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Abstract. Given a finite non-cyclic group G, call σ(G) the smallest number

of proper subgroups of G needed to cover G. Lucchini and Detomi conjectured
that if a nonabelian group G is such that σ(G) < σ(G/N) for every non-trivial

normal subgroup N of G then G is monolithic, meaning that it admits a unique

minimal normal subgroup. In this paper we show how this conjecture can be
attacked by the direct study of monolithic groups.

Every group considered in this paper is assumed to be finite, unless specified
otherwise.

Given a non-cyclic group G, call σ(G) - the covering number of G - the smallest
number of proper subgroups of G whose union equals G. It is an easy exercise to
show that σ(G) > 2 (i.e. no group is the union of two proper subgroups). Note that
there always exist minimal covers consisting of maximal subgroups. The covering
number has been introduced the first time by Cohn in 1994 [Cohn]. We usually call
cover of G a family of proper subgroups of G which covers G, and minimal cover
of G a cover of G consisting of exactly σ(G) elements. If G is cyclic then σ(G) is
not well defined because no proper subgroup contains any generator of G; in this
case we define σ(G) =∞, with the convention that n <∞ for every integer n.

Remark 1. If N is a normal subgroup of a group G then σ(G) ≤ σ(G/N): indeed,
every cover of G/N can be lifted to a cover of G.

Given a family H of subsets of a group G which covers G, we say that H is
“irredundant” if

⋃
H3K 6=H K 6= G for every H ∈ H. Clearly every minimal cover is

irredundant, but the converse is false. Actually the notion of irredundant cover is
much weaker than that of minimal cover: for example, if n ≥ 2 is an integer then
the cover of C2

n consisting of its non-trivial cyclic subgroups is irredundant of size
2n − 1 while C2

n has an epimorphic image isomorphic to C2 × C2 so σ(C2
n) = 3.

We are interested in groups with finite covering number. The following result
implies that in order to study the behaviour of the function which assigns to each
group with finite covering number its covering number it is enough to consider finite
groups.

Theorem 1 (Neumann 1954). Let G be an infinite group covered by a finite family
H of cosets of subgroups of G, and suppose that H is irredundant. Then every
H ∈ H has finite index in G.

Proof. For a proof see Lemma 4.17 in [Neum]. �

Indeed, if H is a minimal cover of G then by Theorem 1
⋂
H∈HH has finite index

in G, hence its normal core N has also finite index and

σ(G/N) ≤ |H| = σ(G) ≤ σ(G/N),
1



2 MARTINO GARONZI

thus σ(G) = σ(G/N). In other words we are reduced to consider the covering
number of the finite group G/N .

The solvable groups were studied by Tomkinson. He proved the following result.
Recall that a “chief factor” of a group G is a minimal normal subgroup H/K of a
quotient G/K of G.

Theorem 2 (Tomkinson). If G is a finite non-cyclic solvable group then σ(G) =
q + 1 where q is the order of the smallest chief factor H/K of G with more than
one complement in G/K.

Note that the number q in the statement of Theorem 2 is a prime power. Not
every σ(G) is of the form q+ 1 with q a prime power, for example σ(Sym(6)) = 13
(cfr. [S6]).

Assume we want to compute the covering number of a group G. If there exists
NEG with σ(G) = σ(G/N) then we may consider as well the quotient G/N instead
of G. This leads instantly to the following definition.

Definition 1 (σ-elementary groups). We say that a group G is “σ-elementary” if
σ(G) < σ(G/N) for every non-trivial normal subgroup N of G.

Clearly, every group has a σ-elementary quotient with the same covering number.
It follows that the structure of the σ-elementary groups is of big interest. It was
studied by Lucchini and Detomi in [Spr]. They conjectured that:

Conjecture 1. Every non-abelian σ-elementary group is monolithic.

Here a group is said to be “monolithic” if it admits exactly one minimal normal
subgroup.

1. Covering nilpotent groups

In this section we will compute the covering number of nilpotent groups in order
to get the reader familiarized with the methods.

Let p be a prime. Observe that the group Cp × Cp admits exactly p+ 1 proper
subgroups, and all these subgroups are cyclic of order p and index p. Let us visualize
this in the subgroup lattice:

Cp × Cp

•
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Therefore there is a unique cover of Cp × Cp, it is the one consisting of all of its
non-trivial proper subgroups. We obtain that σ(Cp × Cp) = p+ 1.

The following result (which generalizes the equality σ(Cp × Cp) = p + 1) is a
direct consequence of Theorem 2. However, we will prove it in detail.

Proposition 1. Let G be a finite nilpotent group. Then σ(G) = p + 1 where p is
the smallest prime divisor of |G| such that the Sylow p-subgroup of G is not cyclic.
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Let us first observe that if G is any finite group and Φ(G) is the Frattini subgroup
of G (i.e. the intersection of the maximal subgroups of G) then σ(G) = σ(G/Φ(G)).
Indeed, in any minimal cover of G consisting of maximal subgroups its members
all contain the Frattini subgroup.

Now suppose G is a non-cyclic p-group. It is well known that G/Φ(G) ∼= Cp
d

where d is the smallest size of a subset of G generating G. Therefore σ(G) = σ(Cp
d).

The covering number of Cp
d can be easily computed using the following basic

lemma.

Lemma 1 (Minimal Index Lower Bound). Let H be a minimal cover of a finite
group T . Then

min{|T : H| : H ∈ H} < σ(T ).

Proof. Write H = {H1, . . . ,Hk}, k = σ(T ), βi := |T : Hi| with β1 ≤ · · · ≤ βk.
Since the union H1 ∪ · · · ∪Hk is not disjoint (because 1 ∈ Hi for i = 1, . . . , k), we
have

|T | = |
k⋃
i=1

Hi| <
k∑
i=1

|Hi| =
k∑
i=1

|T |/βi ≤ k|T |/β1.

It follows that β1 < k = σ(T ). �

Lemma 1 implies that σ(Cp
d) > p. On the other hand, since d > 1 (because G is

non-cyclic), Cp
d projects onto Cp

2 = Cp×Cp, therefore p < σ(Cp
d) ≤ σ(Cp×Cp) =

p+ 1. We deduce that σ(G) = σ(Cp
d) = p+ 1. Since any finite nilpotent group is

the direct product of its Sylow subgroups, Proposition 1 follows from the following
lemma.

Lemma 2. Let A,B be two finite groups of coprime order. Then

σ(A×B) = min{σ(A), σ(B)}.

Proof. Let πA : A×B → A, πB : A×B → B be the canonical projections. Let H
be a minimal cover of A×B consisting of maximal subgroups, and let

ΩA := {H ∈ H : πB(H) = B}, ΩB := {H ∈ H : πA(H) = A}.
Since |A|, |B| are coprime, any subgroup of A×B is of the form C×D with C ≤ A
and D ≤ B. It follows that H = ΩA ∪ ΩB . Let

OA := A−
⋃

C×B∈ΩA

C, OB := B −
⋃

A×D∈ΩB

D.

Since H covers A×B, it covers OA ×OB , so OA ×OB = ∅. Hence, either OA = ∅,
implying ΩB = ∅ by minimality of H and σ(A × B) = σ(A), or OB = ∅, implying
ΩA = ∅ by minimality of H and σ(A×B) = σ(B). �

2. Direct products of groups

The very first case to consider when dealing with Conjecture 1 is the direct
product case. In a joint work with A. Lucchini we deal with this case. We prove

Theorem 3 (Lucchini A., Garonzi M. 2010 [GL]). Let M be a minimal cover of a
direct product G = H1 ×H2 of two groups. Then one of the following holds:

(1) M = {X ×H2 | X ∈ X} where X is a minimal cover of H1. In this case
σ(G) = σ(H1).
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(2) M = {H1 ×X | X ∈ X} where X is a minimal cover of H2. In this case
σ(G) = σ(H2).

(3) There exist N1 E H1, N2 E H2 with H1/N1
∼= H2/N2

∼= Cp and M
consists of the maximal subgroups of H1 ×H2 containing N1 ×N2. In this
case σ(G) = p+ 1.

We will now give the idea of how the proof goes when H1 and H2 are isomorphic
non-abelian simple groups. This does not cover all the ideas of the proof but it
covers quite well those used when H1 and H2 do not have common abelian factor
groups.

Let S be a non-abelian simple group. We want to prove that σ(S × S) = σ(S).
Note that since S is a quotient of S × S, σ(S × S) ≤ σ(S).

(1) We know that the maximal subgroups of S × S are of the following three
types:

(1) K × S, (2) S ×K, (3) ∆ϕ := {(x, ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
(2) LetM =M1 ∪M2 ∪M3 be a minimal cover of S × S, whereMi consists

of subgroups of type (i).
(3) Let Ω := S×S−

⋃
M∈M1∪M2

M = Ω1×Ω2, where Ω1 = S−
⋃
K×S∈M1

K

and Ω2 = S −
⋃
S×K∈M2

K.

(4) We claim that it is enough to prove that Ω = ∅. Indeed if this is the
case then either Ω1 = ∅, in which case

⋃
K×S∈M1

K = S and M = M1

by minimality of M, or Ω2 = ∅, in which case
⋃
S×K∈M2

K = S, and

M =M2 by minimality of M. In both cases we obtain σ(S × S) ≥ σ(S)
and hence σ(S × S) = σ(S).
Suppose by contradiction Ω 6= ∅, i.e. Ω1 6= ∅ 6= Ω2, and let ω ∈ Ω1.

(5) The family

{K < S | S ×K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3}

is a cover of S of size |M2| + |M3| (it consists of proper subgroups being
S non-abelian). Indeed, if b ∈ S is such that b 6∈ K for any K < S such
that S ×K ∈ M2 then (ω, b) ∈ S × S − Ω1 × Ω2 hence, being M a cover
for S × S, (ω, b) ∈ ∆ϕ for some ϕ ∈ Aut(S) such that ∆ϕ ∈ M3, and we
conclude that b = ϕ(ω) ∈ 〈ϕ(ω)〉.

(6) It follows that

|M1|+ |M2|+ |M3| = |M| = σ(S × S) ≤ σ(S) ≤ |M2|+ |M3|.

This implies that M1 = ∅. Analogously M2 = ∅. So M =M3.
(7) Observe that since S is covered by its non-trivial cyclic subgroups, σ(S) <
|S|. Since each member of M3 =M has index |S|, by the Minimal Index
Lower Bound (Lemma 1)

|S| < σ(S × S) ≤ σ(S) < |S|,

a contradiction.
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3. Sigma star

Recall that a group G is called “primitive” if it admits a core-free maximal sub-
group, that is, a maximal subgroup M such that

⋂
g∈G gMg−1 = {1}. A primitive

group has always at most two minimal normal subgroup, and if they are two, they
are non-abelian.

Recall that a G-group is a group A endowed with a homomorphism f : G →
Aut(A). If a ∈ A and g ∈ G, the element f(g)(a) is usually denoted ag if no
ambiguity is possible.

Definition 2. Let G be a group, and let A,B be two G-groups.

• A,B are said to be G-isomorphic (written A ∼=G B) if there exists an
isomorphism ϕ : A→ B such that aϕg = agϕ for every g ∈ G.
• A,B are said to be G-equivalent (written A ∼G B) if there exist isomor-

phisms

ϕ : A // B , Φ : GnA // GnB

such that the following diagram commutes:

{1} // A //

ϕ

��

GnA //

Φ

��

G // {1}

{1} // B // GnB // G // {1}

Let N be a minimal normal subgroup of a group G. The conjugation action of
G on N gives N the structure of G-group. Define IG(N) to be the set of elements
of G which induce by conjugation an inner automorphism of N and define RG(N)
to be the intersection of the normal subgroups K of G contained in IG(N) with the
property that IG(N)/K is non-Frattini (i.e. not contained in the Frattini subgroup
of G/K) and G-equivalent to N .

Recall that the “socle” of a group G, denoted soc(G), is the subgroup of G
generated by the minimal normal subgroups of G. soc(G) is always a direct product
of some minimal normal subgroups of G. G is said to be “monolithic” if it admits
a unique minimal normal subgroup, i.e. if soc(G) is a minimal normal subgroup of
G.

Theorem 4 (Lucchini, Detomi [Spr] Corollary 14). Let H be a non-abelian σ-
elementary group and let N1, . . . , N` be minimal normal subgroups of H such that
soc(H) = N1 × · · · × N`. Let Xi := G/RH(Ni) for i = 1, . . . , `. Then Xi is a
primitive monolithic group with socle isomorphic to Ni for i = 1, . . . , ` (Xi will
be called “the primitive monolithic group associated to Ni”) and H is a subdirect
product of X1, . . . , X`: the canonical homomorphism

H → X1 × . . .×X`

is injective.

Definition 3 (Sigma star). Let X be a primitive monolithic group, and let N be
its unique minimal normal subgroup. If Ω is an arbitrary union of cosets of N in X
define σΩ(X) to be the smallest number of supplements of N in X needed to cover
Ω. If Ω = {Nx} we will write σNx(X) instead of σ{Nx}(X). Define

σ∗(X) := min{σΩ(X) | Ω =
⋃
i

Nωi, 〈Ω〉 = X}.
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Proposition 2 (Lucchini, Detomi [Spr] Proposition 16). Let H be a non-abelian
σ-elementary group with socle N1 × · · · ×N`,

H ≤subd X1 × . . .×X`

as in Theorem 4. For i = 1, . . . , ` let `Xi(Ni) be the smallest primitivity degree of
Xi, i.e. the smallest index of a proper supplement of Ni in Xi. Then `Xi(Ni) ≤
σ∗(Xi) for i = 1, . . . , ` and∑̀

i=1

`Xi(Ni) ≤
∑̀
i=1

σ∗(Xi) ≤ σ(H).

Proposition 3 ([Spr], Proposition 10). Let G be a finite group. If V is a comple-
mented normal abelian subgroup of G and V ∩ Z(G) = {1} then σ(G) ≤ 2|V | − 1.

Proof. Let H be a complement of V in G. The idea is to show that G is covered
by the family {Hv | v ∈ V } ∪ {CH(v)V | 1 6= v ∈ V }. We omit the details. �

4. Small covering numbers

The content of this section is included in my Ph.D. thesis.

Lemma 3. Let N be a normal subgroup of a group X. If a set of subgroups of X
covers a coset yN of N in X, then it also covers every coset yαN with α prime to
|y|.

Proof. Let s be an integer such that sα ≡ 1 mod |y|. As s is prime to |y|, by
Dirichlet’s theorem there exist infinitely many primes in the arithmetic progression
{s + |y|n | n ∈ N}; we choose a prime p > |X| in {s + |y|n | n ∈ N}. Clearly,
yp = ys. As p is prime to |X|, there exists an integer r such that pr ≡ 1 mod |X|.
Hence, if yN ⊆ ∪i∈IMi, for every g ∈ yαN we have that gp ∈ (yα)pN = (yα)sN =
yN ⊆ ∪i∈IMi and therefore also g = (gp)r belongs to ∪i∈IMi. �

Proposition 4. Let H be a non-abelian σ-elementary group such that σ(H) ≤ 55.
Then H is primitive and monolithic.

Proof. We will use the notations of Theorem 4.
It is proven in [Spr] that any non-abelian σ-elementary group has at most one

abelian minimal normal subgroup. Therefore we may assume that there exists a
non-abelian minimal normal subgroup N of H. Let G be the primitive monolithic
group associated to N . If G has a primitivity degree at most 27 then either `G(N) ≥
10 and G/N ∈ {C2×C2,Sym(3), D8} (by inspection) - contradicting the inequality
`G(N) ≤ σ(H) ≤ σ(G) (being σ(C2 × C2) = σ(D8) = 3 and σ(S3) = 4) - or G/N
is cyclic of prime-power order. Assume the latter case holds. Then G/N admits
only one maximal subgroup. In other words, a subset of G generates G modulo N
if and only if it contains an element g ∈ G such that G/N = 〈gN〉. Thus Lemma
3 implies that σ(G) ≤ σ∗(G) + 1, so that

σ∗(X1) + σ∗(X2) ≤ σ(H) ≤ σ(X1) ≤ σ∗(X1) + 1.

In particular `X2(N2) ≤ σ∗(X2) ≤ 1, and this is a contradiction (`X2(N2) is the
index of a proper subgroup of X2).

Therefore we may assume that `G(N) ≥ 28 whenever N is a non-abelian minimal
normal subgroup of G. Suppose H has at least two minimal normal subgroups
N1 = N,N2. IfN2 is non-abelian then by assumption `X2

(N2) ≥ 28 and Proposition



COVERING MONOLITHIC GROUPS WITH PROPER SUBGROUPS 7

σ Groups
3 C2 × C2

4 C3 × C3,Sym(3)
5 Alt(4)
6 C5 × C5, D10, AGL(1, 5)
7 ∅
8 C7 × C7, D14, 7 : 3, AGL(1, 7)
9 AGL(1, 8)
10 32 : 4, AGL(1, 9),Alt(5)
11 ∅
12 C11 × C11, 11 : 5, D22, AGL(1, 11)
13 Sym(6)
14 C13 × C13, D26, 13 : 3, 13 : 4, 13 : 6, AGL(1, 13)
15 SL(3, 2)
16 Sym(5),Alt(6)
17 24 : 5, AGL(1, 16)
18 C17 × C17, D34, 17 : 4, 17 : 8, AGL(1, 17)
19 ∅
20 C19 × C19, AGL(1, 19), D38, 19 : 3, 19 : 6, 19 : 9
21 ∅
22 ∅
23 M11

24 C23 × C23, D46, 23 : 11, AGL(1, 23)
25 ∅

Table 1. The list of σ-elementary groups G with 3 ≤ σ(G) ≤ 25.

2 implies 56 ≤ `X1
(N1) + `X2

(N2) ≤ σ(H), a contradiction. Hence N2 is abelian.
We have `X2

(N2) = |N2| and by Proposition 2 and Proposition 3

28 + |N2| ≤ `X1
(N1) + `X2

(N2) ≤ σ(H) ≤ σ(X2) < 2|N2|,

therefore σ(H)− 28 ≥ |N2| > 1
2σ(H), and this implies σ(H) > 56, a contradiction.

�

Proposition 4 allows us to list the σ-elementary groups with small covering num-
ber. Indeed, if H is a σ-elementary group such that σ(H) ≤ 55 then H is a primitive
monolithic group with a primitivity degree at most 55 (cf. Proposition 2). Since
there are only finitely many groups of a given primitivity degree, we are reduced to
look at a finite list of groups. By giving bounds to their covering numbers we can
list the σ-elementary groups G with σ(G) ≤ 25. The explicit bounds can be found
in [G25].

In general, the following fact holds.

Proposition 5. For every fixed positive integer n, the set of σ-elementary groups
H with σ(H) = n is finite, bounded by a function of n.

Proof. We will use the notations of Theorem 4. Let H be a σ-elementary group,
and write soc(H) = N1 × . . . × N`. Let X1, . . . , X` be the primitive monolithic
groups associated to N1, . . . , N` respectively. H embeds in X1 × . . . × X`, so in
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order to conclude it suffices to bound the number of possibilities for ` and each Xi

in terms of σ(H). By Proposition 2

` ≤
∑̀
i=1

`Xi(Ni) ≤
∑̀
i=1

σ∗(Xi) ≤ σ(H).

Since there are finitely many primitive groups with a given primitivity degree, the
result follows. �

5. Considering some monolithic groups

The content of this section is included in my Ph.D. thesis.
Proposition 4 holds also for 56, but for this number a quite different argument

is needed. This is interesting because of the following result, which is [Gmon,
Theorem 2]. Here A5 o C2 denotes the wreath product of A5 with C2, i.e. the
semidirect product (A5 × A5) o C2 with the action of C2 = 〈ε〉 on A5 × A5 given
by (x, y)ε = (y, x).

Theorem 5 ([Gmon] Theorem 2). σ(A5 o C2) = 1 + 4 · 5 + 6 · 6 = 57.

A minimal cover of G = A5 oC2 is given by its socle, soc(G) = A5×A5, together
with the subgroups of the form NG(M × Ma) where a ∈ A5 and M is either
the stabilizer of j ∈ {1, 2, 3, 4, 5} − {i} (for some i ∈ {1, 2, 3, 4, 5}) in A5 or the
normalizer of a Sylow 5-subgroup of A5.

The lower bounds for the covering number will be obtained by using the following
tool, introduced by Maróti in [MarS].

Definition 4 (Definite unbeatability). Let X be a group. Let H be a set of proper
subgroups of X, and let Π ⊆ X. Suppose that the following four conditions hold for
H and Π.

(1) Π ∩H 6= ∅ for every H ∈ H;
(2) Π ⊆

⋃
H∈HH;

(3) Π ∩H1 ∩H2 = ∅ for every distinct pair of subgroups H1 and H2 of H;
(4) |Π ∩K| ≤ |Π ∩H| for every H ∈ H and K < X with K 6∈ H.

Then H is said to be definitely unbeatable on Π.

For Π ⊆ X let σX(Π) be the least cardinality of a family of proper subgroups of
X whose union contains Π. The following lemma is straightforward.

Lemma 4. If H is definitely unbeatable on Π then σX(Π) = |H|.

It follows that if H is definitely unbeatable on Π then |H| = σX(Π) ≤ σ(X).
Let us give [MarS, Theorem 3.1] as an example. Let n ≥ 11 be an odd integer,

and let X := Sym(n) be the symmetric group on n letters. Let H be the family of
subgroups of Sym(n) consisting of the alternating group Alt(n) and the intransitive
maximal subgroups of Sym(n). Let Π be the subset of Sym(n) consisting of the
permutations which are product of at most two disjoint cycles. Then H is a cover
of Sym(n) which is definitely unbeatable on Π, therefore σ(Sym(n)) = |H| = 2n−1.

This example was rivisited and generalized by Maróti and me (cf. [MG], [Gmon])
and the results summarized in Theorems 6 and 7 below were obtained.

Let us fix some notations we will often use.
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Notations 1. Let G be a monolithic group with socle N = soc(G) = S1 × · · · ×
Sm, where S1, . . . , Sm are pairwise isomorphic non-abelian simple groups. X :=
NG(S1)/CG(S1) is an almost-simple group with socle S := S1CG(S1)/CG(S1) ∼= S1.
The minimal normal subgroups of Sm = S1 × . . . × Sm are precisely its factors,
S1, . . . , Sm. Since automorphisms send minimal normal subgroups to minimal nor-
mal subgroups, it follows that G acts on the m factors of N . Let ρ : G→ Sym(m) be
the homomorphism induced by the conjugation action of G on the set {S1, . . . , Sm}.
K := ρ(G) is a transitive permutation group of degree m. By [BEcl, Remark
1.1.40.13] G embeds in the wreath product X o K. Let L be the subgroup of X
generated by the following set:

S ∪ {x1 · · ·xm | ∃k ∈ K : (x1, . . . , xm)k ∈ G}.
Let T be a normal subgroup of X containing S and contained in L with the property
that L/T has prime order if L 6= S, and T = L if L = S.

Let G be a primitive monolithic group with non-abelian socle N , and write
N = Sm with S a non-abelian simple group. The covers of G we often look at
consist of some subgroups of G containing N and subgroups of the form NG(M ×
Ma2 × · · · ×Mam) with M < S, which will be called “product type subgroups”.

In the following if n is a positive integer we denote by ω(n) the number of prime
divisors of n. Suppose that G/N is cyclic. The covers of G we consider consist
of all the ω(|G/N |) maximal subgroups of G containing N and some product type
subgroups NG((S∩M)×(S∩M)a2×· · ·×(S∩M)am) where a1 = 1, a2, . . . , am ∈ S
and M varies in a family of maximal subgroups of X supplementing S which covers
a coset xS of S in X which generates the cyclic group X/S. This is how we obtain
upper bounds for σ(G) (the size of a cover of G is an upper bound for σ(G)).

Theorem 6 (Maróti A., Garonzi M. 2010 [MG]). Let G be a monolithic group with
non-abelian socle, and let us use Notations 1. Suppose that G/N is cyclic and that
X = S = Alt(n). Then the following holds.

(1) If 12 < n ≡ 2 mod (4) then

σ(G) = ω(m) +

(n/2)−2∑
i=1, i odd

(
n

i

)m
+

1

2m

(
n

n/2

)m
.

(2) If 12 < n 6≡ 2 mod (4) then

ω(m) +
1

2

n∑
i=1, i odd

(
n

i

)m
≤ σ(G).

(3) Suppose n has a prime divisor at most 3
√
n. Then

σ(G) ∼ ω(m) + min
M

∑
M∈M

|S : M |m−1 as n→∞.

Theorem 7 (Garonzi M. 2011 [Gmon]). Let G be a monolithic group with non-
abelian socle, and let us use Notations 1. Suppose that G/N is cyclic and that
X = Sym(n). Then the following holds.

(1) Suppose that n ≥ 7 is odd and (n,m) 6= (9, 1). Then

σ(G) = ω(2m) +

(n−1)/2∑
i=1

(
n

i

)m
.
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(2) Suppose that n ≥ 8 is even. Then(
1

2

(
n

n/2

))m
≤ σ(G) ≤ ω(2m) +

(
1

2

(
n

n/2

))m
+

[n/3]∑
i=1

(
n

i

)m
.

In particular σ(G) ∼
(

1
2

(
n
n/2

))m
as n→∞.

6. Attacking the conjecture

The content of this section is included in my Ph.D. thesis.
The following result provides a first partial reduction to monolithic groups.

Proposition 6. Let H be a non-abelian σ-elementary group, let N1, . . . , N` be min-
imal normal subgroups of H such that soc(H) = N1×· · ·×N` and let X1, . . . , X` be
the primitive monolithic groups associated to N1, . . . , N` respectively. Then at most
one of N1, . . . , N` is abelian. Suppose that N1 is non-abelian and that σ∗(X1) ≤
σ∗(Xj) whenever j ∈ {1, . . . , `} and Nj is non-abelian. If σ(X1) < 2σ∗(X1) then
H ∼= X1, i.e. H is monolithic.

Proof. By Proposition 2

σ∗(X1) +
∑̀
j=2

σ∗(Xj) ≤ σ(H) ≤ σ(X1) < 2σ∗(X1).

It follows that
∑`
j=2 σ

∗(Xj) < σ∗(X1) hence, by the minimality hypothesis on X1,

N2, . . . , N` are abelian. In [Spr, Corollary 14] it is proved that any non-abelian
σ-elementary group has at most one abelian minimal normal subgroup, thus ` = 2.
Since N2 is abelian `X2

(N2) = |N2|, and by Proposition 2

min{2σ∗(X1), 2|N2|} ≤ σ∗(X1) + |N2| = σ∗(X1) + `X2
(N2) ≤

≤ σ(H) ≤ min{σ(X1), σ(X2)}.

Now by hypothesis σ(X1) < 2σ∗(X1), and σ(X2) < 2|N2| by Proposition 3. This
leads to a contradiction. �

In order to prove an inequality like σ(G) < 2σ∗(G) for G a primitive monolithic
group we first need some way to get as much general as possible upper bounds for
σ(G).

Theorem 8. Let G be a monolithic group with non-abelian socle, and let us use
Notations 1. Assume that X/S is abelian. Let M be a set of maximal subgroups
of X supplementing S and such that

⋃
M∈MM contains a coset xS ∈ L with the

property that 〈x, T 〉 = L.
Then σ(G) ≤ 2m−1 +

∑
M∈M |S : S ∩M |m−1.

Unfortunately the hypothesis “X/S abelian” does not seem easy to bypass.

Proof. If L 6= T define

R := {(x1, . . . , xm)k ∈ G | x1 · · ·xm ∈ T}.

Since X/S is abelian, R is a proper subgroup of G.
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Let δ ∈ K be an m-cycle, 1 = a1, a2, . . . , am ∈ X and M ∈ M. An element
(x1, . . . , xm)δ ∈ X oK normalizes (M ∩ S) × (M ∩ S)a2 × · · · × (M ∩ S)am if and
only if

(M ∩ S)aδ−1(1)xδ−1(1) × (M ∩ S)aδ−1(2)xδ−1(2) × · · · × (M ∩ S)aδ−1(m)xδ−1(m) =

= (M ∩ S)× (M ∩ S)a2 × · · · × (M ∩ S)am ,

if and only if
(1)
aδ−1(1)xδ−1(1)a

−1
1 , aδ−1(2)xδ−1(2)a

−1
2 , . . . , aδ−1(m)xδ−1(m)a

−1
m ∈ NX(M ∩ S) = M.

If x1xδ(1) · · ·xδm−1(1) ∈ M then there exist a2, . . . , am ∈ X such that (1) is true.
Since M supplements S in X, a2, . . . , am can be chosen in S. Therefore every
element (x1, . . . , xm)δ ∈ G such that δ is an m-cycle and x1xδ(1) · · ·xδm−1(1) ∈ xS
belongs to a subgroup of G of the form NG((M ∩S)× (M ∩S)a2×· · ·× (M ∩S)am)
where M ∈M and a2, . . . , am ∈ S. It follows that G is covered by these subgroups
together with R (if L 6= T ) and the pre-images through ρ of 2m−1 − 1 maximal
intransitive subgroups of K (corresponding to the subsets of {1, . . . ,m} of size from
1 to [m/2]). �

Recall the structure of maximal subgroups of primitive monolithic groups.

Definition 5 ([BEcl], Definition 1.1.37). Let G =
∏n
i=1 Si be a direct product

of groups. A subgroup H of G is said to be “full diagonal” if each projection
πi : H → Si is an isomorphism.

What follows is part of the O’Nan-Scott theorem (reference: [BEcl, Remark
1.1.40]). Let G be a primitive monolithic group with non-abelian socle N = Sm.
Let H be a maximal subgroup of G such that N 6⊆ H, i.e. HN = G, i.e. H
supplements N . Suppose N ∩H 6= {1}, i.e. H does not complement N . Since N
is the unique minimal normal subgroup of G and H is a maximal subgroup of G
not containing N , H = NG(N ∩ H). In the following let X := NG(S1)/CG(S1)
(it is an almost simple group with socle S1CG(S1)/CG(S1) ∼= S). There are two
possibilities for the intersection N ∩H:

(1) Product type. Suppose the projections H → Si are not surjective. Then
there exists a subgroup M of S such that NX(M) supplements S in X and
elements a2, . . . , am ∈ S such that

H ∩N = M ×Ma2 × . . .×Mam .

In this case |H ∩N | = |M |m.
(2) Diagonal type. Suppose the projections H → Si are surjective. Then

there exists an H-invariant partition ∆ of {1, . . . ,m} into blocks for the
action of H on {1, . . . ,m} such that

H ∩N =
∏
D∈∆

(H ∩N)πD

and for each D ∈ ∆ the projection (H ∩N)πD is a full diagonal subgroup
of
∏
i∈D Si. In this case |H ∩ N | ≤ |S|m/r where r is the smallest prime

divisor of m.

We now prove a crucial lemma which we will need in the proof of the main
theorem. Let G be a monolithic group with non-abelian socle, and let us use
Notations 1.
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Let Z be the set of pairs (z, w) in X × X such that 〈za, wb〉 ⊇ S for every
a, b ∈ S. By [KLS], Z ∩ (S × S) 6= ∅. Let k be a non-m-cycle in K, let O1 =
(i1, . . . , ir), O2 = (j1, . . . , js) be two cycles in the cyclic decomposition of k, and
for ρ−1(k) 3 h = (x1, . . . , xm)k, with x1, . . . , xm ∈ X, let hO1

:= xi1 · · ·xir and
hO2

:= xj1 · · ·xjs .

Lemma 5. Let Ek := {(hO1
, hO2

) | h ∈ ρ−1(k)} ∩ Z. Let r be the smallest prime
divisor of m. If g ∈ ρ−1(k) then σNg(G) ≥ |Ek| · |S|m−m/r−2.

Proof. Let
X := {h ∈ Ng | (hO1 , hO2) ∈ Ek}.

Note that if h ∈ Ng, θ, ϕ ∈ X are such that hO1
≡ θ mod S and hO2

≡ ϕ mod S
then there exists t ∈ N such that (th)O1 = θ, (th)O2 = ϕ. This implies that
|X| ≥ |Ek| · |S|m−2. It is easy to show that if a2, . . . , am ∈ S and h ∈ ρ−1(k) ∩
NG(M ×Ma2 × · · · ×Mam) then hO1

∈ NX(M)ai1 , hO2
∈ NX(M)aj1 . By the

definition of Ek, we deduce that X ∩ H = ∅ whenever H is a supplement of N of
product type. Since the maximal subgroups of G complementing N intersect Ng
in at most one point, this implies that in order to cover X with supplements of N
we need at least |Ek| · |S|m−2/|S|m/r of them. �

We are ready to state the main theorem.

Theorem 9. Let H be a σ-elementary non-abelian group. We will use the notations
of Theorem 4. Let N = N1 be a non-abelian minimal normal subgroup of H and let
G := H/RH(N) = X1 be the primitive monolithic group associated to N . Assume
that min{σ∗(Xi) : i = 1, . . . , h} = σ∗(G). Let us use Notations 1, and let r be the
smallest prime divisor of m. Suppose that X/S is abelian. Let Enc := min{|Ek| | k ∈
K non-m-cycle} (Ek is as in Lemma 5). Suppose that whenever x ∈ X is such that
〈x, S〉 = T there exist families M,J of maximal subgroups of X supplementing S
such that:

(1) xS ⊆
⋃
M∈M∪J M ;

(2)
∑
M∈M∪J |S : S ∩M |m−1 < Enc · |S|m−m/r−2;

(3) σNy(Y ) ≥
∑
M∈M |S : S∩M |m−1 (notation is as in Definition 3) whenever

Y is a primitive monolithic group with socle N and y ∈ Y is such that
〈N, y〉 = Y .

(4)
∑
M∈J |S : S ∩M |m−1 + 2m−1 <

∑
M∈M |S : S ∩M |m−1;

Then H ∼= G, in other words H is monolithic.

Proof. By Lemma 6, it is enough to show that σ(G) < 2σ∗(G). Let us do that. Since
(1) holds, we may apply Theorem 8 and obtain that σ(G) ≤ 2m−1 +

∑
M∈M∪J |S :

S ∩M |m−1. Fix a set Ω of cosets of N in G such that σ∗(G) = σΩ(G). Clearly,
if gN ∈ Ω then σ∗(G) ≥ σNg(G) = σNg(〈N, g〉). By (2) and Lemma 5, ρ(g) is an
m-cycle, therefore 〈N, g〉 is a primitive monolithic group hence by (3)

σ∗(G) ≥ σNg(G) = σNg(〈N, g〉) ≥
∑
M∈M

|S : S ∩M |m−1.

Therefore by Theorem 8 and (4),

σ(G) ≤ 2m−1 +
∑

M∈M∪J
|S : S ∩M |m−1 < 2

∑
M∈M

|S : S ∩M |m−1 ≤ 2σ∗(G).

Therefore σ(G) < 2σ∗(G). �
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Fulfilling condition (3) requires the type of results listed in Theorems 6 and 7
(indeed, note that in Condition (3) the quotient Y/N is cyclic). In my Ph.D. thesis
I give several examples of applications of this result, and in particular I prove the
following.

Corollary 1. Let H be a non-abelian σ-elementary group. If all the minimal
subnormal subgroups of H are alternating groups of even degree larger than 30 then
H is monolithic.
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