (2/(k(n−k)))|Ki|m ≥ 2m|An|m/p. Since k(n−k) ≤ ((n−1)/2)((n+1)/2),
it suffices to show that

8

n2 − 1
|Ki|m ≥ 2m · |An|m/p. (1)

Note that if s is a divisor of m and Ls denotes the set of elements of G of the form
(x1, . . . , xm)γs then |NG(∆) ∩ Ls| = |∆|. Therefore by Lemma 7 if NG(∆) is of
diagonal type 2 then it suffices to show that

8

n2 − 1
|Ki|m ≥ ω(m) · |An|m/2. (2)

• If n = 5 then |Ki| = 1
24! = 12, and if n = 9 then |Ki| ≥ 1

24!5! = 1440; in
both these cases (1) is true for p ≥ 3 and (2) is true for m ≥ 6. If n = 11
then |Ki| ≥ 1

25!6! = 43200 and (1) is true for m ≥ 2. If n = 13 then

|Ki| ≥ 1
26!7! = 1814400 and (1) is true for m ≥ 2.

• Suppose n = 7. Then |Ki| ≥ 72, thus it suffices to show (1): 72m ≥
12m ·2520m/2, i.e. (72/

√
2520)m/m ≥ 12. This is true for m ≥ 15. If p ≥ 3

it suffices to show that (72/ 3
√

2520)m/m ≥ 12, which is true for m ≥ 3.
Thus we are done if p is odd. If m ∈ {10, 12, 14} then ω(m) = 2 and using

(2) we are reduced to show that (72/
√

2520)m ≥ 12, which is true.
We are left with the case m = 6. It is easy to see that in general if H is

a maximal subgroup of G of diagonal type 2 and r is a prime divisor of m
then |Ωr ∩H| ≤ |An|m/2−1 ·min(|A|, |B|) (just use the definition of Ωr). In
our case min(|A|, |B|) = |A| = 504, and 726 ≥ ω(6) · 6 · 25202 · 504.
• Suppose n ≥ 15. Then |Ki|3/2 ≥ |An| by Lemma 3, so using (1) we are

reduced to prove that (8/(n2 − 1))|An|
2
3m ≥ 2m|An|m/2, i.e. |An|m/6 ≥

(m/4)(n2 − 1). This is clearly true for every m since n ≥ 15.

Now we prove that if (n,m) 6= (5, 3) then |Hr ∩Ω| ≥ |H ∩Ω| for every maximal
subgroup H of G of product type out of H and for every prime divisor r of 2m.
Let L be the transitive subgroup of An such that H = NG(L × La2 × · · · × Lam).
Note that

|H ∩ Ω| = |H ∩ (Ω1 ∪ Ω2)| = |L|m−1 · (|NSn
(L) ∩Π|+ |L ∩ C|).

Suppose first that r 6= 2 or m is even. All we have to prove is that

2

(n− 1)(n− 2)
|An|m = |Ωr| = |Hr ∩ Ω| ≥ |H ∩ (Ω1 ∪ Ω2)| =

= |L|m−1 · (|NSn(L) ∩Π|+ |L ∩ C|).
This is easily seen to be true for n ∈ {5, 7, 9}. Suppose n ≥ 11. It suffices to
show that 2

(n−1)(n−2) |An|
m ≥ 2|R|m for any maximal transitive subgroup R of Sn

different from An, i.e. (|Sn : R|/2)m ≥ (n− 1)(n− 2), and this is true by Corollary
1, being true for m = 1: |Sn : R|/2 ≥

(
n
5

)
/2 > (n− 1)(n− 2) since n > 8.

Assume now that r = 2 and m is odd. All we have to prove is that

|C| · |An|m−1 = |Ω2| = |H2 ∩ Ω| ≥ |H ∩ (Ω1 ∪ Ω2)| =

= |L|m−1 · (|NSn
(L) ∩Π|+ |L ∩ C|).
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It suffices to prove that for every transitive subgroup R of Sn not containing An
we have |C| · |An|m−1 ≥ 2|R|m, i.e. (|Sn : R|/2)m ≥ |Sn|/|C|. If n > 5 this follows
from |Sn : R| ≥ n, if n = 5 this follows from |C| ≥ 12.

Now we prove that if (n,m) 6= (5, 3) then |Hr ∩ Ω| ≥ |H ∩ Ω| for every prime
divisor r of 2m and every maximal subgroup H of G of diagonal type. Notice
that |H| ≤ 2m|An|m/2, hence if r 6= 2 or m is even we are reduced to prove that
2|An|m/((n − 1)(n − 2)) ≥ 2m|An|m/2, and this is clearly true for every m and
n ≥ 5. If r = 2 and m is odd we have to prove that (2/n)|An|m ≥ 2m|An|m/2, and
this is clearly true for every m and n ≥ 5. �

Note that Proposition 2 implies Theorem 1 if n > 5 is odd.

Observation 1. Let K be a minimal cover of the finite group X, so that |K| =
σ(X), and let K1 be a subset of K. Let Ω be a subset of X −

⋃
K∈K1

K. Then

|K1| + σX(Ω) ≤ σ(X), where σX(Ω) denotes the least number of proper subgroups
of X needed to cover Ω.

Suppose that n = 5 and all the prime divisors of m belong to {2, 3}. Fix a mini-
mal cover K of G. Let K0 be the family of the maximal subgroups of G of the form
NG(M ×Ma2 × · · · ×Mam) with a2, . . . , am ∈ A5 and M an intransitive maximal
subgroup of A5 of type (3, 2). Since the (3, 2)-cycles are not of the form x2 or x3 for
x ∈ S5, by Lemma 7 the only maximal subgroups of G which contain elements of
the form (x1, . . . , xm)γ where x1 · · ·xmτ is a (3, 2)-cycle are the subgroups in K0.
In particular K0 ⊂ K. In the following we use Notations 1, with A the set of the
(3, 2)-cycles, B the set of the 4-cycles and C the set of the 5-cycles.

Suppose that m is even, and let K1 := K0. For every K ∈ K1 we have Ω1 ∩K =
Ω2 ∩K = Ω3 ∩K = ∅, thus by Observation 1 and Proposition 2 |K1|+ |H| ≤ σ(G),
and we have equality since K1 ∪H covers G.

Suppose that m is a power of 3, and let K1 := K0 ∪ {H2, H3}. If either H2 6∈ K
or H3 6∈ K then in order to cover Ω2 ∪ Ω3 we need at least

min{|Ω2|, |Ω3|}
|NG(∆)|

=
|A| · |B| · |A5|m−1

2m · |A5|m/3
= (5/m) · 602m/3−1

subgroups, where NG(∆) is a maximal subgroup of G of diagonal type. Since
σ(G) ≤ 2 + 5m + 10m, we obtain that 10m + (5/m)602m/3−1 ≤ 2 + 5m + 10m,
contradiction. Therefore K1 ⊂ K. Since Ω1 ∩ K = ∅ for every K ∈ K1, by
Observation 1 and Proposition 2 we obtain that 2 + 5m + 10m ≤ σ(G), thus we
have equality.

Assume now that n is any positive integer at least 5. The following observation
follows easily from the proof of Proposition 2.

Observation 2. Let A be a family of proper subgroups of An, and let

K := {NG(M ×Ma2 × · · · ×Mam) | a2, . . . , am ∈ An, M ∈ A}.

Let Π be a subset of Sn such that A is definitely unbeatable on Π. Let

Ω := {(x1, . . . , xm)γ ∈ G | x1 · · ·xmτ ∈ Π}.

Suppose that the following two conditions hold:

(1) |M | ≥ |K| for every M ∈ A and every maximal subgroup K of An such
that NSn

(K) ∩Π 6= ∅.
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(2) |M |m−1 · |NSn
(M) ∩ Π| ≥ |H ∩ Ω| for every M ∈ A and every maximal

subgroup H of G of diagonal type. Note that this is true if

|M |m−1 · |NSn(M) ∩Π| ≥ 2m|An|m/p,
where p is the smallest prime divisor of m such that there exists a maximal
subgroup of G of diagonal type p whose intersection with Ω is non-empty.

Then the family K of subgroups of G is definitely unbeatable on Ω. In particular
|K| ≤ σ(G).

Let us apply this observation to the cases we are left with.
Let n = 5. Let A be the set of the intransitive maximal subgroups of A5 of type

(3, 2) and let Π be the set of the (3, 2)-cycles in S5. Condition (1) of Observation 2
is clearly verified. Let us prove condition (2). By Lemma 7 we may assume p ≥ 5
(the elements of Π have no square roots nor cubic roots in S5). The inequality
6m−1 · 2 ≥ 2m · 60m/p is then true. We obtain σ(G) ≥ 10m.

Let n = 6. Fix a minimal coverM of G consisting of maximal subgroups. Let K0

be the family of the maximal subgroups of G of the form NG(M×Ma2×· · ·×Mam)
where M is a subgroup of A6 isomorphic to A5, so that |K0| = 12 ·6m−1. Let us use
Notations 1. Let K1 be the set consisting of the subgroups in K0 and the subgroups
Hr for r a prime divisor of m. Since S6−A6 is covered by the two conjugacy classes
of maximal subgroups of S6 isomorphic to S5, K1 ∪ {H2} covers G, in particular
σ(G) ≤ ω(2m) + 2 · 6m. It is easy to see that H ∼= Am5 o C2m for every H ∈ K0,
therefore

σ(H) ≥ 10m > ω(2m) + 2 · 6m ≥ σ(G).

By Lemma 1 in [7] we deduce that K0 ⊂ M. Let A be the set of the (3, 2)-cycles
in S6, let B be the set of the 6-cycles in S6, and let C be the set of the 3-cycles
in S6. Since no subgroup of S6 intersects both A and B, H ∩ Ωr = ∅ for every
prime divisor r of m and every maximal subgroup H of G of product type. If H is
a maximal subgroup of G of diagonal type (in particular m is not a power of 2 by
Lemma 7) then |H ∩Ωr| ≤ |H ∩ soc(G)|. Therefore if r is a prime divisor of m and
Hr 6∈ M then in order to cover Ωr we need at least

minr |Ωr|
|H ∩ soc(G)|

≥ 40 · 360m−1

360m/2
= 40 · 360m/2−1

subgroups. Since m ≥ 3, this contradicts σ(G) ≤ ω(2m) + 2 · 6m. Therefore
K1 ⊆M. If m is even then K1 covers G, thus K1 =M and we are done. Suppose
m is odd. Since the subgroups of S6 isomorphic to S5 do not intersect C, the
family K1 does not cover Ω2. Since Ω2 ⊂ H2 and K1 ∪ {H2} covers G, we obtain
σ(G) = |M| = ω(2m) + 2 · 6m.

Let n ≥ 8 be even. Let Π be the set of the n-cycles in Sn, and let A be the family
of the maximal imprimitive subgroups of An corresponding to the partitions given
by two subsets of {1, . . . , n} of size n/2. In [12] (claims 3.3 and 3.4) it is proved
that if n ≥ 8 then A is definitely unbeatable on Π. Condition (1) of Observation 2
follows from Lemma 1 and the fact that the order of a primitive maximal subgroup
of An is at most 2.6n (see [11]). In fact (n/2)!2 ≥ 2.6n if n ≥ 10, and all the
maximal subgroups of A8 whose normalizers in S8 contain 8-cycles belong to A.
We now prove condition (2). We may assume that m is not a power of 2 by Lemma
7. If n ∈ {8, 10} then |K|m−1 · |NSn

(K) ∩ Π| ≥ 2m|An|m/2 whenever K ∈ A.
Suppose n ≥ 12. Using Lemma 3 we see that |K|3/2 ≥ |An| for every K ∈ A.
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Therefore since m ≥ 2 is not a power of 2, if p is the smallest prime divisor of m
then |K|m−1 ≥ |An|(2/3)(m−1) ≥ 2m|An|m/p for K ∈ A (if m ≥ 5 this follows from
p ≥ 2). Applying Observation 2 we obtain that(

1

2

(
n

n/2

))m
≤ σ(G) ≤ ω(2m) +

(
1

2

(
n

n/2

))m
+

[n/3]∑
i=1

(
n

i

)m
.

The upper bound is obtained by observing that the non-n-cycles of Sn are covered
by the maximal intransitive subgroups of Sn of type (i, n− i) for 1 ≤ i ≤ [n/3].

4. Proof of Theorem 2

In this whole section we will call G := A5 o C2, the semidirect product (A5 ×
A5)o 〈ε〉 where ε, of order 2, acts on A5×A5 exchanging the two variables. Recall
that the maximal subgroups of G are of the following five types:

• The socle N = A5 ×A5.
• Type ’r’: NG(M ×M l) where l ∈ A5 and M is a point stabilizer.
• Type ’s’: NG(M ×M l) where l ∈ A5 and M is the normalizer of a Sylow

5-subgroup.
• Type ’t’: NG(M ×M l) where l ∈ A5 and M is an intransitive subgroup of

type (3, 2).
• Type ’d’: NG(∆α) where α ∈ S5 and ∆α := {(x, xα) | x ∈ A5}.

Recall that:

• N ∩NG(H) = H for every H of the type M×M l or ∆α with M a maximal
subgroup of A5.
• The element (x, y)ε belongs to NG(M ×M l) if and only if xl−1, ly ∈ M .

In particular xy ∈M .
• The element (x, y)ε belongs to NG(∆α) if and only if (αy)2 = xy.

Let M be a family of proper subgroups of G which cover G.

Observation 3. N ∈M
Proof. Let x ∈ A5 be a 5-cycle, and let y ∈ A5 be a 3-cycle. Then the element
(x, y) does not belong to any NG(M ×M l) or NG(∆α) by the remarks above (no
maximal subgroup of A5 has order divisible by 3 and 5). �

Call i the number of subgroups of type i in M for i = r, s, t, d.
The ’type’ of an element (x, y)ε ∈ G −N is the cyclic structure of the element

xy ∈ A5. The four possible cyclic structures will be denoted by 1, (3), (5), (2, 2).
The only maximal subgroups of G containing elements of type (3) are the ones

of type r or t or d. A subgroup of type r contains 96 elements of type (3). A
subgroup of type t contains 12 elements of type (3). A subgroup of type d contains
20 elements of type (3). G contains 1200 elements of type (3). In particular
96r + 12t+ 20d ≥ 1200, in other words

(1) 24r + 3t+ 5d ≥ 300.

The only maximal subgroups of G containing elements of type (5) are the ones
of type s or d. A subgroup of type s contains 40 elements of type (5). A subgroup
of type d contains 24 elements of type (5) if α is even, 0 if α is odd. G contains
1440 elements of type (5). In particular 40s+ 24d ≥ 1440, in other words

(2) 5s+ 3d ≥ 180.
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We know that G admits a cover which consists of 57 proper subgroups, with
s = 36, r = 20, t = d = 0 (the 20 subgroups of type r are NG(M ×M l) where
l ∈ A5 and M ∈ {Stab(1),Stab(2),Stab(3),Stab(4)}).

Suppose by contradiction that σ(G) < 57, and let M be a cover with 56 proper
subgroups. In particular r + s+ t+ d+ 1 = 56, i.e. r + s+ t+ d = 55.

Observation 4. d ≤ 33, s ≥ 17 and r ≥ 6.

Proof. Inequality 2 re-writes as s ≥ 36 − 3
5d. Since r + s + t + d = 55, r + t =

55 − s − d ≤ 55 − 36 + 3
5d − d = 19 − 2

5d. Combining this with inequality 1

we obtain 24(19 − 2
5d) + 5d ≥ 300, i.e. d ≤ 156 · 5/23, i.e. d ≤ 33. Therefore

s ≥ 36− 3
5d = 36− 99

5 > 16.
Inequality 1 re-writes as 21r+2d−3s+3(r+t+d+s) ≥ 300, i.e. 21r+2d−3s ≥

135. Since d ≤ 33 and s ≥ 17, 21r ≥ 135 + 3 · 17− 2 · 33 = 120, i.e. r ≥ 6. �

Observation 5. r + t+ d ≥ 20 and s < 36.

Proof. Consider the following elements of A5: a1 := (243) ∈ Stab(1), a2 := (143) ∈
Stab(2), a3 := (142) ∈ Stab(3), a4 := (132) ∈ Stab(4). Let X be the set of elements
of G of the form (x, y)ε with xy = ai for an i ∈ {1, 2, 3, 4} and x ∈ Ji, where Ji is
a fixed set of representatives of the right cosets of Stab(i), which will be specified
later. Let H be the set of the 20 subgroups NG(M ×M l) of G of type r with M
the stabilizer of i for i ∈ {1, 2, 3, 4}. Notice that every element of X lies in exactly
one element of H. Now observe that if a subgroup NG(K ×Kl) of type t contains
an element (x, y)ε ∈ X then K is determined by ai = xy - use this to label the K’s
as Ki for i ∈ {1, 2, 3, 4} -, so that the only freedom is in the choice of the coset Kil.
We will choose the sets Ji in such a way that any two elements of Ji lie in different
right cosets of Ki. This implies that for every subgroup NG(K ×Kl) of G of type
t we have |X ∩ NG(K × Kl)| ≤ 1. Let us choose the Ji’s in such a way that for
every subgroup NG(∆α) of type d we have |X ∩NG(∆α)| ≤ 1. Choose:

J1 = {(452), (12534), (13425), (14)(35), (23)(15)},
J2 = {(134), (245), (123), (152), (125)},
J3 = {(142), (132), (134), (153), (135)},
J4 = {(132), (142), (243), (154), (145)}.

We have that for any i = 1, 2, 3, 4 any two elements of Ji lie in different right cosets
of Ki. We have to check that every subgroup of the form NG(∆α) contains at most
one element of X . In other words we have to check that if (x, y)ε ∈ X ∩ NG(∆α)
then (x, y)ε is determined. We have (αy)2 = xy, so that if α is even then α = xyx, if
α is odd then α = τxyxyx, where τxy is the transposition whose support is pointwise
fixed by xy. Let

Pi := {xyx | xy = ai, (x, y)ε ∈ X} ∪ {τxyxyx | xy = ai, (x, y)ε ∈ X} ⊂ S5

for i = 1, 2, 3, 4. Clearly |Pi| = 10 for i = 1, 2, 3, 4. All we have to show is that the
Pi’s are pairwise disjoint. This follows from the computation:

P1 = {(25)(34), (12)(35), (135), (14532), (15)(24),

(125)(34), (1352), (35), (132)(45), (24)},
P2 = {1, (15243), (14)(23), (14352), (14325),

(25), (1543), (14)(253), (1435), (1432)},
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P3 = {(124), (14)(23), (234), (14253), (14235),

(124)(35), (14)(235), (2354), (1425), (1423)},
P4 = {(123), (13)(24), (12)(34), (13254), (13245),

(123)(45), (13)(245), (12)(345), (1325), (1324)}.
Clearly, the subgroups of G of type s do not contain any element of X .

All this implies that H is definitely unbeatable on X , hence r+ t+d ≥ |H| = 20.
It follows that 56 = |M| = 1 + r + s+ t+ d > s+ 20, i.e. s < 36. �

Observation 6. Let M be the normalizer of a Sylow 5-subgroup of A5, let l ∈ A5

and suppose that NG(M ×M l) 6∈ M. Then NG(∆α) ∈ M for every α ∈ Ml. In
particular if L is the family of the cosets Ml where M < A5 is the normalizer of a
Sylow 5-subgroup and NG(M ×M l) 6∈ M then the number of subgroups of type d
in M is at least the size of the union of L.

Proof. The number of elements of type (5) in NG(M ×M l) is 40. Moreover the
only maximal subgroup of G of type r, s, t which contains one of these 40 elements
is the one we are considering: xy ∈ M determines M and x ∈ Ml determines Ml.
Let c ∈ M be a 5-cycle. The element (x, x−1c)ε belongs to NG(∆α) if and only if
(αx−1c)2 = c, i.e. αx−1c = c3, i.e. α = c2x. The result follows. �

Lemma 9. We have the following facts:

(1) Let k be a positive integer, and let L be the family of the cosets of the nor-
malizers of the Sylow 5-subgroups of A5. Then any subfamily of L consisting
of exactly k cosets covers at least 10k − 2

(
k
2

)
elements of A5.

(2) Let H 6= K be two normalizers of Sylow 5-subgroups of A5. Then for
any a1, a2, a3, b1, b2, b3 ∈ A5 such that Ha1, Ha2, Ha3,Kb1,Kb2,Kb3 are
pairwise distinct, the union

Ha1 ∪Ha2 ∪Ha3 ∪Kb1 ∪Kb2 ∪Kb3
has size at least 42.

Proof. Let Ha,Kb ∈ L. If the intersection Ha ∩Kb is non-empty then it contains
an element x, so that Ha = Hx, Kb = Kx, and Ha∩Kb = Hx∩Kx = (H ∩K)x.
It follows that the maximum size of the intersection of two elements of L equals
the maximum size of the intersection of two normalizers of Sylow 5-subgroups, i.e.
2. Maximizing the sizes of the intersections we find that k cosets cover at least
10k − 2

(
k
2

)
elements.

We now prove the second statement. Clearly |Ha1 ∪ Ha2 ∪ Ha3| = 30. Since
|Hai ∩Kbj | ≤ 2 for every i, j = 1, 2, 3,

|Ha1 ∪Ha2 ∪Ha3 ∪Kb1 ∪Kb2 ∪Kb3| ≥ 30 + 3 · (10− 3 · 2) = 42,

as we wanted. �

Corollary 3. s ≤ 31 and d ≥ 30.

Proof. Recall that the subgroups of G of type s are 36. In the following we use
Lemma 9 and Observation 6. If s = 32 then d ≥ 28, impossible; if s = 33 then
d ≥ 24, impossible; if s = 34 then d ≥ 18, impossible since r ≥ 6. Assume now
s = 35, so that d ≥ 10. Since r ≥ 6, 6 + 35 + t + d ≤ r + s + t + d = 55, i.e.
t + d ≤ 14. Thus inequality 1 implies that 5 · 14 ≥ 300 − 24r, i.e. r ≥ 10. Hence
d = r = 10 and t = 0. This contradicts inequality 1. Since s < 36, we deduce that
s ≤ 31 and consequently d ≥ 30. �
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Since d ≥ 30, r+ s+ t+ 30 ≤ r+ s+ t+ d = 55, i.e. r+ s+ t ≤ 25. Since s ≥ 17
we obtain that r + t ≤ 8. In particular r ∈ {6, 7, 8}.

• r = 6. Then by inequality 1 we have 144 + 5(t + d) ≥ 24r + 3t + 5d =
24r + 3t + 5d ≥ 300, and we deduce that t + d ≥ 32. Therefore 55 =
r + s+ t+ d ≥ 6 + s+ 32, i.e. s ≤ 17. Since s ≥ 17 we obtain that s = 17.
Inequality 2 says that 5 · 17 + 3d ≥ 180, i.e. d ≥ 32, so that d = 32 and
t = 0.

• r = 7. Since d ≥ 30, 7 + s+ 30 ≤ r + s+ t+ d = 55, i.e. s ≤ 18.
– s = 18. Then 7 + 18 + t+ d = r+ s+ t+ d = 55, i.e. t+ d = 30. Since
d ≥ 30 we obtain d = 30 and t = 0.

– s = 17. Inequality 2 says that 5 · 17 + 3d ≥ 180, i.e. d ≥ 32, so that
55 = r + s+ t+ d ≥ 7 + 17 + 32 = 56, contradiction.

• r = 8. Then since r+ s+ t ≤ 25 we obtain s+ t ≤ 17, and since s ≥ 17 we
have s = 17, t = 0 and d = 30. This contradicts inequality 2.

We deduce that either (r, s, t, d) = (7, 18, 0, 30) or (r, s, t, d) = (6, 17, 0, 32).
In both these cases there are at least 18 subgroups of type s outsideM. Therefore

Observation 6 and Lemma 9(2) imply that d ≥ 42, a contradiction.
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