SVOLGIMENTO DELL'APPELLO DI ALGEBRA 2 DEL 05/02/2014 (PRIMO APPELLO)

1 Esercizio 1

Supponiamo che un gruppo G agisca su un insieme Ω . Provare che se $\omega \in \Omega$, allora la cardinalità dell'orbita di ω tramite G coincide con l'indice dello stabilizzatore di ω in G.

Svolgimento.

L'orbita di ω è per definizione $O := \{g\omega : g \in G\}$. L'indice dello stabilizzatore di ω in G è per definizione la cardinalità dell'insieme $L := \{gH : g \in G\}$ dove $H = \operatorname{Stab}_G(\omega) = \{g \in G : g\omega = \omega\}$. Per concludere basta trovare una biiezione $L \to O$. Definiamo

$$f: L \to O, \qquad qH \mapsto q\omega.$$

Dobbiamo mostrare che f è una funzione ben definita, e che è biiettiva.

- Buona definizione. Dobbiamo mostrare che se $x, y \in G$ sono tali che xH = yH allora $x\omega = y\omega$. xH = yH significa che $y^{-1}x \in H = \operatorname{Stab}_{G}(\omega)$, cioè $y^{-1}x\omega = \omega$. Ne segue che $y\omega = y(y^{-1}x\omega) = x\omega$.
- Iniettività. Mostriamo che f è iniettiva. Siano quindi $x, y \in G$ con f(xH) = f(yH), cioè $x\omega = y\omega$, e mostriamo che xH = yH. Da $x\omega = y\omega$, moltiplicando a sinistra per y^{-1} , troviamo $y^{-1}x\omega = \omega$, cioè $y^{-1}x \in \operatorname{Stab}_G(\omega) = H$, cioè xH = yH.
- Suriettività. f è suriettiva perché se $x\omega \in O$ allora $f(xH) = x\omega$.

2 Esercizio 2

Siano F ed E due campi, con $F \leq E$, e sia $u \in E$.

- 1. Si provi che u è algebrico su F se e solo se il grado |F[u]:F| è finito.
- 2. Si provi che se |F[u]:F|=n allora ogni elemento di F[u] si scrive in uno e un solo modo nella forma $a_0+a_1u+\ldots+a_{n-1}u^{n-1}$ con $a_0,\ldots,a_{n-1}\in F$.

Svolgimento.

Punto 1. Supponiamo che u sia algebrico su F, cioè che esista un polinomio $P(x) \in F[x]$ di grado m > 0 con P(u) = 0. Dobbiamo mostrare che |F[u]: F| è finito, cioè che F[u] ha dimensione finita su F. Un generico elemento di F[u] è del tipo A(u) dove $A(x) \in F[x]$. Effettuando la divisione con resto di A(x) per P(x)

troviamo due polinomi Q(x), R(x) (quoziente e resto) con R(x) nullo oppure di grado strettamente minore di m, tali che A(x) = P(x)Q(x) + R(x). Sostituendo x = u e ricordando che P(u) = 0 troviamo allora A(u) = P(u)Q(u) + R(u) = R(u). In altre parole, ogni elemento di F[u] è del tipo R(u) dove R(x) è un polinomio di F[x] che è nullo oppure di grado strettamente minore di m. Siccome ogni polinomio di grado minore di m è del tipo $a_0 + a_1x + \ldots + a_{n-1}x^{m-1}$, segue che F[u] è generato su F da $1, u, u^2, \ldots, u^{m-1}$ e quindi ha dimensione finita su F.

Ora supponiamo che |F[u]:F| sia finito, cioè che F[u] abbia dimensione finita su F, sia essa n. Allora gli n+1 elementi $1, u, u^2, \ldots, u^n$ sono linearmente dipendenti (essendo più di n), cioè esistono $a_0, \ldots, a_n \in F$ non tutti nulli con $a_0 + a_1 u + \ldots + a_n u^n = 0$. Quindi $P(x) := a_0 + a_1 x + \ldots + a_n x^n$ è un polinomio non nullo che ha u come zero. Ne segue che u è algebrico su F.

Punto 2. Si tratta di dimostrare che $\{1, u, u^2, \ldots, u^{n-1}\}$ è una base di F[u] su F. Siccome sono proprio n, quant'è la dimensione di F[u] su F, basta mostrare che sono un insieme di generatori di F[u] su F. Come visto nel punto precedente gli n+1 elementi $1, u, u^2, \ldots, u^n$ sono linearmente dipendenti (essendo più di n), cioè esistono $a_0, \ldots, a_n \in F$ non tutti nulli con $a_0 + a_1 u + \ldots + a_n u^n = 0$. Sia $P(x) := a_0 + a_1 x + \ldots + a_n x^n$. Un generico elemento di F[u] è del tipo A(u) con $A(x) \in F[x]$. Effettuando la divisione con resto di A(x) per P(x) troviamo due polinomi Q(x), R(x) (quoziente e resto) con R(x) nullo oppure di grado strettamente minore di n, tali che A(x) = P(x)Q(x) + R(x). Sostituendo x = u e ricordando che P(u) = 0 troviamo allora A(u) = P(u)Q(u) + R(u) = R(u). In altre parole, ogni elemento di F[u] è del tipo R(u) dove R(x) è un polinomio di F[x] che è nullo oppure di grado strettamente minore di n. Siccome ogni polinomio di grado minore di n è del tipo $a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$, segue che F[u] è generato su F da $1, u, u^2, \ldots, u^{n-1}$.

3 Esercizio 3

Sia $F = \mathbb{Z}/7\mathbb{Z}$ il campo di ordine 7. Su $G = F \times F^*$ si definisca un'operazione ponendo, per ogni $(a, x), (b, y) \in G, (a, x)(b, y) = (a + xb, xy).$

- 1. Si provi che con tale operazione G è un gruppo.
- 2. Si provi che ponendo, per ogni $u \in F$ e ogni $(a, x) \in G$, $(a, x) \cdot u := xu a$ si definisce un'azione di G sull'insieme F.
- 3. Si provi che il nucleo di questa azione è il sottogruppo identico, concludendo che G è isomorfo ad un sottogruppo di S_7 .
- 4. Si provi che G contiene un 7-sottogruppo di Sylow di S_7 .
- 5. Si determini $n_7(S_7)$, il numero di 7-sottogruppi di Sylow di S_7 .

6. Denotato con P un 7-sottogruppo di Sylow di S_7 , si dimostri che $N_{S_7}(P)\cong G$.

Svolgimento.

Punto 1. Mostriamo che l'operazione data è associativa. Siano quindi $(a, x), (b, y), (c, z) \in G$. Abbiamo

$$((a,x)(b,y))(c,z) = (a+xb,xy)(c,z) = a+xb+xyc,xyz),$$
$$(a,x)((b,y)(c,z)) = (a,x)(b+yc,yz) = (a+x(b+yc),xyz).$$

Siccome a+xy+xyc=a+x(b+yc) segue che l'operazione è associativa. L'elemento neutro è (0,1), infatti $(a,x)(0,1)=(a+x\cdot 0,x\cdot 1)=(a,1)$ per ogni $(a,x)\in G$. L'inverso di $(a,x)\in G$ è un elemento $(b,y)\in G$ tale che (a,x)(b,y)=(0,1), cioè (a+xb,xy)=(0,1), cioè $b=-ax^{-1},y=x^{-1}$ (notiamo che questo ha senso perché $x\in F^*$). Ne segue che $(a,x)^{-1}=(-ax^{-1},x^{-1})$.

Punto 2. Sia $u \in F$. Osserviamo che $(0,1) \cdot u = 1 \cdot u - 0 = u$, cioè l'elemento neutro agisce fissando tutto. Per concludere che la legge data è un'azione di G su F dobbiamo mostrare che se $(a,x),(b,y) \in G$ e $u \in F$ allora $(a,x)((b,y) \cdot u) = ((a,x)(b,y)) \cdot u$. Abbiamo

$$(a,x)((b,y) \cdot u) = (a,x) \cdot (yu - b) = x(yu - b) - a,$$

$$((a,x)(b,y)) \cdot u = (a+xb,xy) \cdot u = xyu - (a+xb).$$

Il risultato segue dal fatto che x(yu - b) - a = xyu - (a + xb).

Punto 3. Un elemento (a, x) di G sta nel nucleo dell'azione se e solo se $(a, x) \cdot u = u$ per ogni $u \in F$, in altre parole xu - a = u per ogni $u \in F$. Scegliendo u = 0 troviamo a = 0, per cui xu = u per ogni $u \in F$. Ora scegliendo u = 1 troviamo x = 1. Ne segue che (a, x) = (0, 1), e quindi il nucleo dell'azione è banale. Siccome G agisce fedelmente (cioè con nucleo banale) su F, che ha sette elementi, segue dalla teoria generale che c'è un omomorfismo iniettivo canonico $G \to S_7$, quindi G è isomorfo alla sua immagine in S_7 .

Punto 4. D'ora in poi identifichiamo G con la sua immagine in S_7 . Siccome $|S_7| = 7! = 7 \cdot 6!$ e 7 non divide 6! i 7-sottogruppi di Sylow di S_7 hanno ordine 7. Siccome $|G| = |F \times F^*| = |F||F^*| = 7 \cdot 6$, per il teorema di Cauchy G ha un elemento x di ordine 7, quindi il sottogruppo $\langle x \rangle$ ha ordine 7, e quindi è un 7-sottogruppo di Sylow di S_7 .

Punto 5. Contiamo i 7-sottogruppi di Sylow di S_7 . Ognuno di essi ha ordine 7, quindi, siccome 7 è primo, essi sono ciclici generati da elementi di ordine 7. Gli elementi di S_7 di ordine 7 sono i 7-cicli, e quindi ogni 7-sottogruppo di Sylow contiene l'identità e sei 7-cicli. Il numero di 7-cicli in S_7 è 6! (fisso un

elemento da cui far partire il ciclo e gli altri sono liberi) e quindi, siccome ogni 7-sottogruppo di Sylow contiene sei 7-cicli, $n_7(S_7) = 6!/6 = 5!$.

Punto 6. Sia Q un 7-sottogruppo di Sylow di S_7 contenuto in G (esiste per il punto 4). Per il teorema di Sylow esiste $g \in S_7$ tale che $gQg^{-1} = P$. Mostriamo che si ha $gN_{S_7}(Q)g^{-1} = N_{S_7}(gQg^{-1})$.

- (⊆). Sia $x \in N_{S_7}(Q)$. Mostriamo che $gxg^{-1} \in N_{S_7}(gQg^{-1})$, cioè che $(gxg^{-1})(gQg^{-1})(gxg^{-1})^{-1} = gQg^{-1}$. Si ha $(gxg^{-1})(gQg^{-1})(gxg^{-1})^{-1} = gxg^{-1}gQg^{-1}gx^{-1}g^{-1} = gxQx^{-1}g^{-1} = gQg^{-1}$, dove l'ultima uguaglianza segue dal fatto che $x \in N_{S_7}(Q)$.
- (\supseteq). Sia $y \in N_{S_7}(gQg^{-1})$. Mostriamo che $y \in gN_{S_7}(Q)g^{-1}$, cioè che $g^{-1}yg \in N_{S_7}(Q)$. Siccome $y \in N_{S_7}(gQg^{-1})$ si ha $g^{-1}ygQ(g^{-1}yg)^{-1} = g^{-1}ygQg^{-1}y^{-1}g = g^{-1}gQg^{-1}g = Q$.

Siccome il coniugio tramite g è un isomorfismo di gruppi e $gQg^{-1} = P$, segue che $N_{S_7}(Q)$ è isomorfo a $N_{S_7}(P)$. Quindi per concludere basta mostrare che $N_{S_7}(Q) = G$. Cominciamo col mostrare che $N_{S_7}(Q)$ e G hanno lo stesso ordine. Dal punto precedente $5! = n_7(S_7) = |S_7: N_{S_7}(P)| = 7!/|N_{S_7}(P)|$ per cui $|N_{S_7}(P)| = 7!/5! = 7 \cdot 6 = |G|$. Ne segue che per mostrare che $G = N_{S_7}(Q)$ basta mostrare che $G \subseteq N_{S_7}(Q)$ (infatti tali due insiemi sono finiti della stessa cardinalità), cioè che G normalizza G. Questo segue dal fatto che $G \subseteq S_7$ quindi per il teorema di Sylow $S_7(G) = 1$.

4 Esercizio 4

Si considerino i seguenti due polinomi in $\mathbb{Q}[x]$: $f_1(x) = x^3 - 2$ e $f_2(x) = x^4 - 3$. Siano E_1 ed E_2 i rispettivi campi di spezzamento.

- 1. Provare che $f_1(x)$ ed $f_2(x)$ sono irriducibili in $\mathbb{Q}[x]$.
- 2. Determinare $|E_1:\mathbb{Q}|$.
- 3. Determinare $|E_2:\mathbb{Q}|$.
- 4. Provare che $i\sqrt{3} \in E_1 \cap E_2$.
- 5. Determinare $|E_1 \cap E_2 : \mathbb{Q}|$.
- 6. Sia E il campo di spezzamento di $f_1(x)f_2(x)$. Determinare $|E:\mathbb{Q}|$.

Svolgimento.

Punto 1. L'irriducibilità segue dal criterio di Eisenstein, applicata a 2 per $f_1(x)$ e a 3 per $f_2(x)$.

Punto 2. Si ha $E_1 = \mathbb{Q}(u, \zeta u, \zeta^2 u)$ dove $u = \sqrt[3]{2}$ e $\zeta = e^{i2\pi/3} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Quindi E_1 contiene $\zeta u/u = \zeta$ e quindi $E_1 = \mathbb{Q}(u, i\sqrt{3})$. Siccome $u \in \mathbb{R}$, $\mathbb{Q}(u) \subseteq \mathbb{R}$ quindi $i\sqrt{3} \notin \mathbb{Q}(u)$ per cui, essendo $i\sqrt{3}$ zero di $x^2 + 3$, si ha $|E_1 : \mathbb{Q}(u)| = |\mathbb{Q}(u)(i\sqrt{3}) : \mathbb{Q}(u)| = 2$, per cui dalla formula dei gradi $|E_1 : \mathbb{Q}| = |E_1 : \mathbb{Q}(u)| \cdot |\mathbb{Q}(u) : \mathbb{Q}| = 3 \cdot 2 = 6$.

Punto 3. Si ha $E_2 = \mathbb{Q}(v,i)$ dove $v = \sqrt[4]{3}$, infatti i quattro zeri complessi di $x^4 - 3$ sono v, -v, iv, -iv. Ora v ha grado 4 e $i \notin \mathbb{Q}(v)$ essendo $\mathbb{Q}(v) \subseteq \mathbb{R}$, per cui $|\mathbb{Q}(v)(i): \mathbb{Q}(v)| = 2$ e dalla formula dei gradi $|E_2: \mathbb{Q}| = |\mathbb{Q}(v)(i): \mathbb{Q}(v)| \cdot |\mathbb{Q}(v): \mathbb{Q}| = 2 \cdot 4 = 8$.

Punto 4. Abbiamo $E_1 = \mathbb{Q}(u, i\sqrt{3})$ e $E_2 = \mathbb{Q}(v, i)$. Allora $E_2 \ni iv^2 = i\sqrt{3}$ e quindi $i\sqrt{3} \in E_1 \cap E_2$.

Punto 5. Per la formula dei gradi per i=1,2 abbiamo $|E_i:\mathbb{Q}|=|E_i:E_1\cap E_2|\cdot |E_1\cap E_2:\mathbb{Q}|$, quindi il grado $|E_1\cap E_2:\mathbb{Q}|$ divide $|E_1:\mathbb{Q}|=6$ e $|E_2:\mathbb{Q}|=8$, quindi divide il massimo comun divisore MCD(6,8)=2. D'altra parte $E_1\cap E_2$ contiene $i\sqrt{3}$ quindi ha grado almeno 2 su \mathbb{Q} . Questo dimostra che tale grado è proprio uguale a 2.

Punto 6. E non è altro che il sottocampo di $\mathbb C$ generato da E_1 ed E_2 , cioè $E = \langle E_1, E_2 \rangle = \mathbb Q(u, \zeta, v, i) = \mathbb Q(u, v, i)$ (notiamo infatti che $\zeta = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = -\frac{1}{2} + \frac{iv^2}{2}$). Quindi il grado $|E:\mathbb Q|$, per la formula dei gradi, è diviso da $|E_1:\mathbb Q| = 6$ e da $|E_2:\mathbb Q| = 8$, quindi è diviso dal minimo comune multiplo mcm(6,8) = 24. D'altra parte per la formula dei gradi

$$|E:\mathbb{Q}| = |\mathbb{Q}(u,v,i):\mathbb{Q}(u,v)| \cdot |\mathbb{Q}(u,v):\mathbb{Q}(v)| \cdot |\mathbb{Q}(v):\mathbb{Q}| \tag{*}$$

e siccome i, u, v hanno gradi su \mathbb{Q} rispettivamente 2, 3 e 4, abbiamo $|\mathbb{Q}(u, v, i) : \mathbb{Q}(u, v)| \le 2$, $|\mathbb{Q}(u, v) : \mathbb{Q}(v)| \le 3$ e $|\mathbb{Q}(v) : \mathbb{Q}| = 4$, quindi da (*) segue $|E : \mathbb{Q}| \le 2 \cdot 3 \cdot 4 = 24$. Siccome 24 divide $|E : \mathbb{Q}|$ concludiamo che $|E : \mathbb{Q}| = 24$.

5 Esercizio 5

Sia $f(x) = x^3 + 6x^2 + x + 1 \in F[x]$ con $F = \mathbb{Z}/7\mathbb{Z}$ e sia A = F[X]/(f(x)).

- 1. Fattorizzare f(x) in F[x].
- 2. Determinare l'ordine di E, un suo campo di spezzamento.
- 3. Quanti sono gli ideali massimali dell'anello A?
- 4. Quanti sono gli elementi invertibili dell'anello A?

Svolgimento.

Punto 1. Si ha f(2) = 0 quindi applicando il teorema di Ruffini $f(x) = (x-2)(x^2+x+3)$ e il polinomio $g(x) = x^2+x+3$ è irriducibile in quanto ha grado 2 e non ha zeri in F (infatti g(0) = 3, g(1) = 5, g(2) = 2, g(3) = 1, g(4) = 2, g(5) = 5, g(6) = 3).

Punto 2. Sia α uno zero di $g(x) = x^2 + x + 3$ in un'opportuna estensione. Applicando il teorema di Ruffini troviamo $g(x) = (x - \alpha)(x + 1 + \alpha)$, quindi $E = F(\alpha)$ è un campo di spezzamento per f(x) su F. Siccome α ha grado 2 su F, come F-spazio vettoriale E è isomorfo a F^2 quindi $|E| = |F^2| = |F|^2 = 7^2$.

Punto 3. Siccome A = F[x]/(f(x)) per il teorema di corrispondenza gli ideali massimali di A sono tanti quanti gli ideali massimali di F[x] contenenti f(x). Siccome F[x] è un PID, gli ideali massimali di F[x] contenenti f(x) sono esattamente gli ideali della forma (P(x)) con P(x) polinomio che divide f(x). Quelli massimali sono esattamente quelli per cui P(x) è irriducibile. In conclusione, gli ideali massimali di A sono tanti quanti i fattori irriducibili di f(x), cioè due.

Punto 4. Siccome x - 2 e $x^2 + x + 3$ sono coprimi (essendo irriducibili e non associati, in quanto di grado diverso), per il teorema cinese del resto si ha

$$A = F[x]/(f(x)) = F[x]/((x-2)(x^2+x+3))$$

$$\cong F[x]/(x-2) \times F[x]/(x^2+x+3) \cong F \times K$$

dove $K = F[x]/(x^2 + x + 3)$ è un campo. L'operazione di prodotto in $F \times K$ è per componenti, quindi i suoi elementi invertibili sono esattamente gli elementi di $F^* \times K^*$, quindi sono $(|F|-1)(|K|-1)=(7-1)(7^2-1)=6\cdot 48=288$.