Svolgimento del secondo compitino di Algebra 2 (a.a 2014-2015).

1. Enunciare e dimostrare il lemma di Gauss.

Svolgimento. Lemma di Gauss: Sia D un dominio a fattorizzazione unica e siano $f(X), g(X) \in D[X]$ primitivi, cioè il massimo comun divisore dei loro coefficienti sia uguale a 1. Allora f(X)g(X) è primitivo.

Dimostrazione. Supponiamo per assurdo che f(X)g(X) non sia primitivo. Allora esiste $p \in D$ irriducibile tale che p divide tutti i coefficienti di f(X)g(X). Osserviamo che $\overline{D} := D/(p)$ è un dominio di integrità, infatti se $a,b \in D$ e $ab \in (p)$ allora p divide ab quindi, per l'unicità della fattorizzazione, deduciamo che p divide a oppure p divide b, e quindi abbiamo che se (a+(p))(b+(p))=0 in \overline{D} allora uno tra a+(p) e b+(p) è zero. Consideriamo l'omomorfismo di riduzione $\varphi:D[X] \to \overline{D}[X]$. Siccome f(X) è primitivo ha un coefficiente non divisibile per p, di conseguenza per il polinomio ridotto $\overline{f}(X)=\varphi(f(X))$ vale $\overline{f}(X)\neq 0$. Analogamente $\overline{g}(X)\neq 0$. D'altra parte $\overline{f}(X)\overline{g}(X)=\overline{f}(X)g(X)=0$ essendo p un divisore di tutti i coefficienti di f(X)g(X). Ne segue che $\overline{f},\overline{g}\neq 0$ ma $\overline{f}\overline{g}=0$, e questo è assurdo perché $\overline{D}[X]$ è un dominio di integrità, essendo \overline{D} un dominio di integrità.

2. Sia F un campo. Provare che u è algebrico su F se e solo se F[u] ha dimensione finita come spazio vettoriale su F.

Svolgimento. (\Rightarrow) Supponiamo che u sia algebrico su F, in altre parole u è zero di un polinomio non nullo di F[X]. Sia $f(X) \in F[X]$ il suo polinomio minimo, e sia n il suo grado. Siano $v_i := u^i$ per $i = 0, \ldots, n-1$. Mostriamo che $\{v_0, \ldots, v_{n-1}\}$ è un insieme di generatori per F[u] su F. Un generico elemento di F[u] ha la forma P(u) dove $P(X) \in F[X]$. Sia $P(u) \in F[u]$. Effettuiamo la divisione con resto di P(X) per f(X) ottenendo P(X) = f(X)Q(X) + R(X) con R(X) di grado minore di n oppure R(X) = 0. Valutando in u abbiamo P(u) = f(u)Q(u) + R(u) = R(u) essendo f(u) = 0, quindi P(u) ha la forma R(u) con R(X) di grado minore di n. Ne segue che R(u) è combinazione lineare di v_0, \ldots, v_{n-1} .

- (\Leftarrow) Supponiamo che F[u] abbia dimensione finita come spazio vettoriale su F. Sia n la sua dimensione. Allora l'insieme $\{1, u, u^2, \ldots, u^n\}$ ha cardinalità n+1, maggiore della dimensione di F[u] su F, quindi è linearmente dipendente su F, in altre parole esistono $a_0, \ldots, a_n \in F$ non tutti nulli tali che $a_0 + a_1u + a_2u^2 + \ldots + a_nu^n = 0$. Ne segue che u è zero del polinomio non nullo $a_0 + a_1X + a_2X^2 + \ldots + a_nX^n$ quindi è algebrico su F.
- 3. Utilizzare il lemma di Zorn per dimostrare che ogni gruppo G non abeliano contiene un sottogruppo proprio massimale rispetto alla proprietà di essere abeliano.

Svolgimento. Sia G un gruppo non abeliano (con elemento neutro 1, e useremo la notazione moltiplicativa) e sia \mathfrak{X} la famiglia dei sottogruppi abeliani di G. Si ha $\mathfrak{X} \neq \emptyset$ in quanto $\{1\} \in \mathfrak{X}$. Dobbiamo trovare un

elemento massimale in \mathfrak{X} . Per farlo usiamo il lemma di Zorn. Dobbiamo quindi mostrare che se C è una catena in \mathfrak{X} , cioè un sottoinsieme di \mathfrak{X} tale che la relazione di inclusione induce su C un ordine totale, allora esiste un maggiorante di C in \mathfrak{X} . Scriviamo $C = \{H_{\lambda} : \lambda \in \Lambda\}$. Certamente $H := \bigcup_{\lambda \in \Lambda} H_{\lambda}$ è un maggiorante per C. Ci resta da mostrare che $H \in \mathfrak{X}$, cioè che H è un sottogruppo abeliano di G.

- $1 \in H$. Questo segue dal fatto che per un $\lambda \in \Lambda$ si ha $H_{\lambda} \leq G$ quindi $1 \in H_{\lambda} \subseteq H$ (per definizione di unione) quindi $1 \in H$.
- Se $x, y \in H$ allora $xy^{-1} \in H$. Infatti siccome $x, y \in H$ allora per definizione di unione esistono $\lambda, \mu \in \Lambda$ con $x \in H_{\lambda}$ e $y \in H_{\mu}$. Ora siccome C è una catena si ha $H_{\lambda} \subseteq H_{\mu}$ oppure $H_{\mu} \subseteq H_{\lambda}$. Supponiamo senza perdita in generalità che sia $H_{\lambda} \subseteq H_{\mu}$. Allora $x \in H_{\lambda} \subseteq H_{\mu}$ quindi $x, y \in H_{\mu}$. Siccome H_{μ} è un sottogruppo di G si ha $xy^{-1} \in H_{\mu} \subseteq H$ quindi $xy^{-1} \in H$.
- Se $x, y \in H$ allora xy = yx. Come sopra, siccome C è una catena esiste $\mu \in \Lambda$ con $x, y \in H_{\mu}$ per cui siccome H_{μ} è abeliano e contiene x, y si ha xy = yx.

Abbiamo dimostrato che ogni catena ammette un maggiorante in $\mathfrak X$. Per il lemma di Zorn $\mathfrak X$ ha elementi massimali.

4. Sia $f(x) \in \mathbb{Q}[x]$ un polinomio di grado $n \geq 1$ e si definisca

$$f^*(x) = x^n f\left(\frac{1}{x}\right).$$

- (a) Provare che se $f(0) \neq 0$ e $f^*(x)$ è irriducibile in $\mathbb{Q}[x]$, allora anche f(x) lo è.
- (b) Usare il punto precedente e il lemma di Eisenstein per provare che $f(x) = 2x^4 + 6x^3 8x + 9$ è irriducibile in $\mathbb{Q}[x]$.
- (c) Sia u uno zero di f(x) in un opportuno campo di spezzamento. Scrivere u^{-1} nella forma $a_3u^3 + a_2u^2 + a_1u + a_0$ con $a_0, a_1, a_2, a_3 \in \mathbb{Q}$.
- (d) Sia u uno zero di f(x) in un opportuno campo di spezzamento e sia $v=4u^5+12u^4+18u-4$. Scrivere v nella forma $a_3u^3+a_2u^2+a_1u+a_0$ con $a_0,a_1,a_2,a_3\in\mathbb{Q}$.
- (e) Provare che $\mathbb{Q}[v] = \mathbb{Q}[u]$.

Svolgimento.

(a) In altre parole dobbiamo mostrare che se f(x) è riducibile allora $f^*(x)$ è riducibile. Per farlo mostriamo che per ogni $f,g \in \mathbb{Q}[x]$ si ha $(fg)^* = f^*g^*$. Siano r il grado di f e s il grado di g, n = r + s il grado di fg. Si ha $(fg)^*(x) = x^n(fg)(1/x) = x^{r+s}f(1/x)g(1/x) = (x^rf(1/x))(x^sg(1/x)) = f^*(x)g^*(x)$. Supponiamo ora $f(0) \neq 0$ e f(x) riducibile, e scriviamo f(x) = g(x)h(x) con g,h di grado r,s

rispettivamente, e r, s > 0, r + s = n con n il grado di f. Allora poiché $g(0)h(0) = f(0) \neq 0$, si ha $g(0) \neq 0$, $h(0) \neq 0$, quindi g^* ha grado $f(0) \neq 0$, ha grado $f(0) \neq 0$, è riducibile.

- (b) Si ha $f^*(x) = 9x^4 8x^3 + 6x + 2$ è irriducibile per il criterio di Eisenstein applicato al primo 2. Quindi per il punto (1) anche f(x) è irriducibile.
- (c) Si ha f(u) = 0, cioè $2u^4 + 6u^3 8u + 9 = 0$, da cui $u(2u^3 + 6u^2 8) = -9$. Dividendo per -9 abbiamo $u \cdot (-\frac{2}{9}u^3 \frac{2}{3}u^2 + \frac{8}{9}) = 1$ per cui, per definizione di inverso, $u^{-1} = -\frac{2}{9}u^3 \frac{2}{3}u^2 + \frac{8}{9}$.
- (d) Abbiamo $v=4u^5+12u^4+18u-4$. Per scriverlo nella forma richiesta scriviamo prima u^4 , u^5 come polinomi in u di grado al più 3. Abbiamo $u^4=-3u^3+4u-9/2$ da cui

$$\begin{split} u^5 &= u \cdot u^4 = u(-3u^3 + 4u - \frac{9}{2}) = -3u^4 + 4u^2 - \frac{9}{2}u \\ &= -3(-3u^3 + 4u - \frac{9}{2}) + 4u^2 - \frac{9}{2}u \\ &= 9u^3 + 4u^2 - \frac{33}{2}u + \frac{27}{2}, \end{split}$$

Ne segue che

$$v = 4u^{5} + 12u^{4} + 18u - 4$$

$$= 4(9u^{3} + 4u^{2} - \frac{33}{2}u + \frac{27}{2}) + 12(-3u^{3} + 4u - \frac{9}{2}) + 18u - 4$$

$$= 16u^{2} - 4.$$

(e) Dobbiamo mostrare che $\mathbb{Q}[u] = \mathbb{Q}[v]$. Ricordiamo che essendo u, v algebrici su \mathbb{Q} , $\mathbb{Q}[u] = \mathbb{Q}(u)$ e $\mathbb{Q}[v] = \mathbb{Q}(v)$. Siccome $v \in \mathbb{Q}(u)$ si ha $\mathbb{Q}(v) \subseteq \mathbb{Q}(u)$ quindi basta mostrare che $\mathbb{Q}(u)$ e $\mathbb{Q}(v)$ hanno la stessa dimensione su \mathbb{Q} , in altre parole basta mostrare che v ha grado 4 su \mathbb{Q} . Ora $\mathbb{Q}(v) = \mathbb{Q}(16u^2 - 4) = \mathbb{Q}(u^2)$ quindi basta mostrare che v ha grado 4 su \mathbb{Q} . Si ha

$$4 = |\mathbb{Q}(u): \mathbb{Q}| = |\mathbb{Q}(u): \mathbb{Q}(u^2)| \cdot |\mathbb{Q}(u^2): \mathbb{Q}$$

quindi il grado di u^2 divide 4, cioè è 1, 2 o 4. Rimane da escludere che u^2 abbia grado 1 o 2. Sia $w := u^2$. Se w avesse grado 1 o 2 allora esisterebbero $a, b \in \mathbb{Q}$ con $aw + b = w^2$, da cui

$$au^{2} + b = aw + b = w^{2} = u^{4} = -3u^{3} + 4u - 9/2,$$

quindi $3u^3 + au^2 - 4u + b + 9/2 = 0$, assurdo perché u ha grado 4 su \mathbb{Q} (quindi non può essere zero di un polinomio non nullo di grado minore di 4).

- 5. Sia $u = \sqrt{\sqrt[3]{4} 1}$.
 - (a) Determinare il polinomio minimo di u su \mathbb{Q} .
 - (b) Provare che $\mathbb{Q}[u]$ contiene $\sqrt[3]{4}$ e calcolare $|\mathbb{Q}[u]:\mathbb{Q}[\sqrt[3]{4}]|$.
 - (c) Determinare il polinomio minimo h(x) di u^2 su \mathbb{Q} .
 - (d) Sia E il campo di spezzamento di h(x) su \mathbb{Q} . Provare che E contiene una radice primitiva terza di 1.
 - (e) Determinare $|E:\mathbb{Q}|$.

Svolgimento.

- (a) Si ha $(u^2+1)^3=4$ cioè $u^6+3u^4+3u^2+1=4$, quindi u è zero di $f(X)=X^6+3X^4+3X^2-3$ che è irriducibile per il criterio di Eisenstein, quindi essendo monico è il polinomio minimo di u su \mathbb{Q} . Quindi u ha grado 6 su \mathbb{Q} .
- (b) $\mathbb{Q}[u] = \mathbb{Q}(u)$ contiene $u^2 + 1 = \sqrt[3]{4}$. Ora $\sqrt[3]{4}$ è zero di $X^3 4$, che è irriducibile in \mathbb{Q} per il lemma di Gauss poiché ha grado 3 e non ha zeri in \mathbb{Z} . Ne segue che $\sqrt[3]{4}$ ha grado 3 su \mathbb{Q} quindi per la formula dei gradi

$$6 = |\mathbb{Q}(u):\mathbb{Q}| = |\mathbb{Q}(u):\mathbb{Q}(\sqrt[3]{4})| \cdot |\mathbb{Q}(\sqrt[3]{4}):\mathbb{Q}| = |\mathbb{Q}(u):\mathbb{Q}(\sqrt[3]{4})| \cdot 3,$$

e ne deduciamo che $|\mathbb{Q}(u):\mathbb{Q}(\sqrt[3]{4})|=6/3=2.$

- (c) Siccome $(u^2+1)^3=4$, u^2 è zero di $h(X)=(X+1)^3-4=X^3+3X^2+3X-3$ che è irriducibile per il criterio di Eisenstein quindi essendo monico è il polinomio minimo di u^2 su \mathbb{Q} .
- (d) Si ha $h(X) = (X+1)^3 4$ quindi le tre radici complesse di h(X) sono u^2 , ζu^2 e $\zeta^2 u^2$ dove ζ è una radice primitiva terza di 1. Ne segue che il campo di spezzamento $E = \mathbb{Q}(u^2, \zeta u^2, \zeta^2 u^2)$ certamente contiene $(\zeta u^2)/u^2 = \zeta$, essendo un campo.
- (e) Dal punto precedente deduciamo che $E = \mathbb{Q}(u^2, \zeta)$. Ora u^2 ha grado 3 su \mathbb{Q} ed è reale, mentre ζ ha grado 2 su \mathbb{Q} ed è non reale. Ne segue che ζ ha grado al più 2 su $\mathbb{Q}(u^2)$ (essendo zero di $X^2 + X + 1 \in \mathbb{Q}(u^2)[X]$) e non ha grado 1 su $\mathbb{Q}(u^2)$ essendo altrimenti $\zeta \in \mathbb{Q}(u^2) \subseteq \mathbb{R}$, assurdo dato che $\zeta \notin \mathbb{R}$. Quindi $|\mathbb{Q}(u^2)(\zeta) : \mathbb{Q}(u^2)| = 2$ per cui, per la formula dei gradi,

$$|E:\mathbb{Q}| = |\mathbb{Q}(u^2,\zeta):\mathbb{Q}| = |\mathbb{Q}(u^2)(\zeta):\mathbb{Q}|$$
$$= |\mathbb{Q}(u^2)(\zeta):\mathbb{Q}(u^2)| \cdot |\mathbb{Q}(u^2):\mathbb{Q}| = 2 \cdot 3 = 6.$$

- 6. Sia F un campo finito e sia $f(x) = x^5 + 4x^3 + x^2 + 2x + 4$.
 - (a) Provare che 1 è uno zero multiplo di f(x) se e solo se F ha caratteristica 3.
 - (b) Fattorizzare f(x) nel caso $F = \mathbb{Z}/3\mathbb{Z}$.

(c) Determinare l'ordine di un campo di spezzamento di f(x) su $F=\mathbb{Z}/3\mathbb{Z}.$

Svolgimento.

(a) Uno zero multiplo di f(x) è uno zero comune di f(x) e di f'(x). Quindi 1 è uno zero multiplo di f(x) se e solo se f(1) = 0 e f'(1) = 0. Si ha $f'(x) = 5x^4 + 12x^2 + 2x + 2$, quindi le condizioni f(1) = 0, f'(1) = 0 sono le seguenti:

$$0 = f(1) = 1 + 4 + 1 + 2 + 4 = 12,$$
 $0 = f'(1) = 5 + 12 + 2 + 2 = 21.$

Abbiamo cioè 12=0 e 21=0, equivalentemente MCD(12,21)=0 cioè 3=0, in altre parole F ha caratteristica 3.

- (b) Applicando Ruffini a f(x) con la radice 1 due volte otteniamo $f(x) = (x-1)^2(x^3+2x^2+x+1)$. Questa è la fattorizzazione di f(x) in irriducibili in quanto $g(x) = x^3 + 2x^2 + x + 1$ è irriducibile in F[X] perché non ha zeri in $F = \mathbb{F}_3 = \{0, 1, 2\}$.
- (c) Sia u uno zero di g(x) in un'opportuna estensione di F. Siccome u ha grado 3 su F (il suo polinomio minimo è g(x)), F[u] ha dimensione 3 su F quindi è un campo finito di $|F|^3 = 3^3 = 27$ elementi. Siccome g(x) è irriducibile e ha uno zero nel campo finito F[u], si spezza completamente su F[u] quindi F[u] è un campo di spezzamento per g(x) su F. Se ora indichiamo con E un campo di spezzamento di f(x) su F abbiamo E = F(1, u) = F(u) = F[u] quindi |E| = |F[u]| = 27.