COVERING DIRECT PRODUCTS WITH PROPER SUBGROUPS

A. Lucchini, M. Garonzi

University of Padova

10th October, 2011

OUTLINE

OUTLINE

1 HISTORY, DEFINITIONS AND EASY RESULTS

2 SIGMA-ELEMENTARY GROUPS

3 COVERING DIRECT PRODUCTS

э

HISTORY, DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS

COVERING OF A GROUP EXAMPLES

EXERCISE

No group can be written as set-theoretical union of two proper subgroups.

A B K A B K

HISTORY, DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS COVERING DIRECT PRODUCTS

COVERING OF A GROUP EXAMPLES

EXERCISE

No group can be written as set-theoretical union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it admits an epimorphic image isomorphic to $C_2 \times C_2$.

EXERCISE

No group can be written as set-theoretical union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it admits an epimorphic image isomorphic to $C_2 \times C_2$.

These elementary considerations led Cohn in 1994 to define for every group *G*:

 $\sigma(G)$ Sum of G: the least cardinality of a cover of G consisting of proper subgroups.

HISTORY, DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS COVERING DIRECT PRODUCTS

COVERING OF A GROUP EXAMPLES

EXAMPLE

If *G* is a cyclic group then it is not a union of proper subgroups, because the generators of *G* do not lie in proper subgroups. In this case we make the convention $\sigma(G) = \infty$, with $n < \infty$ for every integer *n*.

If *G* is a cyclic group then it is not a union of proper subgroups, because the generators of *G* do not lie in proper subgroups. In this case we make the convention $\sigma(G) = \infty$, with $n < \infty$ for every integer *n*.

EXAMPLE

If *p* is a prime number then $\sigma(C_p \times C_p) = p + 1$. Indeed, $C_p \times C_p$ has exactly p + 1 maximal subgroups, all of them isomorphic to C_p and pairwise intersecting in the identity subgroup, so they cover $1 + (p - 1)(p + 1) = p^2$ elements.

The following result is due to Tomkinson (1997):

THEOREM (TOMKINSON)

Let G be a solvable non-cyclic group. Then $\sigma(G) = |S/K| + 1$ where |S/K| is the least order of a chief factor of G with more than one complement.

The following result is due to Tomkinson (1997):

THEOREM (TOMKINSON)

Let G be a solvable non-cyclic group. Then $\sigma(G) = |S/K| + 1$ where |S/K| is the least order of a chief factor of G with more than one complement.

EXAMPLE

If q is a prime power then $\sigma(\mathbb{F}_q \rtimes \mathbb{F}_q^*) = q + 1$.

Remark

If N is a normal subgroup of G then $\sigma(G) \leq \sigma(G/N)$, because every cover of G/N corresponds to a cover of G.

This suggests to study the quotients G/N such that $\sigma(G) = \sigma(G/N)$, and leads to the following:

DEFINITION (σ -ELEMENTARY GROUPS)

A group G is said to be " σ -elementary" if $\sigma(G) < \sigma(G/N)$ for every $1 \neq N \trianglelefteq G$. We say that G is "n-elementary" if G is σ -elementary and $\sigma(G) = n$.

- E - - E -

DEFINITION Examples An open problem

EXAMPLE

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

2

- E - - E -

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

EXAMPLE

If a group *G* is such that G/N is cyclic for every non-trivial normal subgroup *N* of *G* then *G* is σ -elementary. The vice-versa holds in the solvable case.

글 🕨 🖌 글

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

EXAMPLE

If a group *G* is such that G/N is cyclic for every non-trivial normal subgroup *N* of *G* then *G* is σ -elementary. The vice-versa holds in the solvable case.

EXAMPLE

There exist σ -elementary groups with non-cyclic proper quotients. For example if p is a large enough prime number and $G := \text{Alt}(5) \wr \text{Alt}(p)$ then $\sigma(G) \le |\text{Alt}(5)|^p = 60^p$ and $\sigma(\text{Alt}(p)) \ge (p-2)! \ge 60^p$.

Scorza's theorem: the only 3-elementary group is $C_2 \times C_2$.

EXAMPLE

If a group *G* is such that G/N is cyclic for every non-trivial normal subgroup *N* of *G* then *G* is σ -elementary. The vice-versa holds in the solvable case.

EXAMPLE

There exist σ -elementary groups with non-cyclic proper quotients. For example if p is a large enough prime number and $G := Alt(5) \wr Alt(p)$ then $\sigma(G) \le |Alt(5)|^p = 60^p$ and $\sigma(Alt(p)) \ge (p-2)! \ge 60^p$.

EXAMPLE

If the σ -elementary group *G* is abelian then $G \cong C_p \times C_p$ for some prime p (cf. [2], Theorem 3).

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ -elementary?

ヨト・イヨト

æ

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ -elementary?

The answer is no: if $T_1, ..., T_k$ are non-abelian simple groups then

$$\sigma(T_1 \times ... \times T_k) = \min\{\sigma(T_1), ..., \sigma(T_k)\}.$$

It is not difficult to prove.

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ -elementary?

The answer is no: if $T_1, ..., T_k$ are non-abelian simple groups then

$$\sigma(T_1 \times ... \times T_k) = \min\{\sigma(T_1), ..., \sigma(T_k)\}.$$

It is not difficult to prove. But why not asking the general question:

DIRECT PRODUCTS AT ALL

Can a direct product of groups be σ -elementary?

DIRECT PRODUCTS OF SIMPLE GROUPS

Can a direct product of non-abelian simple groups be σ -elementary?

The answer is no: if $T_1, ..., T_k$ are non-abelian simple groups then

$$\sigma(T_1 \times ... \times T_k) = \min\{\sigma(T_1), ..., \sigma(T_k)\}.$$

It is not difficult to prove. But why not asking the general question:

DIRECT PRODUCTS AT ALL

Can a direct product of groups be σ -elementary?

This is the question we answered in [1], and the answer is again no, with the exception of $C_p \times C_p$.

۲

- (E) (E)

æ

• We know that the maximal subgroups of *S* × *S* are of the following three types:

(1) $K \times S$, (2) $S \times K$, (3) $\Delta_{\varphi} := \{(x, \varphi(x)) \mid x \in S\},\$

where *K* is a maximal subgroup of *S* and $\varphi \in Aut(S)$.

• We know that the maximal subgroups of *S* × *S* are of the following three types:

(1) $K \times S$, (2) $S \times K$, (3) $\Delta_{\varphi} := \{(x, \varphi(x)) \mid x \in S\},\$

where *K* is a maximal subgroup of *S* and $\varphi \in Aut(S)$.

Let *M* = *M*₁ ∪ *M*₂ ∪ *M*₃ be a minimal cover of *S* × *S*, where *M_i* consists of subgroups of type (*i*).

• We know that the maximal subgroups of *S* × *S* are of the following three types:

(1) $K \times S$, (2) $S \times K$, (3) $\Delta_{\varphi} := \{(x, \varphi(x)) \mid x \in S\},\$

where *K* is a maximal subgroup of *S* and $\varphi \in Aut(S)$.

- Let *M* = *M*₁ ∪ *M*₂ ∪ *M*₃ be a minimal cover of *S* × *S*, where *M_i* consists of subgroups of type (*i*).
- Let $\Omega := S \times S \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S \bigcup_{K \times S \in \mathcal{M}_1} K$ and $\Omega_2 = S \bigcup_{S \times K \in \mathcal{M}_2} K$.

• We know that the maximal subgroups of *S* × *S* are of the following three types:

(1) $K \times S$, (2) $S \times K$, (3) $\Delta_{\varphi} := \{(x, \varphi(x)) \mid x \in S\},\$

where *K* is a maximal subgroup of *S* and $\varphi \in Aut(S)$.

- Let *M* = *M*₁ ∪ *M*₂ ∪ *M*₃ be a minimal cover of *S* × *S*, where *M_i* consists of subgroups of type (*i*).
- Let $\Omega := S \times S \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S \bigcup_{K \times S \in \mathcal{M}_1} K$ and $\Omega_2 = S \bigcup_{S \times K \in \mathcal{M}_2} K$.
- We prove that $\Omega = \emptyset$. Suppose $\Omega \neq \emptyset$. Let $\omega \in \Omega_1$. Notice that $\{K < S \mid S \times K \in \mathcal{M}_2\} \cup \{\langle \varphi(\omega) \rangle \mid \Delta_{\varphi} \in \mathcal{M}_3\}$ covers *S*.

• We know that the maximal subgroups of *S* × *S* are of the following three types:

(1) $K \times S$, (2) $S \times K$, (3) $\Delta_{\varphi} := \{(x, \varphi(x)) \mid x \in S\},\$

where *K* is a maximal subgroup of *S* and $\varphi \in Aut(S)$.

- Let *M* = *M*₁ ∪ *M*₂ ∪ *M*₃ be a minimal cover of *S* × *S*, where *M_i* consists of subgroups of type (*i*).
- Let $\Omega := S \times S \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S \bigcup_{K \times S \in \mathcal{M}_1} K$ and $\Omega_2 = S \bigcup_{S \times K \in \mathcal{M}_2} K$.
- We prove that $\Omega = \emptyset$. Suppose $\Omega \neq \emptyset$. Let $\omega \in \Omega_1$. Notice that $\{K < S \mid S \times K \in \mathcal{M}_2\} \cup \{\langle \varphi(\omega) \rangle \mid \Delta_{\varphi} \in \mathcal{M}_3\}$ covers *S*.
- It follows that

$$|\mathcal{M}_1| + |\mathcal{M}_2| + |\mathcal{M}_3| = |\mathcal{M}| = \sigma(S \times S) \le \sigma(S) \le |\mathcal{M}_2| + |\mathcal{M}_3|.$$

This implies that $\mathcal{M}_1 = \emptyset$. Analogously $\mathcal{M}_2 = \emptyset$. So $\mathcal{M} = \mathcal{M}_3$.

• We know that the maximal subgroups of *S* × *S* are of the following three types:

(1) $K \times S$, (2) $S \times K$, (3) $\Delta_{\varphi} := \{(x, \varphi(x)) \mid x \in S\},\$

where *K* is a maximal subgroup of *S* and $\varphi \in Aut(S)$.

- Let *M* = *M*₁ ∪ *M*₂ ∪ *M*₃ be a minimal cover of *S* × *S*, where *M_i* consists of subgroups of type (*i*).
- Let $\Omega := S \times S \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2$, where $\Omega_1 = S \bigcup_{K \times S \in \mathcal{M}_1} K$ and $\Omega_2 = S \bigcup_{S \times K \in \mathcal{M}_2} K$.
- We prove that $\Omega = \emptyset$. Suppose $\Omega \neq \emptyset$. Let $\omega \in \Omega_1$. Notice that $\{K < S \mid S \times K \in \mathcal{M}_2\} \cup \{\langle \varphi(\omega) \rangle \mid \Delta_{\varphi} \in \mathcal{M}_3\}$ covers *S*.
- It follows that

$$|\mathcal{M}_1| + |\mathcal{M}_2| + |\mathcal{M}_3| = |\mathcal{M}| = \sigma(S \times S) \le \sigma(S) \le |\mathcal{M}_2| + |\mathcal{M}_3|.$$

This implies that $\mathcal{M}_1=\emptyset.$ Analogously $\mathcal{M}_2=\emptyset.$ So $\mathcal{M}=\mathcal{M}_3.$

• Since $S = \bigcup_{S \ni s \neq 1} \langle s \rangle$ and |M| = |S| for every $M \in \mathcal{M}_3$,

$$|S| - 1 \ge \sigma(S) \ge \sigma(S \times S) = |\mathcal{M}| = |\mathcal{M}_3| \ge |S|$$
, contradiction.

In fact there is a much more general conjecture ([3]):

CONJECTURE (LUCCHINI, DETOMI)

Every non-abelian σ -elementary group is monolithic.

There are partial results supporting this conjecture. Let *G* be a non-abelian σ -elementary group. Then:

- ([3], Corollary 14) *G* has at most one abelian minimal normal subgroup. In particular if it is solvable, it is monolithic.
- ([3], Corollary 14) *G* is a subdirect product of monolithic primitive groups.
- ([3], Proposition 21) Any solvable proper quotient of *G* is cyclic.
- ([3], Theorem 24) Suppose *G* has no abelian minimal normal subgroups. Then either *G* is a primitive monolithic group and G/soc(G) is cyclic, or G/soc(G) is non-solvable and all the non-abelian composition factors of G/soc(G) are alternating groups of odd degree.
- ([5], Lemma 3) If $\sigma(G) \leq 33$ then G is monolithic.

OUR TASK

Our task was to solve the general problem of computing $\sigma(H_1 \times H_2)$ for any two finite groups H_1, H_2 .

크

4 B K 4 B K

OUR TASK

Our task was to solve the general problem of computing $\sigma(H_1 \times H_2)$ for any two finite groups H_1, H_2 .

Theorem

Let M be a minimal cover of a direct product $G = H_1 \times H_2$ of two finite groups. Then one of the following holds:

- $\mathcal{M} = \{X \times H_2 \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_1 . In this case $\sigma(G) = \sigma(H_1)$.
- $\mathcal{M} = \{H_1 \times X \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_2 . In this case $\sigma(G) = \sigma(H_2)$.
- There exist N₁ ≤ H₁, N₂ ≤ H₂ with H₁/N₁ ≅ H₂/N₂ ≅ C_p and M consists of the maximal subgroups of H₁ × H₂ containing N₁ × N₂. In this case σ(G) = p + 1.

OUR TASK

Our task was to solve the general problem of computing $\sigma(H_1 \times H_2)$ for any two finite groups H_1, H_2 .

Theorem

Let M be a minimal cover of a direct product $G = H_1 \times H_2$ of two finite groups. Then one of the following holds:

- $\mathcal{M} = \{X \times H_2 \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_1 . In this case $\sigma(G) = \sigma(H_1)$.
- $\mathcal{M} = \{H_1 \times X \mid X \in \mathcal{X}\}$ where \mathcal{X} is a minimal cover of H_2 . In this case $\sigma(G) = \sigma(H_2)$.
- There exist N₁ ≤ H₁, N₂ ≤ H₂ with H₁/N₁ ≅ H₂/N₂ ≅ C_p and M consists of the maximal subgroups of H₁ × H₂ containing N₁ × N₂. In this case σ(G) = p + 1.

Remark

This theorem can be re-stated in the general case $G = H_1 \times ... \times H_n$.

Let us sketch the proof of the theorem.

A B F A B F

Let us sketch the proof of the theorem.

PROPOSITION (MAXIMAL SUBGROUPS OF A DIRECT PRODUCT)

Let $G = H_1 \times H_2$ be the direct product of two finite groups. A maximal subgroup of G is called "(of) **standard** (type)" if it is of the form $M \times H_2$ with M a maximal subgroup of H_1 or $H_1 \times M$ with M a maximal subgroup of H_2 , it is called "(of) **diagonal** (type)" if it is of the form $\{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ where N_i is a maximal normal subgroup of H_i for i = 1, 2 and $\varphi : H_1/N_1 \to H_2/N_2$ is an isomorphism. It is well known that every maximal subgroup of G is either of standard type or of diagonal type.

Let us sketch the proof of the theorem.

PROPOSITION (MAXIMAL SUBGROUPS OF A DIRECT PRODUCT)

Let $G = H_1 \times H_2$ be the direct product of two finite groups. A maximal subgroup of G is called "(of) **standard** (type)" if it is of the form $M \times H_2$ with M a maximal subgroup of H_1 or $H_1 \times M$ with M a maximal subgroup of H_2 , it is called "(of) **diagonal** (type)" if it is of the form $\{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ where N_i is a maximal normal subgroup of H_i for i = 1, 2 and $\varphi : H_1/N_1 \to H_2/N_2$ is an isomorphism. It is well known that every maximal subgroup of G is either of standard type or of diagonal type.

For a proof see [7], Chap. 2, (4,19).

Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

$$\mathcal{M}_{1} := \{ M \in \mathcal{M} \mid M \supseteq 1 \times H_{2} \}, \qquad \mathcal{M}_{2} := \{ M \in \mathcal{M} \mid M \supseteq H_{1} \times 1 \},$$
$$\mathcal{M}_{3} := \mathcal{M} - (\mathcal{M}_{1} \cup \mathcal{M}_{2}),$$
$$\Omega_{1} := H_{1} - (\bigcup_{L \times H_{2} \in \mathcal{M}_{1}} L), \qquad \Omega_{2} := H_{2} - (\bigcup_{H_{1} \times L \in \mathcal{M}_{2}} L).$$

Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

$$\begin{split} \mathcal{M}_1 &:= \{ M \in \mathcal{M} \mid M \supseteq 1 \times H_2 \}, \quad \mathcal{M}_2 := \{ M \in \mathcal{M} \mid M \supseteq H_1 \times 1 \}, \\ \mathcal{M}_3 &:= \mathcal{M} - (\mathcal{M}_1 \cup \mathcal{M}_2), \\ \Omega_1 &:= H_1 - (\bigcup_{L \times H_2 \in \mathcal{M}_1} L), \quad \Omega_2 := H_2 - (\bigcup_{H_1 \times L \in \mathcal{M}_2} L). \end{split}$$

• Suppose by contradiction that $\Omega := G - \bigcup_{M \in \mathcal{M}_1 \cup \mathcal{M}_2} M = \Omega_1 \times \Omega_2 \neq \emptyset.$

HISTORY, DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS THE PROOF COVERING DIRECT PRODUCTS

Step 1. Let \mathcal{M} be a minimal cover of $G = H_1 \times H_2$ consisting of maximal subgroups. Assume that \mathcal{M} contains no subgroup of diagonal type whose index is a prime number. We want to show that in this case either $H_1 \times 1$ or $1 \times H_2$ is contained in $\bigcap_{M \in \mathcal{M}} M$.

$$\begin{split} \mathcal{M}_1 &:= \{ M \in \mathcal{M} \mid M \supseteq 1 \times H_2 \}, \qquad \mathcal{M}_2 := \{ M \in \mathcal{M} \mid M \supseteq H_1 \times 1 \}, \\ \mathcal{M}_3 &:= \mathcal{M} - (\mathcal{M}_1 \cup \mathcal{M}_2), \\ \Omega_1 &:= H_1 - (\bigcup_{L \times H_2 \in \mathcal{M}_1} L), \qquad \Omega_2 := H_2 - (\bigcup_{H_1 \times L \in \mathcal{M}_2} L). \end{split}$$

• Suppose by contradiction that

$$\Omega := \boldsymbol{G} - \bigcup_{\boldsymbol{M} \in \mathcal{M}_1 \cup \mathcal{M}_2} \boldsymbol{M} = \Omega_1 \times \Omega_2 \neq \emptyset.$$

• Let K_i be intersection of the maximal normal subgroups of H_i , for i = 1, 2. There are simple groups $S_1, ..., S_\alpha, T_1, ..., T_\beta$ such that

$$H_1/K_1 = \prod_{1 \le a \le \alpha} S_a, \qquad H_2/K_2 = \prod_{1 \le b \le \beta} T_b.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $H_1/K_1 = \prod_{1 < a < \alpha} S_a$, $H_2/K_2 = \prod_{1 < b < \beta} T_b$.

∃ 990

• $H_1/K_1 = \prod_{1 \le a \le \alpha} S_a$, $H_2/K_2 = \prod_{1 \le b \le \beta} T_b$. • $\rho_i : H_i \to H_i/K_i$, $\Delta_i := \rho_i(\Omega_i)$, $\pi_{1,a} : H_1 \to S_a$, $\pi_{2,b} : H_2 \to T_b$.

- $H_1/K_1 = \prod_{1 \le a \le \alpha} S_a$, $H_2/K_2 = \prod_{1 \le b \le \beta} T_b$.
- $\rho_i : H_i \to H_i/K_i,$ $\Delta_i := \rho_i(\Omega_i),$ $\pi_{1,a} : H_1 \to S_a,$ $\pi_{2,b} : H_2 \to T_b.$
- To any *M* ∈ *M*₃ we may associate a triple (*a*, *b*, *φ*) with 1 ≤ *a* ≤ *α*, 1 ≤ *b* ≤ *β* and *φ* : *S_a* → *T_b* a group isomorphism such that *M* = *M*(*a*, *b*, *φ*) equals

$$\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2)\}.$$

By the hypothesis, if $M(a, b, \phi) \in \mathcal{M}_3$ then $S_a \cong T_b$ is non-abelian.

THE PROOF

- COVERING DIRECT PRODUCTS
- $H_1/K_1 = \prod_{1 \le a \le \alpha} S_a$, $H_2/K_2 = \prod_{1 \le b \le \beta} T_b$.
- $\rho_i : H_i \to H_i/K_i, \qquad \Delta_i := \rho_i(\Omega_i), \\ \pi_{1,a} : H_1 \to S_a, \qquad \pi_{2,b} : H_2 \to T_b.$
- To any *M* ∈ *M*₃ we may associate a triple (*a*, *b*, φ) with 1 ≤ *a* ≤ α, 1 ≤ *b* ≤ β and φ : *S_a* → *T_b* a group isomorphism such that *M* = *M*(*a*, *b*, φ) equals

$$\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2)\}.$$

By the hypothesis, if $M(a, b, \phi) \in \mathcal{M}_3$ then $S_a \cong T_b$ is non-abelian.

• Fix $\omega \in \Omega_1$. $\rho_1(\omega) =: (s_1, ..., s_\alpha) \in \Delta_1$. For $M(a, b, \phi) \in \mathcal{M}_3$ let

$$U(a,b,\phi) := \{h \in H_2 \mid \pi_{2,b}(h) \in \langle \phi(s_a) \rangle \}.$$

 T_b is non-abelian $\Rightarrow \langle \phi(s_a) \rangle \neq T_b \Rightarrow U(a, b, \phi) < H_2.$

- $H_1/K_1 = \prod_{1 \le a \le \alpha} S_a$, $H_2/K_2 = \prod_{1 \le b \le \beta} T_b$.
- $\rho_i : H_i \to H_i/K_i, \qquad \Delta_i := \rho_i(\Omega_i),$ $\pi_{1,a} : H_1 \to S_a, \qquad \pi_{2,b} : H_2 \to T_b.$
- To any *M* ∈ *M*₃ we may associate a triple (*a*, *b*, φ) with 1 ≤ *a* ≤ α, 1 ≤ *b* ≤ β and φ : *S_a* → *T_b* a group isomorphism such that *M* = *M*(*a*, *b*, φ) equals

$$\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2)\}.$$

By the hypothesis, if $M(a, b, \phi) \in \mathcal{M}_3$ then $S_a \cong T_b$ is non-abelian.

• Fix $\omega \in \Omega_1$. $\rho_1(\omega) =: (s_1, ..., s_\alpha) \in \Delta_1$. For $M(a, b, \phi) \in \mathcal{M}_3$ let

$$U(a,b,\phi) := \{h \in H_2 \mid \pi_{2,b}(h) \in \langle \phi(s_a) \rangle \}.$$

 T_b is non-abelian $\Rightarrow \langle \phi(s_a) \rangle \neq T_b \Rightarrow U(a, b, \phi) < H_2.$

• The following family of proper subgroups of H_2 covers H_2 : $\{K < H_2 \mid H_1 \times K \in \mathcal{M}_2\} \cup \{U(a, b, \phi) \mid M(a, b, \phi) \in \mathcal{M}_3\}.$

ヨ▶▲ヨ▶ ヨ わへ⊙

- $H_1/K_1 = \prod_{1 \le a \le \alpha} S_a$, $H_2/K_2 = \prod_{1 \le b \le \beta} T_b$. • $\rho_i : H_i \to H_i/K_i$, $\Delta_i := \rho_i(\Omega_i)$, $\pi_{1,a} : H_1 \to S_a$, $\pi_{2,b} : H_2 \to T_b$.
- To any *M* ∈ *M*₃ we may associate a triple (*a*, *b*, φ) with 1 ≤ *a* ≤ α, 1 ≤ *b* ≤ β and φ : *S_a* → *T_b* a group isomorphism such that *M* = *M*(*a*, *b*, φ) equals

$$\{(h_1, h_2) \in H_1 \times H_2 \mid \phi(\pi_{1,a}(h_1)) = \pi_{2,b}(h_2)\}.$$

By the hypothesis, if $M(a, b, \phi) \in \mathcal{M}_3$ then $S_a \cong T_b$ is non-abelian.

• Fix $\omega \in \Omega_1$. $\rho_1(\omega) =: (s_1, ..., s_\alpha) \in \Delta_1$. For $M(a, b, \phi) \in \mathcal{M}_3$ let $U(a, b, \phi) := \{h \in H_2 \mid \pi_{2,b}(h) \in \langle \phi(s_a) \rangle\}.$

 $(a, a, b, \phi) := (h \in H_2 \mid h_2, b(h) \in \langle \phi(a) / f \rangle.$

 T_b is non-abelian $\Rightarrow \langle \phi(s_a) \rangle \neq T_b \Rightarrow U(a, b, \phi) < H_2.$

- The following family of proper subgroups of H_2 covers H_2 : $\{K < H_2 \mid H_1 \times K \in \mathcal{M}_2\} \cup \{U(a, b, \phi) \mid M(a, b, \phi) \in \mathcal{M}_3\}.$
- It follows that

 $|\mathcal{M}_1| + |\mathcal{M}_2| + |\mathcal{M}_3| = |\mathcal{M}| = \sigma(\mathcal{H}_1 \times \mathcal{H}_2) \le \sigma(\mathcal{H}_2) \le |\mathcal{M}_2| + |\mathcal{M}_3|.$

This implies that $\mathcal{M}_1 = \emptyset$. Analogously $\mathcal{M}_2 = \emptyset$. So $\mathcal{M} = \mathcal{M}_3$.

Now the conclusion of Step 1 follows easily. For sake of exposition, we will state and use the following (quite useful) technical lemma.

Lemma

Let G be a finite group, let N be a proper normal subgroup of G, and let $U_1, ..., U_h, V_1, ..., V_k$ be proper subgroups of G such that $U_1, ..., U_h$ contain N, $V_1, ..., V_k$ supplement N, and $\beta_1 \leq ... \leq \beta_k$, where $\beta_i = |G: V_i|$ for i = 1, ..., k.

If $U_1 \cup ... \cup U_h \cup V_1 \cup ... \cup V_k = G$ and $U_1 \cup ... \cup U_h \neq G$ then $\beta_1 \leq k$.

Moreover, if $\beta_1 = k$ then $\beta_1 = ... = \beta_k = k$ and $V_i \cap V_j \leq U_1, ..., U_h$ for every $i \neq j$ in $\{1, ..., k\}$.

Apply this lemma with $N = H_1 \times \{1\} = U_1$, h = 1, $\{V_1, ..., V_k\} = M_3$. The index of $V_1 \in M_3$ is the order of a simple non-abelian group *S* which is an epimorphic image of *G*.

$$|S| = |G: V_1| = \beta_1 \leq k = |\mathcal{M}_3| = |\mathcal{M}| = \sigma(G) \leq \sigma(S) \leq |S| - 1,$$

contradiction.

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index *p*, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \leq H_1$, $N_2 \leq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index *p*.

٩

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index *p*, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index *p*.

 Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2. **Step 2**. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index *p*, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \subseteq H_1$, $N_2 \subseteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index *p*.

- Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2.
- Assume that p divides |Z(G)|.

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index *p*, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index *p*.

- Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2.
- Assume that p divides |Z(G)|.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.

THE PROOF

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index *p*, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \subseteq H_1$, $N_2 \subseteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index *p*.

- Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2.
- Assume that p divides |Z(G)|.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.
- $\mathcal{U} := \{ M \in \mathcal{M} \mid M \not\supseteq N \}$ is non-empty by the above assumption.

THE PROOF

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \triangleleft H_1$, $N_2 \leq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that $\sigma(G) \leq \sigma(H_1 \times H_2/N_1 \times N_2) = \sigma(C_p \times C_p) = p+1$. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of \mathcal{M} , for i = 1, 2.
- Assume that p divides |Z(G)|.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.
- $\mathcal{U} := \{ M \in \mathcal{M} \mid M \not\supseteq N \}$ is non-empty by the above assumption.
- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index |N| = p.

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2.
- Assume that p divides |Z(G)|.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.
- $\mathcal{U} := \{ M \in \mathcal{M} \mid M \not\supseteq N \}$ is non-empty by the above assumption.
- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index |N| = p.
- The lemma implies $|\mathcal{U}| \ge p$, and since \mathcal{U} does not cover N, $|\mathcal{U}| = p$ and $\sigma(G) = p + 1$. $\mathcal{U} = \{M_1, ..., M_p\}, \mathcal{M} - \mathcal{U} = \{K\}.$

- **A B A A B A** -

THE PROOF

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2.
- Assume that p divides |Z(G)|.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.
- $\mathcal{U} := \{ M \in \mathcal{M} \mid M \not\supseteq N \}$ is non-empty by the above assumption.
- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index |N| = p.
- The lemma implies $|\mathcal{U}| \ge p$, and since \mathcal{U} does not cover N, $|\mathcal{U}| = p$ and $\sigma(G) = p + 1$. $\mathcal{U} = \{M_1, ..., M_p\}, \mathcal{M} - \mathcal{U} = \{K\}.$
- By the lemma M₁ ∩ M₂ ⊆ K. G/M₁ ∩ M₂ ≅ C_p × C_p, so K is normal of index p.

Step 2. Assume now that there exists $M \in \mathcal{M}$ of diagonal type and index p, say $M = \{(x, y) \in G \mid \varphi(xN_1) = yN_2\}$ for some $N_1 \trianglelefteq H_1$, $N_2 \trianglelefteq H_2$ with $H_i/N_i \cong C_p$ for i = 1, 2. We prove that then \mathcal{M} consists of normal subgroups of index p.

- Note that σ(G) ≤ σ(H₁ × H₂/N₁ × N₂) = σ(C_p × C_p) = p + 1. Induction: assume that no non-trivial normal subgroup N of G is contained in H_i and in every element of M, for i = 1,2.
- Assume that p divides |Z(G)|.
- WLOG, let $g \in Z(G) \cap H_1$ of order p, and let $N = \langle g \rangle \trianglelefteq G$.
- $\mathcal{U} := \{ M \in \mathcal{M} \mid M \not\supseteq N \}$ is non-empty by the above assumption.
- Let $M \in \mathcal{U}$. $G = MN \cong M \times N$, so M is normal of index |N| = p.
- The lemma implies $|\mathcal{U}| \ge p$, and since \mathcal{U} does not cover N, $|\mathcal{U}| = p$ and $\sigma(G) = p + 1$. $\mathcal{U} = \{M_1, ..., M_p\}, \mathcal{M} - \mathcal{U} = \{K\}.$
- By the lemma $M_1 \cap M_2 \subseteq K$. $G/M_1 \cap M_2 \cong C_p \times C_p$, so K is normal of index p.
- Let $N = M_1 \cap M_2$ and $\{U_1, ..., U_h, V_1, ..., V_k\} = \mathcal{M}$. Applying the lemma we get $h = 1, M_1 \cap ... \cap M_p \cap K = M_1 \cap M_2 = N$. Therefore \mathcal{M} corresponds to the unique cover of $G/N \cong C_p \times C_p$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

• Assume that p does not divide |Z(G)|.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

2

• Assume that p does not divide |Z(G)|.

• It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.

- Assume that p does not divide |Z(G)|.
- It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.
- Let $\beta := \min_{K \in \mathcal{U}} |G : K|$, and let $M \in \mathcal{M}$ be such that $\beta = |G : M|$. By the lemma, $p + 1 \ge \sigma(G) \ge |\mathcal{U}| \ge \beta$.

• Assume that p does not divide |Z(G)|.

- It is possible to find a minimal normal subgroup N of G contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order p. The set \mathcal{U} of the subgroups in \mathcal{M} not containing N is non-empty.
- Let $\beta := \min_{K \in \mathcal{U}} |G : K|$, and let $M \in \mathcal{M}$ be such that $\beta = |G : M|$. By the lemma, $p + 1 \ge \sigma(G) \ge |\mathcal{U}| \ge \beta$.
- We only discuss the case in which *N* is a non-abelian simple group. In this case C_p is isomorphic to a chief factor of a subgroup of Out(*N*) hence p ≤ |Out(*N*)|.

HISTORY, DEFINITIONS AND EASY RESULTS SIGMA-ELEMENTARY GROUPS COVERING DIRECT PRODUCTS

- Assume that p does not divide |Z(G)|.
- It is possible to find a minimal normal subgroup *N* of *G* contained either in H_1 or H_2 with the property that $A = G/C_G(N)$ has a chief factor of order *p*. The set U of the subgroups in \mathcal{M} not containing *N* is non-empty.
- Let $\beta := \min_{K \in \mathcal{U}} |G : K|$, and let $M \in \mathcal{M}$ be such that $\beta = |G : M|$. By the lemma, $p + 1 \ge \sigma(G) \ge |\mathcal{U}| \ge \beta$.
- We only discuss the case in which *N* is a non-abelian simple group. In this case C_p is isomorphic to a chief factor of a subgroup of Out(N) hence $p \le |Out(N)|$.
- $\beta = |G: M| = |N: M \cap N|$ is the index of a proper subgroup of N, therefore $\beta > 2p$ (this follows from [6], Lemma 2.7, which relies on the CFSG). Then $p + 1 \ge \beta > 2p$, contradiction.

- M. Garonzi, A. Lucchini, Direct products of groups as unions of proper subgroups.
- J. H. E. Cohn, On *n*-sum groups, Math. Scand. 75 (1) (1994) 44–58.
- E. Detomi and A. Lucchini, On the structure of primitive *n*-sum groups, Cubo 10 (2008), no. 3, 195–210.
- M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (2) (1997) 191–198.
- M. Garonzi, Finite Groups that are Union of at most 25 Proper Subgroups, Journal of Algebra and its Applications, ISSN: 0219-4988.
- M. Aschbacher and R. Guralnick, On abelian quotients of primitive groups, Proc. Amer. Math. Soc., 107 (1989) 89–95.
- M. Suzuki, Group theory. I, Grundlehren der Mathematischen Wissenschaften 247, Springer-Verlag, Berlin, (1982).