
IDEAS IN FINITE GROUP THEORY

MARTINO GARONZI

Abstract. In this note I present some of the main ideas of finite group theory,

starting with examples of non-abelian groups (groups of matrices and groups

of permutations), going to Galois theory, i.e. the way polynomials and groups
interact, and finally simple groups, solvable groups and their role in under-

standing when the roots of a polynomial can be expressed by starting with

the coefficients and performing sums, differences, products, divisions and root
extractions. After that I will present my research topic with examples and

some results.

When dealing with operations there are two possible notations, the additive
notation and the multiplicative notation. In the additive notation the operation
between two group elements a, b is denoted a+b and the identity element is denoted
0. In the multiplicative notation the operation between two group elements a, b
is denoted a · b or simply ab and the identity element is denoted 1. Usually the
additive notation is reserved for the abelian case. I will mostly use the multiplicative
notation. I will assume the reader to be familiar with the basic properties of groups
and fields. The notation H ≤ G means that H is a subgroup of G, and the notation
H �G means that H is a normal subgroup of G.

The given bibliography provides good reference books for the theory of (finite)
groups.

I will start by recalling the isomorphism theorem.

Theorem 1 (Isomorphism Theorem). Let ϕ : G → H be a group homomorphism
and let N := ker(ϕ) be the kernel of ϕ, i.e. the set of elements g ∈ G such that
ϕ(g) = 1. Then G/N ∼= ϕ(G) via the canonical isomorphism gN 7→ ϕ(g).

1. Some examples of groups

Usually abelian groups (commutative groups), i.e. groups in which any two
elements a, b verify ab = ba (“commute”), are familiar to every mathematician. Let
us start with some examples of non-abelian groups.

1.1. Matrices. Invertible matrices form a group. Let F be any field (for example
Q, R, C, Z/pZ). I denote by GL(n, F ) the set of n × n invertible matrices with
entries in the field F . The usual row-column multiplication gives GL(n, F ) the
structure of a group, which is non-abelian if n ≥ 2. It is usually called the “General
Linear Group”. It is non-abelian because, as it is well-known, the row-column
multiplication is not a commutative operation. The set F − {0} = F ∗ is a group
with respect to multiplication, and it is abelian, isomorphic to GL(1, F ). Taking
the determinant provides a (surjective!) group homomorphism

GL(n, F )→ F ∗, A 7→ det(A)
1
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(indeed det(AB) = det(A) det(B) by Binet’s theorem) whose kernel, SL(n, F ) :=
{A ∈ GL(n, F ) : det(A) = 1}, is called the “Special Linear Group”. It is a
normal subgroup of GL(n, F ) (being the kernel of a homomorphism) and using the
isomorphism theorem we see that the quotient GL(n, F )/SL(n, F ) is isomorphic to
F ∗.

1.2. Permutations. I will denote by Sym(X) the set of bijections X → X (also
called the permutations of X). The operation of usual composition of functions
gives Sym(X) the structure of group. It is called the “Symmetric Group” of X.
It is an easy exercise to show that if X,Y are equipotent sets then Sym(X) and
Sym(Y ) are isomorphic groups. If X = {1, . . . , n} I shall denote Sym(X) by Sym(n)
or Sn. It is called the symmetric group of degree n. This group is non-abelian if
and only if n ≥ 3. An element of Sym(n) is called permutation of {1, . . . , n}. The
order of Sym(n) (its size as a set) is n! = 1 · 2 · · ·n. I will use the standard cycle
notation, which is best explained by means of examples:

(123)(4567) : 1 7→ 2 7→ 3 7→ 1, 4 7→ 5 7→ 6 7→ 7 7→ 4.

(123 · · · k) : 1 7→ 2 7→ 3 7→ · · · 7→ k 7→ 1 k-cycle.

Composition goes as follows:

(12)(234)(13) = (234), (143)(1352)(4312) = (13)(45).

Note that disjoint cycles always commute. The following calculation shows that
Sym(n) is non-abelian for n ≥ 3:

(12)(123) = (13), (123)(12) = (23).

Remark 1. Every permutation can be written uniquely (up to reordering) as prod-
uct of disjoint cycles.

2-cycles are also called “transpositions”. A permutation is called “even” (or “of
sign 1”) if it can be written as the product of an even number of transpositions,
and “odd” (or “of sign −1”) otherwise. For example (12)(25)(13)(35) is even,
(13)(26)(43) is odd. The identity of Sym(n) (the identity function {1, . . . , n} →
{1, . . . , n}) is considered to be the product of zero transpositions, hence an even
permutation.

Remark 2. A product of disjoint cycles is an even permutation if and only if the
number of cycles of even length is even.

For example (123)(4567), (12)(3456)(78) are odd, (123)(45)(67), (123)(4567)(89)
are even.

Definition 1. The “cycle structure” of a permutation is the increasing sequence
of the cycle lengths in the representation as a product of disjoint cycles. Cycles of
length 1 are usually omitted.

So for example (123)(4567), (12)(3456)(78), (123)(45)(67), (123)(4567)(89) have
cycle structure respectively (3, 4), (2, 2, 4), (2, 2, 3), (2, 3, 4). Remark 2 implies that
the cycle structure of a permutation determines its sign. Hence all elements of
cycle structure (3, 4), (2, 2, 4) are odd, and all elements of cycle structure (2, 2, 3),
(2, 3, 4) are even.

Let us denote by C2 the set {−1, 1} with the operation given by multiplication:
1 · 1 = (−1) · (−1) = 1 and 1 · (−1) = (−1) · 1 = −1. Then C2 is a commutative
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group, it is a cyclic group (a group generated by one element) of order 2 (generated
by −1), and it is isomorphic to Sym(2) = {1, (12)}. Consider the map

sgn : Sym(n)→ {−1, 1} = C2, σ 7→ sgn(σ)

which sends any permutation to its sign (1 if it is even, −1 if it is odd). Then
sgn is a (surjective!) group homomorphism whose kernel, Alt(n) = An := {σ ∈
Sym(n) : sgn(σ) = 1} is called the “Alternating Group” of degree n. It is a
normal subgroup of Sym(n) (being the kernel of a homomorphism) and using the
isomorphism theorem we see that the quotient Sym(n)/Alt(n) is isomorphic to C2,
in particular |Alt(n)| = n!/2.

For example Alt(4) = {1, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142),
(234), (243), (134), (143)}.

2. Galois Theory

2.1. The Galois group of a polynomial. Let us talk about the reason why
groups were invented.

To each polynomial f(X) ∈ Q[X] without multiple roots can be attached a
finite group Gf , called the Galois group of the polynomial (named after Evariste
Galois, 1811 - 1832). It is the group defined as follows: if a1, . . . , an ∈ C denote
the distinct roots of f(X) then

Gf = Aut(Q(a1, . . . , an))

where Q(a1, . . . , an) denotes the field generated by a1, . . . , an, i.e. the intersec-
tion of the subfields of C containing a1, . . . , an. That is, Gf is the group of field
isomorphisms

Q(a1, . . . , an)→ Q(a1, . . . , an),

that is, the group of such maps which are bijective and respect identity elements,
sums, and products. It goes without saying that the operation in Gf is again the
usual composition of functions. Suppose that a is a root of f(X) ∈ Q[X] (i.e.
f(a) = 0) and g ∈ Gf . We can consider the element g(a) ∈ C. Since g is a ring
homomorphism, it fixes every element of Q (this is easy to show starting from the
identity g(n) = g(1 + · · ·+ 1) = g(1) + · · ·+ g(1) = 1 + · · ·+ 1 = n for n ∈ N) and
also g(a) is a root of f , indeed writing f(X) =

∑
i ciX

i with ci elements of Q we
have

f(g(a)) =
∑
i

cig(a)i =
∑
i

g(ci)g(ai) =
∑
i

g(cia
i) =

= g(
∑
i

cia
i) = g(f(a)) = g(0) = 0.

This implies that the group Gf permutes the roots of f . In other words, Gf

can be described (or better, “represented”) as a subgroup of Sym(n). Indeed, the
function

Gf → Sym({a1, . . . , an})
which sends g ∈ Gf to the permutation given by ai 7→ g(ai) (which, as we saw
above, is well-defined) is an injective (!) group homomorphism. Injectivity follows
from the fact that the only element of Gf which fixes all the roots is the identity.
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For example the Galois group of X2 − 2 is the automorphism group of the
field Q(

√
2), so it consists of two elements: the identity and the (unique!) field

homomorphism τ : Q(
√

2)→ Q(
√

2) which sends
√

2 to −
√

2. The Galois group of
X2 − 2 is cyclic of order 2. Gf

∼= Sym(2) ∼= C2.

2.2. Factorizations modulo prime numbers. I now want to show how poly-
nomials and groups interact. The usual “reduction modulo n” that we have for
integers can be performed also in polynomial rings. It is an interesting fact that a
polynomial might be irreducible over Z but reducible modulo some prime p. For
example X2 − 2 is irreducible over Z (its roots are not integers) but

X2 − 2 ≡ X2 mod 2, X2 − 2 ≡ (X − 3)(X − 4) mod 7.

Still there are some primes for which the given polynomial might remain irreducible,
for example X2 − 2 is irreducible modulo 3.

For the following theorem see [7], Lemmas 1 and 2.

Theorem 2 (Frobenius-Dedekind). Let f(X) be an irreducible polynomial of Z[X]
of degree n. The following assertions are equivalent.

• There exists a prime p for which f(X) mod p does not admit multiple
irreducible factors (such prime is usually called “unramified”) and the fac-
torization pattern of f(X) mod p is (n1, . . . , nt) (meaning that there are t
irreducible factors of degrees n1, . . . , nt).
• The Galois group of f(X), seen as a (transitive) subgroup of Sym(n), con-

tains an element of cycle structure (n1, . . . , nt).

This implies, for example, that an irreducible polynomial of degree n remains
irreducible modulo some prime if and only if its Galois group, viewed as a subgroup
of Sym(n), contains an n-cycle. Moreover, since every group contains the identity
element, which has cycle structure (1, . . . , 1), we deduce that given an irreducible
polynomial there always exist primes p such that P (X) splits into distinct linear
factors modulo p (!). Such primes are infinitely many by Chebotarev’s density
theorem (cf. below).

There is a notion of “discriminant” valid for every polynomial. It is defined as∏n
i,j(ai−aj) where a1, . . . , an are the roots of the polynomial. It is possible to show

that the discriminant of a polynomial with integer coefficients is an integer. For
small degrees it is reasonable to find a formula for the discriminant. For example,

• the discriminant of aX2 + bX + c is b2 − 4ac,
• the discriminant of X3 + pX + q is −4p3 − 27q2.

A very useful property of the discriminant (which follows directly from its def-
inition) is the following: given a polynomial P (X), a prime number is ramified
(i.e. P (X) has multiple roots modulo that prime) if and only if it divides the
discriminant of P (X). In particular, there are only finitely many ramified primes.

In the case of cubics (polynomials of degree 3) the discriminant determines the
Galois group: it is possible to show that an irreducible polynomial of degree 3 over
Q has Galois group Sym(3) if its discriminant is a square in Q, it has Galois group
Alt(3) otherwise.

Let us consider the following examples:

• X3 +X2 +X + 3 (discriminant −204 = −22 · 3 · 17);
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• X3 − 3X + 1 (discriminant 81 = 34).

The following tables contain the reductions of these polynomials modulo various
prime numbers.

p X3 +X2 +X + 3 p X3 +X2 +X + 3
2 (X + 1)3 53 (X + 43)(X2 + 11X + 5)
3 X(X + 2)2 59 (X + 12)(X2 + 48X + 15)
5 X3 +X2 +X + 3 61 (X + 6)(X2 + 56X + 31)
7 (X + 4)(X2 + 4X + 6) 67 (X + 23)(X + 52)(X + 60)
11 X3 +X2 +X + 3 71 (X + 38)(X + 52)(X + 53)
13 X3 +X2 +X + 3 73 (X + 34)(X2 + 40X + 28)
17 (X + 5)(X + 15)2 79 (X + 74)(X2 + 6X + 31)
19 X3 +X2 +X + 3 83 (X + 45)(X2 + 39X + 72)
23 X3 +X2 +X + 3 89 (X + 32)(X2 + 58X + 14)
29 (X + 11)(X + 23)(X + 25) 97 (X + 59)(X2 + 39X + 28)
31 (X + 15)(X2 + 17X + 25) 101 (X + 75)(X2 + 27X + 97)
37 (X + 25)(X2 + 13X + 9) 103 X3 +X2 +X + 3
41 X3 +X2 +X + 3 107 X3 +X2 +X + 3
43 X3 +X2 +X + 3 113 X3 +X2 +X + 3
47 (X + 31)(X2 + 17X + 38) 127 X3 +X2 +X + 3

p X3 − 3X + 1 p X3 − 3X + 1
2 X3 +X + 1 53 (X + 18)(X + 39)(X + 49)
3 (X + 1)3 59 X3 + 56X + 1
5 X3 + 2X + 1 61 X3 + 58X + 1
7 X3 + 4X + 1 67 X3 + 64X + 1
11 X3 + 8X + 1 71 (X + 16)(X + 25)(X + 30)
13 X3 + 10X + 1 73 (X + 14)(X + 25)(X + 34)
17 (X + 3)(X + 4)(X + 10) 79 X3 + 76X + 1
19 (X + 10)(X + 12)(X + 16) 83 X3 + 80X + 1
23 X3 + 20X + 1 89 (X + 12)(X + 36)(X + 41)
29 X3 + 26X + 1 97 X3 + 94X + 1
31 X3 + 28X + 1 101 X3 + 98X + 1
37 (X + 14)(X + 28)(X + 32) 103 X3 + 100X + 1
41 X3 + 38X + 1 107 (X + 7)(X + 40)(X + 60)
43 X3 + 40X + 1 113 X3 + 110X + 1
47 X3 + 44X + 1 127 (X + 53)(X + 87)(X + 114)

Note that the factorization pattern (1, 2) shows up in the first table but does not
in the second. This is explained by Frobenius theorem: Sym(3) (the Galois group
of X3 +X2 +X + 3) contains permutations of cycle structure (1, 2) (2-cycles) but
Alt(3) (the Galois group of X3 − 3X + 1) does not! Indeed

Sym(3) = {1, (12), (13), (23), (123), (132)}, Alt(3) = {1, (123), (132)}.

Moreover, by a result known as “Chebotarev density theorem”, the proportion of
primes yielding a given factorization pattern equals the proportion of elements of
the Galois group with the associated cycle structure. This is why, for example, the
proportion of primes for which the second polynomial remains irreducible is about
2 : 1: because in Alt(3) there are twice more 3-cycles than (1, 1, 1)-cycles.
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2.3. The Inverse Galois Problem. The most famous open problem in group
theory is probably the Inverse Galois Problem.

Is it true that for any finite group G there exists a polynomial f(X) ∈ Q[X]
with Gf

∼= G ?

This problem has been solved for abelian groups (even solvable groups, cf. below
for the definition), but the answer in general is not known.

3. Cauchy, Lagrange, Sylow, Cayley

Let us list the important results of “elementary” finite group theory. Given a
subset X of a group G I will denote by 〈X〉 the subgroup generated by X in
G, i.e. the intersection of the subgroups of G containing X. I will rather write
〈x1, . . . , xn〉 instead of 〈{x1, . . . , xn}〉.

• the “order” of an element g ∈ G, denoted o(g), is the smallest positive
integer n such that the product of g with itself n times, gn = g · · · g (n
times), equals 1;
• the “order” of a subgroup H ≤ G, denoted |H|, is its size.
• It turns out that |〈g〉| = o(g).

Theorem 3 (Lagrange (1736 - 1813)). Let G be a finite group, and let H ≤ G.
Then |H| divides |G|. The integer |G|/|H| = |G : H| is called the “index” of H in
G.

Not every divisor of |G| necessarily equals the size of a subgroup of G (cf. the
example below), but...

Theorem 4 (Cauchy (1789 - 1857)). Let G be a finite group, and let p be a prime
dividing |G|. Then there exists g ∈ G of order p.

Consider the following example: the alternating group of degree 4. A4 = 〈a, b〉
where a = (123) and b = (12)(34). |A4| = 4!/2 = 12 = 22 · 3. Here is its subgroup
lattice (the labelling numbers denote the indeces):

A4
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〈ab〉
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〈ba〉

3
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3
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{1}

A4 = {1, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (234), (243), (134), (143)}.
Note that although 6 divides 12, A4 has no subgroups of order 6.
Although it is not true that there exist subgroups of G of order any given divisor

of |G|, Cauchy’s theorem implies that they exist if the given divisor is a prime.
The next natural step is to ask what happens with prime-powers. Suppose |G|
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is divisible by a prime-power pk. Can we always find a subgroup H ≤ G with
|H| = pk? The answer is yes.

Theorem 5 (Sylow (1832 - 1918)). Let G be a finite group and write |G| = mpn

where p is a prime and m is not divisible by p.

• G contains a subgroup P of order pn. P is called “Sylow p-subgroup” of G.
• G contains a subgroup of order pk for every 0 ≤ k ≤ n.
• If P,Q are two Sylow p-subgroups of G then they are conjugated: there

exists g ∈ G such that g−1Pg = Q.
• The number of Sylow p-subgroups of G is congruent to 1 mod p.
• If H is a subgroup of G such that |H| is a power of p then there exists a

Sylow p-subgroup P of G such that H ≤ P .

Consider the following example. Let F = Z/5Z and let

G := {
(
a 0
b c

)
: a, b, c ∈ F, a, c 6= 0},

H := {
(
a 0
b c

)
∈ G : b = 0},

K := {
(
a 0
b c

)
∈ G : a = c = 1}.

• G is a group (with respect to multiplication) of order 42 · 5 = 24 · 5,
• |H| = 42 = 24 ⇒ H is a Sylow 2-subgroup of G and
• |K| = 5 ⇒ K is a Sylow 5-subgroup of G.

Finally, Cayley theorem says that every finite group can be found inside some
symmetric group.

Theorem 6 (Cayley (1821 - 1895)). Let G be a group. Then the map

G→ Sym(G), g 7→ (x 7→ gx)

is an injective homomorphism.
In particular, G is isomorphic with a subgroup of Sym(G).

Corollary 1. Let G be a finite group. There exists a positive integer n such that
G is isomorphic with a subgroup of Sym(n).

Cayley’s theorem says that we may choose n = |G|. But sometimes we can
choose a smaller n (cf. [8]).

For example, if Gf is the Galois group of the polynomial f(X) ∈ Q[X] with n
distinct roots, then the permutation action of Gf on the n roots gives an injective
homomorphism Gf → Sym(n).

4. Simple groups, solvable groups

A group G is said to be “simple” if the only normal subgroups of G are {1} and
G. Since every subgroup of an abelian group is normal, it is easy to show that

Remark 3 (Abelian simple groups). Abelian simple groups are the cyclic groups
of prime order,

Cp = {g, g2, . . . , gp−1, gp = 1} ∼= (Z/pZ,+) = {1, 2, . . . , p− 1, p = 0}.
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The following results provide infinite families of non-abelian simple groups.

Theorem 7 (Alternating Groups). If n ≥ 5 is an integer, Alt(n) is a non-abelian
simple group.

Theorem 8 (Projective Linear Groups). Let F be a field, and let GL(n, F ) be the
group of invertible matrices over F . Let SL(n, F ) be the subgroup of GL(n, F ) con-
sisting of matrices of determinant 1. Let Z be the subgroup of GL(n, F ) consisting
of scalar matrices. If n ≥ 2 and |F | ≥ 4, the quotient

PSL(n, F ) := SL(n, F )/Z ∩ SL(n, F )

(projective linear group) is a non-abelian simple group.

Given a finite group G, we can costruct longest possible chains of subgroups of
the form

{1} = G0 �G1 �G2 � · · ·�Gk = G.

Maximality of k implies that the factor groups Gi/Gi−1 are all simple groups.
Such chain is called “composition series” and its factors Gi/Gi−1 are called
“composition factors”.

Theorem 9 (Jordan-Holder). Any two composition series of a given finite group
have the same length and the same composition factors (up to reordering and iso-
morphism).

For example the composition factors of the cyclic group Cn correspond to the
prime divisors of n, counted with multiplicity. If n = 60 = 22 · 3 · 5,

1 � 〈g30〉(∼= C2) � 〈g15〉(∼= C4) � 〈g5〉(∼= C12) � 〈g〉 = C60.

Definition 2 (Solvable groups). If the composition factors of the finite group G
are all abelian (hence cyclic of prime order) then G is said to be solvable.

Evariste Galois proved that the zeros of a polynomial f(X) ∈ Q[X] can be
expressed by starting from the elements of Q and performing sums, differences,
products, divisions, and root extractions if and only if the Galois group Gf is
solvable. In this case f(X) is said to be “solvable by radicals”. Let us give some
examples.

The Galois group of f(X) = X4 − 4X + 2 ∈ Z[X] is S4, so f(X) is solvable by
radicals. Indeed, S4 is solvable:

{1} C2 // 〈(12)(34)〉 C2 // O2(S4)
C3 // A4

C2 // S4

Arrows are inclusions. O2(S4) denotes the intersection of the Sylow 2-subgroups of
S4: it is a normal subgroup of S4 of order 4 isomorphic to the Klein group C2×C2.
The composition factors of S4 are C2 (three times) and C3. |S4| = 24 = 23 · 3.
More generally, all polynomials of degree 2, 3, 4 are solvable by radicals. Indeed,
all subgroups of Sym(4) are solvable. On the other hand, the symmetric group Sn

is not solvable when n ≥ 5:

{1} An // An
C2 // Sn

The composition factors of Sn are An (not abelian) and C2.
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Let a, b, c be indeterminates over Q. The roots of the polynomial P (X) = aX2 +
bX + c are given by the well-known formula

x1,2 =
−b±

√
b2 − 4ac

2a
.

It follows that P (X) is solvable by radicals over Q(a, b, c). I want to consider now
degrees larger than 2.

For the following discussion we refer the reader to [1, Theorem 4.15]. Let
a0, . . . , an−1 be indeterminates over Q. It is interesting to ask when the generic
polynomial of degree n

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0

is solvable by radicals over the field generated by its coefficients, Q(a0, . . . , an−1).
In other words, we ask when the roots of P (X) can be expressed by starting from
the coefficients a0, . . . , an−1 and performing sums, differences, products, divisions
and root extractions. It turns out that P (X) is irreducible in Q(a0, . . . , an−1)[X],
it has distinct roots (as does any irreducible polynomial in characteristic zero) and
its Galois group over Q(a0, . . . , an−1) is Sym(n). Since, as we have seen, Sym(n)
is not a solvable group if n ≥ 5, it follows that P (X) is solvable by radicals if and
only if n ≤ 4.

As you might have noticed, above I used the expression “over the field generated
by its coefficients”. Let us clarify this. If F/K (to be read “F over K”) is any field
extension (meaning that F and K are fields and F contains K) then the Galois
group of F/K, denoted G(F/K), is defined to be the set of all field automorphisms
g of F such that (*) g(a) = a for every a ∈ K. Note that if K = Q then condition
(*) is automathic. The inclusion K ⊆ F gives F a canonical structure of K-vector
space. The extension F/K is said to be “finite” if F has finite dimension asK-vector
space. The “degree” of the finite field extension F/K, usually denoted [F : K], is
the dimension dimK(F ). So for example C/R is a finite field extension of degree 2
with Galois group C2 (its two elements are the identity and the complex conjugation
a+ ib 7→ a− ib). A finite extension F/K is said to be a Galois extension if

{a ∈ F : g(a) = a ∀g ∈ G(F/K)} = K.

It turns out that an extension F/K is a Galois extension if and only if [F : K] =
|G(F/K)|, that is, the degree equals the size of the Galois group. For example,
whenever f(X) is a polynomial in Q[X], with roots a1, . . . , an ∈ C, the extension
Q(a1, . . . , an)/Q is a Galois extension. For example consider f(X) = X2+1 ∈ R[X]:
since C = R(i) = R(i,−i), the extension C/R is Galois.

Here is an example of an extension that is not Galois: F/K = Q( 3
√

2)/Q.

Indeed, the only K-automorphism of F is the identity, idF : F → F ( 3
√

2 is the only
root of X3− 2 that belongs to F !), so |G(F/K)| = 1, while the degree [F : K] is 3:

a K-basis is given by 1, 3
√

2, 3
√

4. However, F is contained in a Galois extension of
K: Q(a, b, c)/Q, where a, b, c are the three roots of X3 − 2 in C. It is an extension
of degree 6 with Galois group isomorphic to Sym(3).
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Here comes the main property of Galois extensions, which makes them very nice.
If F/K is a finite Galois extension then the correspondences

H 7→ {a ∈ F : h(a) = a ∀h ∈ H}
L 7→ {g ∈ G(F/K) : g(a) = a ∀a ∈ L}

provide inclusion-reversing bijections, inverses of each other, between the family of
subgroups of G(F/K) and the family of fields L such that K ⊆ L ⊆ F (intermediate
fields of F/K). So, if you want to see how the intermediate field lattice of a Galois
extension looks like just take the subgroup lattice of its Galois group and turn it
upside-down (remember that inclusions are reversed).

I now spend some words on the classification of the finite simple groups. The
starting point for the classification was the following beautiful result, which is known
as the “odd order theorem”. The proof is very long. Recently (September 2012)
it was checked by the computer program Coq, essentially proving algorithmically
that the proof is correct. This was achieved by a team led by Georges Gonthier (cf.
http://ssr2.msr-inria.inria.fr/ ∼ jenkins/current/progress.html).

Theorem 10 (Feit, Thompson, 1962-1963). Any finite group of odd order is solv-
able.

It is easy to show that this is equivalent to say that every finite non-abelian simple
group has even order (just look at a composition series). In particular, by Cauchy
Theorem, any finite non-abelian simple group contains involutions (elements of
order 2). Finite simple groups have been classified using the centralizers of the
involutions. The centralizer of an element x ∈ G is the set of elements which
commute with x, CG(x) := {g ∈ G : gx = xg}.

Proposition 1 ([2], (45.4)). Let G be a finite simple group and let t be an involution
in G, n := |CG(t)|. Then |G| ≤ (2n2)!.

An immediate corollary is:

Theorem 11 (Brauer-Fowler). Let H be a finite group. Then there exists at most
a finite number of finite simple groups G with an involution t such that CG(t) ∼= H.

This should clarify why the Feit-Thompson theorem is considered to be the
starting point of the classification. The classification theorem is too long to be fully
stated here, so I will give a short version of it. Groups of “Lie type” are particular
groups of matrices over finite fields, as in the case of the projective special linear
group PSL(n, F ).

Theorem 12 (Classification of the Finite Simple Groups). Let S be a finite simple
group. Then one of the following holds.

• S ∼= Cp for some prime p.
• S ∼= Alt(n) for some integer n ≥ 5.
• S is a group of Lie type.
• S is one of 26 sporadic groups.

5. Some more beautiful results

The following result is one of the few results which guarantee the existence of
subgroups of some order.
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Theorem 13 (Schur-Zassenhaus). Let G be a finite group and let N be a normal
subgroup of G. If |N | and |G : N | are coprime then G admits a subgroup of size
|G : N |.

The following result is a generalization of Sylow’s Theorem in the case of solvable
groups. If π is a set of prime numbers, a “Hall π-subgroup” of G is a subgroup H
of G such that |H| and |G : H| are coprime and all prime divisors of |H| belong to
π.

Theorem 14 (Hall). Let G be a finite solvable group, and let π a set of prime
numbers. Then G admits Hall π-subgroups, and any two Hall π-subgroups of G are
conjugated.

Classically this is proved using the Schur-Zassenhaus theorem.

6. Covering finite groups

Now I will say something about my own research. From now on all considered
groups will be assumed to be finite.

6.1. Sigma. A “cover” of a group G is a family H of proper subgroups of G such
that

⋃
H∈HH = G. It is easy to see that a group admits covers if and only if it is

noncyclic. This follows from the equality
⋃

g∈G〈g〉 = G and the fact that a proper

subgroup cannot contain the elements g such that 〈g〉 = G.
Define σ(G), the “covering number” of G, to be the smallest size of a cover

of G. This notion was introduced in [9]. A cover of G of size σ(G) will be called
“minimal cover”. If G is cyclic, set σ(G) =∞ with the convention that n <∞ for
every integer n. It is obvious, but worth remarking, that if H is any cover of G
then σ(G) ≤ |H|. The following basic result shows that if N �G then

σ(G) ≤ σ(G/N).

Theorem 15 (Correspondence theorem). Let G be a group and let N � G. The
correspondences

ϕ : H/N 7→ {g ∈ G : gN ∈ H/N}, ψ : K 7→ KN/N

provide canonical bijections, inverses of each other, between the family of subgroups
of G/N and the family of subgroups of G containing N . Moreover, they both send
normal subgroups to normal subgroups.

Indeed, if H is a cover of G/N then {ϕ(H) : H ∈ H} is a cover of G of size |H|.
For example, if n 6= 9 is an odd integer larger than 1 then σ(Sym(n)) = 2n−1. A

minimal cover of G is given by the following family:

(∗∗){Alt(n)} ∪ {Sym(a)× Sym(b) : 1 ≤ a, b ≤ n− 1, a+ b = n}.
The subgroups of Sym(n) isomorphic to Sym(a)×Sym(b), for a+b = n, are obtained
by considering partitions {1, . . . , n} = A ∪B with A ∩B = ∅, |A| = a and |B| = b.
Indeed, for such a partition, it turns out that

{g ∈ Sym(n) : g(x) ∈ A ∀x ∈ A} ∼= Sym(a)× Sym(b).

Such subgroups of Sym(n) are called “maximal intransitive”. The reason why
family (**) is a cover of Sym(n) is that n being odd, the n-cycles are even per-
mutations, hence they belong to Alt(n), and all the other permutations belong to
some maximal intransitive subgroup (they have nontrivial orbits - just look at the
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cycle structure and group the cycles in two blocks). Family (**) is a cover also for
n = 9 but it is still not known whether it is minimal or not in this case.

It is easy to show that a group cannot be written as the union of two proper
subgroups. Therefore σ(G) ≥ 3 always. What can be said about the groups G with
σ(G) = 3?

Theorem 16 (Scorza, 1926). Let G be a group. Then σ(G) = 3 if and only if G
admits a normal subgroup N such that G/N ∼= C2 × C2.

Note that the implication ⇐ is easy: if G/N ∼= C2×C2 then σ(G) ≤ σ(G/N) =
σ(C2 × C2) = 3. On the other hand σ(G) ≥ 3 (this is always true), so σ(G) = 3.
The reason why σ(C2 × C2) = 3 is that C2 × C2 has only three nontrivial proper
subgroups, and they have size 2. In general if p is any prime number then Cp ×Cp

has precisely p+1 proper nontrivial subgroups, and they are all cyclic of order p (so
they are both minimal and maximal subgroups). It follows that σ(Cp×Cp) = p+1.
Indeed, any nontrivial element of Cp×Cp determines the proper subgroup in which
it is contained: it is the subgroup which it generates. So in this case in order to
cover the group all proper nontrivial subgroups have to be considered.

I now argue that whenever G is a noncyclic group and |G| is a power of a prime
p (i.e. G is a “p-group”) we have σ(G) = p+ 1.

Lemma 1 (The Minimal Index Lower Bound). Let G be a non-cyclic group, and
write G = H1 ∪ · · · ∪ Hn as union of n = σ(G) proper subgroups. Let βi := |G :
Hi| := |G|/|Hi| for i = 1, . . . , n. Then min{β1, . . . , βn} < σ(G).

Proof. We may assume that β1 ≤ · · · ≤ βn. Since 1 ∈ H1 ∩ . . . ∩ Hn the union
H1 ∪ . . . ∪Hn is not disjoint and hence

|G| <
n∑

i=1

|Hi| = |G|
n∑

i=1

1

βi
≤ |G|n

β1
.

Therefore β1 < n. �

Let us apply this to the case |G| = pn. The index of any subgroup of G is a
divisor of |G| (Lagrange Theorem) so if a subgroup of G is proper then its index
is at least p. It follows that p < σ(G) so p + 1 ≤ σ(G). We are left to prove that
σ(G) ≤ p+ 1, and for this it is enough to find a normal subgroup N of G such that
G/N ∼= Cp×Cp (indeed σ(G) ≤ σ(G/N) and σ(Cp×Cp) = p+1). This follows from
the following fact, which I will state without proof (the proof is a bit technical).
Recall that a subgroup H of G is called “maximal” if it is not properly contained in
a subgroup of G, and the “Frattini subgroup” of a group G is the intersection of the
maximal subgroups of G, denoted Φ(G). It is a normal subgroup of G. Moreover,
denote by d(G) the least integer d such that there exist d elements x1, . . . , xd ∈ G
with 〈x1, · · · , xd〉 = G.

Proposition 2. Let G be a p-group and let d = d(G). Then G/Φ(G) ∼= Cp
d.

Now if the p-group G is not cyclic, i.e. if d > 1, then Cp
d clearly admits a

quotient isomorphic to Cp × Cp = Cp
2, therefore σ(G) ≤ σ(G/Φ(G)) = σ(Cp

d) ≤
σ(Cp × Cp) = p+ 1.

Using this we can deduce the value of σ(G) whenever G is an abelian group. We
first need a lemma.
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Lemma 2. If A,B are two groups of coprime order then σ(A×B) = min{σ(A), σ(B)}.

Proof. Since |A| and |B| are coprime, the subgroups of A×B are of the form H×K
with H ≤ A and K ≤ B. With this in mind, the proof becomes technical. I will
omit the details. �

Indeed, by the structure theorem of finite abelian groups (and the Chinese Re-
mainder Theorem), any finite abelian group is a direct product of cyclic groups of
prime power order, so

Proposition 3. Let G be a noncyclic abelian group, and write G =
∏k

i=1 Cp
ni
i

.

Then σ(G) = p+ 1 where p is the smallest prime number such that there exist two
distinct i, j ∈ {1, . . . , k} with pi = pj = p.

6.2. Direct products. Lemma 2 deals with direct products of groups A,B of
coprime order. Let us give an example in which A = B. I will compute σ(S × S)
when S is a nonabelian simple group. I will prove that σ(S × S) = σ(S). This will
give me the opportunity to discuss more general facts.

Lemma 3 (Intersection argument). Let K be a maximal subgroup of a group G
and let H be a minimal cover of G. If σ(G) < σ(K) then K ∈ H. Equivalently, if
K 6∈ H then σ(K) ≤ σ(G).

Proof. We have

K = K ∩G = K ∩
⋃

H∈H
H =

⋃
H∈H

(K ∩H)

therefore, if σ(G) < σ(K), this union cannot consist of proper subgroups of K,
thus there exists H ∈ H such that K ∩H = K, i.e. K ⊆ H. Since K is maximal
it follows that K = H ∈ H. �

Corollary 2. Let M be a maximal subgroup of G, not normal, such that σ(G) <
σ(M). Then |G : M | < σ(G).

Proof. Using standard arguments of group actions, it is possible to prove that
the number of conjugates of H ≤ G equals the index in G of the “normalizer”
NG(H) := {g ∈ G : g−1Hg = H} of H in G. We always have H ⊆ NG(H)
and NG(H) = G if and only if H is normal in G. Now, M being maximal and
not normal in G, NG(M) = M therefore M has |G : M | conjugates in G. Since
σ(G) < σ(M), they all belong to every minimal cover of G by the intersection
argument. In particular σ(G) ≥ |G : M |. Now, the |G : M | conjugates of M cover
less than |G| = |M | · |G : M | group elements (they all contain the identity element),
so we get the strict inequality σ(G) > |G : M |. �

This is actually the main argument used in [10] and in my Ph.D thesis. Let
me be more precise about this. Recall that if A,B are two subgroups of a group
G then the product AB is defined as AB := {ab : a ∈ A, b ∈ B}. It turns
out that |AB| = |A| · |B|/|A ∩ B| (nice exercise). A supplement of the normal
subgroup N � G is a subgroup H ≤ G such that HN = G. A complement of
N is a supplement H of N such that H ∩ N = {1}. In this case we also say that
H complements N in G. If H complements N then |G| = |HN | = |H| · |N |, so
|G : N | = |H|. The above corollary implies the following.
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Proposition 4 (The Maximal Complement Argument). Let N be a nonsolvable
normal subgroup of the group G and suppose that there exists a maximal subgroup
M of G that complements N . Then σ(G) = σ(G/N).

This is the argument that allows to produce results about the structure of σ-
elementary groups (cf. the following subsection). The proof is a bit technical but
I hope that by writing it down I will give some ideas about the kind of arguments
needed in this kind of analysis.

Proof. Thanks to nonsolvability of N we may assume that N does not contain
nontrivial central elements of G (i.e. elements g lying in the center of G). Indeed if
g ∈ N and g ∈ Z(G) we may consider the quotient G/〈g〉 and proceed by induction
on |G|. As a consequence of the classification of finite simple groups, N does not
have fixed-point-free automorphisms (recall that an automorphism ϕ of N , i.e. a
group isomorphism N → N , is said to be fixed-point-free if ϕ(x) 6= x whenever
x ∈ N and x 6= 1). It follows that the family {CG(x) : 1 6= x ∈ N} covers G,
where CG(x) = {g ∈ G : gx = xg}. Indeed, if g ∈ G then the map N → N ,
x 7→ g−1xg is an automorphism of N . Since N does not contain nontrivial central
elements, CG(x) 6= G for every 1 6= x ∈ N . Therefore {CG(x) : 1 6= x ∈ N} is a
cover of G of size |N | − 1, so σ(G) ≤ |N | − 1.

Now, M is not normal in G, otherwise G ∼= N ×M and maximality of M would
imply that |N | = |G : M | = p is a prime, contradicting the nonsolvability of N .
Therefore Corollary 2 implies that |N | = |G : M | < σ(G). This contradicts the fact
that σ(G) ≤ |N | − 1. �

Let us show how this implies that σ(S × S) = σ(S) whenever S is a nonabelian
simple group. The following is a standard fact and a nice exercise.

Proposition 5. Let G be a group. Then G is simple if and only if

∆G := {(g, g) : g ∈ G} < G×G

is a maximal subgroup of G×G.

It follows that ∆S is a maximal subgroup of S × S that complements S × {1},
and we may apply the Maximal Complement Argument. Actually in this case much
less is needed: since S × S → S, (x, y) 7→ x is a surjective homomorphism with
kernel {1} × S, by the Isomorphism Theorem (Theorem 1) and the fact that S
being noncyclic, it admits as a cover the family of its nontrivial cyclic subgroups,
it follows that

σ(S × S) ≤ σ(S) ≤ |S| − 1,

and now since |S × S : ∆S | = |S| Corollary 2 yields a contradiction.

A result I obtained in a joint work with A. Lucchini is a generalization of this
fact to all direct products:

Theorem 17 (Lucchini A., G 2010 [12]). Let M be a minimal cover of a direct
product G = H1 ×H2 of two finite groups. Then one of the following holds:

(1) M = {X ×H2 | X ∈ X} where X is a minimal cover of H1. In this case
σ(G) = σ(H1).

(2) M = {H1 ×X | X ∈ X} where X is a minimal cover of H2. In this case
σ(G) = σ(H2).
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(3) There exist N1 E H1, N2 E H2 with H1/N1
∼= H2/N2

∼= Cp and M
consists of the maximal subgroups of H1 ×H2 containing N1 ×N2. In this
case σ(G) = p+ 1.

6.3. σ-elementary groups. Suppose we want to compute σ(G) for a given group
G. If there exists N � G such that σ(G) = σ(G/N) then we may consider the
group G/N instead of G. This gives a sort of reduction and leads to the following
definition.

Definition 3 (σ-elementary groups). A group G is called σ-elementary if σ(G) <
σ(G/N) whenever {1} 6= N�G. G is called n-elementary if G is σ-elementary and
σ(G) = n.

This notion was introduced in [9] and thoroughly studied in [10] (there these
groups are called σ-primitive).

For example:

• If G is any group then there exists a normal subgroup N of G such that
G/N is σ-elementary and σ(G) = σ(G/N) (just choose a proper normal
subgroup N of G such that σ(G) = σ(G/N) and proceed by induction on
|G|).

• If p is any prime number, Cp × Cp is (p + 1)-elementary (the nontrivial
proper quotients are all cyclic of size p).

• The only 3-elementary group is C2 × C2 (Scorza’s Theorem).
• 6.2 implies that if S is a nonabelian simple group then S × · · · ×S = Sm is
σ-elementary if and only if m = 1.

• If n ≥ 3 is an integer and n 6= 4 then Sym(n) is σ-elementary: its only
nontrivial proper quotient is C2. Sym(4) is not σ-elementary: it admits
Sym(3) as homomorphic image (quotient) and σ(Sym(4)) = σ(Sym(3)) =
4.

• If G/N is cyclic whenever {1} 6= N � G then G is σ-elementary. The
converse is true for solvable groups but false in general. An example is
I o Alt(p) where I = {(x1, . . . , xp) ∈ Fp

2 :
∑p

i=1 xi = 0} and p is a prime

not of the form qn−1
q−1 with q a prime power, the action is the usual one on

the p coordinates.

Let us list the known facts concerning σ-elementary groups. Recall that Φ(G),
the Frattini subgroup of G, is the intersection of the maximal subgroups of G, Z(G),
the center of G, is the subgroup {g ∈ G : xg = gx ∀x ∈ G}, and G′, the derived
subgroup of G, is the intersection of the normal subgroups N of G such that G/N
is abelian.

Proposition 6. Let G be a σ-elementary group.

• Φ(G) = {1}.
• If G is non-abelian then it has trivial center: Z(G) = {1}.
• If G is abelian then G ∼= Cp × Cp for some prime p.
• Scorza’s theorem: if σ(G) = 3 then G ∼= C2 × C2.
• Scorza’s theorem revisited: if σ(G) = p+1 with p the smallest prime divisor

of |G| then G ∼= Cp × Cp.
• Let n be a positive integer. There are only finitely many σ-elementary

groups G with σ(G) = n.
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• If H1×H2, a direct product of two non-trivial groups, is σ-elementary then
H1
∼= H2

∼= Cp for some prime p (this follows from Theorem 17).
• If G is σ-elementary, {1} 6= N�G and G/N is solvable then G/N is cyclic.

In particular G/G′ is cyclic.

A result I obtained is the determination of all n-elementary groups with n ≤ 25.

Theorem 18 (G 2009 [11]). All σ-elementary groups G with σ(G) ≤ 25 are known.

σ(G) G
3 C2 × C2

4 C3 × C3,Sym(3)
5 Alt(4)
6 C5 × C5, D10, AGL(1, 5)
7 ∅
8 C7 × C7, D14, 7 : 3, AGL(1, 7)
9 AGL(1, 8)
10 32 : 4, AGL(1, 9),Alt(5)
11 ∅
12 C11 × C11, 11 : 5,

D22, AGL(1, 11)
13 Sym(6)
14 C13 × C13, D26, 13 : 3,

13 : 4, 13 : 6, AGL(1, 13)

σ(G) G
15 SL(3, 2)
16 Sym(5),Alt(6)
17 24 : 5, AGL(1, 16)
18 C17 × C17, D34, 17 : 4,

17 : 8, AGL(1, 17)
19 ∅
20 C19 × C19, AGL(1, 19),

D38, 19 : 3, 19 : 6, 19 : 9
21 ∅
22 ∅
23 M11

24 C23 × C23, D46,
23 : 11, AGL(1, 23)

25 ∅

Scorza’s Theorem can be read off from the top left line of the above table. Also,
we see that there are some numbers n such that σ(G) 6= n for every group G (7,
11, 19, 21, 22, 25). The following is an open question: are there infinitely many
such n?

6.4. A conjecture.

Definition 4 (Minimal normal subgroups). A minimal normal subgroup of a group
G is a non-trivial normal subgroup N of G which does not contain any non-trivial
normal subgroup of G different from N .

Let us give some examples.

• If p is a prime, Cp × Cp has p+ 1 minimal normal subgroups.
• If S is a simple group, it is its unique minimal normal subgroup.
• If n ≥ 3 is an integer and n 6= 4 then the unique minimal normal subgroup

of Sym(n) is Alt(n).
• The unique minimal normal subgroup of Sym(4) is

V = {1, (12)(34), (13)(24), (14)(23)}.
• If k ≥ 1 is an integer and S is a non-abelian simple group then the minimal

normal subgroups of S × · · · × S = Sk are its k direct factors, S × {1} ×
· · · × {1}, . . . , {1} × · · · × {1} × S.

• If F is a field with at least 4 elements and n ≥ 2, the unique minimal
normal subgroup of PGL(n, F ) is PSL(n, F ).

Given a finite group G denote by mn(G) the number of minimal normal
subgroups of G.
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The known examples of σ-elementary groups either are abelian isomorphic to
Cp × Cp or admit only one minimal normal subgroup. The main problem I dealt
with in my Ph.D thesis is the following conjecture, still open.

Conjecture 1 (A. Lucchini, E. Detomi). Let G be a non-abelian σ-elementary
group. Then mn(G) = 1.

If mn(G) = 1 we usually say that G is monolithic.
Here is what I can say when the covering number is “small”. In the following

result the wreath product Alt(5) oC2 is the semidirect product (Alt(5)×Alt(5))o
C2 where the action is given by the exchange of the two coordinates.

Theorem 19. Let G be a non-abelian σ-elementary group such that σ(G) ≤ 56.
Then G is monolithic. Moreover, its minimal normal subgroup is either simple or
abelian. Moreover σ(Alt(5) o C2) = 57, Alt(5) o C2 is monolithic and its minimal
normal subgroup is Alt(5)×Alt(5), not simple and not abelian.

A subgroup H of a group G is said to be subnormal if there exists a chain
H � H2 � · · · � Hn = G. Subnormal subgroups are not necessarily normal, for
example in Sym(4), 〈(12)(34)〉 � V and V � Sym(4) but 〈(12)(34)〉 is not normal
in Sym(4). A minimal subnormal subgroup is a subnormal subgroup which
does not properly contain nontrivial subnormal subgroups of G. Note that minimal
subnormal subgroups are always simple groups. Here is another result I proved in
my Ph.D thesis.

Theorem 20. Let G be a non-abelian σ-elementary group, and suppose that every
minimal subnormal subgroup of G is isomorphic to an alternating group Alt(n) with
n large enough and even. Then G is monolithic.
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