
COVERINGS OF GROUPS BY SUBGROUPS

Martino Garonzi
Ph.D. student

Supervisor: Andrea Lucchini
University of Padova

Birmingham
November 9th 2012

MARTINO GARONZI COVERINGS OF GROUPS BY SUBGROUPS



DEFINITIONS AND SOME RESULTS
SIGMA-ELEMENTARY GROUPS

THE LUCCHINI-DETOMI CONJECTURE
REDUCTION TO MONOLITHIC GROUPS

COVERING OF A GROUP
EXAMPLES
BOUNDS
p-GROUPS
NILPOTENT GROUPS
SOLVABLE GROUPS
NON-SOLVABLE GROUPS

REMARK

No group is union of two proper subgroups.

MARTINO GARONZI COVERINGS OF GROUPS BY SUBGROUPS



DEFINITIONS AND SOME RESULTS
SIGMA-ELEMENTARY GROUPS

THE LUCCHINI-DETOMI CONJECTURE
REDUCTION TO MONOLITHIC GROUPS

COVERING OF A GROUP
EXAMPLES
BOUNDS
p-GROUPS
NILPOTENT GROUPS
SOLVABLE GROUPS
NON-SOLVABLE GROUPS

REMARK

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there
exists N E G such that G/N ∼= C2 × C2.
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REMARK

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there
exists N E G such that G/N ∼= C2 × C2.

These considerations led Cohn in 1994 to define for every non-cyclic
group G:

σ(G) Covering number of G: the smallest cardinality of a
family of proper subgroups of G whose union equals G.

If G is cyclic we pose σ(G) =∞.
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We are interested in groups with finite covering number.

The following result, easy consequence of a well-known result of
Neumann of 1954 [2], implies that when studying the covering
number we can concentrate on finite groups.

THEOREM

If G is a group with finite covering number then there exists N E G
such that G/N is finite and σ(G) = σ(G/N).

From now on every considered group is assumed to be finite.
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EXAMPLE

σ(Sym(3)) = 4. Subgroup lattice:

Sym(3)

{1, (12)}
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{1, (13)} {1, (23)}
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{1, (123), (132)}
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EXAMPLE

σ(Cp × Cp) = p + 1. Subgroup lattice:

Cp × Cp

•

wwwwwwwww • · · · •

RRRRRRRRRRRRRRR

{1}
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NOTATION

A “covering” of a finite group G will be a family of proper subgroups of
G whose union is G.

A “minimal covering” of a finite group G will be a covering H of G
such that |H| = σ(G).

σ(G) is the smallest cardinality of a covering of G.

If H is any covering of G then by definition σ(G) ≤ |H|.
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Let N be a normal subgroup of the group G. Recall that there is a
canonical bijective correspondence between the family of subgroups
of G containing N and the family of subgroups of G/N. It is given by

K 7→ i(K ) = K/N,

the inverse being

H 7→ i−1(H) = {g ∈ G | gN ∈ H}.

This implies the basic inequality

σ(G) ≤ σ(G/N).

Indeed, if H is a minimal covering of G/N then {i−1(H) | H ∈ H} is a
covering of G of size |H| = σ(G/N).
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Let us prove a very easy lower bound.

PROPOSITION (THE MINIMAL INDEX LOWER BOUND)

Let G be a non-cyclic group, and write G = H1 ∪ · · · ∪ Hn as union of
n = σ(G) proper subgroups. Let βi := |G : Hi | = |G|/|Hi | for
i = 1, . . . ,n. Then min{β1, . . . , βn} < σ(G).

PROOF.

We may assume that β1 ≤ · · · ≤ βn. Since 1 ∈ H1 ∩ . . . ∩ Hn the union
H1 ∪ . . . ∪ Hn is not disjoint and hence

|G| <
n∑

i=1

|Hi | = |G|
n∑

i=1

1
βi
≤ |G|n

β1
.

Therefore β1 < n = σ(G).

MARTINO GARONZI COVERINGS OF GROUPS BY SUBGROUPS



DEFINITIONS AND SOME RESULTS
SIGMA-ELEMENTARY GROUPS

THE LUCCHINI-DETOMI CONJECTURE
REDUCTION TO MONOLITHIC GROUPS

COVERING OF A GROUP
EXAMPLES
BOUNDS
p-GROUPS
NILPOTENT GROUPS
SOLVABLE GROUPS
NON-SOLVABLE GROUPS

The Minimal Index Lower Bound allows us to compute the covering
number of p-groups. Note that:

LEMMA

If G is a finite non-cyclic group then σ(G) = σ(G/Φ(G)), where Φ(G)
is the Frattini subgroup of G, the intersection of the maximal
subgroups of G. Indeed, each element of a minimal covering of G
consisting of maximal subgroups contains the Frattini subgroup.

Let now G be a finite non-cyclic p-group, |G| = pn. Recall that
G/Φ(G) is an elementary abelian p-group, isomorphic to Cd

p where d
is the minimal number of generators of G (note that d > 1 because G
is not cyclic). We are going to prove that σ(G) = p + 1. By the
lemma, it is enough to prove that σ(Cd

p ) = p + 1.

Since d > 1, Cp
d projects onto Cp ×Cp so by the basic inequality

σ(Cp
d ) ≤ σ(Cp × Cp) = p + 1.

Since any proper subgroup of Cp
d has index at least p, by the

Minimal Index Lower Bound we have p < σ(Cp
d ).
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A finite group G is called nilpotent if its Sylow subgroups are all
normal. Equivalently, G is nilpotent if it is isomorphic with the direct
product of its Sylow subgroups.

It is easy to show that if A and B are two finite groups of coprime
order then

σ(A× B) = min{σ(A), σ(B)}.

This, with the discussion in the previous slide, shows that:

PROPOSITION

If G is any non-cyclic finite nilpotent group then σ(G) = p + 1 where p
is the smallest prime divisor of |G| with the property that the Sylow
p-subgroup of G is not cyclic.
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A group G is called solvable if it admits a finite chain
1 C N1 C . . .C Nt = G such that Ni/Ni−1 is abelian for every
i = 1, . . . , t . A chief factor of a group G is a minimal normal
subgroup of a quotient of G. A complement of a normal subgroup N
of G is a subgroup H of G such that HN = G and H ∩ N = {1}.

The solvable case has been completely worked out:

THEOREM (TOMKINSON, [4])

Let G be a finite solvable group. Then

σ(G) = |H/K |+ 1

where H/K is the smallest chief factor of G with more than one
complement in G/K .
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Note that every finite non-cyclic group is the union of its non-trivial
cyclic subgroups. Therefore we always have

σ(G) ≤ |G| − 1.

In case G admits a non-solvable normal subgroup, we can bound
σ(G) with the size of this normal subgroup:

PROPOSITION

Let N be a non-solvable normal subgroup of the finite group G. Then
by CFSG

⋃
16=n∈N CG(n) = G, thus σ(G) ≤ |N| − 1.

This is in some sense the best upper bound we can hope for.

EXAMPLE

There are infinitely many primes p such that σ(Ap) ≥ (p − 2)!
(unfortunately).
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The basic inequality σ(G) ≤ σ(G/N) suggests to consider the
quotients G/N such that σ(G) = σ(G/N), and leads to the following:

DEFINITION (σ-ELEMENTARY GROUPS)

A group G is said to be “σ-elementary” if

σ(G) < σ(G/N)

for every 1 6= N E G. We say that G is “n-elementary” if G is
σ-elementary and σ(G) = n.

Clearly if G is any finite group then there exists N E G such that G/N
is σ-elementary and σ(G) = σ(G/N).
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EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.
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EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.

EXAMPLE

If the σ-elementary group G is abelian then G ∼= Cp × Cp for some
prime p ([1], Theorem 3).
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EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.

EXAMPLE

If the σ-elementary group G is abelian then G ∼= Cp × Cp for some
prime p ([1], Theorem 3).

Recall that the “socle” of a group is the subgroup generated by its
minimal normal subgroups, and a group is called “monolithic” if it
has only one minimal normal subgroup.

EXAMPLE

Tomkinson’s result implies that if G is a non-abelian solvable
σ-elementary group then G is monolithic, G/ soc(G) is cyclic and

σ(G) = | soc(G)|+ 1.
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The structure of σ-elementary groups has been investigated by A.
Lucchini and E. Detomi in 2008 [3]. In particular, they proved the
following.
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The structure of σ-elementary groups has been investigated by A.
Lucchini and E. Detomi in 2008 [3]. In particular, they proved the
following.

THEOREM (LUCCHINI, DETOMI [3] COROLLARY 14)

Let G be a non-abelian σ-elementary group and let N1, . . . ,Nk be
minimal normal subgroups of G such that soc(G) = N1 × · · · × Nk .

Then there exist epimorphic images X1, . . . ,Xk of G with the property
that Xi is a primitive monolithic group with socle isomorphic to Ni for
i = 1, . . . , k and G is a subdirect product of X1, . . . ,Xk : the natural
homomorphism

G→ X1 × . . .× Xk

is injective.

This and other results led Lucchini and Detomi to formulate the
following conjecture:
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CONJECTURE (LUCCHINI, DETOMI [3])

Every non-abelian σ-elementary group is monolithic.

In other words, the guess is that the number k in the previous
proposition is always equal to 1.
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There is a good results which points out how crucial the inequality
σ(Ap) ≥ (p − 2)! for infinitely many primes p is.

THEOREM ([3], THEOREM 24)

Let G be a σ-elementary group with no abelian minimal normal
subgroups. Then either G is a primitive monolithic group and
G/ soc(G) is cyclic, or G/ soc(G) is non-solvable and all the
non-abelian composition factors of G/ soc(G) are alternating groups
of odd degree.
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When dealing with the conjecture, the easiest possible case to
consider is the following. Let S be a non-abelian simple group. We
want to prove that σ(S × S) = σ(S).

LEMMA (THE INTERSECTION ARGUMENT)

Let H be a minimal covering of G, and let M be a maximal subgroup
of G. If σ(G) < σ(M) then M ∈ H.

PROOF.

We have M = M ∩G = M ∩
⋃

H∈H H =
⋃

H∈H H ∩M. Therefore the
family {H ∩M | H ∈ H} covers M, and has size σ(G). Since
σ(G) < σ(M), one of the subgroups H ∩M of M must be unproper,
i.e. there exists H ∈ H such that H ∩M = M, i.e. M ⊆ H. By
maximality of M it follows that M = H.
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Let now G = S × S. We want to prove that σ(G) = σ(S). Let

M := {(s, s) | s ∈ S} < G.

M is a maximal subgroup of G isomorphic to S.

Since S × {1} is a quotient of G, σ(G) ≤ σ(S × {1}) = σ(S), so now
assume by contradiction that σ(G) < σ(S) = σ(M). By the
intersection argument all the |G : M| conjugates of M in G belong to
every minimal cover of G (they are all maximal subgroups isomorphic
to M), therefore

|S| = |G : M| ≤ σ(G) ≤ σ(S) ≤ |S| − 1,

a contradiction.
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If the non-abelian group G is a direct product of two non-trivial
subgroups then it is not σ-elementary. This is a consequence of the
following result:

THEOREM (LUCCHINI A., G 2010 [5])

LetM be a minimal cover of a direct product G = H1 × H2 of two
finite groups. Then one of the following holds:

1 M = {X × H2 | X ∈ X} where X is a minimal cover of H1. In this
case σ(G) = σ(H1).

2 M = {H1 × X | X ∈ X} where X is a minimal cover of H2. In this
case σ(G) = σ(H2).

3 There exist N1 E H1, N2 E H2 with H1/N1 ∼= H2/N2 ∼= Cp andM
consists of the maximal subgroups of H1 × H2 containing
N1 × N2. In this case σ(G) = p + 1.

Let us describe the idea in the case (|H1/H ′1|, |H2/H ′2|) = 1. In order
not to get lost in technicalities, let us assume that H1 = H2 = S is a
non-abelian simple group.
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1 We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
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1 We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
2 LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi

consists of subgroups of type (i).

MARTINO GARONZI COVERINGS OF GROUPS BY SUBGROUPS



DEFINITIONS AND SOME RESULTS
SIGMA-ELEMENTARY GROUPS

THE LUCCHINI-DETOMI CONJECTURE
REDUCTION TO MONOLITHIC GROUPS

THE CONJECTURE
THE DIRECT PRODUCT CASE
GROUPS WITH SMALL COVERING NUMBER
SOME MONOLITHIC GROUPS

1 We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
2 LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi

consists of subgroups of type (i).
3 Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .
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1 We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
2 LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi

consists of subgroups of type (i).
3 Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .

4 We prove that Ω = ∅. Suppose Ω 6= ∅. Let ω ∈ Ω1. Then
{K < S | S × K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3} covers S.
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1 We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
2 LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi

consists of subgroups of type (i).
3 Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .

4 We prove that Ω = ∅. Suppose Ω 6= ∅. Let ω ∈ Ω1. Then
{K < S | S × K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3} covers S.

5 It follows that

|M1|+ |M2|+ |M3| = |M| = σ(S × S) ≤ σ(S) ≤ |M2|+ |M3|.

This implies thatM1 = ∅. AnalogouslyM2 = ∅. SoM =M3.
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1 We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
2 LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi

consists of subgroups of type (i).
3 Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .

4 We prove that Ω = ∅. Suppose Ω 6= ∅. Let ω ∈ Ω1. Then
{K < S | S × K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3} covers S.

5 It follows that

|M1|+ |M2|+ |M3| = |M| = σ(S × S) ≤ σ(S) ≤ |M2|+ |M3|.

This implies thatM1 = ∅. AnalogouslyM2 = ∅. SoM =M3.
6 By the Minimal Index Lower Bound |S| ≤ σ(G) ≤ σ(S) ≤ |S| − 1,

contradiction.
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Let us examine the validity of the conjecture for small values of σ(G).
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Let us examine the validity of the conjecture for small values of σ(G).
In my master thesis (2009) I determined all the σ-elementary groups
G with σ(G) ≤ 25.
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Let us examine the validity of the conjecture for small values of σ(G).
In my master thesis (2009) I determined all the σ-elementary groups
G with σ(G) ≤ 25.

3 C2 × C2

4 C3 × C3,Sym(3)
5 Alt(4)
6 C5 × C5,D10,AGL(1,5)
7 ∅
8 C7 × C7,D14,7 : 3,AGL(1,7)
9 AGL(1,8)

10 32 : 4,AGL(1,9),Alt(5)
11 ∅
12 C11 × C11,11 : 5,

D22,AGL(1,11)
13 Sym(6)
14 C13 × C13,D26,13 : 3,

13 : 4,13 : 6,AGL(1,13)

15 SL(3,2)
16 Sym(5),Alt(6)

17 24 : 5,AGL(1,16)
18 C17 × C17,D34,17 : 4,

17 : 8,AGL(1,17)
19 ∅
20 C19 × C19,AGL(1,19),

D38,19 : 3,19 : 6,19 : 9
21 ∅
22 ∅
23 M11

24 C23 × C23,D46,
23 : 11,AGL(1,23)

25 ∅
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By using similar techniques it is possible to prove that:

THEOREM

Let G be a non-abelian σ-elementary group, and assume that
σ(G) ≤ 56. Then G is either affine or almost simple.

Moreover we have σ(A5 o C2) = 4 · 5 + 6 · 6 + 1 = 57.
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By using similar techniques it is possible to prove that:

THEOREM

Let G be a non-abelian σ-elementary group, and assume that
σ(G) ≤ 56. Then G is either affine or almost simple.

Moreover we have σ(A5 o C2) = 4 · 5 + 6 · 6 + 1 = 57.

Note that G := A5 o C2 is the smallest monolithic group which is
neither affine nor almost simple. A minimal covering of this group
consists of the socle plus subgroups of the form

NG(M ×Ma)

where M varies in the covering of A5 consisting of the six normalizers
of the Sylow 5-subgroups and four point stabilizers, and a varies in
A5.
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Let G be a monolithic group with non-abelian socle

S1 × . . .× Sm = Sm,

where S = Alt(n), n ≥ 5 and G/ soc(G) is cyclic. Let

X := NG(S1)/CG(S1).

X is an almost-simple group with socle isomorphic to S, and G
embeds in the wreath product X o Sym(m).
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Let G be a monolithic group with non-abelian socle

S1 × . . .× Sm = Sm,

where S = Alt(n), n ≥ 5 and G/ soc(G) is cyclic. Let

X := NG(S1)/CG(S1).

X is an almost-simple group with socle isomorphic to S, and G
embeds in the wreath product X o Sym(m).

The coverings we prove to be minimal in the following theorems
consist of the subgroups containing the socle together with the
subgroups of the form

NG(M ×Ma2 × . . .×Mam )

where a1, . . . ,am vary in X and M varies in a suitable familyM of
subgroups of X which covers xS, where 〈xS〉 = X/S. By ω(x) we
denote the number of prime divisors of the integer x .
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THEOREM (MARÓTI, G 2010 [7])

Suppose X = S = Alt(n). Then the following holds.
1 If 12 < n ≡ 2 mod (4) then

σ(G) = ω(m) +

(n/2)−2∑
i=1, i odd

(
n
i

)m

+
1

2m

(
n

n/2

)m

.

2 If 12 < n 6≡ 2 mod (4) then

ω(m) +
1
2

n∑
i=1, i odd

(
n
i

)m

≤ σ(G).

3 Suppose n has a prime divisor at most 3
√

n. Then

σ(G) ∼ ω(m) + min
M

∑
M∈M

|S : M|m−1 as n→∞.
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THEOREM (G 2011 [8])

Suppose X = Sym(n). Then the following holds.
1 Suppose that n ≥ 7 is odd and (n,m) 6= (9,1). Then

σ(G) = ω(2m) +

(n−1)/2∑
i=1

(
n
i

)m

.

2 Suppose that n ≥ 8 is even. Then(
1
2

(
n

n/2

))m

≤ σ(G) ≤ ω(2m) +

(
1
2

(
n

n/2

))m

+

[n/3]∑
i=1

(
n
i

)m

.

In particular σ(G) ∼
(

1
2

( n
n/2

))m
as n→∞.
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SIGMA STAR
AN OPEN PROBLEM

Why is the study of monolithic groups so important when attacking
the main conjecture?
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Why is the study of monolithic groups so important when attacking
the main conjecture?

PROPOSITION (LUCCHINI, DETOMI [3], PROPOSITION 16)

Let X be a monolithic primitive group with socle N. If Ω is an arbitrary
union of cosets of N in X define σΩ(X ) to be the smallest number of
supplements of N in X needed to cover Ω. Define

σ∗(X ) := min{σΩ(X ) | Ω =
⋃

i

ωiN, 〈Ω〉 = X}.

Let now G be a non-abelian σ-elementary group,

G ≤subd X1 × . . .× Xk .

Then
σ∗(X1) + . . .+ σ∗(Xk ) ≤ σ(G).
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Let us admire for a second the following inequalities:

σ∗(X1) + . . .+ σ∗(Xk ) ≤ σ(G) ≤ min{σ(X1), . . . , σ(Xk )}.

Recall that the Xi ’s are monolithic groups. From this it is possible to
deduce the following partial reduction to the monolithic case.

PROPOSITION

Let G be a σ-elementary group, with socle N1 × · · · × Nk , and
G ≤subd X1 × · · · × Xk as before. Let i ∈ {1, . . . , k} be such that Ni is
non-abelian and σ∗(Xi ) ≤ σ∗(Xj ) whenever j ∈ {1, . . . , k} is such that
Nj is non-abelian. If

σ(Xi ) < 2σ∗(Xi )

then k = 1, i.e. G is monolithic.
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I have a result of the following type.

THEOREM

Let G be a primitive monolithic group with non-abelian socle
T m = T1 × · · · × Tm, where T = T1 = · · · = Tm is a simple group. Let
L := NG(T1)/CG(T1). L is an almost-simple group with socle
isomorphic to T . If there exists a family of proper subgroups of L with
some specified properties then σ(G) < 2σ∗(G).

This is a partial reduction to the almost simple groups. For example
using this it is possible to deduce the following.

THEOREM

Let G be a non-abelian σ-elementary group, and assume that all
minimal sub-normal subgroups of G are alternating groups of large
enough even degree. Then G is monolithic.
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Let us sketch the proof of the following fact:

PROPOSITION

Let G be a non-abelian σ-elementary group.
If σ(G) ≤ 55 then G is monolithic.

Assume that G has no abelian minimal normal subgroup. Let N1,N2
be two non-abelian minimal normal subgroups of G, and let X1,X2 be
as above. Let `Xi (Ni ) be the smallest index of a proper supplement of
Ni in Xi , i.e. the smallest primitivity degree of Xi . It is possible to
prove that `Xi (Ni ) ≤ σ∗(Xi ), therefore

`X1 (N1) + `X2 (N2) ≤ σ∗(X1) + σ∗(X2) ≤ σ(G) ≤ 55,

so we may assume for example that `X1 (N1) ≤ 27.
Let us consider only the case in which X1/N1 is cyclic. Then it has
prime-power order and hence σ(X1) ≤ σ∗(X1) + 1. This leads to the
contradiction

σ∗(X1) + σ∗(X2) ≤ σ(G) ≤ σ(X1) ≤ σ∗(X1) + 1.
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Let X be the set of values σ(G) where G is a finite non-cyclic group.
The following is an open problem:

(*) Is it true that N− X is infinite?

I obtained the following result:

PROPOSITION

Let Y be the set of values σ(G) where G is a finite primitive monolithic
group such that G/ soc(G) is cyclic. Then Y has natural density 0.

This is an example of how proving the main conjecture would help
answering questions such as (*).

MARTINO GARONZI COVERINGS OF GROUPS BY SUBGROUPS



DEFINITIONS AND SOME RESULTS
SIGMA-ELEMENTARY GROUPS

THE LUCCHINI-DETOMI CONJECTURE
REDUCTION TO MONOLITHIC GROUPS

SIGMA STAR
AN OPEN PROBLEM

J. H. E. Cohn, On n-sum groups; Math. Scand. 75 (1) (1994) 44–58.

B. H. Neumann, Groups covered by permutable subsets; J. London Math. Soc. 29, 236-248 (1954).

E. Detomi and A. Lucchini, On the structure of primitive n-sum groups; Cubo 10 (2008), no. 3, 195–210.

M. J. Tomkinson, Groups as the union of proper subgroups; Math. Scand. 81 (2) (1997) 191–198.

M. Garonzi, A. Lucchini, Direct products of groups as unions of proper subgroups; Archiv der Mathematik, ISSN: 0003-889X

M. Garonzi, Finite Groups that are Union of at most 25 Proper Subgroups; Journal of Algebra and its Applications, ISSN:

0219-4988.

A. Maróti, M. Garonzi, Covering certain wreath products with proper subgroups; Journal of Group Theory, ISSN: 1433-5883.

M. Garonzi, Covering certain monolithic groups with proper subgroups; Communications in Algebra, ISSN: 0092-7872

D. Berend, Y. Bilu, Polynomials with Roots modulo every integer.

MARTINO GARONZI COVERINGS OF GROUPS BY SUBGROUPS


	Talk
	Definitions and some results
	Covering of a group
	Examples
	Bounds
	p-groups
	Nilpotent groups
	Solvable groups
	Non-solvable groups

	Sigma-elementary groups
	Definition
	Examples
	Structure

	The Lucchini-Detomi conjecture
	The conjecture
	The direct product case
	Groups with small covering number
	Some monolithic groups

	Reduction to monolithic groups
	Sigma star
	An open problem



