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Abstract

Label the faces of a cube with the numbers from 1 to 6 in some order,
then perform the following operation: replace the number labeling each
given face with the arithmetic mean of the numbers labeling the adjacent
faces. What numbers will appear on the faces of the cube after this
operation is iterated many times? This is a sample problem whose solution
is a model of the application of the theory of representations of groups
to diverse problems of mathematics, mechanics, and physics that possess
symmetry of one kind or another. In this introductory talk I will present
the tools from representation theory needed to solve this problem. I will
also point out the connection with harmonic analysis by expressing Fourier
analysis as an instance of representation theory of the circle group (the
multiplicative group of complex numbers with absolute value 1) and by
stating a version of Heisenberg’s uncertainty principle for finite cyclic
groups.

1 A sample problem

I will start by stating a sample problem which I found in [2].
Take a cube and write the numbers 1, 2, 3, 4, 5, 6 on its faces, in any way

you like. Then perform the following operation on the cube: substitute
to the number on each face the arithmetic mean of the numbers written
on the (four) adjacent faces. Iterate this. The question is: what do the
numbers on the faces of the cube look like after n iterations, where n is
a large number? For example in the case of a die, from the first iteration
onward the value on each face is constantly 3.5, because in a die the sum
of the numbers labeling two opposite faces is always 7.

The idea to solve this problem is the following. Let F be the set of
faces of the cube, and let WF be the set of functions F → C. WF is a
C-vector space of dimension |F | = 6 spanned by {δx : x ∈ F} where
δx(y) = 1 if x = y and δx(y) = 0 if x 6= y.

Call L the operator WF →WF that takes a face label to the arithmetic
mean of the four adjacent face labels: L(f)(x) := 1

4

∑
y∈Ax f(y).
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L is a linear operator whose matrix in the base {δx : x ∈ F} is

L =


0 1/4 0 1/4 1/4 1/4

1/4 0 1/4 0 1/4 1/4
0 1/4 0 1/4 1/4 1/4

1/4 0 1/4 0 1/4 1/4
1/4 1/4 1/4 1/4 0 0
1/4 1/4 1/4 1/4 0 0


It obviously has rank 3 (opposite faces take the same value).

We are interested in the powers Ln. So our aim is to diagonalize
L (obviously the powers of a diagonal matrix are easy to compute). Of
course, this can be done computationally, but what we want to do is to
look for some geometrical way to do it, i.e. by means of some group
action on the space.

The solution of this problem is in section 7.

2 Representations

Suppose we want to understand a set X which has some symmetries. The
idea is to consider the vector space

VX := {functions X → C} = {vectors (cx)x∈X x ∈ X, cx ∈ C}.

This is a C-vector space of dimension |X|. Consider the group G of the
symmetries of X you are interested in. In other words, G is some subgroup
of the group Sym(X) = {bijections X → X}. Denote by GL(VX) the
group of the linear isomorphisms VX → VX (it is a group with respect to
composition of functions). Then we have a group homomorphism

π : G→ GL(VX), g 7→ πg : v = (cx)x∈X 7→ πg(v) = (cg−1(x))x∈X .

In other words, π sends g ∈ G to πg, which is the linear isomorphism
VX → VX that sends a vector v = (cx)x∈X to the vector obtained by
permuting the coordinates according to g−1, πg(v) = (cg−1(x))x∈X . This
is the object we want to study. The reason why it is a homomorphism is
the following.

πgh((cx)x∈X) = (c(gh)−1(x))x∈X = (ch−1(g−1(x)))x∈X ,

πg(πh((cx)x∈X)) = πg((ch−1(x))x∈X) = (ch−1(g−1(x)))x∈X .

Hence πgh = πg ◦ πh.

Definition 1. A (complex, linear) representation of the group G is a
C-vector space V endowed with a group homomorphism

π : G→ GL(V ), g 7→ πg

where GL(V ) is the group of the linear isomorphisms V → V with the
operation given by composition of functions. This is the data of V and π,
so we will also write (V, π) to denote this representation. The dimension
of V is called the dimension of the representation (V, π).
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Let us give some examples.

• If V is a C-vector space, the group GL(V ) itself admits a represen-
tation given by the identity GL(V )→ GL(V ).

• If G is a group of bijections X → X where X is a finite set of
cardinality n then G admits the n-dimensional representation G →
GL(VX) described above.

• The group (Z,+) (i.e. the set Z endowed with the operation +)

admits a representation Z → GL(C2) given by n 7→
(

1 n
0 1

)
.

This is indeed a group homomorphism:(
1 n
0 1

)(
1 m
0 1

)
=

(
1 n+m
0 1

)
,

(
1 n
0 1

)−1

=

(
1 −n
0 1

)
.

The same is true if we replace Z with any additive subgroup of C,
for example Q, R or C itself.

2.1 Permutation matrices

We give now an explicit instance of the second example given above,
G → GL(VX). Consider the group S4 of bijections X → X where X =
{1, 2, 3, 4}. The representation π : S4 → GL(C4) described above sends a
permutation σ to the corresponding “permutation matrix”, that is, the
1-0 matrix whose 1-entries are in the (σ(i), i) positions, for i ∈ {1, 2, 3, 4}.

So for example for the permutation (123) ∈ S4 (i.e. the permutation
1 7→ 2 7→ 3 7→ 1, 4 7→ 4) we have

π(123) =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 ∈ GL(C4).

Note that this is precisely the linear operator that permutes the four
canonical basis vectors e1, e2, e3, e4 the same way (123) moves 1, 2, 3, 4: it
takes e1 to e2, e2 to e3, e3 to e1 and e4 to e4.

It is worth noting that the trace of πσ (i.e. the sum of its diagonal
entries) is the number of fixed points of σ.

The map σ 7→ Tr(πσ) will be called the “character” of π.

2.2 Invariant subspaces

Fix a representation (V, π) of G. The group G “acts” on the vector space
V , in the sense that g ∈ G “moves the vectors” by sending v ∈ V to
πg(v). In this setting, the notion of “subspace” is weak: we are much
more interested in “G-invariant” subspaces! What does this mean?
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Definition 2. A subspace W of V is called G-invariant (or simply, “in-
variant”) if whenever w ∈W and g ∈ G, πg(w) ∈W .

2.3 A 2-dimensional representation of (R,+)

For example the additive group G = R has a 2-dimensional representation
given by

R→ GL(C2), a 7→
(

1 a
0 1

)
,

and the subspace W of V = C2 given by W = {
(

0
y

)
: y ∈ C}, is NOT

G-invariant. Indeed for example(
1 1
0 1

)(
0
1

)
=

(
1
1

)
6∈W.

Instead, the subspace L = {
(
x
0

)
: x ∈ C} is G-invariant, being the

eigenspace of 1 for πa, for all a 6= 0.

2.4 Invariant homomorphisms

Also the familiar notion of linear homomorphism between to spaces is too
weak for us. We need the notion of G-invariant homomorphism! What
does this mean?

Suppose (V, π) and (W, ν) are two representations of G and f : V →W
is a linear map. f is called G-invariant if it satisfies

f(πg(v)) = νg(f(v)) ∀g ∈ G, v ∈ V,w ∈W.

Such map is also called “intertwining operator”, since it “intertwines”
the two representations π and ν.

We give an example which constitutes the archetipe of intertwining
operator. Consider the case V = W , choose a basis of V and think of
πg and νg as matrices. Suppose there is an invertible matrix A such that
νg = AπgA

−1 for all g ∈ G, in other words νg is obtained by πg via a
change of basis. Then the map

f : V → V v 7→ Av

is G-invariant (i.e. it is an intertwining operator), indeed νg = AπgA
−1

means that Aπg = νgA.

2.5 Irreducible subspaces

Usually when dealing with a big space what we want to do is try to
decompose it in smaller pieces that cannot be further decomposed.

Definition 3. A representation (V, π) of G is called irreducible if the only
G-invariant subspaces of V are {0} and V .
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For example the representation of the additive group G = R considered
above,

R→ GL(C2), a 7→
(

1 a
0 1

)
,

is NOT irreducible, having the invariant subspace L = {
(
x
0

)
: x ∈ C}.

Indeed we have, for a ∈ R,(
1 a
0 1

)(
x
0

)
=

(
x
0

)
∈ L.

3 Looking for decompositions

Our aim in life is now the following. Let (V, π) be a representation of a
group G. If possible, we want to write V as a direct sum of irreducible
G-invariant subspaces (irreducible representations), i.e. we want an ex-
pression of the form

V =

n⊕
i=1

Wi = W1 ⊕W2 ⊕ · · · ⊕Wn

where Wi is an irreducible G-invariant subspace of V for i ∈ {1, . . . , n}.
In order to do this, we need first of all to understand better irreducible
subspaces.

For (V, π) and (W, ν) two representations of G, denote by HomG(V,W )
the set of G-invariant homomorphisms V →W .

Lemma 1. If f ∈ HomG(V,W ) then both its kernel and its image are
G-invariant subspaces, of V and W respectively.

Proof. Let f ∈ HomG(V,W ).
We prove that ker(f) is a G-invariant subspace of V . Let v ∈ ker(f),

g ∈ G. We need to prove that πg(v) ∈ ker(f), i.e. that f(πg(v)) = 0.
Since f is G-invariant, f(πg(v)) = νg(f(v)) = νg(0) = 0, where f(v) = 0
being v ∈ ker(f).

We prove that Im(f) = f(V ) is a G-invariant subspace of W . Let
w = f(v) ∈ Im(f), with v ∈ V , and let g ∈ G. We need to prove that
νg(w) ∈ Im(f), i.e. that there is some v′ ∈ V with f(v′) = νg(w). Since
f is G-invariant, νg(w) = νg(f(v)) = f(πg(v)). Choose v′ = πg(v).

This easily implies a fundamental fact, Schur’s lemma, which is the
starting point of representation theory.

Theorem 1 (Schur’s lemma). Let (V, π) and (W, ν) be two irreducible
representations of the group G. Then any nonzero G-invariant map V →
W is an isomorphism.

Proof. Let f : V →W be a nonzero G-invariant map. Since f is nonzero,
ker(f) 6= V and Im(f) 6= {0}. On the other hand, ker(f) and Im(f) are
G-invariant subspaces of V and W respectively (by Lemma 1), and V ,
W do not have nontrivial G-invariant subspaces (they are irreducible!),
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hence it must be ker(f) = {0} and Im(f) = W , in other words f is an
isomorphism.

Observe that EndG(V ) := HomG(V, V ) has the structure of ring with
respect to (SUM) pointwise sum and (PRODUCT) composition of func-
tions. This allows to restate Schur’s Lemma in the following form:

Theorem 2 (Schur’s Lemma). Let (V, π) be an irreducible representation
of G. Then in the ring EndG(V ) every nonzero element is invertible. In
other words, EndG(V ) is a skew field.

Now suppose V is irreducible and finite dimensional, say dimC(V ) = n.
Then also EndG(V ) is a finite dimensional C-vector space (it is a vector
subspace of End(V ), which has dimension n2: it is isomorphic to the space
of n × n matrices). Also, by Schur’s lemma it is a skew field. Moreover,
it contains a copy of C given by the scalar operators

V → V, v 7→ λv, λ ∈ C.

From the fact that C is algebraically closed (equivalently, it does not
admit finite dimensional field extensions) and finite dimensionality it fol-
lows that EndG(V ) ∼= C. In other words, every G-invariant map V → V
is scalar! Let us re-state Schur’s Lemma accordingly.

Theorem 3 (Schur’s Lemma). Let (V, π) be a finite dimensional irre-
ducible representation of the group G, and let f : V → V be a G-invariant
homomorphism. Then there exists λ ∈ C such that f(v) = λv for all
v ∈ V .

Let us see what this means in the case G is abelian. In this case for
g, h ∈ G we have gh = hg, so that

πgπh = πgh = πhg = πhπg

(π : G → GL(V ) is a homomorphism!). This, by the very definition of
intertwining operator, implies that πh is G-invariant (i.e. it is an inter-
twining operator) for all h ∈ G ! So Schur’s Lemma implies that πh is a
scalar operator, for all h ∈ G. Hence irreducibility forces the dimension of
V to be 1: an irreducible representation that sends every group element to
a scalar operator must be one-dimensional, because the scalar operators
stabilize all subspaces (actually they are the only operators that stabilize
all subspaces). We conclude that:

Corollary 1. Let (V, π) be an irreducible finite dimensional representa-
tion of the abelian group G. Then dim(V ) = 1.

Let us go back to the 2-dimensional representation of the additive
group G = R

π : R→ GL(C2), a 7→ πa =

(
1 a
0 1

)
.

We know that L = {
(
x
0

)
: x ∈ C} is a G-invariant subspace of V = C2.

Now we ask, is V the direct sum of two 1-dimensional G-invariant
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subspaces? This would be great, because the way of understanding a
space is by writing it as a direct sum of irreducible subspaces.

But what is a subspace invariant under πa? It is just an eigenspace
of πa. Hence being able to write V as direct sum of two 1-dimensional G-
invariant subspaces would mean, in particular, being able to diagonalize
πa (simultaneously, i.e. uniformly with respect to a !).

The problem is that πa is not diagonalizable if a 6= 0. Hence V is NOT
the direct sum of two 1-dimensional G-invariant subspaces.

3.1 Unitarisability

So, we have a problem. We might find a G-invariant subspace W of the
finite dimensional space V without a G-invariant complement (a comple-
ment of W is a subspace U of V such that V = U ⊕ W ). Note that
decomposing into direct sums is indeed equivalent to finding invariant
subspaces complementing each other.

UNITARISABILITY (Weyl’s unitary trick). Suppose that G is a
finite group. The formula

B(u, v) :=
1

|G|
∑
g∈G

πg(u) · πg(v)

defines a hermitian inner product on V , which has the property of being
G-invariant :

B(πg(u), πg(v)) = B(u, v) ∀u, v ∈ V.

If U is a G-invariant subspace of V then U⊥, the space of vectors v such
that B(u, v) = 0 for all u ∈ U , is a G-invariant complement of U .

We deduce that if G is finite then we can indeed decompose the space
as direct sum of G-invariant irreducible subspaces:

Theorem 4 (Maschke Theorem). Suppose that G is finite. Then any
finite dimensional representation of G is completely reducible, i.e. it is a
direct sum of irreducible G-invariant subspaces.

4 Characters

Now for g ∈ G define χπ(g) := Tr(πg), the trace of the (matrix!) operator
πg (i.e. the sum of its diagonal entries).

For example, in the case of permutation matrix representations χπ(g)
is the number of fixed points of the permutation g.

The map χπ : G → C, g 7→ χπ(g) is called the “character” of the
representation π.
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Theorem 5 (Frobenius). Let π1, π2 be two representations of the finite
group G and let χ1, χ2 be their characters. Then π1

∼= π2 if and only if
χ1 = χ2.

In other words, it is enough to know the traces (!) of the matrices πg
to recover the whole representation π.

The idea to prove this is the following. Let χ1, χ2 be two functions
G→ C (for example, two characters of G), i.e. elements of CG. Set

B(χ1, χ2) :=
1

|G|
∑
g∈G

χ1(g)χ2(g).

This defines a hermitian inner product on CG = {functions G → C}.
Now suppose χi is the character of the representation πi for i = 1, 2, and
suppose π1 is irreducible. Then B(χ1, χ2) equals the multiplicity of π1 in
the decomposition of π2 into irreducibles. Let us state this explicitly.

Proposition 1 (Orthogonality of Characters). Let χ be the character of
an irreducible representation V of the finite group G, and let θ be a rep-
resentation of G. Write θ =

⊕n
i=1 θ

⊕mi
i where θ1, . . . , θn are irreducible

representations of G and θ⊕mii means θi ⊕ . . . ⊕ θi, mi times, where mi

(the multiplicity of θi in θ) is a positive integer. Denote by χπ and χθ
the character of π, χ respectively. Then B(χθ, χπ) = 0 unless π ∼= θi for
some i ∈ {1, . . . , n} and in this case B(χθ, χπ) = mi.

The proof of this is a bit technical and we omit it. It can be found
in any textbook of representation theory, cf. [1]. For example, suppose
π = α⊕β⊕β with α, β irreducible. Then B(χπ, χα) = 1 and B(χπ, χβ) =
2. If γ is an irreducible representation not isomorphic to α or β then
B(χπ, χγ) = 0.

Corollary 2. Let χ be a character of G. Then χ is irreducible if and
only if B(χ, χ) = 1. Moreover if χ is irreducible and ψ is an irreducible
character of G then B(χ, ψ) = 1 if χ = ψ and B(χ, ψ) = 0 if χ 6= ψ. In
other words, distinct irreducible characters are orthogonal to each other.

We include the following corollary because it is beautiful.

Corollary 3 (n-th Burnside Theorem). Let n1, . . . , nt be the degrees of
the irreducible characters of the finite group G. Then n2

1 + . . .+n2
t = |G|.

Proof. For every g ∈ G consider the function γg : G → G given by
γg(x) = xg. This is a bijective map whose inverse is γg−1 . The map
G → Sym(G) that sends g to γg is a group homomorphism, hence by
considering permutation matrices we can associate to it a representation
π : G → GL(VG) whose character χ takes g ∈ G to the number of fixed
points of γg. But γg is fixed-point-free for all g 6= 1, indeed if xg = x then
multiplying by x−1 on the left we find g = 1. Clearly γ1 = 1 has |G| fixed
points. It follows that χ(1) = |G| and χ(g) = 0 if g 6= 1.

With this information we can now determine the decomposition of
π as direct sum of irreducible representations. Let π1, . . . , πt be the
irreducible representations of G and let χ1, . . . , χt be their characters.
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Using Maschke’s Theorem we can write π =
⊕t

i=1 π
⊕mi
i , so that χ =

m1χ1 + . . . + mtχt. We want to compute the multiplicities mi. For
i = 1, . . . , t we have

mi = B(χ, χi) =
1

|G|
∑
x∈G

χ(x)χi(x) =
1

|G| |G|χi(1) = χi(1) = ni.

It follows by bilinearity of B and orthogonality of irreducible characters
that

n2
1 + . . .+ n2

t = B(

t∑
i=1

niχi,

t∑
i=1

niχi) = B(χ, χ)

=
1

|G|
∑
x∈G

χ(x)χ(x) =
1

|G| |G|
2 = |G|.

This concludes the proof.

4.1 The character table of S3

Consider S3, the group of bijections {1, 2, 3} → {1, 2, 3}. S3 permutes
naturally the three basis vectors e1, e2, e3 of C3. Thinking of the elements
of S3 as permutation matrices we can imagine that S3 ≤ GL(C3). It turns
out that every element is conjugated to one of the matrices displayed
below.

S3

 1 0 0
0 1 0
0 0 1

  0 1 0
1 0 0
0 0 1

  0 0 1
1 0 0
0 1 0


χ1 = 1 1 1 1

χ2 = det 1 −1 1

χ3 2 0 −1

χ3 is the character of the following representation: S3 acts on W :=
{(x1, x2, x3) ∈ C3 : x1 + x2 + x3 = 0} (2-dimensional) by permuting the
canonical basis vectors (indeed, the equation x1 +x2 +x3 = 0 is invariant
under any permutation of the three indices 1, 2, 3).

How does V = C3 decompose via this representation? Let U be the
space of constant vectors: U := {(a, a, a) : a ∈ C}. Then U and W are
irreducible S3-invariant subspaces of V and

V = U ⊕W.

Also, note that the column of the character table with the identity matrix
on top gives precisely the degrees of the irreducible representations of S3

(indeed, the trace of the identity matrix is just the dimension of the space!)
and this fits with the n-th Burnside Theorem (Corollary 3) because

12 + 12 + 22 = 6 = 3! = |S3|.
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5 Fourier analysis

Let us relax the condition of finiteness of G and consider compactness.
Consider the circle of center the origin and radius 1:

G := S1 = {eiθ : 0 ≤ θ ≤ 2π}.

Why did I call it G? Because it is a group with respect to multiplication:

eiθ1eiθ2 = ei(θ1+θ2), (eiθ)−1 = e−iθ = ei(2π−θ).

Algebraically it can be viewed as the quotient R/2πZ.

• To make the theory of representations meaningful in this setting
we must take the topology into account. In other words, we
will have a topology on the space, and the notion of “G-invariant
subspace” will be substituted by “closed G-invariant subspace”.
Also, we require morphisms to be continuous. Moreover, the notion
of direct sum will be substituted with the notion of orthogonal
direct sum (cf. below).

• What are the irreducible representations of S1? Since S1 is abelian
(and compact: cf. Section 6), they are all 1-dimensional (by Schur’s
lemma!), i.e. they are continuous homomorphisms S1 → C×. This
forces them to be of the form eiθ 7→ einθ where n ∈ Z.

Now we need a vector space representing our group G = S1.

• Let V := L2(G) = {f : G → C :
∫
G
|f(eiθ)|2dθ < ∞}. It is a

Hilbert space with the hermitian inner product given by

B(u, v) :=
1

2π

∫
G

u(eiθ)v(eiθ)dθ.

Note that 2π =
∫
G
dθ, hence it substitutes |G|, which was used in

the finite case. Note that a function S1 → C can be thought of as a
periodic function R → C of period 2π. Orthogonality of characters
now amounts to the following easy computation. Suppose n,m are
distinct integers. Then

1

2π

∫ 2π

0

einθeimθdθ =
1

2π

∫ 2π

0

einθe−imθdθ =
1

2π

∫ 2π

0

ei(n−m)θdθ

=
1

2π

1

i(n−m)
[ei(n−m)θ]2π0

=
1

2πi(n−m)
(ei(n−m)2π − ei(n−m)0) = 0.

Instead, if n = m then we have

1

2π

∫ 2π

0

einθeinθdθ =
1

2π

∫ 2π

0

einθe−inθdθ =
1

2π

∫ 2π

0

ei(n−n)θdθ

=
1

2π

∫ 2π

0

dθ = 1.
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• Consider the following representation of G:

π : G→ GL(V ), πeiθ (f)(eiθ0) := f(ei(θ0+θ)).

It is unitary, i.e. B(πg(f1), πg(f2)) = B(f1, f2) (this follows easily
by the change of variables τ = θ0 + θ).

– So Maschke Theorem holds!

• The irreducible invariant subspaces of V are, for n ∈ Z,

Vn := {f ∈ V : f(ei(θ0+θ)) = einθf(eiθ0)} = C{eiθ 7→ einθ}.

In other words, an element of Vn has the form eiθ 7→ λeinθ for some
λ ∈ C.

We want to decompose our V as direct sum of irreducible sub-
spaces. Now V is a Hilbert space, and in this setting the right notion of
direct sum to use is the notion of orthogonal direct sum. If V is a Hilbert
space and {Hi : i ∈ I} is a family of subspaces, the orthogonal direct sum⊕̂
Hi is the set of elements (hi)i∈I ∈

∏
i∈I Hi such that

∑
i∈I ||hi||

2 <∞.
It turns out that the orthogonal direct sum of the subspaces Hi is the
closure in V of the algebraic direct sum

⊕
i∈I Hi, which is by definition

the set of elements (hi)i∈I ∈
∏
i∈I Hi such that the set {i ∈ I : hi 6= 0}

is finite.

The decomposition of V = L2(S1) into irreducible G-invariant sub-
spaces is the following:

V =
⊕̂

n∈Z
Vn = {

∑
finite

vn : vn ∈ Vn}

= {θ 7→
∑
n∈Z

cne
inθ : cn ∈ C ∀n ∈ Z,

∑
n∈Z

|cn|2 <∞}.

This says that any function S1 → C (i.e. any periodic function of period
2π !) which is square-integrable admits an espression of the form

f(θ) =
∑
n∈Z

cne
inθ

for some cn ∈ C with
∑
n∈Z |cn|

2 < ∞ (this ensures that f is square-
integrable). This is the Fourier series of f .

Now we want to compute the Fourier coefficients cm (what in the
discrete case we were calling “multiplicities”!). Using orthogonality of
characters we find

1

2π

∫ 2π

0

f(θ)e−imθdθ = B(f(θ), eimθ) = B(
∑
n∈Z

cne
inθ, eimθ) = cm.

Thus Fourier analysis is the representation theory of the circle
group S1. This is related to the representation theory of G = SL(2,R),
the group of 2× 2 matrices with real coefficients and determinant 1: the
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matrices of the form

(
cosϕ sinϕ
− sinϕ cosϕ

)
form a maximal compact sub-

group K of G isomorphic to S1. Using Harish-Chandra modules, it is
possible to study the representations of the Lie group G only using K and
the Lie algebra of G. A good source of material about this can be found
in the videos of the SL(2,R) Summer School in Utah in June 2006 [5].

6 Finite dimensionality of irreducible rep-
resentations of compact groups

Let us spend some more words on why the irreducible representations
of a compact group are finite dimensional. A Hilbert space is a vector
space H endowed with a positive definite Hermitian inner product 〈·, ·〉
which makes it a complete metric space. Let H be a Hilbert space and
let U(H) be the group of all bounded unitary operators on H. Recall
that a linear operator U : H → H is said to be bounded if there exists a
constant M such that ||Uh||/||h|| ≤ M for all h ∈ H − {0}. A bounded
linear operator U : H → H is said to be unitary if U is surjective and
〈Ux,Uy〉H = 〈x, y〉H for all x, y ∈ H.

Let G be a compact group, and let π : G → U(H) be a group ho-
momorphism such that for all v ∈ H, the map G → H, g 7→ π(g)v is
continuous. This π is what we call a unitary representation of G. π is
irreducible if H has no closed invariant subspaces except for {0} and H.
Let π : G → U(H) be a unitary representation of G and suppose that it
is irreducible. We want to show that then H must be finite-dimensional.

Theorem 6 (Schur’s Lemma). If T is a bounded linear operator on H
such that Tπ(g) = π(g)T for all g ∈ G then T is the multiplication by a
scalar λ ∈ C.

Since G is compact it admits a measure, called left (normalized) Haar
measure. It is characterized as follows. A Borel set in G is an element of
the σ-algebra of G generated by the open subsets of G. There is, up to a
multiplicative constant, a unique countably additive, nontrivial measure
µ on the Borel subsets of G satisfying the following properties:

• µ is left-translation-invariant: µ(gE) = µ(E) for every g ∈ G and
Borel set E.

• µ is finite on every compact set: µ(K) <∞ if K is compact.

• µ is outer regular on Borel sets E:

µ(E) = inf{µ(U) : E ⊆ U, U open}.

• µ is inner regular on open sets E:

µ(E) = sup{µ(K) : K ⊆ E, K compact}.

It is called a “left Haar measure”. The normalized left Haar measure
on G is the unique left Haar measure µ on G such that µ(G) = 1.
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Using the Haar measure we can compute integrals. The map G→ C,
g 7→ 〈π(g)u, v〉 is continuous on G for all u, v ∈ H. For v, v′, w, w′ ∈ H
consider

I(v, v′, w, w′) :=

∫
G

〈π(g)v, w〉 · 〈π(g)v′, w′〉dg.

Think of w,w′ as fixed. It follows from the Riesz representation theo-
rem that there is a bounded linear operator Tw,w′ : H → H such that
I(v, v′, w, w′) = 〈Tw,w′v, v′〉 for all v, v′ ∈ H. Now we prove that for every
g ∈ G we have π(g)Tw,w′ = Tw,w′π(g). We have

〈Tw,w′π(g)v, v′〉 =

∫
G

〈π(h)π(g)v, w〉〈π(h)v′, w′〉dh

=

∫
G

〈π(h)v, w〉〈π(hg−1)v′, w′〉dh

= 〈Tw,w′v, π(g−1)v′〉 = 〈π(g)Tw,w′v, v
′〉.

The second equality follows from the fact that the measure dg is G-
invariant, the fourth equality follows from unitarity of π (apply π(g) to
both the arguments of 〈·, ·〉). This proves that π(g)Tw,w′ = Tw,w′π(g). By
Schur’s Lemma we deduce that Tw,w′ is the multiplication by the scalar
λ(w,w′) ∈ C. We obtain that∫

G

〈π(g)v, w〉 · 〈π(g)v′, w′〉dg = λ(w,w′)〈v, v′〉.

Repeating the same argument thinking of v, v′ as fixed we find that there
is a function µ(v, v′) such that∫

G

〈π(g)v|w〉 · 〈π(g)v′, w′〉dg = µ(v, v′)〈w,w′〉.

It follows that for all v, v′, w, w′ ∈ H we have λ(w,w′)〈v, v′〉 = µ(v, v′)〈w,w′〉.
Choosing v = v′ = v0 of norm 1 we find λ(w,w′) = µ(v0, v0)〈w,w′〉. Call
C := µ(v0, v0). Then we find∫

G

〈π(g)v, w〉 · 〈π(g)v′, w′〉dg = C〈v, v′〉〈w,w′〉.

Suppose v = v′, w = w′ and ||v|| = ||w|| = 1. Then∫
G

|〈π(g)v, w〉|2dg = C > 0. (∗)

We want to show that H is finite dimensional. Suppose by contradiction
that H is infinite dimensional. Then for every positive integer n we can
find e1, . . . , en ∈ H mutually orthogonal of length 1. Since π is unitary,
π(g)e1, . . . , π(g)en, for g ∈ G, are also mutually orthogonal of length 1.
Using Bessel inequality for v ∈ H we find

n∑
i=1

|〈v, π(g)ei〉|2 ≤ ||v||2. (∗∗)
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Now integrating over G and using (∗) and (∗∗) we find

nC||v||2 =

n∑
i=1

C||v||2 = ||v||2
n∑
i=1

∫
G

|〈π(g)ei,
v

||v|| 〉|
2dg

=

∫
G

n∑
i=1

|〈v, π(g)ei〉|2 ≤
∫
G

||v||2dg = ||v||2

hence n ≤ 1/C. This cannot hold for every positive integer n, thus we
found a contradiction. So H is finite dimensional. Let now n be its
dimension. Then

∑n
i=1 |〈v, π(g)ei〉|2 = ||v||2 (the equality in (∗∗) becomes

an equality). The above computation then shows that C = 1/n.

6.1 Heisenberg’s Uncertainty Principle

Let G = Z/NZ = {0, 1, . . . , N − 1} (cyclic group of order N) and let

L(G) := CG = {functions G→ C}.

It is a C-vector space of dimension |G|.
Let Ĝ := {group homomorphisms χ : G→ C×}.

• It is a group isomorphic to G, generated by 1 7→ ei2π/N .

• It is the set of linear (1-dimensional) characters of G.

• It is a basis of L(G).

Fourier transform:

F : L(G)→ L(Ĝ), F(f)(χ) := B(f, χ) =
1

|G|
∑
x∈G

f(x)χ(x),

the coefficient of χ in the expression of f in the base Ĝ.
In other words, if f =

∑
χ∈Ĝ f̂(χ)χ then F(f)(χ) = f̂(χ).

For f ∈ L(G) let Supp(f) := {x ∈ G : f(x) 6= 0}.
Theorem 7 (Heisenberg’s Uncertainty Principle). If f ∈ L(G) then

|Supp(f)| · |Supp(F(f))| ≥ |G|.

Proof. For f, h ∈ L(G) define

〈f, h〉L(G) :=
1

|G|
∑
x∈G

f(x)h(x)

and

||f || :=
√
〈f, f〉L(G).

This defines a positive definite hermitian inner product in L(G). For
f, h ∈ L(Ĝ) define

〈f, h〉L(Ĝ) :=
∑
χ∈Ĝ

f(χ)h(χ)
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and
||f || :=

√
〈f, f〉L(Ĝ).

This defines a positive definite hermitian inner product in L(Ĝ). We now
prove that the Fourier transform F is unitary (this is known as Parse-
val formula): if f, h ∈ L(G) then 〈f, h〉L(G) = 〈f̂ , ĥ〉L(Ĝ). Indeed, by
orthogonality of characters we have

〈f, h〉L2(G) =
1

|G|
∑
x∈G

f(x)h(x) =
1

|G|
∑
x∈G

∑
χ,η∈Ĝ

f̂(χ)χ(x)ĥ(η)η(x)

=
1

|G|
∑
χ,η∈Ĝ

f̂(χ)ĥ(η)
∑
x∈G

χ(x)η(x) =
∑
χ∈Ĝ

f̂(χ)ĥ(χ)

= 〈f̂ , ĥ〉L2(Ĝ).

Recall that in both spaces L(G), L(Ĝ) we have the Cauchy-Schwarz
inequality

|〈f, h〉| ≤ ||f || · ||h||
for any f, h in the space. With these ingredients we can proceed to
our computation. For a function f defined on a set X define ||f ||∞ :=
maxx∈X |f(x)|. For f ∈ L(G), A = Supp(f), B = Supp(f̂) we then have

||f̂ ||∞ = max
χ∈Ĝ
|f(χ)| = max

χ∈Ĝ
| 1

|G|
∑
x∈G

f(x)χ(x)|

= max
χ∈Ĝ
| 1

|G|
∑
x∈G

1A(x)f(x)χ(x)|

= max
χ∈Ĝ
|〈f, 1Aχ〉| ≤ max

χ∈Ĝ
||f ||L2(G)||1Aχ||L2(G)

where the last inequality is a consequence of the Cauchy-Schwarz in-
equality. Now since the elements of Ĝ are linear characters, they are
homomorphisms G → C× hence χ(x) is a root of unity for all χ ∈ Ĝ,
x ∈ G hence |χ(x)| = 1. We deduce that

||1Aχ||L2(G) =

√
| 1

|G|
∑
x∈G

1A(x)χ(x)| ≤
√

1

|G|
∑
x∈G

1A(x)|χ(x)| =
√
|A|/|G|.

We can now proceed with our estimation recalling that F is unitary.

||f̂ ||∞ ≤ max
χ∈Ĝ
||f ||L2(G)||1Aχ||L2(G) ≤

√
|A|/|G| · ||f ||L2(G)

=
√
|A|/|G| · ||f̂ ||L2(Ĝ) =

√
|A|/|G|

√∑
χ∈Ĝ

1B(χ)|f̂(χ)|2

≤
√
|A|/|G| · ||f̂ ||∞

√∑
χ∈Ĝ

1B(χ) =
√
|A||B|/|G| · ||f̂ ||∞.

In conclusion ||f̂ ||∞ ≤
√
|A||B|/|G| · ||f̂ ||∞ hence |A||B| ≥ |G|.
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7 The solution of the cube problem

Now we go back to our original problem. Let G be the group of rota-
tions of the cube. Then |G| = 24 (if you place a cube on a table, you
can put each of the 6 faces up, and rotate that face in 4 ways).

It turns out that G ∼= S4 (the idea is to observe that G permutes the
four diagonals of the cube in any possible way!).

G permutes the six faces of the cube. Let F be the set of faces of the
cube. This gives a permutation matrix representation

π : G→ GL(WF ) where WF := CF = {functions F → C} ∼= C6.

By computing the fixed points of the elements of G we can compute
the character of this representation. Call it χ.

It turns out that B(χ, χ) = 1
|G|
∑
g∈G χ(g)χ(g) = 3.

Now we know by Maschke Theorem that π is a direct sum of irreducible
representations, so we can write π =

⊕n
i=1 π

⊕mi
i with m1, . . . ,mn positive

integers (mi is the multiplicity of πi in π, i.e. the number of times πi
appears in the decomposition of π: the notation π⊕mii means πi⊕ . . .⊕πi,
mi times) and we deduce χ =

∑n
i=1miχi with χi the character of πi for

i = 1, . . . , n. On the other hand B(χ, χ) = 3 hence, by orthogonality of
characters,

3 = B(χ, χ) = B(

n∑
i=1

miχi,

n∑
i=1

miχi) = m2
1 + . . .+m2

n.

Since m1, . . . ,mn are positive integers with the property that m2
1 + . . .+

m2
n = 3, we deduce that n = 3 and m1 = m2 = m3 = 1. In other words

π = π1⊕π2⊕π3 where πi is irreducible for i = 1, 2, 3 and χ = χ1+χ2+χ3.

Hence WF = CF = {functions F → C} ∼= C6 is the direct sum of
three G-invariant irreducible subspaces. We are left to find them.
This is where the geometry comes in: our problem is now reduced to find
G-invariant subspaces.

But we know the characters of the corresponding representations! This
means that we have a lot of information about them, which leads us close
to determining them explicitly. This is the use of representation theory:
collect as much information as possible about the decomposition.

For a face x let −x denote the face opposite to x. Consider

• W1 := {constant functions F → C}. This is clearly one-dimensional:
dimC(W1) = 1.

• W2 := {f : F → C : f(−x) = f(x) ∀x ∈ F,
∑
x∈F f(x) = 0}. This

is given by 3 + 1 = 4 equations so dimC(W2) = 6− 4 = 2.
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• W3 := {f : F → C : f(−x) = −f(x) ∀x ∈ F}. This is given by 3
equations so dimC(W3) = 6− 3 = 3.

The decomposition of WF into irreducible subspaces is

WF = W1 ⊕W2 ⊕W3.

The operator we are concerned with is

L : WF →WF , L(f)(x) :=
1

4

∑
y∈Ax

f(y)

where Ax denotes the set of faces adjacent to the face x. It turns out that
L is G-invariant! This is because rotating after averaging is the same as
averaging after rotating.

Since W1,W2,W3 are irreducible, by Schur’s lemma L|Wi is a scalar
operator. Using WF = W1 ⊕W2 ⊕W3 it turns out that

L ∼



1 0 0 0 0 0

0 −1/2 0 0 0 0
0 0 −1/2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The operator Ln has eigenvalues 1, (−1/2)n and 0, hence if n is large
then Ln(f) is approximately equal to the projection of f onto W1. The
projection of any vector f whose entries are 1, 2, 3, 4, 5, 6 in some order
onto W1 is always (3.5, 3.5, 3.5, 3.5, 3.5, 3.5). Hence no matter what is the
initial configuration, i.e. the initial position of the numbers from 1 to 6
labelling the faces of the cube, after many iterations the value on each
face gets arbitrarily close to 3.5.

This phenomenon can be interpreted using ergodic theory. To give an
idea of this fact let us state a version of Von Neumann ergodic theorem
taken from [4] (the original source is [3]). Note however that the following
result does not apply right away to our case because L is not invertible.

Theorem 8 (Von Neumann Ergodic Theorem). Let U : H → H be a
unitary operator on a separable Hilbert space H. Then for every v ∈ H
we have

lim
N→∞

1

N

N−1∑
n=0

Unv = π(v)

where π : H → HU is the orthogonal projection from H to the closed
subspace HU := {v ∈ H : Uv = v} consisting of the U-invariant vectors.

In our problem we actually dealt with the powers of the operator L
and not the arithmetic mean of the powers. But note that if a sequence
an converges to a in a normed vector space then also the arithmetic mean
1
N

∑N−1
n=0 an converges to a as N →∞.
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