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INVERTIBLE MATRICES

Let F be a field (for example Q, R, C, Z/pZ). Let

GL(n,F ) (General Linear Group)

denote the set of n × n invertible matrices with entries in the field F .
The usual row-column multiplication gives GL(n,F ) the structure of a
(non-abelian!) group.

F ∗ := F − {0} is a group with respect to multiplication.
It is abelian (commutative).

det : GL(n,F )→ F ∗ is a group homomorphism. Its kernel ker(det)
is denoted

SL(n,F ) (Special Linear Group).

It consists of the n × n matrices with entries in F and determinant 1.
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PERMUTATIONS

The Symmetric Group: Sym(n) = the group of bijections

{1, . . . ,n} → {1, . . . ,n}

with the operation given by the composition. An element of Sym(n)
is called permutation of {1, . . . ,n}. The order of Sym(n) (its size as a
set) is n! = 1 · 2 · · · n. For example

(123)(4567) : 1 7→ 2 7→ 3 7→ 1, 4 7→ 5 7→ 6 7→ 7 7→ 4.

(123 · · · k) : 1 7→ 2 7→ 3 7→ · · · 7→ k 7→ 1 k -cycle.

Composition goes as follows:

(12)(234)(13) = (234), (143)(1352)(4312) = (13)(45).

Note that disjoint cycles always commute.

(123)(4567) = (4567)(123).
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REMARK

Every permutation can be written uniquely (up to reordering) as
product of disjoint cycles.

DEFINITION

A permutation is called “even” if it can be written as the product of an
even number of 2-cycles, and “odd” otherwise. For example
(12)(25)(13)(35) is even, (13)(26)(43) is odd.
A product of disjoint cycles is an even permutation if and only if
the number of cycles of even length is even.

Example:

(123)(4567), (12)(3456)(78) ODD,

(123)(45)(67), (123)(4567)(89) EVEN.

All elements of cycle structure (3,4), (2,2,4) are odd.
All elements of cycle structure (2,2,3), (2,3,4) are even.
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DEFINITION (ALTERNATING GROUP)

Even permutations are said to have sign 1.
σ ∈ Sym(n) is even if sgn(σ) = 1.

Odd permutations are said to have sign −1.
σ ∈ Sym(n) is odd if sgn(σ) = −1.

sgn : Sym(n)→ {−1,1} = C2 is a group homomorphism.

Its kernel ker(sgn) is denoted Alt(n) or An: it is the Alternating group
of degree n. It is a normal subgroup of Sym(n). Its order is n!/2.

For example Alt(4) consists of the following elements.

1, (12)(34), (13)(24), (14)(23),

(123), (132), (124), (142),

(234), (243), (134), (143).
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To each polynomial f (X ) ∈ Q[X ] without multiple roots can be
attached a finite group Gf , called the Galois group of the polynomial
(named after Evariste Galois, 1811 - 1832). It is defined as follows:
if a1, . . . ,an ∈ C denote the distinct roots of f (X ) then

Gf = Aut(Q(a1, . . . ,an)).

That is, Gf is the group of ring isomorphisms

Q(a1, . . . ,an)→ Q(a1, . . . ,an).

The group Gf permutes the roots of f , and the only element of Gf
which fixes all the roots is the identity. In other words, Gf can be
described (or better, “represented”) as a subgroup of Sym(n).

For example the Galois group of X 2 − 2 is the automorphism group
of the field Q(

√
2), so it consists of two elements: the identity and the

automorphism τ : Q(
√

2)→ Q(
√

2) which sends a + b
√

2 to a− b
√

2.
The Galois group of X 2 − 2 is cyclic of order 2. Gf

∼= Sym(2) ∼= C2.
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The Galois group encodes the factorization patterns modulo prime
numbers.

Let us be more precise. Let f (X ) be an irreducible polynomial of Z[X ]
of degree n. According to a theorem of Frobenius,

if for a prime p for which f (X ) mod p does not admit multiple
irreducible factors (such prime is usually called “unramified”) the
factorization pattern of f (X ) mod p is (n1, . . . ,nt ) (meaning that
there are t irreducible factors of degrees n1, . . . ,nt )
then the Galois group of f (X ), seen as a (transitive) subgroup of
Sym(n), contains an element of cycle structure (n1, . . . ,nt ).

Let us consider the following examples:

X 3 + X 2 + X + 3 (discriminant −204 = −22 · 3 · 17);
X 3 − 3X + 1 (discriminant 81 = 34).
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p X 3 + X 2 + X + 3 p X 3 + X 2 + X + 3
2 (X + 1)3 53 (X + 43)(X 2 + 11X + 5)

3 X (X + 2)2 59 (X + 12)(X 2 + 48X + 15)

5 X 3 + X 2 + X + 3 61 (X + 6)(X 2 + 56X + 31)

7 (X + 4)(X 2 + 4X + 6) 67 (X + 23)(X + 52)(X + 60)

11 X 3 + X 2 + X + 3 71 (X + 38)(X + 52)(X + 53)

13 X 3 + X 2 + X + 3 73 (X + 34)(X 2 + 40X + 28)

17 (X + 5)(X + 15)2 79 (X + 74)(X 2 + 6X + 31)

19 X 3 + X 2 + X + 3 83 (X + 45)(X 2 + 39X + 72)

23 X 3 + X 2 + X + 3 89 (X + 32)(X 2 + 58X + 14)

29 (X + 11)(X + 23)(X + 25) 97 (X + 59)(X 2 + 39X + 28)

31 (X + 15)(X 2 + 17X + 25) 101 (X + 75)(X 2 + 27X + 97)

37 (X + 25)(X 2 + 13X + 9) 103 X 3 + X 2 + X + 3
41 X 3 + X 2 + X + 3 107 X 3 + X 2 + X + 3
43 X 3 + X 2 + X + 3 113 X 3 + X 2 + X + 3
47 (X + 31)(X 2 + 17X + 38) 127 X 3 + X 2 + X + 3

Sym(3) = {1, (12), (13), (23), (123), (132)}.
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p X 3 − 3X + 1 p X 3 − 3X + 1
2 X 3 + X + 1 53 (X + 18)(X + 39)(X + 49)

3 (X + 1)3 59 X 3 + 56X + 1
5 X 3 + 2X + 1 61 X 3 + 58X + 1
7 X 3 + 4X + 1 67 X 3 + 64X + 1

11 X 3 + 8X + 1 71 (X + 16)(X + 25)(X + 30)

13 X 3 + 10X + 1 73 (X + 14)(X + 25)(X + 34)

17 (X + 3)(X + 4)(X + 10) 79 X 3 + 76X + 1
19 (X + 10)(X + 12)(X + 16) 83 X 3 + 80X + 1
23 X 3 + 20X + 1 89 (X + 12)(X + 36)(X + 41)

29 X 3 + 26X + 1 97 X 3 + 94X + 1
31 X 3 + 28X + 1 101 X 3 + 98X + 1
37 (X + 14)(X + 28)(X + 32) 103 X 3 + 100X + 1
41 X 3 + 38X + 1 107 (X + 7)(X + 40)(X + 60)

43 X 3 + 40X + 1 113 X 3 + 110X + 1
47 X 3 + 44X + 1 127 (X + 53)(X + 87)(X + 114)

Alt(3) = {1, (123), (132)} ⊂ Sym(3).
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The most famous open problem in group theory is probably the
Inverse Galois Problem.

INVERSE GALOIS PROBLEM

Is it true that for any finite group G there exists a polynomial
f (X ) ∈ Q[X ] with Gf

∼= G ?

This problem has been solved for abelian groups (even solvable
groups), but the answer in general is not known.
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Let us list the important results of “elementary” finite group theory.

the “order” of an element g ∈ G, denoted o(g), is the smallest
positive integer n such that gn = 1;
the “order” of a subgroup H ≤ G, denoted |H|, is its size.
It turns out that |〈g〉| = o(g).

THEOREM (LAGRANGE (1736 - 1813))

Let G be a finite group, and let H ≤ G. Then |H| divides |G|. The
integer |G|/|H| = |G : H| is called the “index” of H in G.

Not every divisor of |G| equals the size of a subgroup of G, but...

THEOREM (CAUCHY (1789 - 1857))

Let G be a finite group, and let p be a prime dividing |G|. Then there
exists g ∈ G of order p.
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EXAMPLE: THE ALTERNATING GROUP OF DEGREE 4

A4 = 〈a,b〉 where a = (123) and b = (12)(34).
|A4| = 4!/2 = 12 = 22 · 3. Subgroup lattice:

A4
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3
{{
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3
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3
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{1}

A4 = {1, (12)(34), (13)(24), (14)(23), (123), (132), (124),
(142), (234), (243), (134), (143)}.
Note that A4 has no subgroups of order 6.
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EXAMPLE: THE DIHEDRAL GROUP OF ORDER 8

D8 = 〈a,b | a2 = b2 = 1, (ab)4 = 1〉. |D8| = 8 = 23. Subgroup lattice:

D8

2
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〈a, bab〉 ∼= C2 × C2

2
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2
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Note that D8 has subgroups of order 1,2,4,8.
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Suppose |G| is divisible by a prime-power pk . Can we always find a
subgroup H ≤ G with |H| = pk ?

THEOREM (SYLOW (1832 - 1918))

Let G be a finite group and write |G| = mpn where p is a prime and m
is not divisible by p.

G contains a subgroup P of order pn. P is called “Sylow
p-subgroup” of G.
G contains a subgroup of order pk for every 0 ≤ k ≤ n.
If P,Q are two Sylow p-subgroups of G then they are
conjugated: there exists g ∈ G such that g−1Pg = Q.
The number of Sylow p-subgroups of G is congruent to 1 mod p.
If H is a subgroup of G such that |H| is a power of p then there
exists a Sylow p-subgroup P of G such that H ≤ P.
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EXAMPLE

Let F = Z/5Z and let

G := {
(

a 0
b c

)
: a,b, c ∈ F , a, c 6= 0},

H := {
(

a 0
b c

)
∈ G : b = 0},

K := {
(

a 0
b c

)
∈ G : a = c = 1}.

G is a group (with respect to multiplication) of order 42 · 5 = 24 · 5,
|H| = 42 = 24 ⇒ H is a Sylow 2-subgroup of G and
|K | = 5 ⇒ K is a Sylow 5-subgroup of G.
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THEOREM (CAYLEY (1821 - 1895))

Let G be a group. Then the application

G→ Sym(G), g 7→ (x 7→ gx)

is an injective homomorphism.
In particular, G is isomorphic with a subgroup of Sym(G).

COROLLARY

Let G be a finite group. There exists a positive integer n such that G
is isomorphic with a subgroup of Sym(n).

Cayley’s theorem says we may choose n = |G|. But sometimes we
can choose a smaller n.

For example, if Gf is the Galois group of the polynomial f (X ) ∈ Q[X ]
with n distinct roots, then the permutation action of Gf on the n roots
gives an injective homomorphism Gf → Sym(n).
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SIMPLE GROUP G is simple if {1} and G are the only normal
subgroups of G.

ABELIAN SIMPLE GROUPS

Abelian simple groups are the cyclic groups of prime order,
Cp = {g,g2, . . . ,gp−1,gp = 1} ∼= (Z/pZ,+) = {1,2, . . . ,p − 1,p = 0}.

ALTERNATING GROUPS

If n ≥ 5 is an integer, Alt(n) is a non-abelian simple group.

PROJECTIVE LINEAR GROUPS

Let F be a field, and let GL(n,F ) be the group of invertible matrices
over the field F . Let SL(n,F ) be the subgroup of GL(n,F ) consisting
of matrices of determinant 1. Let Z be the subgroup of GL(n,F )
consisting of scalar matrices. If n ≥ 2 and |F | ≥ 4, the quotient

PSL(n,F ) := SL(n,F )/Z ∩ SL(n,F )

(projective linear group) is an example of non-abelian simple group.
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Given a finite group G, we can costruct longest possible chains of
subgroups of the form

{1} = G0 C G1 C G2 C · · ·C Gk = G.

Maximality of k implies that the factor groups Gi/Gi−1 are all simple
groups. Such chain is called “composition series” and its factors
Gi/Gi−1 are called “composition factors”.

THEOREM (JORDAN-HOLDER)

Any two composition series of a given finite group have the same
length and the same composition factors (up to reordering and
isomorphism).

CYCLIC GROUPS

The composition factors of a cyclic group Cn correspond to the prime
divisors of n, counted with multiplicity. If n = 60 = 22 · 3 · 5,

1 C 〈g30〉(∼= C2) C 〈g15〉(∼= C4) C 〈g5〉(∼= C12) C 〈g〉 = C60.
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SOLVABLE GROUP If the composition factors of the finite group G are
all abelian (hence cyclic of prime order) then G is said
to be solvable.

Evariste Galois proved that the zeros of a polynomial f (X ) ∈ Q[X ]
can be expressed by starting from the elements of Q and performing
sums, differences, products, divisions, and root extractions if and only
if the Galois group Gf is solvable. In this case f (X ) is said to be
“solvable by radicals”.

DEGREES 2,3,4

Polynomials of degree 2, 3, 4 are solvable by radicals.

Indeed, all subgroups of Sym(4) are solvable.

MARTINO GARONZI IDEAS IN FINITE GROUP THEORY



FUNDATIONS
GROUP COVERINGS

RESULTS IN THE THESIS

LINEAR GROUPS, PERMUTATION GROUPS
GALOIS THEORY AND SOLVABLE GROUPS
CAUCHY, LAGRANGE, CAYLEY, SYLOW
SIMPLE GROUPS, SOLVABLE GROUPS

EXAMPLE

The Galois group of f (X ) = X 4 − 4X + 2 ∈ Z[X ] is S4, so f (X ) is
solvable by radicals. Indeed, S4 is solvable:

{1} C2 // 〈(12)(34)〉 C2 // O2(S4)
C3 // A4

C2 // S4

The composition factors of S4 are C2 (three times) and C3.
|S4| = 24 = 23 · 3.

EXAMPLE

The symmetric group Sn is not solvable when n ≥ 5:

{1} An // An
C2 // Sn

The composition factors of Sn are An (not abelian) and C2.
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Any subgroup of a solvable group is solvable.
Any quotient of a solvable group is solvable.
Any finite direct product of solvable groups is solvable.
If N E G and G/N are solvable then G is solvable.

EXAMPLE

Abelian groups are solvable.

EXAMPLE

Suppose the order of the finite group G is a prime-power, |G| = pn,
where p is a prime. Then G is solvable.

EXAMPLE

A direct product of finitely many groups of prime-power order is
solvable.
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A NON-SOLVABLE POLYNOMIAL

Consider the polynomial f (X ) = X 5 − 2X − 2, irreducible in Q[X ]. Its
discriminant is 41808 = 24 · 3 · 13 · 67.

Reduction modulo 5: (X + 2)(X 4 + 3X 3 + 4X 2 + 2X + 4).
Reduction modulo 7: X 5 + 5X + 5.
Reduction modulo 17: (X 2 + X + 6)(X 3 + 16X 2 + 12X + 11).
The Galois group Gf of f (X ) is a subgroup of Sym(5) containing
elements of cycle structures (4), (5) and (3,2).
Deduce that Gf = Sym(5).
Sym(5) contains the non-abelian simple group Alt(5), hence Gf
is non-solvable.
f (X ) = X 5 − 2X − 2 is not solvable by radicals.
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A finite group is said to be nilpotent if it is a direct product of finitely
many groups of prime-power order. Equivalently, a finite group is
nilpotent if and only if its Sylow subgroups are all normal.

Cyclic groups are abelian. C2 × C2 is abelian but not cyclic.
Abelian groups are nilpotent. D8 is nilpotent but not abelian.
Nilpotent groups are solvable. S3 is solvable but not nilpotent.
A5 is a non-abelian simple group. In particular it is not solvable.

Cyclic ⊂ Abelian ⊂ Nilpotent ⊂ Solvable.

When facing a problem concerning finite groups, one usually goes
through all these steps before dealing with the general case.
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Feit and Thompson proved the following very deep result.

THEOREM (FEIT, THOMPSON, 1962-1963)

Any finite group of odd order is solvable.

This result is called the “Odd Order Theorem”. It implies that
non-abelian finite simple groups have even order.

With this as a starting point, all finite non-abelian simple groups have
been classified:

THEOREM

Let S be a non-abelian simple group. Then one of the following holds.

S ∼= Cp for some prime p.
S ∼= Alt(n) for some integer n ≥ 5.
S is a group of Lie type.
S is one of 26 sporadic groups.
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Consider the symmetric group G = Sym(n), and a subgroup H ≤ G.
G consists of permutations of In = {1, . . . ,n}, so if g ∈ G and i ∈ In it
makes sense to consider g(i) ∈ In. Given i ∈ In consider

OH(i) := {h(i) : h ∈ H} (The H-orbit of i).

If H has exactly one orbit it is called transitive (e.g. 〈(1234)〉 < S4),
otherwise it is called intransitive (e.g. 〈(12), (34)〉 < S4).

If H has exactly two orbits then H is said to be “maximal
intransitive”. If A ∩ B = ∅, Sym(A)× Sym(B) < Sym(A ∪ B).

We can easily establish wheter an element of G lies in an intransitive
subgroup. For example (123)(45)(67) ∈ Sym(7) lies in the (maximal)
intransitive subgroup whose orbits are {1,2,3,4,5} and {6,7}, and
also in the (maximal) intransitive subgroup whose orbits are {1,2,3}
and {4,5,6,7}. (1234567) does not lie in intransitive subgroups.

The elements of Sym(n) which do not lie in intransitive subgroups are
precisely the n-cycles.
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Note that a maximal intransitive subgroup is determined by the
choice of its two orbits.
Therefore, there are exactly

(n
k

)
maximal intransitive subgroups with

orbits of sizes k , n − k .

Suppose n > 1 is odd. The total number of maximal intransitive
subgroups of Sym(n) is(

n
1

)
+

(
n
2

)
+ · · ·+

(
n

(n − 1)/2

)
= 2n−1 − 1.

Since any n-cycle belongs to Alt(n) (n being odd), Sym(n) can be
covered by 2n−1 proper subgroups. It turns out that it actually cannot
be covered with less if n 6= 9. The case n = 9 is not known.

We express this by saying that if n > 1 is odd and n 6= 9 then the
covering number of Sym(n) is 2n−1: σ(Sym(n)) = 2n−1.
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PROPOSITION

Let f (X ) ∈ Z[X ] be a monic polynomial of degree n > 1. Suppose
that f (X ) admits a root modulo every prime. Then f (X ) is reducible.

PROOF.

There is a correspondence between factorization patterns modulo
unramified primes and cycle structures of elements of the Galois
group of f (X ) viewed as a transitive subgroup of Sn.

If f (X ) admits a root modulo every prime then every σ ∈ Gf ≤ Sn has
at least a fixed point in {1, . . . ,n}. Since Gf is transitive, the point
stabilizers are pairwise conjugated.

But a finite group is never equal to the union of one single
conjugacy class of subgroups.
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REMARK

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there
exists N E G such that G/N ∼= C2 × C2.
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REMARK

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there
exists N E G such that G/N ∼= C2 × C2.

These considerations led Cohn in 1994 to define for every group G:
σ(G) Covering number of G: the smallest cardinality of a

covering of G, i.e. family of proper subgroups of G
whose union equals G.

If G is cyclic we pose σ(G) =∞.
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REMARK

No group is union of two proper subgroups.

THEOREM (SCORZA 1926)

A group G is union of three proper subgroups if and only if it there
exists N E G such that G/N ∼= C2 × C2.

These considerations led Cohn in 1994 to define for every group G:
σ(G) Covering number of G: the smallest cardinality of a

covering of G, i.e. family of proper subgroups of G
whose union equals G.

If G is cyclic we pose σ(G) =∞.

THEOREM (NEUMANN 1954)

If G is an infinite group with finite covering number then there exists
N E G such that G/N is finite and σ(G) = σ(G/N).
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Cyclic groups do not admit coverings!

PROPOSITION

A group G is cyclic if and only if G is not the union of its proper
subgroups.

PROOF.

Suppose G is cyclic generated by g ∈ G. Then

g 6∈
⋃

H<G

H ⇒
⋃

H<G

H 6= G.

Conversely, if G is not cyclic then

G =
⋃

g∈G

〈g〉 ⊆
⋃

H<G

H ⇒
⋃

H<G

H = G.
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A couple of easy remarks:

If H is a covering of G then σ(G) ≤ |H|.
If G is any non-cyclic group then σ(G) < |G|. Indeed, G is always
covered by its non-trivial cyclic subgroups.
If N E G and H is a covering of G/N then letting π : G→ G/N be
the canonical projection, the family

{π−1(H) : H ∈ H}

is a covering of G of size |H|. It follows that σ(G) ≤ σ(G/N).
Let Φ(G), the Frattini subgroup of G, be the intersection of
the maximal subgroups of G. Then Φ(G) E G and

σ(G) = σ(G/Φ(G)).

MARTINO GARONZI IDEAS IN FINITE GROUP THEORY



FUNDATIONS
GROUP COVERINGS

RESULTS IN THE THESIS

COVERING THE SYMMETRIC GROUP
FROM CYCLIC TO SOLVABLE GROUPS
SOME NON-SOLVABLE GROUPS
DIRECT PRODUCTS

THE SYMMETRIC GROUP OF DEGREE 3

Sym(3) = {1, (12), (13), (23), (123), (132)}. σ(Sym(3)) = 4.
Subgroup lattice:

Sym(3)

{1, (12)}

rrrrrrrrrr
{1, (13)} {1, (23)}

LLLLLLLLLL

{1, (123), (132)}

WWWWWWWWWWWWWWWWWWWWWW

{1}

LLLLLLLLLLL

rrrrrrrrrrr

gggggggggggggggggggggggg
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THE KLEIN 4 GROUP

C2 × C2 = {(a,b) : a,b ∈ C2}. σ(C2 × C2) = 3. Subgroup lattice:

C2 × C2

〈(0,1)〉

ssssssssss
〈(1,1)〉 〈(1,0)〉

KKKKKKKKKK

{1}

KKKKKKKKKK

ssssssssss
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Let us consider a very important abelian non-cyclic type of group.

THE NON-CYCLIC GROUP OF ORDER p2

Let p be a prime. σ(Cp × Cp) = p + 1. Subgroup lattice:

Cp × Cp

•

wwwwwwwww • · · · •

RRRRRRRRRRRRRRR

{1}

GGGGGGGGG

lllllllllllllllll
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Consider the following matrices of GL(2,C).

1 =

(
1 0
0 1

)
, I =

(
0 1
−1 0

)
, J =

(
0 i
i 0

)
, K =

(
i 0
0 −i

)
.

The group they generate is finite. It has eight elements. It is called
the quaternion group of order 8.

Q8 = 〈1, I, J,K 〉 = {1,−1, I,−I, J,−J,K ,−K}.

We have the following relations:

IJ = K = −JI, I2 = J2 = K 2 = −1.

The group Q8 is an example of a finite non-abelian group all of
whose subgroups are normal (Hamiltonian group).
Hamilton (1805 - 1865) was the discoverer of quaternions.

Hamiltonian groups have been classified. The finite Hamiltonian
groups are precisely the groups of the form Q8 × C2

k × A with k ≥ 0
an integer and A an abelian group of odd order.
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THE QUATERNION GROUP OF ORDER 8

Q8 = {±1,±I,±J,±K} with IJ = K = −JI, I2 = J2 = K 2 = −1.
|Q8| = 8. σ(Q8) = 3. Subgroup lattice:

Q8

mmmmmmmmmmmmmm

QQQQQQQQQQQQQQ

〈I〉 ∼= C4 〈J〉 ∼= C4 〈K 〉 ∼= C4

〈I2〉 = Φ(Q8) ∼= C2

PPPPPPPPPPPP

mmmmmmmmmmmm

{1}
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THE DIHEDRAL GROUP OF ORDER 8

D8 = 〈a,b | a2 = b2 = 1, (ab)4 = 1〉. σ(D8) = 3. Subgroup lattice:

D8

nnnnnnnnnnnnn

PPPPPPPPPPPPP

〈a, bab〉 ∼= C2 × C2

rrrrrrrrrrr

PPPPPPPPPPPP 〈ab〉 ∼= C4 〈b, aba〉 ∼= C2 × C2

nnnnnnnnnnnn

LLLLLLLLLLL

〈a〉

WWWWWWWWWWWWWWWWWWWWWWWWWW 〈bab〉

PPPPPPPPPPPPP 〈abab〉 = Φ(D8) 〈aba〉 〈b〉

{1}

WWWWWWWWWWWWWWWWWWWWWWWWWW

PPPPPPPPPPPPP

nnnnnnnnnnnnn

gggggggggggggggggggggggggg
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THE ALTERNATING GROUP OF DEGREE 4

A4 = 〈a,b〉 where a = (123) and b = (12)(34). |A4| = 4!/2 = 12.
σ(A4) = 5. Subgroup lattice:

A4

kkkkkkkkkkkkkkkk

11
11

11
11

11
11

11
1

CC
CC

CC
CC

CC
CC

CC
CC

CC
C

LLLLLLLLLLLLLLLLLLLLLLLLLL

〈b, a2ba〉

xxxxxxxx

HH
HH

HH
HH

H

〈b〉

WWWWWWWWWWWWWWWWWWWWWWWWWW 〈a2ba〉

SSSSSSSSSSSSSSSS 〈aba2〉

EE
EE

EE
EE

〈a〉 〈ab〉

{{
{{

{{
{{

〈ba〉

mmmmmmmmmmmmmmm 〈aba〉

hhhhhhhhhhhhhhhhhhhhhhh

{1}

A4 = {1, (12)(34), (13)(24), (14)(23), (123), (132),
(124), (142), (234), (243), (134), (143)}.
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Let us prove a very easy lower bound.

PROPOSITION (THE MINIMAL INDEX LOWER BOUND)

Let G be a non-cyclic group, and write G = H1 ∪ · · · ∪ Hn as union of
n = σ(G) proper subgroups. Let βi := |G : Hi | := |G|/|Hi | for
i = 1, . . . ,n. Then min{β1, . . . , βn} < σ(G).

PROOF.

We may assume that β1 ≤ · · · ≤ βn. Since 1 ∈ H1 ∩ . . . ∩ Hn the union
H1 ∪ . . . ∪ Hn is not disjoint and hence

|G| <
n∑

i=1

|Hi | = |G|
n∑

i=1

1
βi
≤ |G|n

β1
.

Therefore β1 < n.

MARTINO GARONZI IDEAS IN FINITE GROUP THEORY



FUNDATIONS
GROUP COVERINGS

RESULTS IN THE THESIS

COVERING THE SYMMETRIC GROUP
FROM CYCLIC TO SOLVABLE GROUPS
SOME NON-SOLVABLE GROUPS
DIRECT PRODUCTS

p-GROUPS

Consider the group G = Cp
n = Cp × · · · × Cp (n ≥ 2 times), where p

is a prime. |G| = pn.

G projects onto Cp × Cp, so σ(G) ≤ σ(Cp × Cp) = p + 1.
By the minimal index lower bound, p < σ(G).

It follows that σ(G) = p + 1.

Let d(G) denote the smallest number of generators of the group G.
If G is any finite p-group then

σ(G) = σ(G/Φ(G)) = (Cp
d(G)) = p + 1

as long as G is non-cyclic, i.e. d(G) > 1.
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Nilpotent groups (direct products of finitely many groups of
prime-power order).

PROPOSITION

If A and B are two finite groups of coprime order then

σ(A× B) = min{σ(A), σ(B)}.

It follows that if G is a nilpotent group P1 × · · · × Pt , where P1, . . . ,Pt
are finite groups of prime-power pairwise coprime order, then

σ(G) = min{σ(P1), . . . , σ(Pt )}.

We can re-state this as follows:

PROPOSITION

Let G be a finite nilpotent group.
Then σ(G) = p + 1 where p is the smallest prime divisor of G such
that the Sylow p-subgroup of G is non-cyclic.
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A “chief factor” of a group G is a minimal normal subgroup of a
quotient of G.

If K E G and H/K is a chief factor of G, a complement of the chief
factor H/K is a subgroup M/K of G/K such that
(M/K ) ∩ (H/K ) = K/K and (M/K )(H/K ) = G/K .

Solvable groups were considered by Tomkinson in 1994.

THEOREM (TOMKINSON, [4])

Let G be a finite solvable group. Then

σ(G) = |H/K |+ 1

where H/K is the smallest chief factor of G with more than one
complement in G/K .

In particular, if G is solvable then σ(G)− 1 is always a prime power.
This is false for non-solvable groups, for example σ(S6)− 1 = 12.
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LEMMA (INTERSECTION ARGUMENT)

Let K be a maximal subgroup of a group G and let H be a minimal
cover of G consisting of maximal subgroups.
If σ(G) < σ(K ) then K ∈ H.
Equivalently, if K 6∈ H then σ(K ) ≤ σ(G).

σ(SYM(6)) = 13

For example let G = Sym(6), K a subgroup of G isomorphic to
Sym(5). Since σ(Sym(5)) = 25−1 = 16 and G can be covered with 13
subgroups (Alt(6) together with the twelve subgroups isomorphic to
Sym(5)) we have σ(G) ≤ 13 < 16 = σ(Sym(5)) = σ(K ).

Applying the lemma we find that H contains the twelve subgroups of
G isomorphic to Sym(5). Since they are not enough to cover G and
σ(G) ≤ 13, we find σ(G) = 13.
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If A,B ≤ G let AB := {ab : a ∈ A, b ∈ B}.
Let N E G. A complement of N in G is H ≤ G such that

NH = G and N ∩ H = {1}.

If H complements N in G then G/N ∼= H.

EXAMPLE

Any two 1-dimensional vector subspaces of R2 complement each
other as additive groups.

EXAMPLE

Consider the group G of isometries of the plane R2. We certainly
have the subgroup T of translations and the subgroup O of linear
isometries. T is a normal subgroup of G complemented by O.
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PROPOSITION (MAXIMAL COMPLEMENT ARGUMENT)

If a maximal subgroup M of G complements a non-solvable normal
subgroup N of G then σ(G) = σ(G/N).

PROPOSITION

Let G be a group. Then G is simple if and only if

∆G := {(g,g) | g ∈ G}

is a maximal subgroup of G ×G.

σ(S × S) = σ(S)

Let S be a non-abelian simple group. Note that S × {1} is a
non-solvable normal subgroup of S × S and that ∆S is a complement
of S × {1}. It follows from the Maximal Complement Argument that

σ(S × S) = σ(S).
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One of the main results in my thesis is the following.

THEOREM (LUCCHINI A., G 2010 [5])

LetM be a minimal cover of a direct product G = H1 × H2 of two
finite groups. Then one of the following holds:

1 M = {X × H2 | X ∈ X} where X is a minimal cover of H1. In this
case σ(G) = σ(H1).

2 M = {H1 × X | X ∈ X} where X is a minimal cover of H2. In this
case σ(G) = σ(H2).

3 There exist N1 E H1, N2 E H2 with H1/N1 ∼= H2/N2 ∼= Cp andM
consists of the maximal subgroups of H1 × H2 containing
N1 × N2. In this case σ(G) = p + 1.
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Suppose we want to compute σ(G). If N E G is such that
σ(G) = σ(G/N) then we are reduced to compute σ(G/N).

DEFINITION (σ-ELEMENTARY GROUPS)

A non-cyclic group G is said to be σ-elementary if σ(G) < σ(G/N)
whenever {1} 6= N E G.

It is easy to prove that:

PROPOSITION

Let G be a finite non-cyclic group. Then there exists N EG such that:
σ(G) = σ(G/N);
G/N is σ-elementary.
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EXAMPLES

Non-abelian simple groups are σ-elementary.
If p is a prime, Cp × Cp is σ-elementary.
The dihedral group D2p of order 2p is σ-elementary.
If S is a non-abelian simple group and n ≥ 1 is an integer such
that Sn is σ-elementary then n = 1. Indeed, σ(Sn) = σ(S).
If n ≥ 3 is an integer and n 6= 4 then Sn is σ-elementary: its only
proper quotient is C2. S4 is not σ-elementary: it admits S3 as
homomorphic image (quotient) and σ(S4) = σ(S3) = 4.
If G/N is cyclic whenever {1} 6= N E G then G is σ-elementary.
The converse is true for solvable groups but false in general. An
example is I o Ap where I = {(x1, . . . , xp) ∈ Fp

2 :
∑p

i=1 xi = 0}
and p is a prime not of the form qn−1

q−1 with q a prime power.
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PROPOSITION

Let G be a σ-elementary group.

Since σ(G) = σ(G/Φ(G)), Φ(G) = {1}.
If G is non-abelian then it has trivial center: Z (G) = {1}.
If G is abelian then G ∼= Cp × Cp for some prime p.
Scorza’s theorem: if σ(G) = 3 then G ∼= C2 × C2.
Scorza’s theorem revisited: if σ(G) = p + 1 with p the smallest
prime divisor of |G| then G ∼= Cp × Cp.
Let n be a positive integer. There are only finitely many
σ-elementary groups G with σ(G) = n.
If H1 × H2, a direct product of two non-trivial groups, is
σ-elementary then H1 ∼= H2 ∼= Cp for some prime p.
If G is σ-elementary, {1} 6= N E G and G/N is solvable then G/N
is cyclic. In particular G/G′ is cyclic.
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THEOREM (G 2009)

All σ-elementary groups G with σ(G) ≤ 25 are known.

3 C2 × C2

4 C3 × C3,Sym(3)
5 Alt(4)
6 C5 × C5,D10,AGL(1,5)
7 ∅
8 C7 × C7,D14,7 : 3,AGL(1,7)
9 AGL(1,8)

10 32 : 4,AGL(1,9),Alt(5)
11 ∅
12 C11 × C11,11 : 5,

D22,AGL(1,11)
13 Sym(6)
14 C13 × C13,D26,13 : 3,

13 : 4,13 : 6,AGL(1,13)

15 SL(3,2)
16 Sym(5),Alt(6)

17 24 : 5,AGL(1,16)
18 C17 × C17,D34,17 : 4,

17 : 8,AGL(1,17)
19 ∅
20 C19 × C19,AGL(1,19),

D38,19 : 3,19 : 6,19 : 9
21 ∅
22 ∅
23 M11

24 C23 × C23,D46,
23 : 11,AGL(1,23)

25 ∅
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DEFINITION (MINIMAL NORMAL SUBGROUPS)

A minimal normal subgroup of a group G is a non-trivial normal
subgroup N of G which does not contain any non-trivial normal
subgroup of G different from N.

EXAMPLES

If p is a prime, Cp × Cp has p + 1 minimal normal subgroups.
If S is a simple group, it is its unique minimal normal subgroup.
If n ≥ 3 is an integer and n 6= 4 then the unique minimal normal
subgroup of Sn is An.
The unique minimal normal subgroup of S4 is
V = {1, (12)(34), (13)(24), (14)(23)}.
If k ≥ 1 is an integer and S is a non-abelian simple group then
the minimal normal subgroups of S × · · · ×S = Sk are its k direct
factors, S × {1} × · · · × {1}, . . . , {1} × · · · × {1} × S.
If F is a field with at least 4 elements and n ≥ 2, the unique
minimal normal subgroup of PGL(n,F ) is PSL(n,F ).
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Given a finite group G denote by mn(G) the number of minimal
normal subgroups of G.

The main problem I dealt with in my Ph.D thesis is the following.

CONJECTURE (A. LUCCHINI, E. DETOMI)

Let G be a non-abelian σ-elementary group. Then mn(G) = 1.

If mn(G) = 1 we usually say that G is monolithic.
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Here is what I can say when the covering number is “small”.

THEOREM

Let G be a non-abelian σ-elementary group such that σ(G) ≤ 56.
Then G is monolithic. Moreover, its minimal normal subgroup is either
simple or abelian.

σ(A5 oC2) = 57, A5 oC2 is monolithic and its minimal normal subgroup
is A5 × A5, not simple and not abelian.

Here is what I can say when I “block” pieces of the group.

THEOREM

Let H be a non-abelian σ-elementary group, and suppose that
whenever S is a non-abelian simple subgroup of H and there exists a
chain

{1}C S C H2 C · · ·C Hn = H,

S is isomorphic to an alternating group Alt(n) with n large enough
and even. Then H is monolithic.
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J. H. E. Cohn, On n-sum groups; Math. Scand. 75 (1) (1994) 44–58.

B. H. Neumann, Groups covered by permutable subsets; J. London Math. Soc. 29, 236-248 (1954).

E. Detomi and A. Lucchini, On the structure of primitive n-sum groups; Cubo 10 (2008), no. 3, 195–210.

M. J. Tomkinson, Groups as the union of proper subgroups; Math. Scand. 81 (2) (1997) 191–198.

L. C. Kappe, J. L. Redden, On the Covering Number of Small Alternating Groups; Contemp. Math., 511, Amer. Math. Soc.,

Providence, RI, 2010.

M. Garonzi, A. Lucchini, Direct products of groups as unions of proper subgroups; Archiv der Mathematik, ISSN: 0003-889X

M. Garonzi, Finite Groups that are Union of at most 25 Proper Subgroups; Journal of Algebra and its Applications, ISSN:

0219-4988.

M. S. Lucido, On the covers of finite groups; Groups St. Andrews 2001 in Oxford. Vol. II, 395Ű399, London Math. Soc. Lecture
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