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COVERING OF A GROUP
EXAMPLES

EXERCISE

No group can be written as set-theoretical union of two proper
subgroups.
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COVERING OF A GROUP
EXAMPLES

EXERCISE

No group can be written as set-theoretical union of two proper
subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it admits
an epimorphic image isomorphic to C2 × C2.
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COVERING OF A GROUP
EXAMPLES

EXERCISE

No group can be written as set-theoretical union of two proper
subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it admits
an epimorphic image isomorphic to C2 × C2.

These elementary considerations led Cohn in 1994 to define for every
group G:

σ(G) Sum of G: the least cardinality of a cover of G
consisting of proper subgroups.
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COVERING OF A GROUP
EXAMPLES

EXAMPLE

If G is a cyclic group then it is not a union of proper subgroups,
because the generators of G do not lie in proper subgroups. In this
case we make the convention σ(G) =∞, with n <∞ for every
integer n.
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COVERING OF A GROUP
EXAMPLES

EXAMPLE

If G is a cyclic group then it is not a union of proper subgroups,
because the generators of G do not lie in proper subgroups. In this
case we make the convention σ(G) =∞, with n <∞ for every
integer n.

EXAMPLE

If p is a prime number then σ(Cp × Cp) = p + 1. Indeed, Cp × Cp has
exactly p + 1 maximal subgroups, all of them isomorphic to Cp and
pairwise intersecting in the identity subgroup, so they cover
1 + (p − 1)(p + 1) = p2 elements.
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The following result is due to Tomkinson (1997):

THEOREM (TOMKINSON)

Let G be a solvable non-cyclic group. Then σ(G) = |S/K |+ 1 where
|S/K | is the least order of a chief factor of G with more than one
complement.
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COVERING OF A GROUP
EXAMPLES

The following result is due to Tomkinson (1997):

THEOREM (TOMKINSON)

Let G be a solvable non-cyclic group. Then σ(G) = |S/K |+ 1 where
|S/K | is the least order of a chief factor of G with more than one
complement.

EXAMPLE

If q is a prime power then σ(Fq o Fq
∗) = q + 1.
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REMARK

If N is a normal subgroup of G then σ(G) ≤ σ(G/N), because every
cover of G/N corresponds to a cover of G.

This suggests to study the quotients G/N such that σ(G) = σ(G/N),
and leads to the following:

DEFINITION (σ-ELEMENTARY GROUPS)

A group G is said to be “σ-elementary” if σ(G) < σ(G/N) for every
1 6= N E G. We say that G is “n-elementary” if G is σ-elementary and
σ(G) = n.
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EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.
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DEFINITION
EXAMPLES
AN OPEN PROBLEM

EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.

EXAMPLE

If a group G is such that G/N is cyclic for every non-trivial normal
subgroup N of G then G is σ-elementary. The vice-versa holds in the
solvable case.
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EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.

EXAMPLE

If a group G is such that G/N is cyclic for every non-trivial normal
subgroup N of G then G is σ-elementary. The vice-versa holds in the
solvable case.

EXAMPLE

There exist σ-elementary groups with non-cyclic proper quotients. For
example if p is a large enough prime number and G := Alt(5) o Alt(p)
then σ(G) ≤ |Alt(5)|p = 60p and σ(Alt(p)) ≥ (p − 2)! ≥ 60p.
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EXAMPLE

Scorza’s theorem: the only 3-elementary group is C2 × C2.

EXAMPLE

If a group G is such that G/N is cyclic for every non-trivial normal
subgroup N of G then G is σ-elementary. The vice-versa holds in the
solvable case.

EXAMPLE

There exist σ-elementary groups with non-cyclic proper quotients. For
example if p is a large enough prime number and G := Alt(5) o Alt(p)
then σ(G) ≤ |Alt(5)|p = 60p and σ(Alt(p)) ≥ (p − 2)! ≥ 60p.

EXAMPLE

If the σ-elementary group G is abelian then G ∼= Cp × Cp for some
prime p (cf. [2], Theorem 3).
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A natural question arises:

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ-elementary?
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DEFINITION
EXAMPLES
AN OPEN PROBLEM

A natural question arises:

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ-elementary?

The answer is no: if T1, ...,Tk are non-abelian simple groups then

σ(T1 × ...× Tk ) = min{σ(T1), ..., σ(Tk )}.

It is not difficult to prove.
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A natural question arises:

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ-elementary?

The answer is no: if T1, ...,Tk are non-abelian simple groups then

σ(T1 × ...× Tk ) = min{σ(T1), ..., σ(Tk )}.

It is not difficult to prove.
But why not asking the general question:

DIRECT PRODUCTS AT ALL

Can a direct product of groups be σ-elementary?
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AN OPEN PROBLEM

A natural question arises:

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ-elementary?

The answer is no: if T1, ...,Tk are non-abelian simple groups then

σ(T1 × ...× Tk ) = min{σ(T1), ..., σ(Tk )}.

It is not difficult to prove.
But why not asking the general question:

DIRECT PRODUCTS AT ALL

Can a direct product of groups be σ-elementary?

This is the question we answered in [1], and the answer is again no,
with the exception of Cp × Cp.
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For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).
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For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).

We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).

MARTINO GARONZI COVERING DIRECT PRODUCTS WITH PROPER SUBGROUPS



HISTORY, DEFINITIONS AND EASY RESULTS
SIGMA-ELEMENTARY GROUPS

COVERING DIRECT PRODUCTS

DEFINITION
EXAMPLES
AN OPEN PROBLEM

For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).

We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi
consists of subgroups of type (i).
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EXAMPLES
AN OPEN PROBLEM

For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).

We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi
consists of subgroups of type (i).
Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .
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For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).

We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi
consists of subgroups of type (i).
Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .

We prove that Ω = ∅. Suppose Ω 6= ∅. Let ω ∈ Ω1. Notice that
{K < S | S × K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3} covers S.
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For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).

We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi
consists of subgroups of type (i).
Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .

We prove that Ω = ∅. Suppose Ω 6= ∅. Let ω ∈ Ω1. Notice that
{K < S | S × K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3} covers S.
It follows that

|M1|+ |M2|+ |M3| = |M| = σ(S × S) ≤ σ(S) ≤ |M2|+ |M3|.

This implies thatM1 = ∅. AnalogouslyM2 = ∅. SoM =M3.
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For example, let us prove that if S is a finite simple non-abelian group
then σ(S × S) = σ(S).

We know that the maximal subgroups of S × S are of the
following three types:

(1) K × S, (2) S × K , (3) ∆ϕ := {(x , ϕ(x)) | x ∈ S},

where K is a maximal subgroup of S and ϕ ∈ Aut(S).
LetM =M1 ∪M2 ∪M3 be a minimal cover of S×S, whereMi
consists of subgroups of type (i).
Let Ω := S × S −

⋃
M∈M1∪M2

M = Ω1 × Ω2, where
Ω1 = S −

⋃
K×S∈M1

K and Ω2 = S −
⋃

S×K∈M2
K .

We prove that Ω = ∅. Suppose Ω 6= ∅. Let ω ∈ Ω1. Notice that
{K < S | S × K ∈M2} ∪ {〈ϕ(ω)〉 | ∆ϕ ∈M3} covers S.
It follows that

|M1|+ |M2|+ |M3| = |M| = σ(S × S) ≤ σ(S) ≤ |M2|+ |M3|.

This implies thatM1 = ∅. AnalogouslyM2 = ∅. SoM =M3.
Since S =

⋃
S3s 6=1〈s〉 and |M| = |S| for every M ∈M3,

|S| − 1 ≥ σ(S) ≥ σ(S × S) = |M| = |M3| ≥ |S|, contradiction.
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In fact there is a much more general conjecture ([3]):

CONJECTURE (LUCCHINI, DETOMI)

Every non-abelian σ-elementary group is monolithic.

There are partial results supporting this conjecture. Let G be a
non-abelian σ-elementary group. Then:

([3], Corollary 14) G has at most one abelian minimal normal
subgroup. In particular if it is solvable, it is monolithic.
([3], Corollary 14) G is a subdirect product of monolithic primitive
groups.
([3], Proposition 21) Any solvable proper quotient of G is cyclic.
([3], Theorem 24) Suppose G has no abelian minimal normal
subgroups. Then either G is a primitive monolithic group and
G/soc(G) is cyclic, or G/soc(G) is non-solvable and all the
non-abelian composition factors of G/soc(G) are alternating
groups of odd degree.
([5], Lemma 3) If σ(G) ≤ 33 then G is monolithic.
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OUR TASK

Our task was to solve the general problem of computing σ(H1 × H2)
for any two finite groups H1,H2.
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THE PROOF

OUR TASK

Our task was to solve the general problem of computing σ(H1 × H2)
for any two finite groups H1,H2.

THEOREM

LetM be a minimal cover of a direct product G = H1 × H2 of two
finite groups. Then one of the following holds:

1 M = {X × H2 | X ∈ X} where X is a minimal cover of H1. In this
case σ(G) = σ(H1).

2 M = {H1 × X | X ∈ X} where X is a minimal cover of H2. In this
case σ(G) = σ(H2).

3 There exist N1 E H1, N2 E H2 with H1/N1 ∼= H2/N2 ∼= Cp andM
consists of the maximal subgroups of H1 × H2 containing
N1 × N2. In this case σ(G) = p + 1.
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THE PROOF

OUR TASK

Our task was to solve the general problem of computing σ(H1 × H2)
for any two finite groups H1,H2.

THEOREM

LetM be a minimal cover of a direct product G = H1 × H2 of two
finite groups. Then one of the following holds:

1 M = {X × H2 | X ∈ X} where X is a minimal cover of H1. In this
case σ(G) = σ(H1).

2 M = {H1 × X | X ∈ X} where X is a minimal cover of H2. In this
case σ(G) = σ(H2).

3 There exist N1 E H1, N2 E H2 with H1/N1 ∼= H2/N2 ∼= Cp andM
consists of the maximal subgroups of H1 × H2 containing
N1 × N2. In this case σ(G) = p + 1.

REMARK

This theorem can be re-stated in the general case G = H1 × ...× Hn.
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Let us sketch the proof of the theorem.
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Let us sketch the proof of the theorem.

PROPOSITION (MAXIMAL SUBGROUPS OF A DIRECT PRODUCT)

Let G = H1 × H2 be the direct product of two finite groups. A maximal
subgroup of G is called “(of) standard (type)” if it is of the form
M × H2 with M a maximal subgroup of H1 or H1 ×M with M a
maximal subgroup of H2, it is called “(of) diagonal (type)” if it is of the
form {(x , y) ∈ G | ϕ(xN1) = yN2} where Ni is a maximal normal
subgroup of Hi for i = 1,2 and ϕ : H1/N1 → H2/N2 is an
isomorphism. It is well known that every maximal subgroup of G is
either of standard type or of diagonal type.
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THE PROOF

Let us sketch the proof of the theorem.

PROPOSITION (MAXIMAL SUBGROUPS OF A DIRECT PRODUCT)

Let G = H1 × H2 be the direct product of two finite groups. A maximal
subgroup of G is called “(of) standard (type)” if it is of the form
M × H2 with M a maximal subgroup of H1 or H1 ×M with M a
maximal subgroup of H2, it is called “(of) diagonal (type)” if it is of the
form {(x , y) ∈ G | ϕ(xN1) = yN2} where Ni is a maximal normal
subgroup of Hi for i = 1,2 and ϕ : H1/N1 → H2/N2 is an
isomorphism. It is well known that every maximal subgroup of G is
either of standard type or of diagonal type.

For a proof see [7], Chap. 2, (4,19).
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Step 1. LetM be a minimal cover of G = H1 × H2 consisting of
maximal subgroups. Assume thatM contains no subgroup of
diagonal type whose index is a prime number. We want to show that
in this case either H1 × 1 or 1× H2 is contained in

⋂
M∈MM.
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THE PROOF

Step 1. LetM be a minimal cover of G = H1 × H2 consisting of
maximal subgroups. Assume thatM contains no subgroup of
diagonal type whose index is a prime number. We want to show that
in this case either H1 × 1 or 1× H2 is contained in

⋂
M∈MM.

M1 := {M ∈M |M ⊇ 1×H2}, M2 := {M ∈M |M ⊇ H1×1},

M3 :=M− (M1 ∪M2),

Ω1 := H1 − (
⋃

L×H2∈M1

L), Ω2 := H2 − (
⋃

H1×L∈M2

L).
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THE PROOF

Step 1. LetM be a minimal cover of G = H1 × H2 consisting of
maximal subgroups. Assume thatM contains no subgroup of
diagonal type whose index is a prime number. We want to show that
in this case either H1 × 1 or 1× H2 is contained in

⋂
M∈MM.

M1 := {M ∈M |M ⊇ 1×H2}, M2 := {M ∈M |M ⊇ H1×1},

M3 :=M− (M1 ∪M2),

Ω1 := H1 − (
⋃

L×H2∈M1

L), Ω2 := H2 − (
⋃

H1×L∈M2

L).

Suppose by contradiction that
Ω := G −

⋃
M∈M1∪M2

M = Ω1 × Ω2 6= ∅.
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Step 1. LetM be a minimal cover of G = H1 × H2 consisting of
maximal subgroups. Assume thatM contains no subgroup of
diagonal type whose index is a prime number. We want to show that
in this case either H1 × 1 or 1× H2 is contained in

⋂
M∈MM.

M1 := {M ∈M |M ⊇ 1×H2}, M2 := {M ∈M |M ⊇ H1×1},

M3 :=M− (M1 ∪M2),

Ω1 := H1 − (
⋃

L×H2∈M1

L), Ω2 := H2 − (
⋃

H1×L∈M2

L).

Suppose by contradiction that
Ω := G −

⋃
M∈M1∪M2

M = Ω1 × Ω2 6= ∅.
Let Ki be intersection of the maximal normal subgroups of Hi , for
i = 1,2. There are simple groups S1, ...,Sα,T1, ...,Tβ such that

H1/K1 =
∏

1≤a≤α

Sa, H2/K2 =
∏

1≤b≤β

Tb.

MARTINO GARONZI COVERING DIRECT PRODUCTS WITH PROPER SUBGROUPS



HISTORY, DEFINITIONS AND EASY RESULTS
SIGMA-ELEMENTARY GROUPS

COVERING DIRECT PRODUCTS
THE PROOF

H1/K1 =
∏

1≤a≤α Sa, H2/K2 =
∏

1≤b≤β Tb.
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H1/K1 =
∏

1≤a≤α Sa, H2/K2 =
∏

1≤b≤β Tb.

ρi : Hi → Hi/Ki , ∆i := ρi (Ωi ),
π1,a : H1 → Sa, π2,b : H2 → Tb.
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H1/K1 =
∏

1≤a≤α Sa, H2/K2 =
∏

1≤b≤β Tb.

ρi : Hi → Hi/Ki , ∆i := ρi (Ωi ),
π1,a : H1 → Sa, π2,b : H2 → Tb.
To any M ∈M3 we may associate a triple (a,b, φ) with
1 ≤ a ≤ α, 1 ≤ b ≤ β and φ : Sa → Tb a group isomorphism
such that M = M(a,b, ϕ) equals

{(h1,h2) ∈ H1 × H2 | φ(π1,a(h1)) = π2,b(h2)}.

By the hypothesis, if M(a,b, φ) ∈M3 then Sa ∼= Tb is
non-abelian.
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H1/K1 =
∏

1≤a≤α Sa, H2/K2 =
∏

1≤b≤β Tb.

ρi : Hi → Hi/Ki , ∆i := ρi (Ωi ),
π1,a : H1 → Sa, π2,b : H2 → Tb.
To any M ∈M3 we may associate a triple (a,b, φ) with
1 ≤ a ≤ α, 1 ≤ b ≤ β and φ : Sa → Tb a group isomorphism
such that M = M(a,b, ϕ) equals

{(h1,h2) ∈ H1 × H2 | φ(π1,a(h1)) = π2,b(h2)}.

By the hypothesis, if M(a,b, φ) ∈M3 then Sa ∼= Tb is
non-abelian.
Fix ω ∈ Ω1. ρ1(ω) =: (s1, ..., sα) ∈ ∆1. For M(a,b, φ) ∈M3 let

U(a,b, φ) := {h ∈ H2 | π2,b(h) ∈ 〈φ(sa)〉}.

Tb is non-abelian⇒ 〈φ(sa)〉 6= Tb ⇒ U(a,b, φ) < H2.
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H1/K1 =
∏

1≤a≤α Sa, H2/K2 =
∏

1≤b≤β Tb.

ρi : Hi → Hi/Ki , ∆i := ρi (Ωi ),
π1,a : H1 → Sa, π2,b : H2 → Tb.
To any M ∈M3 we may associate a triple (a,b, φ) with
1 ≤ a ≤ α, 1 ≤ b ≤ β and φ : Sa → Tb a group isomorphism
such that M = M(a,b, ϕ) equals

{(h1,h2) ∈ H1 × H2 | φ(π1,a(h1)) = π2,b(h2)}.

By the hypothesis, if M(a,b, φ) ∈M3 then Sa ∼= Tb is
non-abelian.
Fix ω ∈ Ω1. ρ1(ω) =: (s1, ..., sα) ∈ ∆1. For M(a,b, φ) ∈M3 let

U(a,b, φ) := {h ∈ H2 | π2,b(h) ∈ 〈φ(sa)〉}.

Tb is non-abelian⇒ 〈φ(sa)〉 6= Tb ⇒ U(a,b, φ) < H2.
The following family of proper subgroups of H2 covers H2:
{K < H2 | H1 × K ∈M2} ∪ {U(a,b, φ) | M(a,b, φ) ∈M3}.
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H1/K1 =
∏

1≤a≤α Sa, H2/K2 =
∏

1≤b≤β Tb.
ρi : Hi → Hi/Ki , ∆i := ρi (Ωi ),
π1,a : H1 → Sa, π2,b : H2 → Tb.
To any M ∈M3 we may associate a triple (a,b, φ) with
1 ≤ a ≤ α, 1 ≤ b ≤ β and φ : Sa → Tb a group isomorphism
such that M = M(a,b, ϕ) equals

{(h1,h2) ∈ H1 × H2 | φ(π1,a(h1)) = π2,b(h2)}.

By the hypothesis, if M(a,b, φ) ∈M3 then Sa ∼= Tb is
non-abelian.
Fix ω ∈ Ω1. ρ1(ω) =: (s1, ..., sα) ∈ ∆1. For M(a,b, φ) ∈M3 let

U(a,b, φ) := {h ∈ H2 | π2,b(h) ∈ 〈φ(sa)〉}.

Tb is non-abelian⇒ 〈φ(sa)〉 6= Tb ⇒ U(a,b, φ) < H2.
The following family of proper subgroups of H2 covers H2:
{K < H2 | H1 × K ∈M2} ∪ {U(a,b, φ) | M(a,b, φ) ∈M3}.
It follows that

|M1|+ |M2|+ |M3| = |M| = σ(H1×H2) ≤ σ(H2) ≤ |M2|+ |M3|.

This implies thatM1 = ∅. AnalogouslyM2 = ∅. SoM =M3.
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Now the conclusion of Step 1 follows easily. For sake of exposition,
we will state and use the following (quite useful) technical lemma.

LEMMA

Let G be a finite group, let N be a proper normal subgroup of G, and
let U1, ...,Uh,V1, ...,Vk be proper subgroups of G such that U1, ...,Uh
contain N, V1, ...,Vk supplement N, and β1 ≤ ... ≤ βk , where
βi = |G : Vi | for i = 1, ..., k.

If U1 ∪ ... ∪ Uh ∪ V1 ∪ ... ∪ Vk = G and U1 ∪ ... ∪ Uh 6= G then β1 ≤ k .

Moreover, if β1 = k then β1 = ... = βk = k and Vi ∩ Vj ≤ U1, ...,Uh for
every i 6= j in {1, ..., k}.

Apply this lemma with N = H1 × {1} = U1, h = 1, {V1, ...,Vk} =M3.
The index of V1 ∈M3 is the order of a simple non-abelian group S
which is an epimorphic image of G.

|S| = |G : V1| = β1 ≤ k = |M3| = |M| = σ(G) ≤ σ(S) ≤ |S| − 1,

contradiction.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
WLOG, let g ∈ Z (G) ∩ H1 of order p, and let N = 〈g〉E G.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
WLOG, let g ∈ Z (G) ∩ H1 of order p, and let N = 〈g〉E G.
U := {M ∈M | M 6⊇ N} is non-empty by the above assumption.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
WLOG, let g ∈ Z (G) ∩ H1 of order p, and let N = 〈g〉E G.
U := {M ∈M | M 6⊇ N} is non-empty by the above assumption.
Let M ∈ U . G = MN ∼= M × N, so M is normal of index |N| = p.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
WLOG, let g ∈ Z (G) ∩ H1 of order p, and let N = 〈g〉E G.
U := {M ∈M | M 6⊇ N} is non-empty by the above assumption.
Let M ∈ U . G = MN ∼= M × N, so M is normal of index |N| = p.
The lemma implies |U| ≥ p, and since U does not cover N,
|U| = p and σ(G) = p + 1. U = {M1, ...,Mp},M−U = {K}.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
WLOG, let g ∈ Z (G) ∩ H1 of order p, and let N = 〈g〉E G.
U := {M ∈M | M 6⊇ N} is non-empty by the above assumption.
Let M ∈ U . G = MN ∼= M × N, so M is normal of index |N| = p.
The lemma implies |U| ≥ p, and since U does not cover N,
|U| = p and σ(G) = p + 1. U = {M1, ...,Mp},M−U = {K}.
By the lemma M1 ∩M2 ⊆ K . G/M1 ∩M2 ∼= Cp × Cp, so K is
normal of index p.
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Step 2. Assume now that there exists M ∈M of diagonal type and
index p, say M = {(x , y) ∈ G | ϕ(xN1) = yN2} for some N1 E H1,
N2 E H2 with Hi/Ni ∼= Cp for i = 1,2. We prove that thenM consists
of normal subgroups of index p.

Note that σ(G) ≤ σ(H1 × H2/N1 × N2) = σ(Cp × Cp) = p + 1.
Induction: assume that no non-trivial normal subgroup N of G is
contained in Hi and in every element ofM, for i = 1,2.
Assume that p divides |Z (G)|.
WLOG, let g ∈ Z (G) ∩ H1 of order p, and let N = 〈g〉E G.
U := {M ∈M | M 6⊇ N} is non-empty by the above assumption.
Let M ∈ U . G = MN ∼= M × N, so M is normal of index |N| = p.
The lemma implies |U| ≥ p, and since U does not cover N,
|U| = p and σ(G) = p + 1. U = {M1, ...,Mp},M−U = {K}.
By the lemma M1 ∩M2 ⊆ K . G/M1 ∩M2 ∼= Cp × Cp, so K is
normal of index p.
Let N = M1 ∩M2 and {U1, ...,Uh,V1, ...,Vk} =M. Applying the
lemma we get h = 1, M1 ∩ ...∩Mp ∩K = M1 ∩M2 = N. Therefore
M corresponds to the unique cover of G/N ∼= Cp × Cp.
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Assume that p does not divide |Z (G)|.
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Assume that p does not divide |Z (G)|.
It is possible to find a minimal normal subgroup N of G contained
either in H1 or H2 with the property that A = G/CG(N) has a chief
factor of order p. The set U of the subgroups inM not containing
N is non-empty.
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Assume that p does not divide |Z (G)|.
It is possible to find a minimal normal subgroup N of G contained
either in H1 or H2 with the property that A = G/CG(N) has a chief
factor of order p. The set U of the subgroups inM not containing
N is non-empty.
Let β := minK∈U |G : K |, and let M ∈M be such that
β = |G : M|. By the lemma, p + 1 ≥ σ(G) ≥ |U| ≥ β.
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Assume that p does not divide |Z (G)|.
It is possible to find a minimal normal subgroup N of G contained
either in H1 or H2 with the property that A = G/CG(N) has a chief
factor of order p. The set U of the subgroups inM not containing
N is non-empty.
Let β := minK∈U |G : K |, and let M ∈M be such that
β = |G : M|. By the lemma, p + 1 ≥ σ(G) ≥ |U| ≥ β.
We only discuss the case in which N is a non-abelian simple
group. In this case Cp is isomorphic to a chief factor of a
subgroup of Out(N) hence p ≤ |Out(N)|.
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Assume that p does not divide |Z (G)|.
It is possible to find a minimal normal subgroup N of G contained
either in H1 or H2 with the property that A = G/CG(N) has a chief
factor of order p. The set U of the subgroups inM not containing
N is non-empty.
Let β := minK∈U |G : K |, and let M ∈M be such that
β = |G : M|. By the lemma, p + 1 ≥ σ(G) ≥ |U| ≥ β.
We only discuss the case in which N is a non-abelian simple
group. In this case Cp is isomorphic to a chief factor of a
subgroup of Out(N) hence p ≤ |Out(N)|.
β = |G : M| = |N : M ∩ N| is the index of a proper subgroup of N,
therefore β > 2p (this follows from [6], Lemma 2.7, which relies
on the CFSG). Then p + 1 ≥ β > 2p, contradiction.
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