COVERS AND NORMAL COVERS OF FINITE GROUPS

MARTINO GARONZI AND ANDREA LUCCHINI

ABSTRACT. For a finite non cyclic group G, let $\gamma(G)$ be the smallest integer k such that G contains k proper subgroups H_1, \ldots, H_k with the property that every element of G is contained in H_i^g for some $i \in \{1, \ldots, k\}$ and $g \in G$. We prove that if G is a noncyclic permutation group of degree n, then $\gamma(G) \leq (n+2)/2$. We then investigate the structure of the groups G with $\gamma(G) = \sigma(G)$ (where $\sigma(G)$ is the size of a minimal cover of G) and of those with $\gamma(G) = 2$.

1. INTRODUCTION

Let G be a non-cyclic finite group. A collection \mathcal{C} of proper subgroups of G is a cover of G if $\cup_{H \in \mathcal{C}} H = G$; it is a minimal cover if $|\mathcal{C}|$ is as small as possible. A normal cover has the property that $H^g \in \mathcal{C}$ for all $H \in \mathcal{C}$, $g \in G$. The covering number of G, denoted $\sigma(G)$, is the size of a minimal cover, and the normal covering number, denoted $\gamma(G)$, is the smallest number of conjugacy classes of subgroups in a normal cover of G. If G is cyclic we pose $\sigma(G) = \gamma(G) = \infty$, with the convention that $n < \infty$ for every integer n.

The first question on finite covers was posed by Scorza in 1926 [28] who settled the question which groups are the union of three proper subgroups. Cohn's 1994 paper [12] brought Scorza's original question again to the forefront of research in group theory and got the attention of many researchers (see for example [3], [6], [8], [12], [16], [21], [22] [23], [26], [29]).

The study of normal covers is an off-shoot of the finite covering problem and relatively new ([5], [7], [10], [11]). The first available results seem to indicate that the arguments used to investigate $\sigma(G)$ fail when applied to the study of $\gamma(G)$ and this second invariant seems more difficult to be estimated. For example, by the main result in Tomkinson's paper [29, Theorem 2.2.], if G is a finite soluble group then $\sigma(G) = |W| + 1$, where W is a chief factor of G with least order among chief factors of G with multiple complements; in particular $\sigma(G) - 1$ is a prime power. A similar formula for $\gamma(G)$ when G is soluble is missing and in any case $\gamma(G)$ has a surprisingly different behavior: for every $n \geq 2$, there exists a finite soluble group G with $\gamma(G) = n$ [14].

In this paper we address two questions related to the behavior of $\gamma(G)$. We study the groups G with $\sigma(G) = \gamma(G)$ and those with $\gamma(G) = 2$.

In order to deal with the first question we start recalling a lower bound for $\sigma(G)$, proved by Cohn. Let $\mu(G)$ be the least integer k such that G has more than one maximal subgroup of index k. Then we have:

Proposition 1 (Cohn [12], Corollary after Lemma 8). If G is a finite group, then $\sigma(G) \ge \mu(G) + 1$.

¹⁹⁹¹ Mathematics Subject Classification. 20F05.

Research partially supported by MIUR-Italy via PRIN Group theory and applications.

On the other hand it turns out that the same value $\mu(G) + 1$ represents an upper bound for $\gamma(G)$. Indeed we prove:

Proposition 2. If G is a finite group, then $\gamma(G) \leq \mu(G) + 1$. Moreover $\gamma(G) = \mu(G) + 1$ if and only if $\mu(G)$ is a prime, G contains at least two normal subgroups of index $\mu(G)$ and $\gamma(G) = \gamma(G/G')$.

Corollary 3. Suppose that G is a noncyclic finite group. If $\sigma(G) = \gamma(G)$, then $p = \sigma(G) - 1$ is a prime and G has a minimal cover consisting of normal subgroups of index p. In particular $\gamma(G) = \gamma(G/G') = \sigma(G/G')$.

Proposition 2 is a consequence of a more general result, bounding $\gamma(G)$ when G is a noncyclic permutation group.

Theorem 4. If G is a noncyclic permutation group of degree n, then $\gamma(G) \leq (n+2)/2$.

We may complete the previous statement noticing that the upper bound is reached infinitely often: if p is any prime and G is a subgroup of Sym(2p) generated by two disjoint p-cycles then $G \cong C_p \times C_p$ so $\gamma(G) = p + 1 = (2p + 2)/2$.

It is interesting to study the groups for which σ or γ takes the smallest possible value. No finite group can be expressed as a union of two proper subgroups or as a union of conjugates of a proper subgroup; so $\sigma(G) \ge 3$ and $\gamma(G) \ge 2$. Scorza's Theorem says that $\sigma(G) = 3$ if and only if G is the union of three subgroups of index 2; this is equivalent to say that if $\sigma(G) = 3$ but $\sigma(G/N) > 3$ for every nontrivial normal subgroup N of G, then $G \cong C_2 \times C_2$. One could expect that, in a similar way, there are only few groups G such that $\gamma(G) = 2$ but $\gamma(G/N) > 2$ for every nontrivial normal subgroup N of G, however it is not precisely like that. Indeed we will give many different examples of groups G with $\gamma(G) = 2$. However some restrictions on the structure of these groups can be proved.

Theorem 5. Assume that $\gamma(G) = 2$ but $\gamma(G/N) > 2$ for every nontrivial normal subgroup N of G. Then G has a unique minimal normal subgroup N. Moreover if G is covered with the conjugates of two maximal subgroups then either one of these two subgroups contains $\operatorname{soc}(G)$ or G is an almost simple group.

On the other hand, as we will recall in Section 3, there are several different examples of almost simple groups G with $\gamma(G) = 2$. Moreover in the same section we will construct infinite families of examples of groups G with a unique minimal normal subgroup N, covered by the conjugates of two maximal subgroups H and K, in which H contains N but the intersection of K with N has different behaviors: trivial (when N is abelian), of diagonal type, of product type. The conclusion is that there are several different ways in which a finite group can be covered by the conjugates of two proper subgroups and a complete classification is quite difficult.

Acknoledgements. We would like to thank Attila A. Maróti and Pablo Spiga for fruitful discussions and valuable and helpful comments.

2. Groups G with $\gamma(G) = \sigma(G)$

We start this section with some preliminary results.

Lemma 6. Let G be a finite soluble noncyclic group such that G/G' is cyclic. Then $\gamma(G) = 2$.

Proof. We make induction on the order of G. Since $\gamma(G) \leq \gamma(G/N)$ for every normal subgroup N of G, we may assume that every proper quotient of G is cyclic. Together with the fact that G/G' is cyclic, this implies that G contains a unique minimal normal subgroup, say N, and N has a cyclic complement M. Moreover Mhas precisely |N| conjugates in G. Let K be a conjugate of M in G, with $K \neq M$. Since M is cyclic, so is K and $K \cap M \leq \langle K, M \rangle = G$. Since $K \cap M \not\supseteq N$ it follows $K \cap M = 1$. The |N| conjugates of M together with N cover in total

$$|N| + (|G:N| - 1)|N| = |G|$$

elements of G. It follows that $\gamma(G) = 2$.

Denote by m(G) the smallest index of a proper subgroup of G. The following consequence of the classification of the finite simple groups plays a crucial role in our proof.

Proposition 7. Let X be an almost simple group. If $X \neq \text{Aut}(\text{Alt}(6))$ then $\gamma(X) < m(\text{soc}(X))/2$. Moreover $\gamma(\text{Aut}(\text{Alt}(6)) = 3$.

Proof. Let S = soc(X). For the value of m(S) we refer to [25, Table 5.2.A] and [15, Table 1].

If S is an alternating group of degree $n \ge 5$ then $\gamma(X) < n/2 = m(S)/2$ [11] unless n = 6. Moreover it is easy to check using [20] that if S = Alt(6) then $\gamma(X) \le 3$ with equality only if X = Aut(Alt(6)).

Suppose that S is a sporadic simple group. It can be deduced from [19, Table 1] that $\gamma(M_{11}) = 2$, $\gamma(M_{12}) \leq 3$, $\gamma(S) \leq 9$ if S is not the Monster group M and $\gamma(M) \leq 14$: this is sufficient to conclude $\gamma(S) < m(S)/2$. If X is not simple then $X/S \cong C_2$ and X has at most six conjugacy classes of involutions, and precisely 3 conjugacy classes of involutions if $X = \operatorname{Aut}(M_{12})$. Since every element of X of odd order lies in S and every element of X of even order centralizes an involution, $\gamma(X) \leq 6 + 1 = 7 < m(S)/2$ if $S \neq M_{12}$, $\gamma(\operatorname{Aut}(M_{12})) \leq 1 + 3 = 4$.

Suppose that S is a simple group of Lie type. Denote by $q = p^f$ the size of the base field F, where p is the characteristic. Since X is the union of the centralizers of the nontrivial elements of S [16, Proposition 7], $\gamma(X) \leq k^*(S)$, the number of conjugacy classes of elements in S of prime order. In the case $S \neq A_m(q)$ we will prove that $k^*(S) < k(S) \leq m(S)/2$, by using the bounds for the number k(S) of conjugacy classes in S proved in [18, Corollary 1.2 and Tables 1 and 2]. Suppose that S is of classical type and let n be the dimension of the natural module over F. In [1], eight collections $\mathcal{C}_1, \ldots, \mathcal{C}_8$ of natural subgroups of X are defined, and each cyclic subgroup of X is contained in one of these subgroups. So X is covered by the maximal subgroups of X belonging to these Aschbacher classes. In the particular case when $S = A_m(q)$, we have n = m + 1, $S \cong PSL(n + 1, q)$ and the number of conjugacy classes of subgroups of type $\mathcal{C}_1, \ldots, \mathcal{C}_8$ is at most $2 \cdot n + 3 \cdot d(n) + \log n + \log f + 5 \leq 5(n + 1) + \log n + \log q$ where $\log = \log_2, d(n)$ is the number of divisors of n and $\omega(f)$ is the number of prime divisors of f [24, p. 69]. In the case $S = A_m(q)$ we will prove that

$$5(n+1) + \log n + \log q < m(S)/2 \tag{1}$$

with finitely many exceptions. We are now ready to start our case by case analysis.

- $S = A_m(q), n = m + 1, m \ge 1, (n,q) \ne (2,2), (2,3).$ We have $m(S) = \frac{q^n 1}{q 1}$ if $(n,q) \ne (2,5), (2,7), (2,9), (2,11), (4,2), m(A_1(5)) = 5, m(A_1(7)) = 7, m(A_1(9)) = 6, m(A_1(11)) = 11, m(A_3(2)) = 8.$ By [9] $\gamma(PSL(2,q)) = \gamma(PGL(2,q)) = 2$, so me way assume that if n = 2 then q is not a prime. Moreover $PSL(2,4) \cong Alt(5), PSL(3,2) \cong PSL(2,7), PSL(2,9) \cong Alt(6)$ and $PSL(4,2) \cong Alt(8).$ In the remaining cases inequality (1) holds except for $(n,q) \in \{(6,2), (5,2), (4,3), (3,3), (3,4), (3,5), (2,8), (2,16), (2,25), (2,27)\}.$ On the other hand $k^*(PSL(5,2)) = 13, k^*(PSL(4,3)) = 11, k(PSL(3,4)) = 10, k^*(PSL(3,5)) = 14, k^*(PSL(2,8)) = 4, k^*(PSL(2,25)) = 10$ and $k^*(PSL(2,27)) = 12$ (see [13]). Suppose $S \in \{PSL(2,16), PSL(3,3)\}$: by [9] $\gamma(X) = 2$ if X = S, otherwise X/S is a non-trivial 2-group, so every elements in $X \setminus S$ centralizes an involution and since X contains 2 conjugacy classes of involution we deduce that $\gamma(X) \le 3$. Finally $\gamma(PSL(6,2)) \le [2 \cdot 6 + 3 \cdot d(6) + 5 + \log 6] = 31 < 63/2 = m(PSL(6,2))/2.$
- $S = B_m(q), q \text{ odd}, m > 1$. We have $m(S) = \frac{q^{2m}-1}{q-1}$ if $q > 3, m(S) = \frac{1}{2}3^m(3^m-1)$ if q = 3 and $m > 2, m(B_2(3)) = 27$. Moreover $k(S) \le 7.3 \cdot q^m$ and $k(B_2(q)) \le q^2 + 12q$ if q is odd. This is enough to deduce that k(S) < m(S)/2, except in the three cases $B_2(3), B_2(5), B_3(3)$. However, it follows from [13], that $k^*(B_2(3)) = 7 < m(B_2(3))/2 = 27/2, k(B_2(5)) = 34 < m(B_2(3))/2 = 78$ and $k(B_3(3)) = 58 < m(B_3(3))/2 = 351/2$.
- $$\begin{split} &m(B_2(3))/2 = 78 \text{ and } k(B_3(3)) = 58 < m(B_3(3))/2 = 351/2. \end{split}$$
 $\bullet \ S = C_m(q), \ m > 2. \ \text{We have } m(S) = \frac{q^{2m}-1}{q-1} \text{ if } q > 2, \ m(S) = 2^{m-1}(2^m-1) \text{ if } q = 2. \ \text{Moreover } k(S) \leq 15.2 \cdot q^m. \ \text{It is easy to see that } 15.2 \cdot q^m < m(S)/2, \text{ except for } (m,q) \in \{(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(5,2)\}. \ \text{On the other hand by } [18, \ \text{Table } 3] \ k(C_3(4)) \leq 4^3 + 5 \cdot 4^2 < m(C_3(4))/2 = 1365/2, k(C_3(5)) \leq 5^3 + 12 \cdot 5^2 < m(C_3(5))/2 = 1953 \text{ and it follows from } [13] \ \text{that } k^*(C_3(2)) = 9 < m(C_3(2))/2 = 14, \ k(C_3(3)) = 74 < m(C_3(3))/2 = 182, k^*(C_4(2)) = 15 < m(C_4(2))/2 = 60, \ k(C_4(3)) = 278 < m(C_4(3))/2 = 1640 \ \text{and } k(C_5(2)) = 198 < m(C_5(2))/2 = 248. \end{split}$
- $S = D_m(q), m > 3$. We have that $m(S) = \frac{(q^m 1)(q^{m-1} + 1)}{q 1}$ if q > 2 and $m(S) = 2^{m-1}(2^m 1)$ if q = 2. Moreover $k(S) \le 6.8 \cdot q^m$ and it is easy to see that $6.8 \cdot q^m < m(S)/2$ except for $(m,q) \in \{(4,2),(4,3)\}$. On the other hand it follows from [13] that $k(D_4(2)) = 53 < m(D_4(2))/2 = 60$ and $k(D_4(3)) = 114 < m(D_4(3))/2 = 520$.
- $S = {}^{2}A_{m}(q), m > 1$. We have $m(S) = \frac{(q^{m+1}-(-1)^{m+1})(q^{m}-(-1)^{m})}{q^{2}-1}$ if $m \ge 4$ and m + 1 is not divisible by 6 when $q = 2, m(S) = 2^{m}(2^{m+1}-1)/3$ if q = 2 and m is divisible by 6, $m({}^{2}A_{3}(q)) = (q+1)(q^{3}+1), m({}^{2}A_{2}(q)) = q^{3}+1$ if $q \ne 2, 5, m({}^{2}A_{2}(5)) = 50$. Moreover $k(S) \le 8.26 \cdot q^{m}$ and $k({}^{2}A_{m}(q)) \le q^{n-1} + 7q^{n-2}$ if q > 2. This is enough to deduce that k(S) < m(S)/2, except when m = 2 and $q \le 7, m = 3$ and $q \le 5$ or (m,q) = (4,2). However $k({}^{2}A_{2}(3)) = 14 \le m({}^{2}A_{2}(3))/2 = 14, k({}^{2}A_{2}(4)) = 22 < m({}^{2}A_{2}(4))/2 = 65/2, k({}^{2}A_{2}(5)) = 14 < m({}^{2}A_{2}(5))/2 = 25, k({}^{2}A_{2}(7)) = 58 < m({}^{2}A_{2}(7)) = 172, k^{*}({}^{2}A_{3}(2)) = 7 < m({}^{2}A_{3}(2))/2 = 27/2, k({}^{2}A_{3}(3)) = 20 < m({}^{2}A_{3}(3))/2 = 66, k({}^{2}A_{3}(4)) = 94 < m({}^{2}A_{3}(4))/2 = 325/2, k({}^{2}A_{3}(5)) = 97 < m({}^{2}A_{3}(5))/2 = 378$ and $k({}^{2}A_{4}(2)) = 47 < m({}^{2}A_{4}(2))/2 = 165/2$.

NORMAL COVERINGS

• $S = {}^{2}D_{m}(q), m > 3$. We have $m(S) = \frac{(q^{m}+1)(q^{m-1}-1)}{q-1}$. Moreover $k(S) \le 1$ $6.8 \cdot q^m < m(S)$ except when $(m,q) \in \{(4,2), (4,3), (5,2)\}$. Moreover it follows from [13] that $k(^2D_4(2)) = 39 < m(^2D_4(2))/2 = 119/2$, $k(^2D_4(3)) = 100$ $114 < m(^{2}D_{4}(3))/2 = 533$ and $k(^{2}D_{5}(2)) = 115 < m(^{2}D_{5}(2))/2 = 495/2$.

Now suppose that S is a Lie group of exceptional type. The bound $k(S) \leq 15.2q^r$ (where r is the rank) in [18, Corollary 1.2] compared with [15, Table 1] implies that $\gamma(X) < m(S)/2$ if S is one of the groups $F_4(q)$, ${}^2F_4(q)$, $E_6(q)$, ${}^2E_6(q)$, ${}^3D_4(q)$, $E_7(q), E_8(q)$. Suppose this is not the case. We will use [18, Table 1] and [15, Table 1].

- $S = G_2(q)$. We have $k(S) \le q^2 + 2q + 9$ and $q^2 + 2q + 9 \le 3q^2 < q^5/2 \le q^5/2$ m(S)/2.
- $S = {}^{2}G_{2}(q), p = 3, f = 2m + 1, m \ge 1$. We have $k(S) \le q + 8$ and $q + 8 \le (q^{3} + 1)/2 = m(S)/2$, since $q \ge 27$. $S = {}^{2}B_{2}(q), p = 2, f = 2m + 1, m \ge 1$. We have $k(S) \le q + 3$ and $q + 3 < m(S)/2 = (q^{2} + 1)/2$, since $q \ge 8$.
- $S = {}^{2}F_{4}(2)'$. In this case $k(S) = 22 < 2^{5} \cdot 5^{2} = m(S)/2$.

This concludes our proof.

Proposition 8. Let G be a group with a unique minimal normal subgroup N and assume that N is nonabelian and G/N is cyclic. Let $N \cong S^t$ with S a nonabelian simple group. Then $\gamma(G) < t \cdot m(S)/2$.

Proof. By assumption, $N = S_1 \times \ldots \times S_t$, with $S_i \cong S$ for $i = 1, \ldots, t$. Let ψ be the map from $N_G(S_1)$ to Aut(S) induced by the conjugacy action on S_1 . Set $X = \psi(N_G(S_1))$ and note that X is an almost simple group with socle S = Inn(S) = $\psi(S_1)$. Then G embeds in the wreath product $X \wr \operatorname{Sym}(t)$ [4, Remarks 1.1.40.13]. Since G/N is cyclic, X/S is also cyclic; more precisely if $h = (y_1, \ldots, y_t)\rho \in G$ generates G modulo N, then ρ is a t-cycle and $y_1 y_{\rho(1)} \cdots y_{\rho^{(t-1)}(1)}$ generates X modulo S.

Now let $g = (x_1, \ldots, x_t) \delta \in G$. If $\langle g, N \rangle \neq G$, then g is contained in one of the $\omega(|G/N|) = \omega(t \cdot |X/S|)$ normal subgroups of prime index containing N. Assume now that $\langle g, N \rangle = G$ and let $y := x_1 x_{\delta(1)} \cdots x_{\delta^{(t-1)}(1)}$. Since $\langle y, S \rangle = X$, there exists a proper subgroup M of X with $y \in M$ and MS = X. Choose $a_2, \ldots, a_t \in S$ such that

$$x_1 a_{\delta(1)}^{-1}, \ a_{\delta(1)} x_{\delta(1)} a_{\delta^2(1)}^{-1}, \dots, a_{\delta^{t-2}(1)} x_{\delta^{t-2}(1)} a_{\delta^{t-1}(1)}^{-1}, \ a_{\delta^{t-1}(1)} x_{\delta^{t-1}(1)} \in M.$$

It can be easily checked that g normalizes $M \times M^{a_2} \times \ldots \times M^{a_t}$. In other words, if \mathcal{M} is a normal cover of X, then a normal cover of G can be obtained taking the maximal normal subgroups of G containing N and the conjugates of the normalizers $N_G(M \times \cdots \times M)$ with M running in \mathcal{M} . It follows that

$$\gamma(G) \le \omega(t \cdot |X/S|) + \gamma(X).$$

If t = 1 then G = X and the result follows from Proposition 7. If $t \ge 2$ then, since $\omega(|X/S|) < m(S)/4$ [2, Lemma 2.7], $\gamma(X) \le m(S)/2$ and $4\omega(t) \le 4(2t-3) < 1$ m(S)(2t-3), we conclude

$$\gamma(G) \le \omega(t) + \frac{m(S)}{4} + \frac{m(S)}{2} < \frac{t \cdot m(S)}{2}$$

as in our claim.

Proof of Theorem 4. The proof is by induction on the degree n. If G/G' is not cyclic then $C_p \times C_p$ is an epimorphic image of G for some prime p. Since $G \leq \text{Sym}(n), p^2$ divides n! so $p \le n/2$, and we deduce that $\gamma(G) \le \gamma(C_p \times C_p) = p + 1 \le (n+2)/2$. So from now on we will assume that G/G' is cyclic. If G is soluble, then $\gamma(G) = 2$, by Lemma 6. So we may assume that G is not soluble. First suppose that G is not transitive; let $\Omega_1, \ldots, \Omega_t$ be the orbits of G on $\{1, \ldots, n\}$ and G_1, \ldots, G_t the corresponding transitive constituents. Since G is not soluble and it is a subdirect product of $G_1 \times \cdots \times G_t$, there exists *i* such that G_i is noncyclic: by induction $\gamma(G) \leq \gamma(G_i) \leq (|\Omega_i| + 2)/2 \leq (n+2)/2$. So we may assume that G is transitive. Suppose that $\{B_1, \ldots, B_s\}$ is a system of blocks for G with $|B_i| = r$. Consider $\operatorname{St}_G(B_1)$, the stabilizer in G of the block B_1 . Denote by $\alpha : \operatorname{St}_G(B_1) \to \operatorname{Sym}(r)$ the permutation representation induced by the action of $St_G(B_1)$ on the set B_1 and by $\beta: G \to \operatorname{Sym}(s)$ the permutation representation induced by the action of G on the set of blocks and let $H = \alpha(\operatorname{St}_G(B_1)), K = \beta(G)$. We may identify G, as a permutation group, with a subgroup of $H \wr K$ (in its imprimitive representation) in such a way that, for $1 \le i \le s$, $\operatorname{St}_G(B_j)$ acts on B_j as the subgroup H of $\operatorname{Sym}(r)$ and G acts on the set $\{B_1, \ldots, B_s\}$ as the subgroup K of Sym(s). We choose $B_1 =$ $\{1, \ldots, n\}$ if G is primitive, B_1 to be an imprimitive block of minimal size otherwise. If K is noncyclic, then, by induction, $\gamma(G) \leq \gamma(K) \leq (s+2)/2 \leq (n+2)/2$, so we may assume that K is cyclic. We distinguish three different possibilities:

1) *H* has a unique minimal normal subgroup *N* and $N \cong C_p^t$ is an elementary abelian *p*-group. In this case $r = p^t$ and $H/N \leq GL(t, p) \leq \text{Sym}(r-1)$. Consider the normal subgroup $M \cong N^s$ of $H \wr \text{Sym}(s)$. Notice that $G/(M \cap G) \leq \text{GL}(t, p) \wr \text{Sym}(s)$ has a faithful permutational representation of degree (r-1)s. Since *G* is not soluble, $G/(M \cap G)$ is not cyclic and therefore by induction $\gamma(G) \leq \gamma(G/(M \cap G)) \leq ((r-1)s+2)/2 \leq (n+2)/2$.

2) *H* has a unique minimal normal subgroup *N* and $N \cong S^t$ is the direct product of *t* isomorphic non abelian simple groups. In particular *N* is transitive of degree r so $r \ge m(S)^t$ (see [25, Proposition 5.2.7] and the comment afterwards) and $G \le$ $H \wr \operatorname{Sym}(s) \le (\operatorname{Aut}(S) \wr \operatorname{Sym}(t)) \wr \operatorname{Sym}(s) \le \operatorname{Aut}(S) \wr \operatorname{Sym}(t \cdot s)$. Consider the normal subgroup $M \cong S^{t \cdot s}$ of $\operatorname{Aut}(S) \wr \operatorname{Sym}(t \cdot s)$. Notice that $G/(M \cap G) \le \operatorname{Out}(S) \wr \operatorname{Sym}(t \cdot s)$ has a faithful permutational representation of degree $|\operatorname{Out}(S)| \cdot t \cdot s \le (2 \cdot m(S) \cdot$ $t \cdot s)/3 < m(S)^t s \le r \cdot s \le n$ (indeed $|\operatorname{Out}(S)| \le 2m(S)/3$ by [2, Lemma 2.7]). If $G/(M \cap G)$ is not cyclic, then by induction $\gamma(G) \le \gamma(G/(M \cap G)) \le (n+2)/2$. Assume that $G/(M \cap G)$ is cyclic and let *T* be a minimal normal subgroup of *G* contained in $M \cap G$. We have $T \cong S^u$ with $u \le t \cdot s$; moreover $G/C_G(T)$ has a unique minimal normal subgroup $T^*/C_G(T) \cong T$ and G/T^* is cyclic: by Proposition 8 $\gamma(G) \le \gamma(G/C_G(T)) < u \cdot m(S)/2 \le t \cdot s \cdot m(S) \le n/2$.

3) soc $H = N = N_1 \times N_2$ where N_1 and N_2 are isomorphic non abelian minimal normal subgroups of H. In this case $r = |N_1| = |N_2|$. Let $H^* := H/C_H(N_1) \leq$ Aut $(N_1) \leq$ Sym(r-1). We have $G \leq H \wr$ Sym(s) and the wreath product $H \wr$ Sym(s)contains a normal subgroup $M \cong C_H(N_1)^s$. Notice that $G/(M \cap G) \leq H^* \wr$ Sym(s)is a noncyclic permutation group of degree (r-1)s < n. So $\gamma(G) \leq \gamma(G/(M \cap G)) \leq (n+2)/2$.

Proof of Proposition 2. Let $m = \mu(G)$. First assume that G contains a maximal subgroup M of index m, which is not normal in G. In this case G/M_G is a non cyclic permutation group of degree m and $\gamma(G) \leq \gamma(G/M_G) \leq m$ by Theorem 4. Otherwise G contains two normal maximal subgroup of index m. In this case *m* is a prime and $C_m \times C_m$ is an epimorphic image of *G*. In particular $\gamma(G) \leq \gamma(C_m \times C_m) = m + 1$.

Therefore we have proved that $\gamma(G) \leq m+1$ and $\gamma(G) = m+1$ only if m is a prime, $C_m \times C_m$ is an epimorphic image of G and $\gamma(G) = \gamma(C_m \times C_m) = \gamma(G/G')$.

3. GROUPS G WITH
$$\gamma(G) = 2$$

Before to stat our discussion, let us introduce a couple of easy observations.

Lemma 9. Let H be a proper subgroup of a finite group G and let $N \leq G$ be such that HN = G. We have $\bigcup_{a \in G} (H \cap N)^g \neq N$.

Proof. Let $X = H \cap N$. Since $X \leq H$, we have $G = HN = N_G(X)N$. Hence $\bigcup_{g \in G} X^g = \bigcup_{n \in N} X^n \neq N$.

Lemma 10. Let H be a proper subgroup of a finite group G and let N_1, N_2 be two different minimal normal subgroups of G. If $HN_1 = HN_2 = G$, then $H \cap N_1 = H \cap N_2 = 1$.

Proof. Assume $HN_1 = HN_2 = G$. Then $H \cap N_1$ is normalized by H and centralized by N_2 hence $H \cap N_1$ is normalized by $HN_2 = G$. Since N_1 is a minimal normal subgroup of G and $N_1 \not\leq H$, we must have $H \cap N_1 = 1$.

For the remaining part of this section, G will be a finite group with the following properties:

(1) $\gamma(G) = 2;$

(2) $\gamma(G/N) > 2$ if N is a non trivial normal subgroup of G.

In particular there exists two maximal subgroups H and K with

$$G = (\bigcup_{x \in G} H^x) \bigcup (\bigcup_{y \in G} K^y).$$

Moreover $(H \cap K)_G = 1$, otherwise we would have $\gamma(G/(H \cap K)_G) = 2$. Let

$$M = \operatorname{soc}(G) = N_1 \times \dots \times N_t$$

be the socle of G with N_i a minimal normal subgroup of G for $1 \le i \le t$.

Lemma 11. t = 1 *i.e.* G contains a unique minimal normal subgroup.

Proof. We distinguish 2 cases:

a) One of the two subgroups H and K contains M.

Assume for example $M \leq H$. In this case $K_G \cap M \leq (K \cap H)_G = 1$, hence $K_G = 1$ and t is the number of minimal normal subgroups of a primitive permutation group G with point stabilizer K. Assume by contradiction that $t \neq 1$. Then t = 2 and (see for example [4, Proposition 1.1.12]) we may assume that there exists a monolithic primitive group L with non abelian socle N and a subgroup T of L with $N \leq T < L$ such that

$$\begin{split} G &= \{(l_1, l_2) \in L^2 \mid Nl_1 = Nl_2\}, \quad M = N^2, \quad K = \{(l, l) \mid l \in L\}, \quad H = T^2 \cap G. \\ \text{Let } x \notin \cup_{l \in L} T^l \text{ and consider the coset } \Omega &= (x, x)N^2. \text{ Clearly } \Omega \cap (\cup_{g \in G} H^g) = \varnothing \end{split}$$

hence $\Omega \subseteq \bigcup_{g \in G} K^g$. Let $R = \{(1, n) \mid n \in N\} \subseteq G$. Since KR = G, we have $\bigcup_{g \in G} K^g = \bigcup_{r \in R} K^r$, hence

$$\{(x,xn) \mid n \in N\} \subseteq \Omega \subseteq \{(l,l^n) \mid l \in L, n \in N\}.$$

In particular $Nx = \{x^n \mid n \in N\}$ and this implies $C_N(x) = 1$, i.e. N admits a fixed-point free automorphism: by [27] N is a soluble group, a contradiction. b) HM = KM = G. Let us define the following two subsets of $\Omega = \{1, \ldots, t\}$:

$$\Omega_H = \{ i \in \Omega \mid N_i \cap H = 1 \}, \quad \Omega_K = \{ i \in \Omega \mid N_i \cap K = 1 \}.$$

We claim that $\Omega_H = \Omega_K = \emptyset$. To prove this, assume for example that $\Omega_H = \{1, \ldots, u\}$ with $u \neq 0$. By Lemma 10, $N_i \leq H$ for all i > u. Moreover if $i \leq u$, then $N_i \cap H^g = (N_i \cap H)^g = 1$, hence $N_i \leq \bigcup_{g \in G} K^g$. It follows that $N_i = \bigcup_{g \in G} N_i \cap K^g = \bigcup_{g \in G} (N_i \cap K)^g$: by Lemma 9 we must have $N_i \leq K$. Since KM = G, there exists j such that $KN_j = G$. We have j > u hence $N_j \leq H$. By Lemma 9 there exists $x \in N_j \setminus (\bigcup_{g \in G} N_j \cap K^g)$. Take $1 \neq y \in N_1$ and consider z = yx. We cannot have $z \in H^g$ (since $x \in N_j = N_j^g \subseteq H^g$, $z \in H^g$ would imply $y \in H^g \cap N_1 = 1$). Hence $z = yx \in K^g$ for some g, however $y \in N_1 \leq K^g$ hence $x \in K^g$, a contradiction. So our claim that $\Omega_H = \Omega_K = \emptyset$ has been proved. Combined with Lemma 10 and the fact that $(H \cap K)_G = 1$, this implies that if $t \neq 1$ then t = 2 and we may assume $N_1 \leq H$, $N_2 \leq K$ and $N_2H = N_1K = G$. By Lemma 9, there exist $x \in N_1 \setminus \bigcup_{g \in G} K^g$ and $y \in N_2 \setminus \bigcup_{g \in G} H^g$. Consider z = xy. If $z \in H^g$, then since $x \in N_1 = N_1^g \leq H^g$ we would have $y \in H^g$, a contradiction. Similarly, we cannot have $z \in K^g$. This proves that t = 1.

Lemma 12. If neither H nor K contains soc(G), then G is an almost simple group.

Proof. Let M = soc(G) and assume G = HM = KM. We have $M \subseteq (\bigcup_{x \in M} H^x) \cup (\bigcup_{y \in M} K^y)$ and this implies

$$M = (\bigcup_{x \in M} (H \cap M)^x) \cup (\bigcup_{y \in M} (K \cap M)^y).$$
(*)

Together with Lemma 9, this implies $H \cap M \neq 1$ and $K \cap M \neq 1$. In particular, if M is abelian, then $M \leq H \cap K$, a contradiction. Therefore M is a direct product of r copies of a non-abelian simple group S. Assume, by contradiction, that $r \neq 1$. To fix the notation, let $M = S_1 \times \cdots \times S_r$ and $\pi : M \mapsto S$ the map induced by the projection of M on the first component. The maximal subgroups X of G with XM = G and $X \cap M \neq 1$ are of one of the following types:

- a) product type: if $1 < \pi(M \cap X) < S$;
- b) diagonal type: if $\pi(M \cap X) = S$.

In the first case $X \cap M \cong T_1 \times \cdots \times T_r$ with $1 < T_i < S_i$ and $T_i \cong T_j$ for every $1 \leq i \leq j \leq r$. In the second case there exists a partition Φ of $\{1, \ldots, r\}$ such that $X \cap M = \prod_{B \in \Phi} D_B$, where all the blocks have the same cardinality and, for every block $B \in \Phi$, $|B| \neq 1$ (otherwise we would have $X \cap M = M$ hence X = G) and D_B is a full diagonal subgroup of $\prod_{j \in B} S_j$ (that is, if $B = \{j_1, \ldots, j_t\}$, there exist $\phi_2, \ldots, \phi_t \in \text{Aut } S$ such that $D_B = \{(x, x^{\phi_2}, \ldots, x^{\phi_t}) \mid x \in S\} \leq S_{j_1} \times \cdots \times S_{j_t})$. We have three possibilities:

- (1) *H* and *K* are both of diagonal type. Let $\Delta = \{(s, 1, ..., 1) \mid s \in S, s \neq 1\} \subseteq M$. By the way in which maximal subgroups of diagonal type are defined, $\Delta \cap H^m = \Delta \cap K^m = \emptyset$ for each $m \in M$, against (*).
- (2) *H* is of product type and *K* is of diagonal type. We have $H \cap M = T_1 \times \cdots \times T_r$ with $T = T_1 < S$. There exists $s \in S \setminus \bigcup_{s \in S} T^s$. Consider $m = (s, 1, \ldots, 1) : m \notin (\bigcup_{x \in M} (H \cap M)^x) \cup (\bigcup_{y \in M} (K \cap M)^y)$, against (*).

NORMAL COVERINGS

(3) H and K are both of product type. Let $H \cap M = T_1 \times \cdots \times T_r$ and $K \cap M = U_1 \times \cdots \times U_r$. Since T_1 and U_2 are proper subgroup of S, there exist $a \in S \setminus \bigcup_{s \in S} T^s$ and $b \in S \setminus \bigcup_{s \in S} U_2^s$. Consider $m = (a, b, 1, \ldots, 1) :$ $m \notin (\bigcup_{x \in M} (H \cap M)^x) \cup (\bigcup_{y \in M} (K \cap M)^y)$, against (*).

All the possibilities lead to a contradiction, hence it must be r = 1 and G is an almost simple group.

We recall some results concerning almost simple groups G with $\gamma(G) = 2$. It was shown by H. Dye [17] that the symplectic group $G = \operatorname{Sp}_{2l}(2^f)$ defined over a finite field of characteristic 2 is the union of the two G-conjugacy classes of subgroups isomorphic to $O_{2l}^+(2^f)$ and $O_{2l}^-(2^f)$ embedded naturally. D. Bubboloni, M.S. Lucido and T. Weigel [10] notices the existence of an interesting example in characteristic 3, i.e. in $G = F_4(3^f)$ every element is conjugated to an element of the subgroup $B_4(3^f)$ or of the subgroup $3.^3D_4(3^f)$. In [5] it is proved that $\gamma(\operatorname{Alt}(n)) = 2$ if and only if $4 \le n \le 8$, $\gamma(\operatorname{Sym}(n)) = 2$ if and only if $3 \le n \le 6$. In [9] it is proved that $\gamma(PSL(n,q)) = \gamma(PGL(n,q)) = 2$ if and only if $2 \le n \le 4$. Another example is given by the Mathieu group M_{11} [26, Claim 5.1].

In the remaining part of the section we concentrate our attention in the case when $soc(G) \leq H$ (and consequently G = KM).

Lemma 13. Assume that H and K are maximal subgroups of a primitive monolithic group G with $M = \text{soc}(G) \leq H$ and KM = G. Let $R = K \cap M$. The following are equivalent:

- (1) $G = (\bigcup_{x \in G} H^x) \bigcup (\bigcup_{y \in G} K^y);$
- (2) $gM \subseteq \bigcup_{m \in M} K^m$ for each $g \in G \setminus \bigcup_{x \in K} H^x$;
- (3) $gM = \bigcup_{m \in M} (gR)^m$ for each $g \in K \setminus \bigcup_{x \in G} H^x$;
- (4) whenever $g \in K \setminus \bigcup_{x \in K} H^x$ and $m \in M$, we have $m \in R$ if and only if $(gR)^m = gR$.

Proof. Since KM = G and $M \leq H$, we have $\Gamma = \bigcup_{x \in G} H^x = \bigcup_{x \in K} H^x$. Moreover $gM \cap \Gamma \neq \emptyset$ if and only if $gM \subseteq \Gamma$. Equivalently, if $g \notin \Gamma$, then $gM \cap \Gamma = \emptyset$. It follows that (1) holds if and only if $gM \subseteq \bigcup_{x \in G} K^x = \bigcup_{m \in M} K^m$ whenever $g \notin \Gamma$, i.e. (1) and (2) are equivalent. Assume that (2) holds. In particular if $g \in K \setminus \Gamma$, then for each $m_1 \in M$, there exists $m_2 \in M$ with $gm_1 \in K^{m_2}$; it follows that $(gm_1)^{m_2^{-1}} = g[g, m_2^{-1}]m_1^{m_2^{-1}} \in K$ hence, since $g \in K$, we have $[g, m_2^{-1}]m_1^{m_2^{-1}} \in K \cap M = R$ and consequently $gm_1 \in (gR)^{m_2}$. Therefore (2) implies (3). Conversely, assume that (3) holds and let $g \notin \Gamma$. Since KM = G and $M \leq H$, there exists $\bar{g} \in K \setminus \Gamma$ with $\bar{g}M = gM$, hence $gM = \bar{g}M = \bigcup_{m \in M} (\bar{g}R)^m \leq \bigcup_{m \in M} K^m$. So (3) implies (2). Now let a = |R|, b = |M : R| and let m_1, \ldots, m_b be a transversal of R in M. Notice that if $g \in K$, then R is normalized by g and $(gR)^r \subseteq gR$ for all $r \in R$. This implies that (3) is equivalent to

$$gM = \bigcup_{1 \le i \le b} (gR)^{m_i}$$
 for each $g \in K \setminus \bigcup_{x \in K} H^x$.

Since $|gM| = a \cdot b$ and |gR| = a, the previous condition is satisfied if and only if the subsets $(gR)^{m_i}$ are pairwise disjoint; on the other hand these subsets are disjoint if and only if the only elements m of M with $(gR)^m = gR$ are those of R. Therefore (3) and (4) are equivalent.

Let us introduce some additional definitions. Let M be an elementary abelian group and K be an irreducible subgroup of Aut(M). Consider the subset

$$K^* = \{k \in K \mid C_M(k) \neq 1\}.$$

We will say that K is almost-transitive if there exists a proper subgroup T of K with $K^* \subseteq \bigcup_{x \in K} T^x$. If this situation holds, we have that $\gamma(M \rtimes K) = 2$. Indeed if $k \in K$ and $C_M(k) = 1$, then $kM = \{k^m \mid m \in M\}$, hence $M \rtimes K$ can be covered by the conjugates of the two subgroups K and $M \rtimes T$.

Corollary 14. If soc(G) = M is abelian, then $G = M \rtimes K$ and K is an almost transitive irreducible subgroup of Aut(M).

Proof. Since KM = G and Frat(G) = 1, it must be $G = M \rtimes K$ and M is an irreducible K-module. Let $T = K \cap H$ and assume $g \in K \setminus \bigcup_{x \in K} H^x$. Since $R = K \cap M = 1$, it follows from Lemma 13 that $g^m = g$ if and only if m = 1. This implies $K^* = \{k \in K \mid C_M(k) \neq 1\} \leq K \cap (\bigcup_{x \in K} H^x) = \bigcup_{x \in K} (K \cap H^x) = \bigcup_{x \in K} T^x$. \Box

In virtue of the previous result, it should be interesting to classify the almosttransitive irreducible groups. There are two extreme situations, one is when K is an irreducible fixed point free subgroup of Aut M (and consequently $G = M \rtimes K$ is a Frobenius group), the other is when K is a transitive irreducible subgroup of Aut M (and consequently $G = M \rtimes K$ is a 2-transitive permutation group of degree |M|). However, other possibilities occur, as the following three examples indicate.

- (1) Let M be the additive group of the finite field F with 16 elements. The multiplicative group F^* contains a subgroup Q of order 5, which is normalized by the Frobenius automorphism $\sigma : f \to f^2$. The semidirect product $K = Q \rtimes \langle \sigma \rangle$ is an irreducible subgroup of $\Gamma L(1, 16) \leq \operatorname{Aut}(M)$; moreover $K^* = K \setminus Q$ is contained in the union of the conjugates of a Sylow 2-subgroup. Hence K is almost transitive.
- (2) Assume that p > 2 and q are two prime numbers, with p dividing q − 1. The multiplicative group F* of the field F with q elements contains a cyclic subgroup X = ⟨x⟩ of order p. Let Y be the subgroup of Sym(p) generated by the permutation σ = (1, 2, ..., p). Consider the following subgroup K of the wreath product X ≀ Y :

$$K = \{ (x^{a_1}, \dots, x^{a_p}) \sigma^i \in X \wr Y \mid \sum_{1 \le j \le p} a_j = i \mod p \}.$$

The wreath product $X \wr Y$ acts on a *p*-dimensional *F*-vector space *M* and *K* is an irreducible subgroup of $X \wr Y \leq \operatorname{Aut}(M)$. Suppose now that $k = (x^{a_1}, \ldots, x^{a_p})\sigma^i \in K^*$. There exists $(0, \ldots, 0) \neq m = (b_1, \ldots, b_p) \in M$ such that

$$(b_1, \dots, b_p) = m = m^k = (b_1 x^{a_1}, \dots, b_p x^{a_p})^{\sigma^i}.$$

Since $m \neq 0$, there exists $1 \leq j \leq p$ with $b_j \neq 0$. It must be $i = 0 \mod p$, otherwise the previous equality would imply that $b_r \neq 0$ for each $1 \leq r \leq p$ and $b_1 \cdots b_p = b_1 x^{a_1} \cdots b_p x^{a_p}$, and consequently $0 = \sum_j a_j = i \mod p$. It follows that $K^* \subseteq T = \{(x^{a_1}, \ldots, x^{a_p}) \mid \sum_j a_j = 0 \mod p\}$. (3) Let F be a field with q^2 elements, $q \equiv 3 \mod 4$, $q \neq 3$, and consider the

(3) Let F be a field with q^2 elements, $q \equiv 3 \mod 4$, $q \neq 3$, and consider the 2-dimensional vector space $M = F^2$. The multiplicative group F^* contains two cyclic subgroups A and B of orders, respectively, (q-1)/2 and q+1.

The Frobenius automorphism $\sigma : f \to f^q$ normalizes B and centralizes A. Consider the subgroup K of $\Gamma L(1,q^2) \wr \langle (1,2) \rangle \leq \operatorname{Aut}(M)$ defined as follows:

$$K = \{ (1,2)^r \sigma^t (ab_1, ab_2) \mid a \in A, b_1, b_2 \in B, 0 \le r, t \le 1 \}.$$

Assume $k = (1, 2)^r \sigma^t(ab_1, ab_2)$ has a non trivial fixed point $(f_1, f_2) \neq (0, 0)$. There are two possibilities:

- (a) If r = 0 we have $(f_1, f_2) = (f_1, f_2)^k = (f_1^{q^t} a b_1, f_2^{q^t} a b_2)$. There exists $i \in \{1, 2\}$ with $f_i \neq 0$ and we must have that $f_i^{q^t} a b_i = f_i$, i.e. $a = f_i^{1-q^t} b_i^{-1}$. Since $f_i^{1-q^t} \in B$, we conclude that $a \in A \cap B = 1$.
- (b) If r = 1 we have $(f_1, f_2) = (f_1, f_2)^k = (f_2^{q^t} ab_1, f_1^{q^t} ab_2)$. We must then have $f_1 \neq 0, f_2 \neq 0, f_2 = f_1^{q^t} ab_2, f_1 = f_2^{q^t} ab_1 = (f_1^{q^t} ab_2)^{q^t} ab_1 = f_1 a^{q^t+1} b_2^{q^t} b_1 = f_1 a^2 b_2^{q^t} b_1$, hence $a^2 = (b_2^{q^t} b_1)^{-1} \in A \cap B = 1$; since |A| = (q-1)/2 is odd, we conclude that a = 1.
- It follows that $K^* \subseteq T = \{(1,2)^r \sigma^t(b_1, b_2) \mid b_1, b_2 \in B, 0 \le r, t \le 1\}.$

We conclude this section with discussing some examples in which M = soc(G) is nonabelian, $M \leq H$ and MK = G.

Let S be a finite non abelian simple group and let p be a prime which does not divide |S|. Consider the wreath product $G = S \wr \langle \sigma \rangle$ with $\sigma = (1, 2, \ldots, p) \in \text{Sym}(p)$. We claim that $\gamma(G) = 2$. More precisely let $M = S^p$ be the base of the wreath product and let $H = \{(s, \ldots, s)\sigma^i \mid s \in S, 0 \leq i \leq p-1\}$ be a maximal subgroup of G of diagonal type. We prove that $G = M \cup (\bigcup_{m \in M} H^m)$. Indeed consider for example $(t_1, \ldots, t_p)\sigma \in G$. We look for $s, x_1, \ldots, x_p \in S$ such that

$$(t_1,\ldots,t_p)\sigma = ((s,\ldots,s)\sigma)^{(x_1,\ldots,x_p)} = (x_1^{-1}sx_2,x_2^{-1}sx_3,\ldots,x_p^{-1}sx_1)\sigma.$$

We can take

$$x_{1} = 1$$

$$x_{2} = s^{-1}t_{1}$$

$$x_{3} = s^{-2}t_{1}t_{2}$$
....
$$x_{p} = s^{-(p-1)}t_{1}t_{2}\cdots t_{p-1}$$

$$s^{p} = t_{1}t_{2}\cdots t_{p}$$

where the existence of s is ensured from the fact that p does not divide |S|.

We want to discuss the existence of examples in which $M = \operatorname{soc}(G) = S^n$, with Sa nonabelian simple group, $M \leq H$ and K is a maximal subgroup of G of product type. We have $M = S^n \leq G \leq \operatorname{Aut}(S) \wr \operatorname{Sym}(n)$ and it is not restrictive to assume that $R = K \cap M = T^n$ with T < S. There exists $g \in K \setminus \bigcup_{x \in G} H^x$; we can write gin the form $g = (h_1, \ldots, h_n)\sigma$ with $\sigma \in \operatorname{Sym}(n)$ and $h_i \in \operatorname{Aut} S$. Since g normalizes R, we have that h_i normalizes T for each $1 \leq i \leq n$. Let $\Omega \subseteq \{1, \ldots, n\}$ be the σ -orbit containing 1. It is not restrictive to assume that $\Omega = \{1, \ldots, r\}$ and $\sigma = \rho\tau$ where $\rho = (1, 2, \ldots, r)$ and τ fixes pointwise the elements of Ω (we don't exclude the possibility r = 1). Let $U = S^r$, $V = T^r$ and let $y = (h_1, \ldots, h_r)\rho \in \operatorname{Aut}(S)\wr \operatorname{Sym}(r)$. By Lemma 13 (3), we must have

$$yU = \bigcup_{u \in U} (yV)^u.$$

Recall that if $u = (y_1, \ldots, y_r) \in U$ then

$$y^{u} = (y_{1}, \dots, y_{r})^{-1}(h_{1}, \dots, h_{r})\rho(y_{1}, \dots, y_{r}) = (y_{1}^{-1}h_{1}y_{2}, y_{2}^{-1}h_{2}y_{3}, \dots, y_{r}^{-1}h_{r}y_{1})\rho(y_{1}, \dots, y_{r}) = (y_{1}^{-1}h_{1}y_{2}, y_{2}^{-1}h_{2}y_{3}, \dots, y_{r}^{-1}h_{r}y_{1})\rho(y_{1}, \dots, y_{r}) = (y_{1}^{-1}h_{1}y_{2}, y_{2}^{-1}h_{2}y_{3}, \dots, y_{r}^{-1}h_{r}y_{1})\rho(y_{1}, \dots, y_{r})$$

In particular, given $s \in S$, there exist $x_1, \ldots, x_r \in T$ and $y_1, \ldots, y_r \in S$ such that

$$(h_1, \dots, h_r s)\rho = (y_1^{-1}h_1x_1y_2, y_2^{-1}h_2x_2y_3, \dots, y_r^{-1}h_rx_ry_1)\rho$$

and this implies

 $h_1 \cdots h_r s = (y_1^{-1} h_1 x_1 y_2)(y_2^{-1} h_2 x_2 y_3) \cdots (y_r^{-1} h_r x_r y_1) = y_1^{-1} h_1 x_1 \cdots h_r x_r y_1.$

But then, setting $h = h_1 \cdots h_r \in Aut(S)$ we must have

$$hS = \bigcup_{s \in S} (hT)^s \quad (**)$$

The previous equality cannot occur if $h \in S$; otherwise we would have $hS = S = \bigcup_{s \in S} (\langle h \rangle T)^s$, which implies $S = \langle h \rangle T$, and consequently, since $h \in N_S(T)$, $T \leq S$. For some choices of S, it is impossible to find $h \in \operatorname{Aut}(S) \setminus S$ and T < S satisfying (**). Assume for example $S = \operatorname{Alt}(n)$, with $n \neq 6$. If (**) holds, since $h \notin S = \operatorname{Alt}(n)$ we would have $h \operatorname{Alt}(n) = (1, 2) \operatorname{Alt}(n) \subseteq \bigcup_{s \in S} (\langle h \rangle T)^s$. In particular $\langle h \rangle T$ would be a proper subgroup of $\operatorname{Sym}(n)$ containing at least one conjugate of every odd permutation. The situation is different for $S = \operatorname{Alt}(6)$. In this case consider $G = M_{10} \leq \operatorname{Aut}(S)$. $G \setminus S$ consists of three conjugacy classes whose representatives have orders respectively 4, 8, 8. So $G \setminus S$ is covered by the Sylow 2-subgroups and $\gamma(G) = 2$. But we may consider also the group $\Gamma = (S \times S) \langle \gamma \rangle$ with $\gamma = (g, 1)\epsilon$, where $\epsilon = (1, 2)$ and $g \in M_{10} \setminus S$. This group Γ contains a normal subgroup $M = S^2$ of index 4: we claim that if $x \in \Gamma \setminus M$ then |x| divides 16. Indeed one of the following holds:

- (1) $x = (gs_1, s_2)\epsilon$ for some $s \in S$. Then $x^2 = (gs_1s_2, s_2gs_1)$ has either order 4 or 8.
- (2) $x = (s_1, gs_2)\epsilon$ for some $s \in S$. Then $x^2 = (s_1g_2s_2, gs_2s_1)$ has either order 4 or 8.
- (3) $x = (gs_1, gs_2)$ for $s_1, s_2 \in S$. Then |x| divides 8.

But then any element of Γ belongs either to M or to a Sylow 2-subgroup, hence $\gamma(\Gamma) = 2$.

A more general family of examples can be obtained in the following way. Let $S = \mathrm{SL}(2, 2^p)$ with $p \ge 5$ a prime and let $A = \mathrm{Aut}\, S = S\langle\phi\rangle$ with ϕ the Frobenius automorphism. Since $p \ne 3$ we have that (|S|, p) = 1. In particular if $a \in A \setminus S$, then |a| is divisible by p hence a centralizes a Sylow p-subgroup of A. This implies that $A \setminus S \subseteq \bigcup_{s \in S} H^s$ where $H = C_A(P)$ and P is a Sylow p-subgroup of A. Consider now the group $G = S^p \langle x \rangle \le A \wr \langle \sigma \rangle$, where $\sigma = (1, 2, \ldots, p)$ and $x = (\phi, 1, \ldots, 1)\sigma$. Let $M = S^p$. Notice that G/M is cyclic of order p^2 . In particular if $g \in G \setminus M$, then p divides |g| hence $g \in C_G(K)$ for a cyclic subgroup K of order p. On the other hand, the Sylow p-subgroups of G are cyclic of order p^2 and $K = \langle x^p \rangle^m$ for some $m \in M$. This implies that $g \in H^m$, for $H = C_G \langle x^p \rangle$. It follows that $\gamma(G) = 2$.

NORMAL COVERINGS

References

- 1. M. Aschbacher, On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), no. 3, 469-514.
- M. Aschbacher and R. Guralnick, On abelian quotients of primitive groups, Proc. Amer. Math. Soc., 107 (1989) 89–95.
- S. Blackburn, Sets of permutations that generate the symmetric group pairwise, J. Combin. Theory Ser. A 113 (2006), no. 7, 1572–1581.
- 4. A. Ballester-Bolinches and L. M. Ezquerro, Classes of finite groups, Mathematics and Its Applications (Springer), vol. 584, Springer, Dordrecht, 2006.
- 5. R. Brandl and D. Bubboloni and I. Hupp, Polynomials with roots mod p for all primes p, J. Group Theory 4 (2001) 233-239.
- J. R. Britnell, A. Evseev, R. M. Guralnick, P. E. Holmes and A. Maróti, Sets of elements that pairwise generate a linear group, J. Combin. Theory Ser. A. 115 (2008), no. 3, 442-465.
- 7. J. R. Britnell and A. Maróti, Normal Coverings of Linear Groups, Algebra Number Theory, to appear
- R. A Bryce, V. Fedri and L. Serena, Subgroup coverings of some linear groups, Bull. Austral Math. Soc. 60, (1999), no. 2, 227-238.
- D. Bubboloni and M. S. Lucido, Coverings of linear groups, Comm. Algebra 30 (2002), no. 5, 2143-2159.
- D. Bubboloni, M. S. Lucido and T. Weigel, Generic 2-coverings of finite groups of Lie type, Rend. Semin. Mat. Univ. Padova 115, 209–252 (2006).
- D. Bubboloni and C. E. Praeger, Normal Coverings of Symmetric and Alternating Groups; Journal of Combinatorial Theory, Series A, 2011.
- 12. J. H. E. Cohn, On *n*-sum groups, Math. Scand. 75 (1) (1994) 44–58.
- 13. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and Wilson, R. A, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985. xxxiv+252 pp.
- E. Crestani and A. Lucchini, Normal coverings of soluble groups, Arch. Math. 98 (2012), no. 1, 13-18.
- E. Damian and A. Lucchini, On the Dirichlet polynomial of finite groups of Lie type, Rend. Sem. Mat. Univ. Padova 115 (2006), 51-69.
- E. Detomi and A. Lucchini, On the Structure of Primitive n-Sum Groups, CUBO A Mathematical Journal 10 (2008), 195–210.
- R. H. Dye, Interrelations of Symplectic and Orthogonal Groups in Characteristic Two, J. Algebra 59 (1979), 202–221.
- J. Fulman and R. Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Trans. Am. Math. Soc. 364, No. 6 (2012), , 3023–3070.
- P. E. Holmes and A. Maróti, Pairwise generating and covering sporadic simple groups, J. Algebra 324 (2010), 25–35.
- 20. The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.12; 2008, (http://www.gap-system.org).
- M. Garonzi, Finite Groups that are the union of at most 25 proper subgroups, J. Algebra Appl. Vol. 12, No. 4 (2013) 1350002
- M. Garonzi and A. Lucchini, Direct products of finite groups as unions of proper subgroups, Arch. Math. 95 (2010), no. 3, 201-206.
- M. Garonzi and A. Maróti, Covering certain wreath products with proper subgroups, J. Group Theory 14 (2011), no. 1, 103-125.
- W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Dedicata 36 (1990), no. 1, 67-87.
- 25. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, Cambridge University Press.
- A. Maróti, Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A 110 (2005), no. 1, 97–111.
- P. Rowley, Finite groups admitting a fixed-point-free automorphism group, J. Algebra 174 (1995), no. 2, 724–727.

- 28. G. Scorza, I gruppi che possono pensarsi come somma di tre loro sottogruppi, Boll. Un. Mat. Ital 5 (1926) 216–218.
- M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (2) (1997) 191–198.

DIPARTIMENTO DI MATEMATICA, VIA TRIESTE 63, 35121 PADOVA, ITALY. E-mail address: mgaronzi@gmail.com

DIPARTIMENTO DI MATEMATICA, VIA TRIESTE 63, 35121 PADOVA, ITALY. *E-mail address*: lucchini@math.unipd.it