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This text consists of the notes of a course in Commutative Algebra taught in Padova from 2014-
15 to 2016-17. Some topics were also covered during lectures in Stellenbosch in march 2015.

The choice of topics reflects the course structure in Padova, where Commutative Algebra
is flanked by Introduction to Ring Theory and by Number Theory 1 and followed by Algebraic Ge-
ometry 1, sharing most of the audience. There are thus no preliminaries on Category Theory
(bare definitions are recalled in the Appendix I, which includes also a short discussion on rep-
resentable functors) and the theory of modules of finite length is shrunk to a single statement
in §[4.2} because these topics are covered in detail in Introduction to Ring Theory. We treat exten-
sions of Dedekind domains and their ramification without mentioning the Galois case, which
is discussed in Number Theory 1. As a preparation to Algebraic Geometry 1, we introduce the
spectrum of a ring (only as a topological space) already in §[1.1} and we use it to emphasise the
topological meaning of the Going Up and Going Down theorems in § With applications
to line bundles and divisors in mind, the discussion on invertible modules in §[5.2|is extended
beyond what is strictly needed for the factorisation of ideals in Dedekind domains, adopting
the geometric terminology.

Some other choices were imposed by time constraints and reflect personal taste. The most
conspicuous casualty is the theory of primary decomposition, though its absence should not
be felt unduly until the end of the last chapter (which is, of course, when things begin to get
interesting).

Appendix II contains the solution to some of the exercises, including all those quoted in the
main body of text.

Alexander Grothendieck passed away in november 2014. The discussion on the Grothen-
dieck group (of a Dededkind domain) in §[5.4was meant as a small tribute to this great mathe-
matician, introducing one of the tools that bear his name. His ideas have shaped the develop-
ment of Commutative Algebra in the second half of the last century and are now woven into
its very fabric. Most directly attributable to Grothendieck are the basics of algebraic differential
calculus (§ [1.3), faithfully flat descent for modules (§ and the theory of Weil and Cartier

divisors (§5.2).
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Chapter I

Basic notions

§1 Rings

Definition 1.1.1 A commutative ring with unit in a set (R, +, -, 1) equipped with two binary
operations and a fixed element, satisfying the following axioms

a) (R,+) is an abelian group.
b) The multiplication is associative and distributes with respect to addition.
¢) The multiplication is commutative.

d) The multiplication has 1 as a neutral element.
Henceforth, we shall simply say “ring” instead of commutative ring with unit.

Remark 1.1.2 For technical reasons, we cannot rule out the zero ring. It is the only ring in
which 0 = 1. Indeed,if 0=1thenz =2-1=2-0=0forallz € R.

Example 1.1.3 The integers Z, the rationals Q, the reals R and the complex numbers C are all
examples of rings.

Definition 1.1.4 A subset R’ C R of a ring is a subring if R’ is a ring with the operations
defined on R.

Explicitely, (R’, +) is a subgroup of (R, +), the multiplication of two elements in R’ stays in R’
and 1 € R'. For instance Z, Q and R are subrings of C.

Example 1.1.5 If X is a set and R a ring, the set F/(X, R) of all functions f : X — R is a ring.
if we define f + g (resp. fg) as the function taking the value f(x) + g(x) (resp. f(x)g(x)) at all
elements = € X. The constant functions 0 and 1 provide the neutral elements.

Example 1.1.6 If X is a topological space, the set C'(X) of all continuous functions f : X — R
is a ring, with operations as in example is a ring.
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Example 1.1.7 If R is a ring, the set of polynomials R[X] is a ring, with 0 and 1 as constant
polynomials and operations

k=0

n m n+m k
<Z aiXi> : (Z ij]‘> => < ahbk_h) X"
i=0 §=0 k=0 \h=0

with a; = 0if i > nand b; = 0if j > m. Iterating, we get the polynomial rings R[ X1, ..., X,]| =
R[X1,...,X,-1][X,] and the ring of polynomials in infinitely many variables R[ X7, ..., X, ...].

n m max{n,m}
(Z al-Xi> + <Z ijj) = > (ar+be)X*; (setay=0if k> nand by =0if k > m)
i=0 j=0

Definition 1.1.8 If R and A are rings, a ring homomorphism is a map ¢ : R — A satisfying
plet+y) =w(@) +e); eley) =el)ply) Veye R o) =1,
An isomomorphism is a bijective homomorphism.

We leave it as an exercise to check that the composition of ring homomorphisms is a homo-
morphism.

Example 1.1.9 If R’ is a subring of a ring R, the inclusion R’ < R is a ring homomorphism.
E.g Z — Q — R — C are all rings homomorphisms.

Example 1.1.10 If Ris aring, X a set and =y € X, the map

F(X,R) — R
f — f(=o)

is a ring homomorphism.
Proposition 1.1.11 If ¢ : R — A is a ring homomorphism, then im ¢ is a subring of A.
Proof. Straightforward from the definitions. Notice 1 = ¢(1) € im ¢. O

Definition 1.1.12 A subset I C R of a ring is an ideal if (I, +) is a subgroup of (R,+) and
xy € [ forallz € Rand all y € I.

Proposition 1.1.13 If ¢ : R — A is a ring homomorphism, and J C A is an ideal of A then o=1(J) =
{x € R|p(x) € J} isan ideal in R. In particular ker p = ¢ ~1(0) is an ideal of R.

Proof. Indeed it is a subgroup and, forallz € Rand y € ¢~1(J) we have ¢(zy) = ¢(z)p(y) € J
because p(y) € J. O

For instance, if R is a ring and X a set, the set of all functions vanishing at some point
xo € X is an ideal, kernel of the homomorphism in example|1.1.10
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Proposition 1.1.14 If I C R is an ideal, the quotient R/I is a ring and the projection m : R — R/I
is a ring homomorphism. Any ring homomorphism ¢ : R — A such that I C ker ¢ factors uniquely
through a ring homomorphism @ : R/I — A:

R

~
®

R/I

Proof. Recall that R/ is the quotient group of R by the equivalence relationz ~ y <=z —y € I.
The relation is compatible with multiplication (x ~ y = zz ~ yz for all z € R, because
xz—yz = z(x —y) € Iif v —y € I) and so we can multiply classes in R/I: T -3 = Ty is
well-defined.

For any homomorphism ¢ : R — A such that ¢(y) = 0 for all y € I we have that p(z) = ¢(2')
whenever = ~ 2’. Thus (7)) = ¢(z) is well defined, and obviously a ring homomorphism. [

Example 1.1.15 For any ring R there is a unique ring homomorphism ¢ : Z — R defined by
©(1) =1 (hence p(n) =1+ ---+ 1 for all n € N). Its kernel is an ideal of Z. Hence ker p = mZ

for some integer m € N called the characteristic of R.

Example 1.1.16 If I = R, then R/I is the zero ring. In many arguments it will be necessary to
accept the whole ring as an ideal, and this one of the reasons for including the zero ring.

Proposition 1.1.17 An ideal I C R gives rise to a bijection

{Ideals in R containing /} — {Idealsin R/I}.

J
7 1(J) «—J
Proof. The two maps are obviously inverse to each other. 0

Definition 1.1.18 Let R be aring and S C R. The set (S) = {>; ss: | i € R, s; € S} (finite
sums) is clearly an ideal, called the ideal generated by S. An ideal is finitely generated if it
can be generated by a finite subset. For instance the set of all multiples of an element € R is
a principal ideal, denoted (z) or zR.

Definition 1.1.19 Let Rbe aring and z € R.
a) We say that z is a zero-divisor if zy = 0 for some y # 0.
b) We say that z is a nilpotent if 2™ = 0 for some n € N.

c) We say that x is a unit or invertible if xy = 1 for some y € R.

Remark 1.1.20 It is straightforward to check that the subset R* of invertible elements in a ring

is an abelian group with respect to multiplication. In particular, if x is invertible, the element

y € R* such that xy = 1 is unique and denoted y = 2~ ..
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Example 1.1.21 In Z/6Z, the element 2 is a zero-divisor, as 2 - 3 = 0, while 5 is a unit, since
5° = 1. In Z/AZ the element 2 # 0 is nilpotent, as 2° = 0.

Example 1.1.22 The partitions of unity show that the ring C'(R) has plenty of zero-divisors.
Definition 1.1.23 The nilradical of a ring is the set 91 of all nilpotent elements in R.

The nilradical is an ideal: if 2" = 0 = y™ then (z + y)" ™™ = 0™ 2ly"t ™~ = ( because in
every monomial at least one of the exponents is bigger than either n or m. Moreover, for every
z € R, clearly (zz)" = 2"2" = 2"0 = 0.

Remark 1.1.24 The set of zero-divisors in R is not an ideal in general, e.g. 2+3 =5 € (Z/6Z)*.
Definition 1.1.25 A domain is a ring in which the only zero-divisor is 0.

Example 1.1.26 The rings Z, Q, R and C are domains. If R is a domain, so is R[X]. A subring
of a domain is a domain.

Remark 1.1.27 The characteristic of a domain R is either zero or a prime number. Indeed if the
characteristic is m # 0, an equation m = ab in Z implies (a - 1)(b- 1) = 0 in R hence either
a-1=0o0rb-1=0.By definition of characteristic, either a € mZ or b € mZ, so either m = +a
or m = £b. Therefore m is an irreducible element in Z, hence prime.

Definition 1.1.28 A field is a ring in which every nonzero element is invertible.

Example 1.1.29 Q, R and C are fields. For p > 1, the ring Z/pZ is a field if and only if p is a
prime number: by Fermat'’s little theorem, ¥ = = mod p, so 77! = 2772 for T # 0. We shall
write F,, = Z/pZ and more generally I, for the field with ¢ elements.

Proposition 1.1.30 Let R be a nonzero ring. The following conditions are equivalent:
a) Risa field;
b) Any nonzero homomorphism ¢ : R — A is injective;

c) The only ideals in R are 0 and R.

Proof. a) = b) If x € ker ¢, x # 0 then 1 = 271z € ker ¢, hence ¢ is the zero homomorphism.
b) = ¢) If I C R is a proper ideal, 7 : R — R/I can’t be the zero map, so must be injective,
hence I = kerm = 0.

c)=a)lfz # 0, then xR # 0 hence xR = R and then 1 is a multiple of . O

Definition 1.1.31 A principal ideal domain, or PID for short, is a domain in which every ideal
is principal.

Example 1.1.32 Z is a PID. For any field %, the polynomial ring k[X] is a PID. Both statements
are easy consequences of the euclidean algorithm.
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Definition 1.1.33 An element x € R is irreducible if z ¢ R* and whenever x = yz in R then
either y or zis a unit. A domain is a unique factorisation domain, also called factorial, or UFD
for short, if every element can be written as a product of irreducible elements multiplied by a
unit, the irreducible factors being unique up to order and multiplication by units.

Example 1.1.34 Again, the euclidean algorithm shows that a PID is a UFD. Gauss’ lemma states
that if R is a UFD then R[X] is a UFD.

Remark 1.1.35 In corollary |6.1.13)we will characterise UFDs in terms of principal ideals.

PRIME AND MAXIMAL IDEALS

Definition 1.1.36 A proper ideal p C R is a prime ideal if for any two elements z,y € R such
that zy € p either z € pory € p.

Example 1.1.37 The ideal pZ is prime if and only if p is a prime number.

Proposition 1.1.38 Let R be a ring, p C R a proper ideal. The following conditions are equivalent:

a) p is prime;

b) R/p is a domain.
Proof. By definition 7 - j = Ty = 0 in R/p if and only if zy € p. O
Corollary 1.1.39 The zero ideal is prime if and only if R is a domain.

Example 1.1.40 If p is a prime number, pZ[X| C Z[X] is a prime ideal. Indeed, pZ[X] = ker,
where 7 : Z[X] — (Z/pZ) [X]is m(3 a; X?) = Y. @; X". Hence Z[X]/pZ[X] = (Z/pZ) [X]. The
converse does not hold in general: a classical example is R = Z[\/—5], where z = 1 + /=5 is
irreducible and 6 = 2(2 — z) € 2R even though 2,3 ¢ zR. However, if R is a UFD, then every
irreducible element z is prime: if yz = zt then z is an irreducible factor of either y or z.

Example 1.1.41 Let R be a domain. The ideal (X) C R[X] is prime, since R[X]|/(X) = R. If
X is a set, the set of all functions vanishing at some point zy € X is a prime ideal in F(X, R),
since the quotient is isomorphic to R.

Remark 1.1.42 Let R be a domain. We may call € R a prime element if 2R is a prime ideal.
A prime element is irreducible: if z = yz then either y or z belongs to zR; if y = xu for some
u€ R, then0 =2 —yz =x(1 —uz), henceuz = 1and z € R*.

Proposition 1.1.43 Let ¢ : R — A be a ring homomorphism. If ¢ C A is a prime ideal, then o1 (q) C
R is prime.

Proof. By proposition|1.1.14) R/¢~1(q) < A/q and the latter is a domain. O
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Definition 1.1.44 A proper ideal m C R is a maximal ideal if there is no proper ideal in R
strictly containing m.

In other words, if I C R is anideal such thatm C I C R, theneitherm =1 or I = R.
Proposition 1.1.45 Let R be a ring, m C R a proper ideal. The following conditions are equivalent:

a) m is maximal;

b) R/mis a field.

Proof. If m is maximal and = ¢ m then the ideal generated by m and « is R: there exist z € m
and y € R such that 1 = zy + z. Then 7 is invertible in R/m with inverse y. Conversely, if R/m
is a field consider m C I C R. If I contains an element = ¢ m, since z is invertible mod m there
existz e mandy € Rsuchthatl =xy+z2€ I,sol = R. O

Corollary 1.1.46 Every maximal ideal is prime.
Proof. Indeed the field R/m is a domain. a
Example 1.1.47 If p is a prime number, pZ C Z is a maximal ideal.

Example 1.1.48 Let k be a field. The ideal (X) C k[X] is maximal, since k[ X]/(X) = k. If X isa
set, the set of all functions vanishing at some point zy € X is a maximal ideal in F'(X, k), since
the quotient is isomorphic to k.

If o : R — Aisaring homomorphism and m C A is a maximal ideal, in general p~!(m) C R
is not maximal. For instance, consider the inclusion ¢ : Z < Q and ¢~1(0) = 0. However:

Proposition 1.1.49 Let ¢ : R — A be a surjective ring homomorphism. If m C A is a maximal ideal,
then ~1(m) C R is maximal.

Proof. Consider the diagram

¥

R—Y A A/m.
R
R/~ (m)

Since 1 o y is surjective, 1 o ¢ o 7 is surjective, thus v o ¢ is surjective. It is injective by propo-
sition|1.1.14! Hence R/p~!(m) ~ A/mis a field, so ¢! (m) is maximal. O

Maximal and prime ideals always exist. This is a simple application of Zorn’s lemma which
we now recall. A set X is partially ordered if it admits a reflexive and transitive relation < such

that
TEY o
y<zw -V

An element m € ¥ is maximal if the condition x > m implies x = m. A chainis a subset C' C &
such that for every z,y € C, eitherz < yory < z.
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Theorem 1.1.50 (Zorn’s Lemma) Let X be a partially ordered non-empty set. Suppose that for every
chain C C ¥ there exists an element s € X such that x < s for all x € C. Then ¥ has maximal
elements. X

Corollary 1.1.51 Let R be a nonzero ring. Then R contains a maximal ideal.

Proof. Let X be the set of proper ideals of R, partially ordered by inclusion. It is not empty
because 0 € X (proper, since 0 # 1). Let C' = {a,, } e be a chain in X. The set a = (J,,en a5, is an
ideal, because for all z,y € a we have z,y € a,, for a sufficiently large n, hence z + y € a,, C a
and zz € a, C aforall z € R. Moreover a is a proper ideal, because 1 ¢ a,, for all n. Hence
a € Yand a D a, for all a, € C. We can thus apply Zorn’s lemma to conclude that R has
maximal elements.

Corollary 1.1.52 Every proper ideal I C R is contained in a maximal ideal.

Proof. Recall proposition|l.1.17|and apply corollary(1.1.51|to R/I. O

Corollary 1.1.53 In a nonzero ring, every x ¢ R* is contained in a maximal ideal.

Proof. Apply corollary|1.1.52|to zR. O

Proposition 1.1.54 The nilradical is the intersection of all the prime ideals.

Proof. Clearly a nilpotent element belongs to every prime ideal. Conversely, let z € R be a
non-nilpotent element. We look for a prime ideal not containing x. Let ¥ be the set of all ideals
a C R such that 2™ ¢ a for all n € N. Since z is not nilpotent, 0 € X, which is thus non-empty.
Again, if C' = {a, }pen is a chain in ¥ then a = (J,cy 0, € X, hence X satisfies the assumption
of Zorn’s lemma. Let p € ¥ be a maximal element. We need to show that p is prime. If y, 2z ¢ p
then p is properly contained in (y, p) and (z, p), so these ideals are not in X: there exist integers
n,m € N and elements a,c € Rand b,d € p such that 2™ = ay +band 2™ = cz +d. If yz € p we
would get 2"t = acyz + (ayd + czb+ bd) € (yz,p) = p, which is a contradiction. O

Definition 1.1.55 The Jacobson radical is the intersection Ry of all the maximal ideals of R.
The Jacobson radical is clearly an ideal. Its elements can be characterised as follows:

Proposition 1.1.56 An element v € Rp ifand only if 1 — xy € R* forall y € R.

Proof. Let x € R such that 1 — zy is a unit for all y € R and let m be a maximal ideal. If = ¢ m,
then (z,m) = R: there exist y € R and z € m such that 1 = zy + 2. Hence m = R, because it
contains the unit z = 1 — zy. Conversely, if € R belongs to every maximal ideal, then for all
y € R and all maximal ideal m we have 1 — zy ¢ m, otherwise 1 € m. Corollary (1.1.53|implies
that 1 — xy € R*. O

Definition 1.1.57 A ring is local if it has a unique maximal ideal. A semi-local ring is a ring
with finitely many maximal ideals.
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Example 1.1.58 If pis a prime number and n > 1 an integer, Z/p"Z is a local ring, with maximal
ideal pZ/p"Z. Indeed, by proposition the ideals of Z/p"Z are in bijection with the ideals
of Z containing p", and by proposition this bijection preserves maximal ideals. We then
notice that pZ is the only maximal ideal in Z containing p". A similar argument shows that if k
is a field, k[ X]/(X™) is local.

Example 1.1.59 Z/6Z is a semilocal ring, with maximal ideals 2Z/6Z and 3Z/6Z. Indeed, by
propositions [1.1.17]and [1.1.49| the maximal ideals of Z/6Z are in bijection with the ideals of Z
containing 6: the only ones are 2Z and 3Z.

Proposition 1.1.60 Let R be a ring.
a) If a C R is a proper ideal such that R — a C R*, then R is local with maximal ideal a.

b) Let m C R be a maximal ideal. If 1 + x € R* forall x € m, then R is local.

Proof. a) Let a C I C R. If a # I, then I contains an element in R — a, i.e. a unit. Hence I = R,
thus a is maximal. It is the unique maximal ideal because any other ideal not contained in a
contains a unit.

b) Let b C Rbeanyideal. If b # m, lety € b, y ¢ m. By maximality, (y,m) = R. Write 1 = ay+«
for some a € R, x € m. Then ay = 1 — 2 € b is a unit, hence b = R. Therefore, every proper
ideal is contained in m. O

OPERATIONS ON IDEALS

Proposition 1.1.61 Let R be a ring, {I,}, a family of ideals. The intersection (", I and the sum
Yoola = {30 %a, Ta € Ia, o = 0 for all but finitely many a} are ideals of R.

Proof. We know that ", I, and N, I, are subgroups of R. For x € N, I, and y € R we have
yx € I, for all a because I, are ideals, hence yx € N, I. Similarly, for zo, € I,,,..., Za, € la,
we have yz,, € I,;, hence y(va, + -+ Ta,) = YTa;, + -+ + YZTa, € 3o Lo O

Proposition 1.1.62 Let I and J be ideals in a ring R. The set IJ = {> ;xyi, Vo € I,y € J} of
finite sums of products of an element in I by an element in J is an ideal, called the product ideal.

Proof. I.J is non-empty because it contains 0. The sum of two elements in I.J is again a finite
sum, hence in I.J. For any a € R we have a(}>; z;y;) = Y ;(az;)y; € IJ because all ax; € I. O

Example 1.1.63 Let RbeaPID, I = (z)and J = (y). Then I+J = (ged(z,y)), INJ = (lem(z,y))
and IJ = (xy). In particular, IJ = I N J if and only if ged(z,y) = 1.

Definition 1.1.64 Two ideals I, J C R are coprime or relatively prime if / + J = R.

Proposition 1.1.65 Let I and J be ideals in a ring R. Then 1J C I N J with equality if I and J are
coprime.
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Proof. The inclusion IJ C I N J is obvious from the definitions. Suppose I + J = R, write
l=z+ywithz € Tandy € J. Then for any z € I N .J, we have 2z € I and yz € J, hence
z=1lz=xz+4+yz e lJ. O

Corollary 1.1.66 Let ay,..., a, be ideals in a ring R. Then [[}—; a; C (iv, a; with equality if the
ideals are pairwise coprime: a; + a; = R for all i # j.

Proof. The inclusion is clear. By induction, let b = [[7-'a; = N a;. Fori € {1,...,n —1},
choose z; € a; and y; € a, such that z; +y; = 1. Then z = H?:_f T; = H;‘;ll(l —y;) =1+ yfor
a suitable y € a,, while by definition € b. The equation 1 = z + y shows that b and a,, are
coprime, hence []; a; = ba,, = b N a, = ;- a; by proposition [1.1.65 O

Definition 1.1.67 Let { R, }, be a collection of rings. The product abelian group [],, R, is a ring,
called the direct product, with multiplication (..., aq,...) (..., ba,...) = (..., aabq,...) and
1=(...,1,...). The projections 7, : [[o Ra — Rq are ring homomorphisms.

Notice that the injections Rg — [],, R are not homomorphisms, as they do not map 1 to 1.

Let ay,..., a, be ideals in a ring R.The projections m; : R — R/a; define a natural ring
homomorphism

v: R — [ R/a;.

(1.1) o (m(z), ..., m())

Clearly, ker ¢ = - a;. We can say more:

Corollary 1.1.68 (Chinese Remainder Theorem) The morphism ¢ in is surjective if and only
if the ideals a; are pairwise coprime.

Proof. If ¢ is surjective, for every i # j the composite map R — [[j-; R/a; — R/a; x R/aq;
is surjective too. Take x € R mapping to (1,0),i.e. + = 1 mod a; and z = 0 mod a;. Then
l=(1-2)4+x€a+aj

Conversely, if the a; are pairwise coprime, for i = 2,...,n choose z; € a; and y; € a; such that
z;i+yi =1 Theny =[]y € a;foralli € {2,... ,n}butalsoy = [[s(1 — z;) = 1 mod a4,
therefore p(y) = (1,0,...,0). Permuting the indices, we see that ¢ is surjective. O

THE PRIME SPECTRUM

It is fair to say that most of modern Commutative Algebra has been inspired or motivated
by Algebraic Geometry and Number Theory. Classically, Algebraic Geometry investigates the
properties of algebraic varieties, the loci in affine or projective spaces defined by systems of
polynomial equations. The zero locus of a polynomial in one variable over an algebraically
closed field % is just a finite collection of points in the affine line, the roots of the polynomial.
Any reasonable topology on the affine line should consider these loci as closed sets. There-
fore, if polynomials are to be continuous functions on the affine space k", the natural topology
should be the Zariski topology: open sets are complementary to finite unions of zero loci of
polynomials.
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Thus k[X1,...,X,] is viewed as the ring of continuous functions on a basic topological
space, the affine n-dimensional space. It was one of Grothendieck’s insights to jump from par-
ticular to universal and regard every ring R as the ring of continuous functions on a topological
space intrinsically attached to it, its spectrum Spec R. This conceptual breakthrough allows to
do geometry with arbitrary coefficient rings, not just algebraically closed fields, blending thus
Algebraic Geometry and Number Theory into Arithmetic Geometry.

Definition 1.1.69 Let R be a ring and I C R an ideal. The zero locus of I is the set Z(I) of all
the prime ideals in R containing /.

Example 1.1.70 In any ring R, we have Z(1) = @ (as all prime ideals are assumed to be proper
ideals) while Z(0) is the set of all prime ideals. If m C R is a maximal ideal, Z(m) = {m}.

Example 1.1.71 In R = Z we have Z ((30)) = {(2),(3), (5)}.

Example 1.1.72 In R = C[X, Y| wehave Z ((X)) = {(X); (X,Y —y) Vy € C}. Indeed, if X € p
and p is generated by some polynomials f;, we must have an equation X = g;, fi; +-- -+ g, fi,-
Taking degrees, we see that this is possible only if one of the generators is a nonzero scalar
multiple of X. If p # (X) then p/(X) is a non-trivial prime ideal of C[X,Y]/(X) ~ C[Y]. The
latter is a PID and its prime ideals are generated by irreducible polynomials, which have degree
1 by the fundamental theorem of algebra. Hence p = (X,Y — y) for a suitable y € C.

Proposition 1.1.73 Let R be aring, I, J and {1}, ideals.
a) If I C Jthen Z(J) C Z(I);
b) Z(IJ)=Z(I)JU Z(J);
) 230 1a) =Na Z21a).

Proof. a) is obvious from the definition. Since IJ is contained in both I and J, this proves
Z(IJ) 2 Z(I)U Z(J). On the other hand, if IJ C pand I € p,letz € I, x ¢ p. Since for all
y € Jwehavezy € IJ C pand x ¢ p, necessarily y € p. Therefore J C p, whence b).

¢) Any prime containing each of the I, contains their sum and conversely each I, is contained
in the sum, hence any prime containing the sum contains every I,,. 0

Definition 1.1.74 The spectrum of a ring R is the set Spec R of all prime ideals in R, equipped
with the Zariski topology in which an open sets are the subsets of the form Spec R — Z(I) for
some ideal I C R.

The sets Z([I) truly define a topology: the empty set and the whole space are both open and
closed by example [1.1.70} finite unions and arbitrary intersections of closed subsets are closed

by proposition|1.1.73

Proposition 1.1.75 A ring homomorphism ¢ : R — A determines a continuous map

@' : SpecA — SpecR.
q — ¢ '(q)

In other words, Spec is a contravariant functor from the category of rings to that of topological spaces.
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Proof. The map ¢* is well defined by proposition|1.1.43| If I C R is an ideal,

(¢) " 2(1) = {a € Spec A| #(a) € Z(D)}
= {q €SpecA| I C o '(q)}
= {q € Spec A| ¢(I) C q}
=Z (o))
Therefore ¢ is continuous. O

The correspondence between ideals in R and closed subsets in Spec R is not perfect: if
I C Ris an ideal, by proposition[1.1.73| Z(1%) = Z(I)U Z(I) = Z(I) but in general I # I°. This
prompts the following definition

Definition 1.1.76 Let R be a ring and I C an ideal. The radical of I is the ideal
VI={zeR|3neN, 2" €I}.
If I =1, we say that [ is a radical ideal.

To show that /T is indeed an ideal, one can either check it directly or notice that V0 = Ng.
In general, if 7 : R — R/I is the canonical projection, VI =nx1 (‘.TIR / I). It follows now from

propositions|1.1.17/and [1.1.54 that /T is the intersection of all the prime ideals containing I.

Example 1.1.77 Any prime ideal is radical. The ideal 6Z is a radical ideal in Z and v/12Z = 6Z.
We can thus refine proposition [1.1.73]a:

Corollary 1.1.78 If I and J are ideals, Z(J) C Z(I) <= VI C V/J.

Proof. Since Z(I) = Z(+/T), one implication follows from proposition|l.1.73la. If Z(.J) C Z(I),
every prime ideal containing J also contains I. Thus v'I = N;c, b C Nycp b = VJ. O

Remark 1.1.79 As a topological space, Spec R admittedly presents features that are far from
the intuition acquired by dealing with the standard real or complex topology. For instance it is
very much non-Hausdorff: if R is a domain, 0 is a prime ideal contained in the neighborhood
of every point. Points are not necessarily closed: again in a domain 0 is a point whose closure
is the whole space. In general, the closure of a point p € Spec R is

=2 ={a21}=Z(@).

ICp ICp

In particular, the closed points in Spec R are the maximal ideals. In classical Algebraic Geometry,
one only considers closed points. An affine algebraic variety over an algebraically closed field &,
classically defined as the set of points in the afine space £ whose coordinates are solutions to a
system of equations F(X1,...,X,) =0, ... F;,(Xy,..., X,) = 0, will be identified with the set
of closed points in Z(F1,...,Fy) C Speck[X1,...,X,], by means of Hilbert’s Nullstellensatz
(corollary [4.3.7).

However, as remarked just before proposition maximal ideals do not behave well with
respect to ring homomorphism and one only gets the whole picture by considering all prime
ideals i.e by working with schemes instead of varieties.

Remark 1.1.80 We have described the spectrum of a ring simply as a topological space. It has
in fact a richer structure, encoded by the extra datum of a sheaf of rings.
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§ 2 Modules

Definition 1.2.1 Let R be a ring. An R-module is an abelian group M equipped with a multi-
plication
RxM — M
(x,m) —xzm

such that the following relations hold for every =,y € Rand m,n € M:
(x+ym=zm+ym; z(m+n)=zm+zn;, (xy)m=az(ym); lm=m.

Definition 1.2.2 If M and M’ are R-modules, an R-module homomorphism, or an R-linear
map, is a group homomorphism f : M — N such that f(zm) = zf(m) for all z € R and
m € M. An isomomorphism is a bijective homomorphism. We shall write Modpg for the
category of R-modules.

Example 1.2.3 A vector space is a module over its field of scalars.
Example 1.2.4 Any abelian group is a Z-module.
Example 1.2.5 Any ideal I C R is an R-module.

Example 1.2.6 Let M be an R-module and f : M — M an R-linear endomorphism. We can
view M as an R[X]-module by the rule X - m = f(m).

Example 1.2.7 The abelian group Hompg(M, N ) of allhomomorphisms between two R-modules
is itself an R-module by declaring that, for any x € R and A € Homp(M, N), the element z\
is the homomorphism taking m € M to zA(m) € N. An R-linear map f : N — N’ induces
an R-linear map f. : Homg(M,N) — Hompg(M, N') defined by f.(A\) = Ao f. An R-linear
map g : M’ — M induces an R-linear map ¢* : Homg(M,N) — Hompr(M', N) defined by
g (A)=goA

Example 1.2.8 A ring homomorphism ¢ : R — A allows us to view every A-module as an
R-module by the rule z - m = ¢(z)m (sometimes simply written zm, even though ¢ is not
necessarily injective). We shall sometimes denote this module as ¢, (/). It is immediate to
check that this construction gives rise to a functor ¢, : Mod 4 — Modpg.

In particular, ¢ endows A with an R-module structure: we shall say that A is an R-algebra.

Definition 1.2.9 Let M be an R-module. A subset M’ C M is a submodule if it is a subgroup
and if zm’ € M’ for every z € Rand m’ € M.

Example 1.2.10 If f : M — N is an R-linear map, ker f is a submodule of M and im f is a
submodule of N.
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Proposition 1.2.11 If M' C M is a submodule, the quotient M /M is an R-module and the projection
m: M — M/M'is R-linear. Any R-linear map f : M — N such that M' C ker f factors uniquely
through a R-linear map f : M/M' — N:

M—1 N

8

M/M'

Proof. Recall that M /M’ is the quotient group of M by the equivalence relation m; ~ my <=
m1 —mg € M'. The relation is compatible with scalar multiplication (m1 ~ me = xmy ~ zmo
for all z € R, because xm; —xmg = x(m1 —mg) € M'if m; —mgy € M’) and so we can multiply
classes in M/M': x - m = Tm is well-defined.

For any linear map f : M — N such that f(m') = 0 for all m’ € M’ we have that f(m;) = f(mz2)
whenever my ~ my. Thus f(m) = f(m) is well defined, and clearly linear. O

Corollary 1.2.12 Let M be an R-module, P C N C M submodules. There is a canonical isomorphism
((M/P)/(N/P)) = M/N.

Proof. Let m : M — M/N be the projection. Since P C N = kerw, we get 7 : M/P — M/N.
Since 7 is surjective, T is surjective. Its kernel is easily seen to be N/P. O

Definition 1.2.13 Let f : M — N be an R-linear map. The R-module coker f = N/im f is called
the cokernel of f.

Example 1.2.14 If Ris aring and x € R, multiplication by z yields an R-linear map ji; : R - R
(not a ring homomorphism in general, since (1) = x) with cokery, = R/zR.

Definition 1.2.15 Let M be an R-module, N, P C M submodules. Their index is the set
(P:N)={xe€R: 2n€ P Vne N}.

It is immediate to check that (P : N) is an ideal. In particular (0 : N) = Ann (N) is called the
annihilator of N. For m € M, write Ann (m) for Ann (Rm).

Example 1.2.16 If I C Risanideal, I = Ann (R/I). Any R-module M = 7,(M) is naturally an
R/Ann (M)-module (via 7 : R — R/Ann (M)).

Definition 1.2.17 An R-module M is faithful if Ann (M) = 0. Anm € M is a torsion element
if Ann (m) # 0. We say that M is a torsion module if Ann (m) # 0 for all m € M. We say that
M is torsion-free if Ann (m) =0 forallm € M.

Example 1.2.18 The group Q/Z is a faithful Z-module, even though it is a torsion module.
If M is an R-module, let M;,s be the subset of its torsion elements. In general, it is not a

submodule (example: in M = R = Z/6Z the elements 2 and 3 are torsionbut 2+ 3 = 5isa
unit). However:



14 Basic notions

Lemma 1.2.19 If R is a domain and M an R-module, then My is a submodule.

Proof. If m1,ma € Mo, there exist 0 # x; € R such that z;m; = 0. Then z1z2(m1 + mg) =0
and T1T2 7& 0. ]

OPERATIONS ON MODULES

Proposition 1.2.20 Let M be an R-module, { M}, a family of submodules. The intersection (\, Ma
and the sum Y, My = {>" o Ma, Mo € My, mq = 0 for all but finitely many o} are R-modules.

Proof. We know that ", M, and N, M, are subgroups of M. For m € N, M, and z € R
we have zm € M, for all a because M, are submodules, hence zm € N, M,. In the same
way, for ma, € Ma,,..., Ma, € My, we have zm,, € M,;, therefore x(mqa, + -+ + mq,) =
TMay + -+ TMq, € >0 Mq. O

Proposition 1.2.21 Let M be an R-module, N, P C M submodules. There is a canonical isomorphism
(N+P)/N=P/(NNP).

Proof. Let f : P — N + P — (N + P) /N be the composition of the natural inclusion with the
projection mod N. Clearly every element in NV + P is congruent to an element in P mod N, so
[ is surjective. On the other hand, one computes ker f = N N P. From proposition we
get an isomorphism f. O

Definition 1.2.22 The sum of two submodules M;, My C M is a direct sum if My N M,y = {0}
and we write M; @& M, for such sums. Equivalently, every element in M; & M, can be written
uniquely as the sum of an element in each summand.

Definition 1.2.23 Let {)M,} , be a family of R-modules. Their direct product [, M, is defined
as the cartesian product of the M, equipped with the componentwise operations

(ooymay )+ Goeyml, )= ma +ml, . ) (oo yma,...) = (oo, xmeg,...).
Their direct sum @, M, is the submodule of all elements (..., mq,...) € [[o Ma such that
mq = 0 for all but finitely many «.

Example 1.2.24 As an R-module, the ring of polynomials R[X] can be seen as the direct sum
@Dnen R. The direct product [[,en R is the R-module underlying the ring of formal power
series R[[X]], whose product is defined by the rule

n=0 \k=0

(1.2) (2 aiX’) <§O ij]’> = i (i akbnk> X",

Notice that R[[X]] is not the direct product ring. The unit in R[[X]] is the series 1 +0+0+....
For later use, let us remark that the units in R[[X]] are given by the power series f = 3.2° a; X"
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such that ap € R*. Indeed, given such a series, we can construct a series g = Z]‘?‘;O b; X J such
that fg = 1 by solving recursively the system of equations in by, by, ... arising from (1.2):

aobo =1
apby +a1bg =0

aobn + albn_l +---+ anbo =0

each time the new variable b,, appearing with the invertible coefficient ag. In particular, if £ is
a field, k[[X]] is a local ring with maximal ideal (X).

Definition 1.2.25 A free module is a module isomorphic to a direct sum of copies of R.
Example 1.2.26 The ring of Gauss integers Z]i] is a free Z-module of rank 2, with basis 1 and .

Proposition 1.2.27 Let F be a free R-module with basis {e }. Let M be an R-module and {mq}q an
arbitrary set of elements of M. There exists a unique finear map f : F' — M such that f(eq) = mq.

Proof. Standard linear algebra argument. 0

Definition 1.2.28 An R-module ) is generated by elements {m }, C M if every element in M
is a finite R-linear combination of the {m }q, called generators. We shall say that M is finitely
generated if it can be generated by finitely many elements.

In view of proposition|1.2.27, an R-module M is finitely generated if and only if there exists
a presentation, i.e. a surjective map 7 : R” — M. Over arbitrary rings, is it useful to introduce
a more restrictive condition, requiring finiteness for the number of relations as well:

Definition 1.2.29 An R-module M is finitely presented if it admits a presentation 7 : R — M
such that ker 7 is a finitely generated module.

For R-algebras we use a slightly different terminology.

Definition 1.2.30 An R-algebra A is of finite type over R if it is a quotient of a polynomial
algebra R[X1,...,X,] for a suitable n. We say that A is a finitely presented R-algebra if it
admits a presentation 7 : R[X1,...,X,] — A such that ker 7 is a finitely generated ideal. We
say that A is finite over R if A is a finitely generated R-module via the natural map ¢ : R — A.

Clearly, a finite R-algebra is of finite type: take 1, ..., =, generating A as an R module and
get a presentation 7 : R[X1,...,X,| - Aby n(X;) = ;. Corollary [3.1.11|will tell us precisely
which R-algebras of finite type are finite.

Proposition 1.2.31 Let R be a ring.

a) For any R-module M, the map X\ — \(1) defines an isomorphism Homp(R, M) = M.
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b) For any R-modules My, Ms and N we have

Hompg(N, M; & Ms) = Homgr(N, M) ® Homg(N, M).

c¢) For any R-modules M, Ny and Ny we have

HomR(Nl @ No, M) = HomR(Nl, M) D HomR(Ng, M)

Proof. a) The map is injective, since if A(1) = 0 then A(z) = zA(1) = 0 for all x € R. Itis
surjective, because any m € M, the rule  — xm defines a linear map R — M.

b) Let w; : My & My — M; be the projection. Then f +— (7 o f,m o f) is readily seen to be an
isomorphism.

¢) Similarly, denoting i; : N; < N; @ N, the inclusions, the rule f — (f o iy, f 0i2) gives the
second isomorphism. O

THE CAYLEY-HAMILTON THEOREM AND NAKAYAMA’S LEMMA

Theorem 1.2.32 (Cayley-Hamilton) Let M be a finitely generated R-module, a C R an ideal and
[+ M — M an R-linear map such that f(M) C aM. There exists a monic polynomial p(X) € R[X]
such that p(f) = 0on M.

Proof. Choose generators my, . .., my, for M. By assumption, f(m;) € aM, hence the expressions
f(mj) = Y1 a;jm; define an n xn matrix A = (a; ;) with coefficients in a. As in example
view M as an R[X]-module letting X act as f. Notice that in M"™ we have

ma 0
(XIn — A) =

ma, 0

Multiplying on the left by the cofactor matrix we conclude that det(X 1, — A)m; = 0 for all ¢,
hence det(X1I, — A)ym =0 forallm € M. O

Remark 1.2.33 The proof shows that we can take p(X) to be the characteristic polynomial of a
matrix with entries in a. Hence, except for the leading one, the coefficients of p(X) are in a.

Corollary 1.2.34 Let M be a finitely generated R-module. An endomorphism f : M — M is an
isomorphism if and only if it is surjective.

Proof. Let f : M — M be a surjective map and view M as an R[T]-module where 7" acts
as f. Take a = (T') C R[T]: since f is surjective, aM = M. Applying Cayley—Hamilton to
id : M — M we obtain a polynomial p(X) = X" + a,1 X" ' + - + a1 X + ap € R[T][X]
such that p(id) = 0. By remark we have a; € (T) and evaluating in id we get that
(id —Tq(T)) M = 0 for a suitable ¢(T") € R[T]. Recalling that T" acts as f we have that fq(f) is
the identity on M, hence f is an isomorphism with inverse g(f). O

Corollary 1.2.35 Any minimal set of generators in R" is a basis and has cardinality n.
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Proof. Let mj...,m, be a minimal set of generators of R". By minimality, » < n. Define
f:R"— R"by f(e;) =m;fori=1,...,rand f(e;) = 0for j = r +1,...,n. By construction
f is surjective, hence an isomorphism by corollary|1.2.34 Therefore ker f = 0, hencer =n. [

Definition 1.2.36 Let )M be a finitely generated free R-module. The unique integer n such that
M ~ R" is called the rank of M.

Corollary 1.2.37 Let M be a finitely generated R-module, a C R an ideal such that aM = M. Then
there exists an element x € R, x = 1 mod a, such that xtM = 0.

Proof. Apply Cayley-Hamilton to f =id: M — M. O

Corollary 1.2.38 (Nakayama’s Lemma) Let M be a finitely generated R-module and a C R an ideal
contained in the Jacobson radical Rgr. Then aM = M if and only if M = 0.

Proof. If aM = M, by corollary we have 2 M = 0 for some z € 1 + a C 1 + RAp, hence, by
proposition(1.1.56, z € R* and therefore M = 0. O

Remark 1.2.39 The most common application of Nakayama’s Lemma, and of the following
corollaries, is to the case where R is a local ring and a = iR is the maximal ideal.

Corollary 1.2.40 Let M be a finitely generated R-module, N C M a submodule, a C Ry an ideal such
that M = aM + N. Then N = M.

Proof. We have a (M /N) = (aM + N) /N = M/N, hence M /N = 0 by Nakayama. O

Corollary 1.2.41 Let M be a finitely generated R-module, my, ..., my, € M and a C Rp. The the m;
generate M if and only if their classes generate M /alM.

Proof. Apply corollary(1.2.40[to N = (mq, ..., my,). O

EXACT SEQUENCES

Definition 1.2.42 A sequence of groups or R-modules and homomorphisms

fi

(1.3) oo —— M M; fir1 My, —— -

is exact in M; if ker f; 11 = im f;. We say the the sequence is exact if it is exact in each spot. A
short exact sequence is an exact sequence

0 M’ M M" 0.

Example 1.2.43 An injection M’ < M corresponds to an exact sequence 0 — M’ — M. Simi-
larly, a surjection M — M" gives rise to an exact sequence M — M" — 0.
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Example 1.2.44 If Risaringand I C R anideal, we have a short exact sequence of R-modules

0 I R R/I 0

Example 1.2.45 An R-module M is finitely generated if it fits in a sequence R — M — 0 for a
suitable integer n. It is finitely presented if it fits in an exact sequence R™ — R" — M — 0.

Remark 1.2.46 Any long exact sequence (1.3) can be broken into short ones:

0 im fl Mz ker fi+2 — 0.

Lemma 1.2.47 (Snake Lemma) Given a commutative diagram of R-modules with exact rows

f g

0 M’ M M 0
¢/l d)J/ (ZS//J(
0 N Y 3sN—23 N

(with optional exactness of the colored arrows) there exists an R-linear map 0 : ker ¢ — coker¢’

0 ker ¢/ ker ¢ ker ¢
0 M 0 5
0 N’ v N Y N”

™

coker¢/ —— coker¢p —— cokerg”
such that the sequence 0 — ker ¢ — ker ¢ — ker ¢” — coker¢) — coker¢) — coker¢” is exact.

Proof. Let z € ker ¢”. Choose y € M such that g(y) = z. Since v(¢(y)) = ¢"(z) = 0, we can take
z € N’ such that u(z) = ¢(y). Define 6(z) = 7(z) € coker ¢. We leave it as an exercise to check
that this procedure really defines a map (i.e. doesn’t depend on the choices), that § is R-linear
and that the 6-term sequence is exact. O

Remark 1.2.48 The arguments employed to define the map ¢ are fairly common in commuta-
tive and homological algebra and go under the self-explaining name of diagram chasing.

Proposition 1.2.49 A sequence of R-modules 0 — M’ L M L5 M is exact if and only if
0 — Hompg(N,M") ELN Hompg(N, M) 25 Homp(N, M") is exact for every R-module N.

A sequence of R-modules M’ Ly M 2 M7 — 0 ds exact if and only if the induced sequence
0 — Hompg(M",N) 9, Hompg(M,N) EAN Homp(M', N) is exact for every R-module N.
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Proof. Let N : N — M’ be an R-linear map. To say f o X = 0 means f (A\'(n)) = 0 foralln € N.
Since f is injective, this means \'(n) = 0 for alln € N, i.e. f, is injective.

Clearly g« o fx = (9o f)« = 0. = 0soim f, C kerg,. If go A = 0 for some A : N — M, then
A(n) € ker g = im f for all n € N. There exists thus an R-linear 1 : N — M’ such that A = f o p.
The proof of the second statement is analogous and left as an exercise. O

Definition 1.2.50 Let R and A be rings. A functor ' : Modr — Mod 4 is
a) additive if F(M & N) = F(M) & F(N). Moreover, we require F'(0) = 0.

b) left—exact if it is additive and for every exact sequence 0 — M’ L M L M7 of

R-modules, the sequence of A-modules 0 — F(M’) ) F(M) g F(M") is exact.

c) right—exact if it is additive and for every exact sequence M’ Ly M S M — 0 of

R-modules, the sequence of A-modules F'(M’) ) g (M) ) g (M") — 0 is exact.

d exact if both left and right-exact.

We can thus rephrase proposition [1.2.49| saying that Homg(N,—) : Modr — Modp is a
left-exact functor.

Definition 1.2.51 A splitting of an exact sequence is a homomorphism o such that goo = idps»

0 M’

An exact sequence admitting a splitting is called split exact.

Lemma 1.2.52 A splitting of an exact sequence of R-modules 0 — M’ LM L M — 0
induces an isomorphism M ~ M' & M".

Proof. Let o be a splitting of the sequence. The sum M’ + im ¢ is direct: if o(m”) € M’ =kerg,
then m” = g(o(m”) = 0. The injection M’ @ imo C M is an equality: every m € M can be
written as [m — o ((g(m))] + o ((g(m)). O

Proposition 1.2.53 An exact sequence of R-modules 0 — M’ LM S M — 0 splits if and
only if g. : Homp(M", M) — Homp(M", M") is surjective.

Proof. If g, is surjective, any map o : M” — M such that g.(c) = g o 0 = idy splits the
sequence. Conversely, if o : M"” — M splits the sequence, for any h € Homp(M", M") the map
ogoh: M" — M satisfies g.(0 o h) = g o o o h = h, hence g, is surjective. O
Corollary 1.2.54 If o : M" — M splits the exact sequence 0 — M’ Ly M L M7 — 0, then
any other splitting o’ is of the form o’ + X for a suitable \ € Homp(M", M").

Proof. The set of splittings is g, *(idy#) C Hompg(M", M). The claim now follows from propo-
sition [1.2.49] O

One says that the set of splittings of 0 - M’ — M — M" — 0, if non-empty, is an affine
space, or principal homogeneous space or torsor under Homp(M", M’).
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Definition 1.2.55 An R-module P is projective if for every surjection 7 : M — M" and every
homomorphism f : P — M" there exists a homomorphism f : P — M such that f = 7o f.

p—Lsmr
M

An R-module Q is injective if for every injection ¢« : M’ — M and every homomorphism
g : M’ — @ there exists a homomorphism g : M — Q such that g = go..

M -2

s

g
M

Example 1.2.56 A free module is projective, as follows easily from proposition

Example 1.2.57 Q is an injective Z-module. Let ¢ : M’ — M and g : M’ — Q. Consider the set
Y. of submodules M’ C N C M such that g extends to gy : N — Q. Declare (N, gn) < (N, gnv)
if N C N’ and gy extends gy. The set 3 is non-empty (it contains M’) and if {(N;, gn;,)}, is a
chain in ¥ then | J; N; is in ¥. Hence ¥ satisfies the conditions of Zorn’s lemma. Let (N, gn) € ¥
be a maximal element: we want to show that N = M. If z € M — N then N +Zx ¢ X. Consider
the index ideal (N : N + Zz) = aZ C Z. If a # 0, the rule §(z) = 1gy(az) € Q defines an
extension of gy to N + Zax, which is a contradiction. If a = 0, the sum N + Zzx is direct and
g(x) = 0 also defines an extension, so again we get a contradiction.

Proposition 1.2.58 Let P be an R-module. The following conditions are equivalent:
a) P is projective;
b) m: Homp(P, M) — Hompg(P, M") is surjective for every surjection = : M — M";
c) For every presentation F' L PwithFa free module, Homp(P, F) 25 Hompg(P, P) is surjective;
d) P is a direct summand of a free module;

e) Every surjection q : M — P admits a splitting.

Proof. The imr lications a) <= b) == c) are obvious. For c) = d) apply proposition|1.2.53|and

lemma [1.2.52|to a presentation 0 — kerp — F' 25 P — 0 with F a free module.
For d) = e), choose a presentation p : ' — P with F' free and consider the diagram

_F
P l
p
L'q
M—»P

where p exists because F' is free and thus projective. Then any splitting o : P — F of p yields a
splitting p o o of q. The implication e) = d) is now obvious.
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For d) = a), again choose a presentation p : F' — P with F free and consider the diagram

o

Kp f "
F——P——M

fop T

M

—

to get a lifting (f op) o o of f. g

Example 1.2.59 Let R = Z[y/—5] and a = (2,1 + /=5). The R-module a is not free: the gen-
erators are not a basis, since 3 -2 = (1 + v/=5)(1 — v/=5). We shall see in theorem that
if a were free, it would be principal. The element 1 + /=5 is prime: if z = a + by/=5 divides
1 + /=5 then |z|> = a® + 5b? must divide |1 + /=5|> = 6, but a® + 5b* = 2 and a? + 5b® = 3
have no solutions a,b € Z. So if a were free, it would have to be generated by 1 + /=5, which
would then divide 2, but then 6 would divide |2|> = 4. However a is projective: take p : R? — a
defined by p(e1) = 2 and p(ez) = 1 + v/—5; a splitting is given by 0(2) = —2e; + (1 — v/—5)es,
o(l+ \/j5) =—(1+4+ \/j5)e1 + 3es.

TENSOR PRODUCTS

Definition 1.2.60 Let M, N and P be R-modules. Amap f: M x N — P is bilinear if f(z,y)
is R-linear in z for any fixed y € N and R-linear in y for any fixed = € M. The set of bilinear
maps M x N — P is denoted Bilg(M x N, P).

The set Bilg(M x N, P) is an R-module by declaring that af is the map (z,y) — af(z,y)
forall « € R.

Theorem 1.2.61 For every M, N € Modg, the functor Bilg(M x N,—) : Modr — Modgp is
representable.

Proof. The statement means that there exists an R-module 7" equipped with a bilinear map
b: M x N — T satistfying the following universal property: for every R-module P and bilinear
map g : M x N — P, there exists a unique R-linear map f : 7' — P making the following
diagram commute:

M x NLZ(P
7

Let F be the free R-module generated by M x N': its elements are thus finite sums >; «;(zi, vi),
witha; € R, x; € M and y; € N. Let S C F be the submodule generated by the elements

(14) (z+a2,y)—(z,9)—(2",y); (v, y+y)—(z,9)—(2,9); (az,y)—al(z,y); (z,ay)—a(z,y)

forall z,2’ € M, y,y’ € Nand a € R. SetT = F/S, write x ® y for (z,y) mod S and define
b(z,y) = = ® y. It is now immediate to check that (7', b) satisfies the required propreties. O
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Definition 1.2.62 By corollary the R-module representing Bilg(M x N, —) is unique up
to unique isomorphism: we call it the tensor product of M and IV and denote it M ®g N.

Remark 1.2.63 A pair of linear maps f : M — P and g : N — @ defines a bilinear map

fxg:MxN —P®orQ
(z,y) +— f(z)®g(y)

whence an R-linearmap f ® g: M g N — P ®r Q.

S

Example 1.2.64 Z/nZ ®7,Q = 0:indeeda® . =a® 2

nc

=ma® =002 =000L=0®0.

Proposition 1.2.65 For every M, N, P € Modg, there are canonical isomorphisms

M@rN — NQ®rM (M®rN)@r P — M ®r(N®grP)
Ry —yer (z@y)®z — 10 (Y :2) ’
(@QMQ)®RN —>®a(Ma®RN) . RopM — M
(cosay ) QY — (2 @Y, ) ] a®r —azxr’

Proof. One should first show that these maps are well defined and then check that they are
isomorphism. For instance the map M x N — N x M given by (z,y) — (y, ) is very clearly
bilinear, hence so is the composition M x N — N®pr N whence a linear map M®rN — N@grM.
Itis an isomorphism because we can construct the inverse map NQrM — M®rN, yQ@z — z®y
in a similar way. The rest of the proof is an exercise left to the reader. 0

Remark 1.2.66 The second isomorphism in proposition[1.2.65|(associativity of the tensor prod-
uct) allows to write without ambiguity the tensor product M; @ My ®p - - - ®r M,, of several
modules. Notice that the latter represents the functor Modr — Modp, taking P to the module
of multilinear maps My x My x - x M, — P.

Definition 1.2.67 Let M be an R-module, ¢ : R — A an R-algebra. Then A ®r M is an A-
module, called extension of the scalars from R to A by setting a - (b ® m) = ab® m.

Example 1.2.68 It follows from the isomorphisms in proposition(1.2.65|that A ®p R™ = A™. If
M (m x n, R) is the module of m x n matrices with coefficients in R, then A @r M(m x n, R) =
M(m x n, A).

Definition 1.2.69 Let A and B be rings. An (A, B)-bimodule is an abelian group N equipped
with an A-module structure and an B-module structure such that (a-4z) -pb=a-4 (x-pb) for
alla€c A,be Band z € N.

Example 1.2.70 Let ¢ : R — Aand ¢ : R — B be two R-algebras. Then A @y B is an (A, B)-
bimodule. Notice that A ®r B has a ring structure: the map

AxBxAxB — A®grB.
(a,b,a’,b') — ad’ @ by
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is multilinear in the four variables, whence an R-linear map A ®r B ®r A®r B - A®r B,
a®b®d @V — ad’ ® b’ which in turn corresponds to an R-bilinear map

(A@RB) X (A(X)RB) —)A@RB
(a®b,d @) — ad @ bY
easily seen to satisfy the axioms or ring multiplication, with unit 1 ® 1. Beware that A ®r B
could be the zero ring, as in example
The special case A ®r A will play a crucial role in § 1.3 (algebraic differential calculus) and es-
pecially in § I1.2 (descent theory). It is worth remarking that A @z A has several non-equivalent

A-module structures, chief among them theright a- (2 ®y) = ar®@yandlefta- (2 ®y) = r®@ay
structures.

Proposition 1.2.71 Let M be an A-module, P an B-module and N an (A, B)-bimodule. There is a
canonical isomorphism
(M®AN)@g P — M®4 (N ®p P)
Ry ez —re(ye:)

Proof. Tedious exercise left to the reader. X

Corollary 1.2.72 Let M be an R-module, ¢ : R — R’ an R-algebra and ¢ : R' — R" an R'-algebra.
There are canonical isomorphisms

R'"®p (R @r M) = (R"®r R')9r M = R" ®p M.
Proof. The isomorphism to the left is given in proposition the one to the right is the last
in proposition U
The following result establishes the crucial relation between the Hom and ® functors:
Lemma 1.2.73 Let M, N and P be R-modules. There is a canonical isomorphism
®: Homp(M ®g N, P) =2 Hompg (M, Homg(N, P)).

Proof. Let f : M ®r N — P be a linear map. By construction, it corresponds to a bilinear map
g : M x N — P: by definition, for every fixed m € M, the map g(m,—) : N — P is linear. The
rule ®(f) = [m — g(m, —)| clearly defines a linear map ®. Conversely, if A : M — Hompg(N, P)
is a linear map, the rule (m,n) — (A(m)) (n) defines a bilinear form M x N — P, whence a
linear map ¥(\) : M ® g N — P. One checks easily that ¥ is inverse to . O

Definition 1.2.74 Let ¢ and © be categories. Two functors L : € — ® and R : ©® — ¢ are called
adjoint if for every pair of objects C'in € and D in © there is a bijection

Homg (L(C), D) 2 Homg (C,R(D)) .
“functorial” in C'and D i.e. forevery f : C — C’, g : D — D’ the following diagram commutes:

Homs (L(C"), D) Y5 Homs (L(C), D) —%— Homs (L(C), D')

(15) | | |

Home (C',R(D)) —L— Home (C,R(D)) 2% Home (C, R(D')).

We say that L is left adjoint to R and that R is right adjoint to L.
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Remark 1.2.75 If L : € — ® and R : ©® — ¢ are adjoint functors, then R°P : ©°P — €°P and
L°P : €°P — D°P are also adjoint, with R°P left adjoint and L°P right adjoint.

We can rephrase lemma|1.2.73|by saying that L(—) = —®gr N is adjoint to R(—) = Hompg(N, —)
(the verification of diagram (1.5) is left to the reader).

Proposition 1.2.76 Let A and B be rings, L : Mods — Modp and R : Modp — Mody two
adjoint additive functors. Then L is right exact and R is left exact.

Proof. Let M'— M — M"— 0 be an exact sequence of A-modules. By proposition|(1.2.49, for
every B-module N the top sequence in the following diagram is exact

0 —— Homu (M",R(N)) ——s Homa (M,R(N)) —— Homu (M, R(N))

| | |

0 —— Homp(L(M"),N) —— Homp (L(M),N) —— Homp (L(M'),N).

The diagram is commutative and the vertical arrows are isomorphism, so the bottom row is
also exact. Again by proposition we conclude that L(M')— L(M)— L(M)"— 0 is
an exact sequence of B-modules, hence L is right-exact. We now get for free that R°P is right-
exact: for every exact sequence N'— N— N'— 0 in Mod‘fgp (i.e. for every exact sequence
0 — N'— N— N” of B-modules) the sequence R°°(N")— R°P(N)— R°?(N’') — 0 in
Mod} (i.e. the sequence 0 — R(N')— R(N)— R(N")) is exact. Thus R is left-exact. O

Corollary 1.2.77 If N'— N— N"— 0is an exact sequence of R-modules, then for every R-module
M the sequence M @ g N'— M @ g N— M ®p N"— 0 is exact.

Corollary 1.2.78 Let M be a finitely generated (respectively presented) R-module and ¢ : R — A an
R-algebra. Then A @ g M is a finitely generated (resp. presented) A-module.

Proof. Take a presentation (R"™ —) R" — M — 0, apply A ®r — and use example|1.2.68, [

Example 1.2.79 The functor M ®pr — is not always left-exact: tensoring 0 — Z — Qby Z/nZ
we get the sequence 0 — Z/nZ — 0 which is far from being exact.

Definition 1.2.80 An R-module MM is flat if the functor M ® — is exact. A ring homomorphism
¢ : R — Aisflatif it makes A into a flat R-module. We shall say then that A is a flat R-algebra.

Example 1.2.81 Q is a flat Z-algebra: this is a special case of a statement we shall prove later,
corollary[2.1.21} A free module is flat, since (., R) ®r M = P, M.

Remark 1.2.82 If ¢ : R — R’ is a flat R-algebra and ¢ : R* — R” a flat R'-algebra, it follows
immediately from corollary|1.2.72|that R” is a flat R-algebra via 1) o . Notice however that it

may happen that ¢ and 1 o ¢ are flat but v is not. For example take ¢ : R — R[X] the inclusion
and ¢ : R[X] — R = R defined by ¢(X) = 0. Then ¢ is flat (R[X] is free) and ¢ o ¢ = idr but

R®py |0 — XR[X] — R[X] % R — 0| =0 — R&px) XR[X] — R R —0

is not exact, since R ®@p[x) X R[X] # 0.
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Proposition 1.2.83 Let M be an R-module. The following conditions are equivalent:
a) M is flat;
b) for every injection f : N' < N the map idy; ® f : M @r N' — M ®pr N is injective;

c) idy®f: M®rN — M ®pg N is injective for every injection f : N' < N between finitely
generated R-modules;

d) for every ideal I C R the multiplication map

IQr M — M
TR m +——>xTm

is injective.

Proof. The implications a) = b) = ¢) are obvious. For b) = a), if — N’ TN 2 N
is exact, tensoring by M the exact sequence 0 — im f — kerg — 0 we get an injection
im (idpy @ f) C ker(idpyr ® g), and in fact an isomorphism, since M ®@pr — is left-exact anyway.
b) = d) follows by tensoring by M the sequence 0 — I — R and recalling that the multi-
plication R ® g M — M is an isomorphism.

c)=>b): let f : N — N be aninjectionand z = Y ; m;®n; € keridy;® f,i.e. >; m;® f(n;) = 0.
Let N be the R-submodule of N’ generated by the n;. Recall from theorem[1.2.61|that M @ N
is the quotient of the free module on M x N by the submodule S generated by the relations
(T.4). Hence Y";m; ® f(n;) = 0in M ®@p N means Y ;(m;, f(n;)) € S. Write 3;(my, f(n;)) =
>jajsj, with a; € R, s; € Sand let Ny C N be the submodule generated by f(/NVg) and the N-
components of the s;. By construction, yg = >°; m;® f(n;) = 0in M ®r Ny because Y, (m;, f(n;))
is in the corresponding submodule generated by the relations (1.4). The restriction f : Nj < No
is an injection of finitely generated R-modules, hence idy® f : M®@pr Ny — M ®prNy is injective.
It maps o to yo = 0, thus zp = 0 and so its image € M ®r N’ vanishes too.

d) = ¢): let f : N’ < N be an injection of finitely generated modules. Suppose first that N is
free of rank r. If r = 1 the statement is precisely condition d). We proceed by induction on 7:
write N = Ny & Ny with N; free of rank r; < r and consider the diagram

0 N{ N’ > Né 0
(1.6) f1l fl f2J
0 N1 N N 0

where N{ = f~1(Ny), fi is the restriction of f, N}, = N’/Nj and f, the induced map. A simple
diagram chase shows that f> is also injective. By inductive assumption idy; ® f; are injective,
so the snake lemma applied to diagram tensored by M shows that idy; ® f is injective too.
If N is an arbitrary finitely generated R-module, pick a presentation 7 : R” — N and consider
the diagram

0 —— kerm —— 71 (f(N')) N’ 0
(1.7) J fl
0 —— kerm —— R" u N 0

where ¢ is the inclusion. Tensoring (1.7) by M, we have idy ® idyer » = i@ pker = and idpr & ¢
is injective by the free case just treated. By the snake lemma we conclude ker (idy; ® f) = 0. O
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Proposition 1.2.84 Let R’ be R-algebra, M and N two R-modules. There is an R'-linear map
Iun: R @ Homg(M,N)— Homp (R @ M,R ® N).
It is an isomorphism if R’ is flat over R and M is a finitely presented R-module.

Proof. The map A — idp @\ defines a homomorphism Homp(M, N) — Homp (R'@M,R'@N)
of R-modules, whence an R-bilinear map R’ x Homp(M,N) — Hompr (R' ® M, R’ ® N) given
by (z,A) — 2 ® A. This induces the map )/, in the statement.

By proposition[1.2.31jwe have Homgr(R",N) = N @& --- & N, hence Ugn y is an isomorphism.

Suppose now that that R’ is a flat and M has a finite presentation: R™ — R™ — M — 0.
Applying the Hom functor to this sequence, we obtain the following commutative diagram,
where M’', N’ stand for R @ M and R’ @ N

0 —— R'® Homp(M,N) —— R' ® Hompr(R",N) —— R'® Hompr(R™,N)

19]\,1,NJ/ ﬂRn’NJ( ﬁR"L’]\/IJ/

0 —— Homg(M',N') —— Homg(R'",N') —— Homgr(R'™, N').

The diagram has exact rows and the maps Ygn y and Jrm y are isomorphism. A little diagram
chase shows that 9,/ x is an isomorphism. O

§ 3 Differentials

Definition 1.3.1 Let ¢ : R — A be a ring homomorphism and M an A-module. An R-derivation
d: A — M is an R-linear map satisfying Leibnitz rule:

d(zy) = zdy + ydz.
We denote Derr (A, M) the set of all R-linear derivations A — M.

Notice that Derg(A, M) is an A-module: for a € A and d € Dergr(A, M), define ad : A — M as
(ad)z = a(dx).

Proposition 1.3.2 The functor Derg(A, —) : Mod 4 — Mod 4 is representable. In other words, there
exists and A-module ), /g and an R-linear derivation d,p, (the universal element, see remark
such that for every A-module M and every R-derivation 0 there is a unique A-linear map 1 such that
d=41o0 dA/R"

0

(1.8) A—" M
dA/RJ 19'
L

A/R
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Proof. Let F be the free A module generated by the elements dz, for all x € A. Let S C F be the
submodule generated by the relations

dlx +y) —de —dy; d(ax)—adr; d(zy) — zdy — ydzx Va,ye A, Vae R.

Put Q}4/R = F/S. Letdygp: A—F — Q}4/R be the map = — dz mod S. By construction d 4,
is an R-derivation and for every derivation § : A — M, one checks that ¥(dz) = d(z) is a well
defined map making diagram (1.8) commute.

Definition 1.3.3 The pair (Q} /Ry r) is called the universal module of differentials.

Notice that as a consequence of the construction in proposition the A-module Q}, ,, is
generated by the image of d4/r. When there is no risk of confusion, we will write d4 or just d
instead of d4 /.

Example 1.3.4 If A = R[X, ..., X, then Q) /r = @i=1 AdX;. Indeed by Leibnitz rule we have

LIS ‘¢ ¢ " QF
XV, X)) = Lt g, F =
d(X} ") gu % X = d ;8&

dX; VFeR[X1,..., X,

Therefore Qi‘ /R is generated by dXj, ..., dX,, whence a surjection 7 : A" — 9114 /R The map

V:A — A"
F H(g)gl""’aa)?n)

is clearly an R-derivation, whence an A-linear map 9 : Q} /r — A". One checks immediately
that ¥ is an inverse to .

Example 1.3.5 Let A = R[X;,...,X,]/(F1,...,F,), and denote by x; the image of X; in A.
Since F; = 0in A, necessarily dF; = d0 = 0 in Qh /R from example we get that 9114 /R is
the quotient of @, Adz; by the submodule ( o g—ﬁé(ml, o Tp)dr |1 <5< m) Therefore

if A is an R-algebra of finite type, Q4 /r is a finitely generated A-module.

Example 1.3.6 If K is a field and L a finite separable extension, then Qi K= 0. Indeed, by
Abel’s theorem there exists a separable polynomial f(X) € K[X] such that L ~ K[X]/(f). By
example m Qr /K is the L-vector space generated by dz modulo the relation f'(z)dx, and by
the separability assumption, f'(z) € L*.

Example 1.3.7 If K is a field of characteristic p > 0 and L = K[X]/(f) a monogenic inseparable
extension. Then 2} /i = L. Indeed, since f is inseparable, f (X) = g(XP) for some g € K[X].

By example Qr /K is the L-vector space generated by dx modulo the relation f'(z)dz, and
f(x) = paP~1g'(aP) = 0.

Remark 1.3.8 There is an alternative construction of the module 9}4 R Letpy: A®r A — Abe
the multiplication map p(z®y) = xy. Then I = ker(p) is the submodule of A®r A generated by
the elements 1®x—xz®1 forall z € A. Indeed, we can write z®y = zy®1+ (2®1)(1Qy—y®1).
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By definition, an element 3, x; ® y; is in [ if and only if >, z;y; = 0 and thus Y, z; ® y; =
iz o) (1®y —y; ®1).
The quotient I/I?isan A ®r A/I = A-module and the R-linear map

d:A —I/I?
r — 1z —2®1mod I?

is a derivation, since 1@ zy —zy®1=(z®1)(1y—-y® 1)+ (1®y)(l1®x —x ® 1). The fact
that (I/1%, d) satisfies the universal property (1.8) is proven in exercise[1.23]

If R — R’ is a ring homomorphism, let A’ = R’ ® A, viewed as an A-algebra via the map
A — A givenbya— 1®a

Proposition 1.3.9 The map A’ © 4 QY /R Ql, pr §iven by x ® dy — xd(1 ®y) is an isomorphism.
Proof. The composition A — A" — Q, /g is an R-linear derivation, whence an A-linear map ¢

dA’/R’

A A Qe
R
dA/RJ 19 '
Q/r

given by ¥(dy) = d(1 ® y). This induces the A’-linear map in the statement. On the other hand,
tensoring d 4, by A’ we get an R'-derivation A’ = R' ®r A — A’ ®4 (2114 IR whence

A/ idR’®dA/R ’

R
dA’/R’ v ‘1'9/

Q}4//R/

®a Q}4/R'

Since ¥/ (d(1 ® y)) = dy for all y € A, we see that ¥’ is the inverse of 9. O

Proposition 1.3.10 (First fundamental sequence) Let ¢ : R — Aand ¢ : A — B be homomor-
phisms. The following sequence of B-modules is exact:

B®AQ}4/R — Q}B/R —2 Q}B/A —— 0
where v(b® da/r(a)) = bdp/r(Y(a)) and u(dp/r(b)) = dp/a(b).

Proof. It is obvious that u is surjective and that u o v = 0. To check exactness in the middle we
may apply the functor Homp(—, N), for all B-module N. We have a commutative diagram

Homp(y 4, N) —— Homp( 5, N) —— Homp(B @42}, p, N)

| - :

Dera(B,N) —— Derg(B,N) —2 Derp(A, N).
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and the map « is the composition of the isomorphism Homp (B®AQ5/R, N) = Homyu (Qi‘/R, N)
given in exercise with the natural identification Hom 4 (€2} oV ) = Dera(A, N). Since the
vertical arrows are isomorphisms, it suffices to check exactness of the bottom row. But this is
clear: ¢, (6) = d oy = 0 means (d o ¢)(a) = d(¢¥(a)) = 0 for all @ € A and this is equivalent to
saying that the R-linear derivation § is A-linear. O

Corollary 1.3.11 The first fundamental sequence can be extended by a 0 on the left if and only if every
R-linear derivation § : A — N with values in a B-module N can be extended to an R-linear derivation
0:B— N.

Proof. This is a byproduct of the proof of proposition [1.3.10t v is injective if and only if ¢* is
surjective. O

Corollary 1.3.12 Let k C K C L be fields, with L/ K finite separable. Then v : L @ Q%(/k: — Qi/k
is an isomorphism.

Proof. Qf ,;r = 0 by example so v is surjective. Let’s check that the condition of corol-
lary [1.3.11] is satisfied. By Abel’s theorem, L ~ K[X]/(f) for some f = Y7 ja; X' € K[X]
separable and write x for the image of X. Let 6 : K — N. If it can be extended, by Leibnitz rule

n n

0=0(0)=0d(f(z)) = 6dla)z’ +> iaa"1o(x) = 6(a;)z’ + f'(x)d().

=0 i=1 =0
Since f'(z) # 0, this formula can be reversed to define d(z) = —(f'(z)) " (X1 6(a;)z?). Itis
now easy to check that this defines a derivation ¢ : L — NN extending 6. O

Corollary 1.3.13 If ¢ : A — B is surjective, Q}B/A =0.

Proof. 1f ¢ is surjective, v : B ®a )y, — Qp/p is surjective because Q1 is generated by the
elements db. 0

If 1 is surjective, we can continue the sequence. If B = A/.J, then J/J?isa B = A/J-module.

Proposition 1.3.14 (Second fundamental sequence) Let B = A/J. The following sequence of B-
modules is exact:
J/J? —— B®y Qh/R SN Q}B/R — 0

where w(a mod J?) = 1 ® da.

Proof. Let’s first check that w is well defined. Indeed, if z,y € J C A then 1 ® d(zy) =
l®zdy+1®@ydr =¢(z) @ dy + YP(y) ® de = 0, since () = ¥ (y) = 0.

The surjectivity of v is given in corollary To check exactness, we may again apply
Homp(—,N) to get

Homp (5, N) —— Homp(B®©4Qlp, N)  ——  Homp(J/J? N)

(1.9) % lg lg

Derg(B, N) SN Dergr(A,N) festriction, Homy(J,N).
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Notice that if 6 : A — N is an R-derivation, its restriction to J is A-linear because N is a
B = A/J-module: for a € A and x € J we have §(ax) = ad(z) + zé(a) = ad(x). The map
B is an isomorphism by exercise so it suffices to check exactness of the bottom row. But
d(z) =0forall z € Jifand only if 6 : A — N factors through A/J = B. O

Corollary 1.3.15 If A is an R-algebra of finite presentation, QY / 1s a finitely presented A-module.

Corollary 1.3.16 Let k bea field, ¢ : k — Aalocal k algebra with maximal ideal m such that A/m ~ k.
Then w : m/m? — k ®4 Qi‘/k is an isomorphism.

Proof. Under these assumption, ¢ o ¢ : k — A — k is the identity map, so ¢ splits the surjection
¥ and we get a decomposition A = m @ k as k-vector spaces. Since €2, /& = 0, wis surjective. It
is injective if and only if its dual is surjective. Inspecting the right square in diagram (1.9), this
is equivalent to showing that the restriction map

Dery (A, k) —— Homy(m/m? k)

is surjective. For every x € A, letT = ¢(¢(x)), thus  — T € mand =z = (v — Z) + 7 is the unique
decomposition of zin A = m @ k. If A : m/m? — £k is a k-linear map, define §(x) = A\(z — T).
This map is clearly k-linear and its restriction to m is A. Let’s check Leibnitz rule:

d(zy) =6 ((z —7)(y — ) +7(y —¥) +y(z — T) + 77)
=Mz -2)(y —y) +7(y —9) + 7z — 7))
=TAy —9) + 7z~ )
=T0(y) +7d(z).
Therefore  is a k-derivation and we have shown that the restriction map is surjective. O

Remark 1.3.17 Since m/m? is isomorphic to the space of differentials, its dual (m/m?)¥ deserves
the name of tangent space to Spec A at the point Z(m). So far, this makes sense only for local
rings, but in § We shall learn how to turn every ring into a local one and every prime into a
maximal ideal by the process of localisation.

Building upon the ideas in the proof of corollary|1.3.16, we can give another useful charac-
terisation of the tangent space. Define the ring of dual numbers k|[e] as the quotient k[ X]/(X?).

With notation as in the proof of corollary [1.3.16] a linear form A : m/m? — k extends to a k-
linear map f : A — k[e| by the formula f(z) =T + M@ — T)e = T + 0(z)e. This map is in fact a
k-algebra homomorphism. To see this, recall that ¢ is a derivation, thus

f(zy) =Ty + d(zy)e = Ty + To(y)e + Yo(x)e = (T + d(x)e) (¥ + d(y)e) = f(2)f(y)-
We have thus constructed a map (m/m?)" — Homy-a4(A, k[e]). Notice that, if  : k[g] — k is
the natural projection, 7 o f = v (as above, 1) : A — A/m = k is the quotient map ¢ (z) = 7).

Corollary 1.3.18 Let k be a field, A a local k algebra with maximal ideal wm such that A/m ~ k. The con-
struction above gives a bijection between (m/m?)" and the subset { f € Homy-a14(A, k[e]) | wo f = ¢}

Proof. The map constructed above is obviously injective. Let f : A — k[¢] be a k-algebra homo-
morphism such that 7 o f = 1. Then 7(f(m)) = »(m) = 0, thus f(m) C ker 7™ = (¢). Moreover,
since 2 = 0, we have f(m?) = 0. The ideal (¢) is isomorphic to k, hence the restriction of f to
m defines a linear map A : m/m? — k by f(z) = A(z)e. O

For a generalisation of corollary|1.3.18} see exercise
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5 4 Exercises

Exercise 1.1 Show that for every ring R there exists a unique ring homomorphism ¢ : Z — R
(category theory language: Z is the initial object in the category of rings).

Exercise 1.2 Let I = (X) and J = (Y) in C[X,Y]. Show that / N.J = I.J but [ and J are not
coprime.

Exercise 1.3 Let R be a ring, a;, as ideals and m; : R — R/a; the projection. Show that 7 x
defines a ring homomorphism ¢ : R/aja; — R/a; x R/az. Show that this is surjective if and
only if a; and ay are coprime and that in this case v is an isomorphism. Give an example in
which 1) is injective but not surjective.

Exercise 1.4 Let R be aring, a, b, c ideals. Show that, if a and b are coprime, ab+ ¢ = (a +¢) N
(b+c).

Exercise 1.5 Describe all the prime ideals in the ring Z[X]/ (2X).

Exercise 1.6 Let R; x Ry be the product of two rings. Show that e; = (1,0) and ez = (0, 1) form
an orthogonal basis of idempotents i.e.

2
e; = e erea = 0; el +eg=1.

Conversely, show that if a ring R contains two elements ey, ey satisfying the above property,
then R is isomorphic to the product of two rings.

Exercise 1.7 Let R be a PID. Show that any increasing sequencea; Cas C --- Ca; Ca;4q C ...
of ideals in R eventually stabilizes: a,, = a,41 = a,42 = ... for n sufficiently large.

Exercise 1.8 Let R be a PID. Denote by M(m x n,R) the (noncommutative) ring of m x n
matrices with coefficients in R and by GL,,(R) C M(n x n, R) the group of invertible matrices.
Recall that elementary operations on the rows (resp. columns) of a matrix are given by left
(resp. right) multiplication by an invertible matrix. A matrix A = (a; ;) € M(m x n, R) is in
Smith normal form if a; ; = 0 for i # j and a; i|ait1,+1 Vi=1,...,m — 1.

Let A = <Z Z) € M(2 x 2,R).

a) Suppose that b = ¢ = 0 and that gcd(a,d) = 1. Use the identity ar + ds = 1 (for suitable

. . . (1
r,s € R) to transform A, by row and column operations, into the matrix ( 0 a() d)'

el el

b) Lete; = ged(a, ¢) and write e; = ax + cy. Check that S = (f _ya> € GLa(R).

¢) Check that S A is a matrix of the form (e& I) .
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d) Show that there exists a matrix 75 € GL2(R) such that S} AT5 is of the form (e: 2) with

62|61.

e) Show that there exist S,T € GLo(R) such that SAT is of the form <8 g) or (; 2)
with e| f. [Hint: consider the sequence of ideals (e;) C (e2) C ... ]

f) Show that there exist S,T" € GLy(R) such that SAT is of the form (8 2) .

g) Show that there exist S,T" € GLa(R) such that SAT is in Smith normal form.

84 18 141

h) Compute a Smith normal form for < 66 12 108

) by row and column operations.

More generally, let now A = (a;;) € M(m x n, R).

€1 * *
0 = *
i) Show that there exist 51 € GL,,(R) such that S A is of the form )
0 = *
€9 0
j) Show that there exist 71 € GL,(R) such that S1 AT} = L . with ese;.
* * *
e 0 . 0
0 * . *
k) Show that there exist S € GL,,(R), T € GL,,(R) such that SAT =
0 * ... =x

1) Show that there exist S € GL,,(R), T' € GL,(R) such that SAT is in Smith normal form.
Exercise 1.9 Let R be a PID and M a finitely presentedﬂ R-module.

a) Show that M is isomorphic toa product R/a1&R/ax®---®R/a, wherea; D az D --- D ay,
is a sequence of ideals in R. This is known as the elementary divisors’ theorem.

b) Show that M is the direct sum of a free module and a torsion module.
¢) Show that M is free if and onlyE] if Miors = 0.
d) Show that any finitely presented submodule of a free R-module is free.

e) Let A be a finitely generated abelian group. Show that A = Z/nZ x ... Z/n,Z x 7" for
suitable integers r and n;|na| . .. [ng.

'We shall see in corollarythat any finitely generated module over a PID has a finite presentation.
This fails if M is not finitely generated: Q has no torsion but it is not a free Z-module.
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Exercise 1.10 Show that if A; and A, are R-algebras of finite type then A; x Aj is an R-algebra
of finite type.

Exercise 1.11 Let X be a Hausdorff (i.e. compact and separated) topological space. Recall that
for any two points z,y € X one can construct a continuous function f : X — R such that
f(z) = 0and f(y) = 1 (Urysohn’s lemma). Let C = C°(X) be the ring of continuous real-
valued functions on X. For any subset S C C, put Z(S) = {z € X | f(z) = 0Vf € S} and let
M be the set of all maximal ideals in C.

a) Show that Z(S) = Z ((S)) (where (5) is the ideal generated by a subset .5).
b) Show thatif I C C'is an ideal then Z(I) # @.

c) Show that the map
X — M
x — m,={feC|f(x)=0}

is a bijection.

Exercise 1.12 (Kummer’s Lemma) Let R be a local ring with maximal ideal m and residue field
k = R/m. Let f € R[X] be a monic irreducible polynomial, f = [[/_; g;* € k[X] a decomposi-
tion of the reduction of f mod m, with the g; € k[X] monic irreducible, (g;,g;) = 1 fori # j.
Choose g; € R[X] lifting g;, for each ¢ = 1,...,r, and denote m; the ideal of A = R[X]/(f)
generated by m and g;. Show that {my, ..., m,} is the set of all maximal ideals of A

Exercise 1.13 Let R be aring and J C R anideal. If P(X,,...,X,) € R[Xy,...,X,] denote

P(X1,...,X,) € R/J[X1,...,X,] the polynomial obtained by reducing mod .J the coefficients
of P. Show that

RIX1,....Xu]/ (B, ..., Fn) ®r R/J = R/J[X1,..., X)) (F1,..., Fn).

Exercise 1.14 Compute the tensor products Z[X,Y]/(X? — Y?) ®z Z[X,Y](X? + Y2 — 1) and
ZIX,Y]/(X? = Y?) @zixy) ZIX Y](X? + V2 - 1).

Exercise 1.15 Let R be aring, ¢ : R — A a flat R-algebra and I, J two ideals in R. Show that
e(H)AN@(J)A=p(INJ)A.

Exercise 1.16 Let ¢ : A — B be a ring-homomorphism. If M is an A-module and N a B-
module, view Hom4(M,N) as a B-module via multiplication on the target (so b - f is the
function whose value at m € M is bf(m)). Show that the map

Homp(M ®4 B,N) — Homu(M,N)
g — [m—g(m®1)]

is an isomorphism of B-modules.

Exercise 1.17 Let N and @ be two R-modules. An R-module F is called an extension of () by
N if it sits in an exact sequence of R-modules

(1.10) 0 N ‘3 F-—T5Q s 0.
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The extension £ = N & (@ is called the trivial extension. A morphism between two extensions
Ey and E» is a homomorphism 7 : B3 — E5 such that the diagram

0 N 25 B 25 Q 0
(1.11) H nl H
0 N =25 B 25 Q 0.

commutes. If & : N — N’ is a morphism, the pushout o F is defined as the quotient of N’ & E
by the submodule S = {(—a(z),:(z)) € N & E,Vz € N}. If 8 : Q' — Q is a morphism, the
module 8*FE = {(z,y) € E® Q'|n(z) = B(y)} is called the pullback of E. If Ey and E, are
two extensions of () by NV, the module £ B Ey = {(z,y) € E1 & Ey|m(z) = m2(y)}/D, where
D = {(11(2),—12(2)) € E1 ® Ea, Vz € N} is called the Baer sum of £ and Ej.

a) Check that a morphism of extensions is always an isomorphism.

b) Check that an extension E is isomorphic to the trivial extension and only if (1.10) admits
asplitting o : Q — E (i.e. mo 0 = idg).

c) Check that . F is an extension of @ by N’ and that *E is an extension of Q' by N.
d) Check that Ey B E; is again an extension of () by V.

Denote by Exth(Q, N) the set of isomorphism classes of extensions of @ by N. If E is an
extension, write [E] € Exth(Q, N) for its class.

e) Check that [E1]+[E»] = [E; B E] defines an abelian group structure on ExtL(Q, N), with
neutral element [N & Q).

To a short exact sequence of R-modules

0 M —f s M —Yy M 0.

associate the following

0 —— Homp(N,M') —— Homp(N, M) —— Homp(N,M")

L Exth(N,M') —— Exth(N, M) —— Exth(N, M")
where, to g : N — M", we set §(g) = [g.(M)].
f) Show that the latter is a sequence of abelian groups extending the Hompg (N, —) sequence.

Exercise 1.18 Let R; and R; be rings. Show that Spec (R; x Rg) = Spec R; [] Spec R; (disjoint
union).

Exercise 1.19 Recall that if X is a topological space, a closed subset Z C X is called irreducible
if any expression of Z = Z; U Z; as the union of two closed subset implies Z = Z; or Z = Z>.
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a) Let Z be an irreducible subset of the topological space X and U C X an open subset such
that U N Z # &. Show that the closure of U N Z is equal to Z.

b) Let R be a ring. Show that a closed subset Z C Spec R is irreducible if and only if Z =
Z(p), for p a prime ideal uniquely determined by Z.

Exercise 1.20 Recall that if X is a topological space, a subset S C X is called dense if the
closure of S is equal to X. Let ¢ : R — A be a ring homomorphism and ¢* : Spec A — Spec R
the induced map. Show that Im * is dense in Spec R if and only if ker ¢ is contained in the
nilradical Mg of R.

Exercise 1.21 Let R be a ring and AL, = Spec R[X], the affine line over R.

a) Let A= R[Xy,...,X,]|/(F1,..., Fy). Show that any a € A defines a continuous function
Spec A — A}%.

b) Show that any element = € R defines a continuous function Spec R — A},.

Exercise 1.22 Let A be a ring, J C A an ideal and B = A/J. View J/J? as a B-module by
bz = az mod .J?, where a is any element in A whose reduction is b (check that this does not
depend on the particular choice of a). Let 7 : J — J/.J? be the projection. Show that for any
B-module N, the map
Homp(J/J?,N) — Homa(J,N)
f — form

is an isomorphism of A-modules.

Exercise 1.23 Let ¢ : R — A be a ring homomorphism, p : A®r A — A the multiplication map
u(a®b) = aband I = ker p1. View A®pr A as an A-algebra via the left structure: a- (b®c) = ab®c.
For any A-module N, define a multiplication on the A-module A & N by

(1.12) (a,z) * (b,y) = (ab,ay + bx), Ya,be A, x,y € N.
a) Check that (1.12) defines an A-algebra structure on A © N, henceforth denoted A x N.

b) Check that N, identified with the subset {(0,z), Vx € N} C A N, is an ideal. Compute
N2,

c¢) Letd : A — N be an R-linear derivation. Check that

77:A®RA — Ax N
a®b +—— (ab,ad(b))

is an A-algebra homomorphism and that n(I) C .
d) Check that 7 factors through (A ®g A)/I°.
e) Recallthemap d: A — I/I” givenby d(a) = 1®a—a®1. Show that (I/I?,d) = (Q} . d).
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Local properties

§ 1 Localisation

The technique of taking fractions, allowing to construct Q from Z, can be generalised to
arbitrary rings.

Definition 2.1.1 Let Rbe aring. A subset.S C Ris multiplicativeif 1 € Sand forevery s,t € S
we have st € S.

Example2.1.2 If f € R, S = {1, f, f2,..., f", ...} is multiplicative.

Example 2.1.3 If p C Ris a primeideal, S = R — p is multiplicative. A useful special case: R a
domain and p = 0.

If S C R is multiplicative, define a relation on the set R x S by declaring (z,s) ~ (y,t) if
there exists u € S such that u(zt —ys) = 0. Taking u = 1, one sees immediately that this relation
is reflexive and symmetric. It is also transitive:

{(-’L',S)N(y,t) — {u(:ct—yS):O

(y, 1) ~ (z,w) v(yw — zt) =0 = witfrw—2zs) = (z,5) ~ (z,w).

We can thus form the quotient set (R x ) / ~, in which the class of (z, s) is denoted .

Definition 2.1.4 Let Rbearing, S C Ramultiplicative set. Thering S™'Ris theset (R x S) / ~
with the operations

1
vy_w.o -z
1

t st

x xt + ys T
2.1) Tyy_zmres. I
S t st S

There is a canonical ring homomorphism ¢ : R — S~!R defined by ¢(z) = %.

We leave it as an exercise to check that the operations (2.1) are well defined and satisfy the
ring axioms. Notice that » : R — S~ R is not always injective.
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Example 2.1.5 Let R = Z/6Z and S = {1, 3}. By definition, (z,s) ~ (0, 1) if there exists some
u € S such that uz = 0. Hence ker ¢ = {0, 2,4}, whence an exact sequence

0 —— Z/3Z —— Z/67 —*— S~ (Z/67)
and an injection p : Z/2Z < S~ (Z/6Z). The latter is an isomorphism, since (z,s) = (0,1) is
equivalent to 3z # 0, which is in turn equivalent to z € S. Computing, we see that (3,1) ~
(1,3) ~ (1,1), as 3(3 — 1) = 0. Hence the only elements in S~! (Z/6Z) are 0 and 1.

Example 2.1.6 If R is a domain and S = R — {0} then S™!R = Frac R is a field, called the
fraction field of R. The map ¢ : R — Frac R is clearly injective. Let us mention two important
special cases, for k is a field: the field of rational functions k(X7,...,X,) = Frack[X1,..., X,)]
and the field of Laurent power series & ((X)) = Frac k[[X]].

Example 2.1.7 If 0 € S then S~'R = 0. Indeed 0(z — 0) = 0so (z,5) ~ (0, 1) for all z and s.

Example2.1.8 If f € Rand S = {1,f,f%,...,f",...}, then ST'R = {7, Vo € R, n € N} is
denoted R E] or Ry. For instance, since every power series in k[[X]] with non-zero constant
term is invertible, k ((X)) = k[[X]] [%]

Example 2.1.9 If p C Ris a prime ideal and S = R — p, then S™'R = {£, V& € R, s ¢ p} is
denoted R, and is called the localisation of R at p. The name will be justified in corollary|2.1.13]
For example, if p is a prime number:

Ly = {% €Q, (a,b) =1, p{b}.

Proposition 2.1.10 Let R be a ring, S C R a multiplicative subset. Then J — o ~1(.J) is an injection
from the set of ideals J C ST1R to the set of ideals I C R such that I NS = @. It preserves inclusions
and intersections and induces a bijection on the subsets of prime ideals.

Proof. For any ideal I C R such that I NS = @ consider the ideal ¢(1)S™'R C S~!'R and notice
that the inclusion ¢ (¢ !(J)) S™'R C J is an equality for any J C S'R: indeed, any £ € J
can be written as 1¢(z) and, since p(z) = £ - £ € J, we have z € ¢~ !(J). Hence J — ¢~ 1(J) is
injective and one checks immediately that it preserves inclusions and intersections.

If p C Ris a prime ideal such that p NS = &, it is clear from the definition that S~!p is prime.
Moreover the inclusion p C ¢~ (S7!p) is an equality: if ¢(y) € S !p, there exist z € p and
s € S such that (y,1) ~ (z,s), hence t(z — ys) = 0 for some t € S. Then sty = —tx € p and,

since st € S, we conclude y € p. O

Remark 2.1.11 If f € R, recall that Z(f) = {p C R| f € p} is a closed subset of Spec R. Hence,
by proposition 2.1.10} Spec Ry = Spec R — Z(f) is an open subset. The map ¢ : R — Ry plays
in Algebraic Geometry the role of the map taking a function defined on a topological space to
its restriction to an open subset.
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Proposition 2.1.12 (Universal property of rings of fractions) Let R be a ring, S C R a multi-
plicative subset. Any 1 : R — A such that 1(S) C A* factors uniquely through S~ R:

Proof. Put ¢ (£) = (x)y(s)t. Itis well defined: if u(zt — ys) = 0, then 0 = Y (zut — yus) =
(@) (ut) —P(y)y(us), thus

~ _ _ _ _ ~(x

7 (4) = vt = plyusypsut) ™ = vlautp(sut) ™ = v = ().
One checks immediately that J is a ring homomorphism. As for uniqueness, let ¥ : S IR A
be another map also making the diagram commute. Then ¥ () = ¥(p(z)) = ¢(x), for all

z € R, hence ? (2) = d(x)d(s) ! = ¢(2)y(s) " =¢ (%) forallz € R, s € S. O

Corollary 2.1.13 Let p C R be a prime ideal and ¢ : R — Ry. Then Ry is a local ring with maximal
ideal ¢(p) Ry, (denoted p R, by abuse of notation). The quotient R, /p Ry, is the fraction field of R/p.

Proof. Any ideal J C R, is of the form ¢(I) R, for some ideal /N(R—p) = &, which is equivalent
to I C p. Hence R, is local. Clearly, p is the kernel of the composite map R — R, — R,/pR;,
hence R/p C R,/pR,. By proposition we get an injection Frac R/p C R,/pRy. The
inverse map sends the class of T mod pR, to 75!, where 7, 5 are the classes mod p. O

Lemma 2.1.14 Let ¢ : R — A be a ring homomorphism, p C R a prime. The following are equivalent:

a) There exists a prime q C A such that p = ¢~ 1(q);
b) ¢~ (e(p)A) = p.

Proof. Obviously, p C ¢ Y(p(p)A). If p = ¢ 1(q) then p(p) C q, hence p(p)A C q and thus
¢ eA) S o) = p.

To prove the converse, consider the multiplicative set S = ¢(R — p) C A. If o~ L(p(p)A) = p,
then p(p)AN S = @. The ideal ¢(p)S—1 A4, generated in S~ A by the image of p, is not the unit
ideal: 1 € (p)S~! A means that there exists y € ¢(p)A and t € S such thatty € S, contradicting
o(p)AN S = @. Now let g be any prime ideal in S~1A/p(p)S~1A: it corresponds to a prime
ideal § C S~ A containing ¢(p)S~!A. In turn, q corresponds to a prime ideal q C A such that
qN .S = @. Moreover, p(p)A C q: for any = € p(p)A we have T = Z for suitable z € q and
s € S, hence usz = uz € q, for some u € S. Since us € S C A — g and q is prime, we conclude
r € q. From ¢(p)A C qwe getp = ¢ 1(p(p)A) C ¢ 1(q) and this is an equality because
aNe(R—p) =2. O

The construction of fractions works verbatim for modules. Let S C R be a multiplicative
subset in a ring and M an R-module. Define an equivalence relation on the set M x S by
declaring (m, s) ~ (m/, s') if there exists u € S such that u(s'm — sm') = 0. We can then form
the quotient set (M x S) / ~, in which the class of (m, s) is denoted .
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Definition 2.1.15 Let R be a ring, S C R a multiplicative set and M an R-module. The S -1R-
module S~ M is the set (M x S) / ~ with the operations

m m  sm+sm r m Tm
m SRl L .

/

s s ss s ts

Example 2.1.16 If f € Rand S = {1, f, f2,..., f", ...}, then S~1M = {##, Vm € M, n € N} is
denoted M.

Example 2.1.17 If p C Ris a prime idealand S = R — p, then S™'M = {™, Vm € R, s ¢ p} is
denoted M, and is called the localisation of M at p.

If « : M — N is a morphism of R-modules, one checks immediately that

Sla:SIM SN, Sl (T) _alm)

S S

is a morphism of S~! R-modules, denoted a;, when S is the complement of a prime ideal p.

Proposition 2.1.18 For any exact sequence M' — M 2y m of R-modules, the sequence of S~ R-
— -1
modules S~ M" 5§ §=1A1 S §=1M" is exact

Proof. Tt follows immediately from the definitions that S~!3 0 S7la = S7}(Boa) = 0. If
™ e S7IM € ker(S1f), there is some u € S such that uf(m) = S(um) = 0. Then um = a(m)

for some m' € M’ and we get " = T = o) — §-1a (%) € Im S~ ().

us us

In other words, M +— S~!'M is an exact functor Modr — Modg-1p.
Corollary 2.1.19 Let N C M be a submodule. Then S~ (M/N) = S='M/S—IN.
Proof. Apply S~ to the sequence 0 — M'— M —M" — 0. O

Proposition 2.1.20 Let R be a ring, S C R a multiplicative set and M an R-module. There is a
canonical isomorphism ¢ : ST'R ®@p M = S M satisfying ¢ (£ @ m) = 22
Proof. ¢ is defined by the universal property of tensor products applied to the R-bilinear map

ST'Rx M — S™'M; (E,m) —
s s

It is therefore unique, and obviously surjective. Every element in S~! R ®x M can be written as
% ® m, for some s € S and m € m. Indeed

T 1
Z—%@mi:f@) Z Hsj rim;| o, s:Hsi.
i S 8 i \j#i i
Now ¢ (1 ®m) =2 = 0 means um = 0 forsomeu € S. Then L @m =L @um =L ®0=0.

Therefore ker o = 0. O
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Corollary 2.1.21 The canonical morphism ¢ : R — SR is flat.

Proof. Combine propositions 2.1.18 and [2.1.20}] O

Corollary 2.1.22 Let R be a ring, S C R a multiplicative set and M, N two R-modules. There is a
canonical isomorphism S™'M ®g-15 STIN =2 S7H(M @p N).

Proof. Indeed S™'M ®@g-15 STIN 2 (ST'R®r M) ®g-15 (STTR@g N) 2 S~ (M ®@g N). O
Proposition 2.1.23 Let R be a ring, S C R a multiplicative set. Then Q}?—lR/R = 0. For any R-

algebra A, the natural map S‘lﬁi‘/R ~ S5 AR, Qi‘/R — Q}S’—lA/R is an isomorphism.

Proof. The first assertion follows from the fact that Derg(S~'R, M) = 0 for any S~!R-module
M: indeed for any such derivation § and any = € R, s € S we have

0=90 (s%) =30 (g) + 55(8).

Since §(s) = 0 and s is a unit in S~' R, we conclude that § (£) = 0.
Since (g-1,,4 = 0, we get a surjection v : S7'Q) p = STIA®4 Q) p > Qg p from
the first fundamental sequence of differentials. To conclude that it is an isomorphism, ap-

plying the functor Homg-14(—, N) we have to show that for any S~!A-module N the map
Derg(S™'A, N) — Derg(A, N) is surjective. Any R-linear derivation 9 € Derg(4, N) extends:

o) =0 (s2) =s0(2) + Lota) = 8<Z>:W' .

A property of rings, modules, morphisms,...is called local if it can be checked by localisa-
tion. The following propositions provide some examples.

Proposition 2.1.24 Let M be an R-module. The following conditions are equivalent:
a) M =0;
b) M, = 0 for every prime ideal p;

c) My = 0 for every maximal ideal m.

Proof. The implications a) = b) = ¢) are clear. Suppose M, = 0 for every maximal ideal m in
R and suppose m € M is a non-zero element. Then 1 ¢ Ann (m), so Ann (m) is a proper ideal
in R, hence Ann (m) C m for some maximal ideal of R. Since ' = 0 in My, there exists some
s € R —msuch that sm = 0, hence s € Ann (m) but s ¢ m which is a contradiction. O

Proposition 2.1.25 Let f : M — N be a homomorphism of R-modules. The following conditions are
equivalent:

a) f is injective;

b) f, is injective for every prime ideal p;
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c) My is injective for every maximal ideal m.

Proof. The implication a) = b) follows immediately from proposition[2.1.20/and corollary[2.1.21
b) = ¢) is obvious. For ¢) = a), tensor the sequence 0 — ker(f)— M — N by Ry, and apply
proposition[2.1.20land exactness of localisation to get that ker( fn,) = ker(f)n for all m. Conclude

by proposition O
Proposition 2.1.26 Let M be an R-module. The following conditions are equivalent:

a) M is flat;

b) M, is flat for every prime ideal p;

c) My is flat for every maximal ideal m.

Proof. Let N’ < N be an injection of R,-modules. Since M, ®p, [N’ — N| = M ®r [N’ — N]|
and the second map is injective when M is flat, we conclude that M, is flat if M is, so a) = b).
b) = ¢) is obvious. For ¢) = a), let N’ < N be an injection of R-modules: proposition
implies that if Ry ®r [M @g N' — M @r N| = My Qg,, N}, <= My Qg,, Nn is injective for all
mthen M ®p N’ — M ®p N is injective. O

§ 2 Faithfully flat modules and descent

Definition 2.2.1 Let R be a ring. An R-module M is faithfully flat if for every sequence

(22) N/ f N 9 N//

of R-modules, is exact if and only if

M@ N I yr o N 2MEI o N

is exact. If ¢ : R — A is a ring homomorphism, we say that A (or ) is faithfully flat if A is a
faithfully flat R-module.

Proposition 2.2.2 Let ¢ : R — A be a flat ring homomorphism. The following are equivalent:
a) Ais faithfully flat;
b) A®r M # 0 for every nonzero R-module M;

c) o' : Spec A — Spec R is surjective.
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Proof. a) = b). If A is faithfully flat and M is an R-module such that A ®z M = 0 then the

sequence A @r M SNy ®r M — 01is exact, which implies that the sequence M O —o0
is exact, which is equivalent to M = 0.

b) = a). Tensor sequence by A and suppose we get an exact sequence. First we remark
thatim (ida ® (go f)) = A®im (go f) = 0, therefore im (id4 ® f) C ker(id4 ® g). Furthermore
0 = ker(ida®g)/im (ida® f) = A®(ker(g)/im (f)), and we can apply assumption b) to conclude
that is exact.

b) = ¢). In view of the correspondence established in proposition[2.1.10} in order to show that
aprime p C Risin the image of ¥, we may replace R by R, and A by A,. We thus assume that
R islocal and p is maximal. Tensoring 0 — p — R — R/p — 0 by the flat R-algebra A, we
get0 — p(p)A — A — A®R/p — 0. Thus A/p(p) = A® R/p # 0, hence ¢(p) is a proper
ideal and as such it is contained in some maximal ideal m C A. Thus ¢~!(m) 2 = (¢(p)) 2 p.
Since p is maximal, we conclude ¢¥(m) = ¢~ (m) = p.

¢) = b) First notice that for every prime ideal p C R, the ideal ¢(p)A is proper, because
p = ¢ 1(q) for some prime q C A, hence ¢(p)A C q. Let now M be an R-module, 0 # m € M
and set N = Rm. It suffices to show that A ® N # 0, because A ® N injects into A ® M by
flatness of A. Hence N = R/Ann(m). If Ann(m) # R, it is contained in some prime ideal
p C R, hence ¢(Ann (m))A C p(p)A # A and therefore A ® N = A/p(Ann (m))Aisnot0. O

Example 2.2.3 Let fi,..., fs € R such that (fi,...,fs) = R. The R-algebra A = [[;_; Ry, is
faithfully flat. Indeed, it is flat because the Ry, are flat by corollary [2.1.21]and finite products
commute with tensor products by proposition(1.2.65| Moreover, the induced map

Spec A = H Spec Ry, — Spec R
=1

(see exercise [1.18)) is surjective because for every prime p C R, at least one of the f; ¢ p (oth-
erwise R = (fi1,...,fr) C p), hence p corresponds to a prime ideal of Ry, in the bijection of

proposition

Example 2.2.4 7 — Q is flat but not faithfully flat. Spec Q only has one point, so can’t possibly
surject onto Spec Z. Moreover, for any n > 1 we have Z/nZ # 0 while Q ® Z/nZ = 0.

Example 2.2.5 The map ¢ : C[X] — C[Y] defined by ¢(X) = Y? is faithfully flat. Asa C[X]-
module, C[Y] = C[X] @ YC[X] is free, hence ¢ is flat. Clearly ¢~1(0) = 0, and for any « € C the
inclusion (X —a) C ¢~ }(Y —/a) is an equality, since (X — ) ismaximaland 1 ¢ o~ }(Y — /a).

Remark 2.2.6 A flat morphism ¢ : R — A is not necessarily injective, as Z/6Z — 7Z/6Z [é] =

Z/27 shows. On the other hand a faithfully flat morphism is injective: zR ® A = ¢(x)A # 0 for
all  # 0.

Definition 2.2.7 Let R and A be local rings with maximal ideals mp and m 4. A ring homomor-
phism ¢ : R — A is a local homomorphism if ¢! (m,4) = mp.

Lemma 2.2.8 A flat local homomorphism is faithfully flat.
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Proof. In order to show that A ®p M # 0 for any R-module M # 0, it suffices to prove it for
the modules of the form M = Rm = R/Ann (m). Since m # 0, Ann (m) # R so Ann (m) C mpg.
Then Ann (m)A C mpA Cmy # A hence A®r M =2 A®r R/Ann (m) = A/Ann (m)A # 0. O

Proposition 2.2.9 Let R be a ring, M" a finitely presented R-module. An exact sequence of R-modules

(2.3) 0 M’ M —"— M" 0
splits if and only if there exists a faithfully flat R-algebra A such that the sequence

idAQm

0 —— AQM —— AQM AQM' —— 0

of A-modules splits.

Proof. By proposition[1.2.53] the sequence splits if and only if the induced homomorphism
s : Homp(M", M) — Hompg(M", M") is surjective. Since M" is finitely presented, by propo-
sition|1.2.84we have A® Hompr(M",N) ~ Homs(A® M", A® N) for any R-module N. Again
by faithful flatness of A we get that 7, is surjective if and only if (id4 ® 7). is surjective. O

Proposition[2.2.9is a first instance of a property of modules over a ring that can be recovered
after replacing the ring by a faithfully flat extension. This is similar to a local property, that
can be tested by replacing the ring by its localisations. This analogy has led Grothendieck to
introduce the flat topologies (fppf and fpqc) to compensate for the coarseness of the Zariski
topology.

In Topology, one often defines a function f : X — Y by covering X by open subsets and
defining functions f; : X; — Y. The collection { f; } defines a function f if f; and f; agree on the
intersection X; N X, for all 4, j. In a similar fashion, one can construct a space X by glueing a
collection of spaces X;, which will become open subsets covering X. The glueing is achieved
by selecting in each X; an open subset U;; for each j # i and an isomorphism ¢;; : U;; — Uj;:
in this way, U;; will become the intersection of X; with X; inside X. For this construction to
work, one has to require compatibilities between the maps ¢; ;.

In Algebraic Geometry, this reconstruction process goes under the name of descent theory.
Faithfully flat descent for modules over rings can be presented in purely algebraic terms. The
starting point is the construction of the following exact sequence.

Proposition 2.2.10 Let ¢ : R — A be a faithfully flat morphism and M an R-module. The sequence

(24) 0 M -2 MoAd -3 MoA®A -2 Mo A9 A A.

is exact. Here
do(m) =m® 1; h(mea)=me1l®aea—mea® 1

I(M®a®b)=me1®ae®b—MmMmaeR1b+maxb® 1.
Proof. It is clear from the definitions (and does not require flatness of A) that (2.4) is a complex

(called Amitsur’s complex for M), i.e. the composition of two consecutive maps is zero. Let
0 # m € M. By proposition Rm ® A # 0, hence Jy is injective.
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Suppose that ¢ has a section, i.e. a morphism 1) : A — R such that 1) o ¢ = idg. Define

ho: M®A — M i MOARA — MoA
mea +—P(a)m’ mea®b — Yla@meb’

hgy: MRARARA — M®ARA.
mRaRbRc — Ylam R bR ¢

These maps are homotopies for the complex (2.4) i.e. satisfy
hi 001+ 6g o hyg =1idpga; hyods + 01 0h; =idyganAa-
Let us check the first identity, leaving the second as a (tedious) exercise:

(hiodi+dpohg)im®a) =hi(mR®1®a—m@a® 1)+ d((a)m)
—(mea- ) ®1e1)+ Yame]
=mQ a.

It follows then from lemma [2.2.11| below that the sequence (2.4) is exact if ¢ has a section. To
prove exactness in general, we may tensor by any faithfully flat R-algebra. Tensoring then
by A we have an obvious section of p ® ids : A - A®g A, givenby a ® b — ab. O

Lemma 2.211 Let N 55 N %5 N bea sequence of R-modules. Suppose there exist R-linear maps
o:N — Nandt:N"— N suchthat T o g+ f oo =idy. Then the sequence is exact.

Proof. For any = € ker g we have x = 7(g(z)) + f(o(z)) = f(o(z)) € im f. O

Let ¢ : R — A be a faithfully flat morphism. There are two natural A-algebra structures
i A— A®R A, givenby pi(a) = a® 1 and ps(a) = 1 ® a. Therefore for any A-module N we
get two A-module structures on N ®p A @ A. In order to avoid confusion, we write ®; for the
tensor product over A with A ®r A via ;. Hence

N ®1 (A Rnr A) with (a1 ® ag)(x ®1 01 ® bg) = (ZL’ ®1a1b1 ® agbz) = (alblx ®1I® azbg)

N @2 (A®rA) with (a1 ® az)(z ®1 b1 ® b)) = (x ®2 a1b1 ® azbs) = (agbsxr ®2 a1b; ® 1).

As R-modules, both are isomorphicto N ®r A, but t®1a®b = ax @b whilex®a®b = bx®a.
If N = M ®pr A for some R-module M, we have an A @ A-linear isomomorphism ¢:

P (MRrRA) @1 (ARgrA) — (M RrA) Rz (AR A).
(mM®a)®1 (b ®b) +— (M®a)®s (b @ b)

The R-module M can be recovered from the pair (IV, ¢): indeed it follows from the exactness
of sequence that M = im (dp) = ker(dy), i.e.

(2.5) M={zeN|z®211=¢(z®1®1)in N®s A®r A}.
Next, there are three natural A ® g A-algebra structures ¢; j : AQr A - A®r A®Rr A, given by

p32(a®b) =1R0a®b; w31(a®b) =a®@1®b; p21(a®b) =a®b® 1.
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If (N, ¢) is an A-module with an A® g A-linear isomorphism ¢ : N®1(AQrA) ~ N®2(A®RRrA),
define N®j,; i (AR ARA) = N®p (AR A) @y, ; (AR A® A). From ¢ we obtain A® A® A-linear
isomorphisms:

Gij = ¢ Rijidagaga: N @1, j (AQA®A) — N ®g;; (AR AR A).

Once again, if N = M ®A for some R-module M, the the exactness of sequence (2.4), specifically
the equation im (d;) = ker(d2), translates into a relation

(2.6) P31 = P320 P21
the verification of which is an excruciating exercise left to the reader.

Definition 2.2.12 Let ¢ : R — Abe a morphism and N an A-module. A descent datum on NN is
the datum of an isomorphism ¢ : A® A-linear isomorphism ¢ : N®; (AQrA) ~ N®2(AQrA)
such that the induced isomorphisms ¢; ; = ¢ ®; jidaw x4 satisfy the cocycle condition . A
morphism f : (N, ¢) = (N',¢) is an A-linear map f : N — N’ making the following diagram
commute:

N®1 (A®RA> L} N®2(A®RA)

(2.7) f®1idA®AJ( lf@ZidA®A

N @1 (Aor A) —2 N' @y (A®g A).

The discussion above shows that if ¢ : R — A is a faithfully flat morphism, any R-module
M defines a A-module with descent datum. The following results shows that descent data are
precisely the requirements for an A-module to descend to R.

Theorem 2.2.13 Let ¢ : R — A be a faithfully flat morphism. The functor M — (M ®pr A, ¢) is an
equivalence of categories between Modp and the category of A-modules with descent data.

Proof. The functor is faithful: for any R-linear map g : M — M/, tensoring by A the exact
sequence 0 — ker(g) — M — M’ we get 0 — ker(g ® idy) — M @pr A — M' ®p A.
Hence, if g ® id4 = 0, we have that ker(g ® id4) — M ®pg A is an isomorphism, which implies
that ker(g) — M is an isomorphism.

It is also fully faithful: let M, M’ be R-modules and f : (M ®p A,¢) —» (M' ®@r A,¢') a
morphism. For any m € M, from diagram (2.7) we deduce that

Y fm@1)@11®1) =(f®2idaga)(d(m®1®11®1))
= (f ®2idapa)(m®1®21®1)
=f(me1)®21® 1.

Hence, from formula we get that f(m ® 1) € M’. We therefore get an R-linear map
g: M — M’ defined by g(m) = f(m ® 1), and clearly f = g ® id 4.

A functor in the opposite direction is defined by associating to any A-module with descent da-
tum (N, ¢) the R-module M = {z e N |2 ®21®1=¢(zx®11®1)in N ® A®p A}. To check
that this is an inverse functor we use the A-linear map

Y: M®rA — N.
r®a +—— ax
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To prove that ¥ is an isomorphism, consider the following diagrams

a®id A
MRrRA— N AQA——3 N @132 (AQ AR A)

BRida
ﬁl ¢>J l¢3,2
s 1dN Q3,2

N%NQQQA@AﬁiN@m(A@A@A)

where a(z®1®a) =20101Ra fze1®1)=¢r®1®1)®aand y(z) = z® 1. We
write d; v for the maps in the exact sequence relative to the module N and ring morphism
w2 : A - A® A. The diagram using the top arrows commutes by definition, the one using
the bottom arrows commutes because of the cocycle condition. By definition, we have that
M ®p A =ker[a ® ida — f ® id4]. Moreover §; xy = idn ® @32 —idn @ @31, so it follows from
propostition that IV is the kernel of the double arrow at the bottom. Since the vertical
arrows ¢ and ¢s 2 are isomorphism, we get that ¢ is an isomorphism too. O

§ 3 Flatness and projective modules

Definition 2.3.1 An R-module M is locally free if for every prime ideal p C R the R,-module
M, is free.

Theorem 2.3.2 Let M be a finitely generated R-module. Consider the following conditions:
a) M is free;
b) M is projective;
c) M is flat;
d) M is locally free.

Then a) = b) = c) == d). Moreover, if M is finitely presented, locally free and if p +— rk g, My is a
constant function on Spec R, then M is projective.

Proof. a) = b) is obvious. For b) = ¢), choose 7 : R" — M and a splitting o : M — R" of 7.
For any R-module N, the composite map M ® N — R" ® N — M ® N is the identity, hence
o ® idy is injective. For any injection f : N’ — N of R-modules, the diagram

Mg N S e N

U®idN/J( J,(T@idN

R @ N' Mrn®f pnoo

shows that idys ® f: M @ N' — M ® N is injective, hence M is flat by proposition|1.2.83
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For ¢) = d), replacing R by its localisations, we may assume that R is local with maximal
ideal m. Let my, ..., m, € M lift a basis of M @ R/m. They generate M, by Nakayama’s lemma,
and we shall prove by induction on s < r that my, ..., m; are linearly independent over R. For
s =1, let m € M whose reduction mod mM is non-zero. Let o € R such that am = 0. Since M
is flat, tensoring the exact sequence 0 — Ann (av) — R — R by M we get an exact sequence

0 —— Ann(a)M M £ M

where i, is the multiplication by «. Hence, there exist f1,..., 5, € Ann(«) such that m =
> Bjmj. Since m ¢ mM, at least one of the 3; ¢ m. This means that Ann («) contains a unit,
and thus Ann (o) = R, hence o = 0.

Let now Y 7_; aym; = 0 be a linear dependence relation over R. Extend it to Y j_; aym; = 0

by a1 = -+ = o = 0. By lemma below, there exist elements 3;; € R such that
m; = Y% Bijymjand Y I ;B ; = 0forall j =1,...,r. Since ms ¢ mM, one of the 3, ; is a
unit. Fix such an index j and write
s—1 5 ) s s—1 ﬁ )
2, 2
QSZ*Z J'ozi — 0:Zaimi:Zai(mi ]'ms).
i=1 6371 i=1 i=1 BS»J
Put m, = m; — g;; ms. The elements m),...,m,_;,mg,...,m, lift a basis of M ® R/m and
S5 1 aym/ = 0. By induction we deduce a; = - = a5 = 0and also a; = — > 57} g:j a; = 0.

Assume now that M is locally free, that r = rk g, M, is independent of p and that there exists a
finite presentation

(2.8) 0 N R — " s M 0.

To show that M is projective, it suffices to show that this sequence splits. By proposition[2.2.9)
this can be tested after tensoring by some faithfully flat R-algebra A. We are going to show that
this can be achieved over an algebra of the kind A = []; Ry, considered in in example

Let m; = m(e;) be the generators for M given by sequence (2.8). For every prime p C R, select
a splitting o, : M, ~ R — Ry of the sequence tensored by R,. This map is determined
by the values oy,(1 ® m;) = Y, a; je;, where a; j € Ry. Since there are only finitely many
coefficients, we can find an element f, € R — p such that o; ; = a}—p], with a; ; € R, for all
i,j € {1,...,n}. In other words, o, extends to a splitting of sequence tensored by Ry,:

R"—" %M

||

R;clp — pr

[ =]

R{}—»Mp

Let I = (fy)p € RDbe the ideal generated by all these elements. By construction, for every prime
p the ideal I, contains an element outside p, hence I, = R, and therefore / = R. Writing 1 =
bi fo, + -+ + bs fy, for suitable b; € R, we see that (f,,,..., fy,) = R. By construction sequence
splits when tensored by A = [[;_; Ry, , which is faithfully flat as seen in example O
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Lemma 2.3.3 Let M be an R-module generated by elements my, ..., m,. The following are equivalent:
a) M is flat;

b) For any linear relation Y[ c;m; = O there exist elements j3; ; € R such that m; = 377y B; jm;
and Y i «;fi; =0forallj=1,...,r

Proof. Suppose that M is flat and consider the exact sequence

A

0 N > R" > R
where A(z1,...,2,) =Y _; a;xz; and N = ker \. Tensoring by M we get the exact sequence
0 — NoM — M" 20, »
where Ay (y1,...,yr) = Si; aiy; and € ((21,...,2,) @ m) = (z1m,. .., zzm). Hence the vector
(mi,...,my) € ker \py can be written as (my,...,m,) =¢ (25:1 b; ® mj) for suitable b; € N.

Writing b; = (815, ..., 5r;) we get >i_; a;3; ; = 0 because b; € ker A and

(ml,...,mT) =€ (Z(ﬁLj?"'?ﬁTJ ®mj> <261]m],...,257‘7jm]‘> .
j=1

J=1

Conversely, suppose M satisfies condition b) and let / C R be an ideal. We want to show
that p : T ® M — IM is injective. Let Y /_; s ® m; € kerpie. Y j_; oym; = 0 and write
m; =y 54 Bijm;. Thenin I ® M we have

Zai(@mi:Zai@ZBi,jmj Z[Zal&]]@m] ZO@mJ—O
i=1 i=1 j=1

7=1 Li=1 j=1 O

Let R be a ring. For any prime ideal p C R write x(p) = Rp/pR,. Recall that x(p) is the
fraction field of R/p (corollary2.1.13). If M is a free module of finite rank r, clearly the function
p = dim,,) M ® k(p) = r is constant on Spec R. Conversely:

Proposition 2.3.4 Let R be a domain, M a finitely generated R-module. If p — dim,,,y M ® r(p) is
a constant function on Spec R, then M is locally free.

Proof. Without loss of generality, we may assume that R is local with maximal ideal m. Let
mi,...,m, € M liftabasis of M ® k(m) = M @ R/m = M/mM and let ¢ : R" — M defined by
¢(e;) = m;. By assumption, dim,,,) M ® k(p) = dimm) M @ k(m) = r for every prime p C R,
hence ker ¢ C pR" for all p. Therefore ker p C N, pR" = NrR" = 0, s0 ¢ is an isomorphism. [J

Example 2.3.5 A submodule of a locally free module is not necessarily locally free. Let R =
k[t]/t?> and M = tR. Then M is an ideal of R, hence a submodule of a free module of rank 1.
Tensoring the sequence 0 — tR —+ R — R/tR — 0 by tR we obtain

0 —— tRQptR —“— R 0 0

where p(at ® bt) = abt?> = 0, so 1 is the zero map. Since tR # 0, this sequence is not exact.
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5 4 Exercises

Exercise 2.1 Let R be aring, S C R a multiplicative set, M/, N € Modg. Check that the rule

Homp(M,N)x S — Homg 1z(S7'M,SIN)
(f,5) —1S7'f

defines an S~!R-linear map ¥ : S Hompg(M, N) — Homg-1(S~1M,S7IN).
a) Show that ¥ is injective.

b) Show that ¥ is an isomorphism if M is finitely generated and N — S~!N is injective.

Exercise 2.2 Let k be a field, R = k[Xi,j}zZl; 1<5<i- Let p; = (XZ‘J, . 7Xi,i) and S = R — U?il pi.
Check that S is multiplicative and put A = S R.

a) Show that Ry, = k (Xp 5 Vh # 1) [Xijl x, | x, -
b) Show that any 0 # f € R belongs to only finitely many of the p;.
c) Using lemma|6.1.22| show that the natural map ¢ : A — ]2, Ry, is faithfully flat.

d) For any ideal 0 # I C A, show that there exists n € N such that [Ag-1,, = Ag-1,, for
1> n.

e) For 1 < i < n, write [Ag—,, = (£,... Ziriy and choose y € I, y ¢ Uisn pi. Let

8,177 Siry

J = (x;;,y) C I. Show that J = I. [Hint: use c).]

Exercise 2.3 Let A = k[X], B = k[X,Y] and C = k[X,Y]/(X? + Y2 — 1), where k be a field of
characteristic # 2. Denote z and y the classes of X and Y in C. As usual, write R for SR,
where S = {1, f, f%,... }.

a) Compute Qi‘/k, Q}g/k, Q}J/k, and Q}B/A.
b) Compute the localisations (2, ;) (Q}J/k)y and (Qé/A)y.
¢) Compute the dimension of Q/, /4 As a k-vector space.

d) Write down the first fundamental sequence of differentials for k C A C C. Is it exact on
the left?

e) Write down the second fundamental sequence of differentials for k C B — C. Is it exact
on the left?

Definition 2.4.1 An R-algebra A is called an formally smooth (resp. formally unramified, resp.
formally étale) if for every R-algebra B and every nilpotent ideal J C B, the map

P HomR—algebras(Aa B) — HomR—algebras (A7 B/J)
U +H——>mou

(where m : B — B/ J is the projection) is surjective (resp. injective, resp. bijective). If moreover A is
finitely presented as an R-algebra, we drop the adverb “formally”.
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Exercise 2.4 Let A be an R-algebra.
a) Check that in the conditions in the definition above it suffices to assume J? = 0.

b) Let A’ be an A algebra. Show that if A is formally smooth (resp. form. unramified, resp.
form. étale) over R and A’ is formally smooth (resp. form. unramified, resp. form. étale)
over A then A’ is formally smooth (resp. form. unramified, resp. form. étale) over R.

c) Let S C A be a multiplicative subset. Show that if A is formally smooth (resp. formally
unramified, resp. formally étale), then S~! A has the same property.

d) Let f € R. Show that R is an étale R-algebra.

Exercise 2.5 Let A and B be R-algebras and J C B a square-zero ideal.

a) Letu : A — B/J be an R-algebra homomorphism and denote u,J the B/J-module J
viewed as an A-module via @. Suppose that there exists some v : A — B such that
p(u) = 4. Show that § — u + J is a bijection between Derg(A, ii,J) and the set p~1 ().

b) Show that A is formally unramified if and only if 9}4 /R = 0.

c) Show that A is formally unramified over R <= A, is formally unramified over R for
every prime ideal p C A <= A, is formally unramified over R for every maximal ideal
mC A

Exercise 2.6 Let A be a finitely presented R-algebra. Write P = R[X,..., X, and fix a presen-
tation ¢ : P — Awith a =kery = (F1(X1,...,Xp), ..., Fin(X1,..., Xy)). The jacobian matrix
is denoted

OF;
W) = (6Xj>i:1,...,n;j=1,u.,m & M{m>xn,P).

a) Show that P is a smooth R-algebra.

b) Letu : A — B/J be an R-algebra homomorphism and put v = @ o1 : P — B/J. Choose
a lifting v : P — B. Show that u can be lifted to v : A — B if and only if there exists an
R-linear derivation ¢ : P — u..J such that §(a) = v(a) forall a € a.

c) Show that A is a smooth R-algebra if and only if the second fundamental sequence of
differentials for R — P — A is injective on the left and splits (hence Q}, , ® A = a/a* @

d) Show that A is a smooth R-algebra if and only if A, is a formally smooth R-algebra for
every prime ideal p C A. [Hint: use theorem [2.3.2]

e) Let m < n and suppose that the image of J(¢) in M (m x n, A) has rank m. Show that
A is a smooth R-algebra. Show moreover that, up to reordering the variables, A is étale
over R[X 41, .., Xn)-

f) Againletm < nandlet f € A. Suppose that the image of J(¢)) in M (m x n, Ay) has rank
m. Show that Ay is a smooth R-algebra and (possibly reordering the variables) an étale
R[X41, ..., Xp]-algebra. [Hint: write Ay as a quotient of R[ X1, ..., Xy, Xy 11].]
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g) Conversely, let p C A be a prime ideal and suppose that A, is formally smooth over R.
Show that there exist r < n among the polynomials F; such that their classes generate
(a/ c12)p and the image in M (r x n, A,) of the jacobian matrix has rank r.

h) Show that A is a smooth R-algebra if and only if for every prime ideal p C A there exists
J € A —psuch that Ay is isomorphic to an algebra as in f) above.
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Integral dependence, valuations and
completions

§1 Integral elements

Let Abe aring and R C A a subring.

Definition 3.1.1 An element z € A is integral over R if there exists a monic polynomial f(X) €
R[X] such that f(z) = 0.

Example 3.1.2 Any element a + ib € Z[i] is integral over Z, root of X% — 2aX + a2 + b*.

In general it is tricky to show directly that if z,y € A are integral, then x + y is integral. It is
better to linearize the problem and work with modules.

Proposition 3.1.3 Let A bearing, R C A a subring and x € A. The following conditions are equiva-
lent:

a) x is integral over R;
b) R[z] = {3, uz®, a; € R} is a finitely generated R-module;
c) There exists an intermediate subring Rjx] C B C A with B finitely generated as an R-module;

d) There exists a faithful R|x]-module which is finitely generated as R-module.

Proof. a) = b) If z is integral, R[z] is generated by 1,z,...,z%¢/~1. b) = c) Take B = R[z].
c) = d) Let M = B: it is a faithful module because 1 € B, hence for any a € Ann g, (B) we
havea=a-1=0.

d) = a) Let p, : M — M the multiplication by z (i.e. y1;(m) = xm). By the Cayley—Hamilton
theorem, there exists a monic p(7") € R[T] such that p(p;) is the zero endomorphism of M.
That means p(x)m = 0 for every m € M. Since M is faithful, this implies p(x) = 0. O
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Corollary 3.1.4 Let A be a ring and R C A a subring. If x1,...,x, are integral over R then

Rlzy, ... 20 = {30, i aihu,’inxif coegping Q.. in € R} is a finitely generated R-module.

Proof. By induction on n. If R[z1,...,z,_1] is a finitely generated R-module and Rz, ..., zy,]
is a finitely generated R|[xi,...,z,—1]-module, then R[zi,...,x,] is a finitely generated R-
module. O

Corollary 3.1.5 Let A be a ring and R C A a subring. The susbset {x € A |z is integral over R} is a
subring of A called the integral closure of R in A.

Proof. If z,y € A are integral over R then R[z,y] is a finitely generated R-module. It contains
R[x + y] and R[zy] as submodules. By applying condition c) in proposition we get that

x + y and zy are integral over R. g

Definition 3.1.6 Let A be a ring and R C A a subring. We say that R is integrally closed in A
if R coincides with its integral closure in A. We say that a domain R is integrally closed if R is
integrally closed in its fraction field.

Example 3.1.7 A UFD is integrally closed. If  satisfies an integral equation

z\"™ T n—1
(y) + an (y) +otag=0 = a"+y (12" 4+ +ay" ) =0
We deduce that y|z". Hence y|z and thus 3 €R.

Definition 3.1.8 A finite field extension K of Q is called a number field. The integral closure
of Z in a number field K is denoted Ok and called the ring of integers of K.

Example 3.1.9 Let d € N be a squarefree integer and K = Q(v/d). Then

{Z[\/&] d = 2,3 mod 4
Ok =
2

z [1”‘7] d=1mod 4.

To prove this, recall that the Galois group is Gal(K/Q) = {1,5}, where o(a + bV/d) = a — bV/d
and z € K belongs to Q if and only if o(2) = 2. If = 2 + yV/d € K is integral over Z, then o(%)
is also integral, root of the same polynomial as z:

0=0(0)=0(z"+an_12""" 4+ +ag) =0(2)" +ap_10(z)"" 4+ +ag
since we assume that a; € Z. As any UFD, Z is integrally closed (example [3.1.7), therefore
z40(z) =22 € Oxk NZ =17, zo(2) =2 —dy* € Ok NZ =1.

Since 2z € Z, multiplying the second equation by 4 we get that 4dy® € Z. Write y = % with
(u,v) = 1 and consider a prime divisor p of v. Since 4d7jj—§ is an integer, p? divides 4du?. Since
d is squarefree, if p is odd, then p must divide u?, hence p divides u, which is impossible since
we assumed (u,v) = 1. So 2 is the only possible prime divisor for the denominators of = and y.
Write z = ¢ and y = £, with a,b € Z. The equation 2% — dy? € Z becomes a? — db? € 4Z. If 2|b,
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then a? € 47, hence 2|a and z,y € Z. If 2 { b, since the only squares mod 4 are 0 and 1, we get
b> = 1 mod 4 and a? = 0,1 mod 4. Since d # 0 mod 4 (it is squarefree), it must be a?> = 1 mod
4. Hence 2 1 b implies a> — db®* =1 — d = 0 mod 4. So for d = 2,3 mod 4, we get a and b even,
hence Ok = Z[Vd].

On the other hand, if d = 1 mod 4 then # is integral, root of X 2 X — % and if a, b are
odd we have § + %\/3: “T_b +b1+T\/g ez {HT‘/E}

Definition 3.1.10 Let A be a ring and R C A a subring. We say that A is integral over R if
every element z € A is integral over R. More generally, if ¢ : R — A is a ring homomorphism,
we say that A is integral over R if every element x € A is integral over the subring ¢(R).

Corollary 3.1.11 For an R-algebra A the following conditions are equivalent:
a) Ais a finite R-algebra.

b) A s integral and of finite type over R.

Proof. a) = b) is obvious. For the converse, choose z1,...,x, generating A as an R-algebra
and apply corollary O

Corollary 3.1.12 Let R C A C B berings. If A is integral over R and B is integral over A then B is
integral over R.

Proof. Let z € B and 2™ + Ap_12" 4. +ag = 0bean integral equation with a; € A. Since

the a; are integral over R, the subring A" = RJay,...,an—1] is a finitely generated R-module.
Moreover A’[z] is a finitely generated A’-module. Therefore z € A'[z] = RJay, ..., an—1,2] and
the latter is a finitely generated R-module, hence x is integral over R. O

Corollary 3.1.13 Let A be a ring, R C A a subring and R the integral closure of R in A. Then R is
integrally closed in A.

Proof. If = € A is integral over R it is integral over R and thus belongs to R. O

Corollary 3.1.14 Let R beadomainand K = Frac R. Let K C Land L C M be finite field extensions,
A the integral closure of R in L and B the integral closure of Ain M. Then B is the integral closure of
Rin M.

Proof. If R is the integral closure of R in M, then B C R by corollary[3.1.12| On the other hand,
any z € R C M satisfies an integral equation with coefficients in R C A and is thus integral
over A. Hence z € B and therefore R C B. O

Proposition 3.1.15 Let A be a ring and R C A a subring. Assume A is integral over R.
a) Let I C Abeanideal and J = RN 1. Then A/I is integral over R/.J.

b) Let S C R be a multiplicative set. Then S—1A is integral over S™1R.
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Proof. a) LetT € A/I and z € A arepresentative. Then 2™ + ;12" +- - - +ap = 0 for suitable
a; € R and therefore " + @,,_ 12" ' +--- + @ = 0.

b) Let % € S71A, withz € Aand s € S. From an integral equation x" +an,_ 12" g =0
we deduce the equation (2)" + %=1 (2)"~1 ...y a0 —, O

S S

Corollary 3.1.16 Let A be a ring, R C A a subring, R the integral closure of Rin Aand S C Ra
multiplicative set. Then S™' R is the integral closure of ST'Rin S~ A.

Proof. Let £ € S™'A, withz € Aand s € S. If it is integral over S~' R there is an equation

\" g (2 \"L «
3.1) (—) + 1(—) ot 2 =0
S Sp—1 \8 S0

for some a; € Rand s; € S. Putt = so---s,—1 € S. Multiplying (3.1) by (st)” we get an

integral equation (zt)" + B,,—1(zt)" "t +- -+ By = 0, for suitable 3; € R. Hence 2t € R and thus

T xt 1D

=75 R n
st

Corollary 3.1.17 Let R be a domain. The following conditions are equivalent.
a) R is integrally closed:
b) Ry is integrally closed for every prime ideal p;

c) Ry is integrally closed for every maximal ideal m.

Proof. Let K be the common fraction field of R, R, and Ry. Then a) = b) follows from
corollary 3.1.16; b) = c¢) is trivial. For c) = a), let R be the integral closure of R and denote

¢ : R — R the inclusion. Again corollary [3.1.16| implies that ¢, is an isomorphism for all
maximal ideals m, hence ¢ is an isomorphism. O

§ 2 Going Up and Going Down

Proposition 3.2.1 Let A be a domain integral over a subring R. Then A is a field if and only if Ris a
field.

Proof. Suppose R is a field and 0 # = € A. Let 2" + a,,—12" ! + --- + ap = 0 be an integral
equation. Since A is a domain, we may assume ag # 0. Then % = ;—;(:1:”_1 +--4ap) €A
Suppose A is a field and 0 # z € R. Then 1 € A satisfies an integral equation

1\" 1 n—1 1
<2) +5n_1(;> +o+fo=0 =  —=—fpa—-—B"'eR QO

z

Corollary 3.2.2 Let A be a ring integral over a subring R. Let ¢ C A be a prime ideal and p = q N R.
Then q is maximal if and only if p is maximal.
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Proof. By proposition{3.1.15a, A/q is integral over R/p. O

Corollary 3.2.3 Let A be a ring integral over a subring R. Let q1 C qo C A be prime ideals such that
quNR=qa2NR. Then q; = qo.

Proof. Let p = q1 N R = q2 N R. We may replace R C Aby R, C A,. Then p is maximal, so both
q1 and g2 are maximal. Since q; C g2, they must be equal. [l

Proposition 3.2.4 (Lying over) Let A be a ring integral over a subring R. Let p C R be a prime ideal.
Then there exists a prime ideal ¢ C A such thatp = q N R.

Proof. Again we may replace R C Aby R, C A,. Pick any maximal ideal m C A, then m N R is
maximal, hencem N R = p.

Corollary 3.2.5 Let A be a ring integral over a subring Rand I C R an ideal. Then /T = VIANR.

Proof. Clearly VI C vVTAN R. An element z € \/IA if and only if it belongs to every prime
q C A containing [ A. For every prime p C R, proposition provides a prime g such that
p=qNR IfICpthenIA CpACq.Soifz € VIANR,thenz € gN R = p for every such
pQI,hencexexﬁ. O

Proposition can be interpreted geometrically: if ¢ : R < A is an injective homomor-
phism and A is integral over R then ¢! : Spec A — Spec R is surjective. Moreover:

Corollary 3.2.6 Suppose ¢ : R — A is an injective homomorphism and A integral is over R. Then
©* : Spec A — Spec R is a closed map.

Proof. Clearly, for every ideal I C A we have ¢* (Z(I)) C Z (¢~ (I)). Let us show that it is an
equality. If p € Z (¢~1(I)) then p D ¢~1(I). By proposition[3.1.15a, @ : R/p~(I) — A/ is
an integral homomorphism. Proposition ensures that there exists a prime g C A/ such
that 7 1(q) = p. Denoting by 7 : A — A/I the projection, we get q = 7 !(q) € Z(I) and by
construction *(q) = ¢ 1(q) = p. O

Corollary 3.2.7 Let R be a domain, ¢ : R — A be an injective homomorphism making A into a finitely
generated R-algebra. Then the image of ©* : Spec A — Spec R contains a non-empty open subset of
Spec R.

Proof. Choose a presentation 7 : R[X7, ..., X,] - A. Suppose one of the generators, say 7(X1),
is not algebraic over R. Then we can factor ¢ as R C R[X;] C A. Repeating this, we may
assume that ¢ factors as R C R’ = R[X1,..., X € A = R'[ X411, - .-, Xy]/I where, for all
m < i < n the element z; = X; mod I satisfies a polynomial equation

i g, X" + aq,-1 X5+ + a0 =0, 0# ajq € R

Let f € R be any non-zero coefficient of the polynomial [%,,.; a;4, € R'. Then im ¢* con-
tains the open subset Spec R — Z(f). Indeed, every prime p C R is the image of the ideal
p’ = p[Xi,..., X, (the set of polynomials with coefficients in p), which is prime because
RIX1,...., Xn]/p[X1, ..., Xn] = (R/p)[X1,...,X,] is a domain. If moreover f ¢ p, then
[Tt @id; & ¥, s0 Ay is integral over R,,. By proposition there exists a prime q C A
lyingoverp’andqNn R=qNR NR=p'NR=p. O
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Corollary is a special case (and a crucial step in the proof) of theorem to be
established later. Proposition can be refined to arbitrary finite increasing chains of primes:

Theorem 3.2.8 (Going Up) Let A be a ring integral over a subring R. Let p; C --- C p, C R be
a chain of prime ideals, m < nand q; C --- C q,,, C A a chain of primes such that p; = q; N R for
1 <@ < m. Then there exist primes qm, C qmy1 C - C qn C Asuchthatp; =q; N Rfor1 <i<n.

Proof. We are easily reduced to the case n = m+1. We may replace R and A by their localisation
at p,,+1. We may then replace R by R/p,, and A by A/q,,, thereby reducing to the case m =1,
n = 2, both rings are domains, p; = 0 and q; = 0. Apply now proposition3.2.4/to find qo C A
such that g2 = po. O

Definition 3.2.9 We shall say that a ring homomorphism ¢ : R — A has the going down
property if for any two primes p; 2 po in R and for every prime q; C A such that ¢ =!(q1) = p1
there exists a prime q; 2 g in A such that ¢~(q2) = po.

Remark 3.2.10 As before, we may refine the going down property and consider a descending
chain p; O --- D p, of prime ideals in R and, for m < n, a chainq; 2 --- D q,, of primes in
A such that p; = cp_l (q;) for 1 < i < m. The requirement is then that there exist prime ideals
Gm 2 dm+1 2 -+ 2 qp in A such that p; = o7 (q;) for 1 <i < n.

We leave it as an exercise to check that if ¢ : R — A satisfies the going down property in the
sense of definition[3.2.9) then it satisfies the stronger property just stated.

While apparently similar, the going up and going down properties are of a very different
nature, as becomes apparent from their geometric translations (corollary above for going

up, propositions 3.2.13|below for going down). See also proposition 3.2.15/and remark

Proposition 3.2.11 A homomorphism ¢ : R — A has the going down property if and only if for every
prime p1 C Rand q1 C A such that p=1(q1) = p1, the induced map ¢* : Spec Ag, — Spec Ry, is
surjective.

Proof. Follows directly from the bijections given by proposition[2.1.10 O

Corollary 3.2.12 A flat homomorphism ¢ : R — A has the going down property.

Proof. The map ¢y, : Ry, — Aq, is a flat local homomorphism. By lemma is faithfully flat,
hence ¢! : Spec Aq, — Spec Ry, is surjective by proposition g

The following proposition is a direct translation of the going down property in geometric
terms. Recall the discussion in remark|[1.1.79|on non-closed points in spectra.

Proposition 3.2.13 A homomorphism ¢ : R — A has the going down property if and only if the
induced map ¢* : Spec A — Spec R satisfies the following property: for every p1 = *(q1) and
p1 € Z(p2) = {pa}, there exists q € A with q; € Z(q2) such that ps = ©*(q2).

Even more explicitely: if p; is the image of q;, for any irreducible subset Z(p>) C Spec R
containing p; there exists an irreducible subset Z(q2) C Spec A such that ¢ (Z(q2)) = Z(p2).
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Example 3.2.14 Let R = C[X,Y, Z]/(X? - Y2 + XY) and A = C[T, Z]. Define ¢ : R — Aby
PpX) =TTy o(Y)=T"-T% ¢(Z)=2.

Letpy = (X,Y, 2), p2 = cp_l(T —Z)andq1 = (T —1,Z). Putq1 = Z(q1) and v} = Z(T,Z — 1).
Then
(@) (Z(p2) ={2(T - Z), a1, 91 }-

In this set, (T' — Z) is the only ideal mapping to pg, but g1 ¢ Z(T — Z).

We give now a simple sufficient topological condition for the going down property to hold.
The proof we present forces us to introduce an (unnecessary) technical assumption in the state-
ment: we assume that the rings are noetherian (see definition . This class of rings, the most
widely used in algebraic geometry and number theory, will be studied in detail from the next
chapter. Notice that the map ¢* in exampleis not open: U = Spec A — [Z(T — Z) U Z(T)]
is an open subset but ! (U) = [Spec R — Z(p2)] U {p1} is not.

Proposition 3.2.15 Let  : R — A be morphism of noetherian rings such that ©* : Spec A — Spec R
is open. Then ¢ has the going down property.

Proof. Let us first remark that if po C p; then p belongs to every open neighborhood of p; in
Spec R. Indeed, such neighborhoods are of the form U = Spec R — Z(I) for some ideal I C R
and p; € U means I ¢ p;. This forces I € ps, hence ps € U.

If im (¢*) is open and contains p1, it is an open neighborhood of it and as such py € im (%)
there exists some g2 € Spec A such that p» = ¢ ~!(q2). We need to show that at least one such
prime ¢ is contained in q;.
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Since we are only interested in primes above p2, we may assume p2 = 0 (replace R by R/ps
and A by A/p(p2)A; the induced map Spec A/p(p2)A) = Z (¢(p2)A) — Spec R/pa = Z(p2) is
just the restriction of ©%, hence still open; we shall see in corollary that the rings remain
noetherian).

Let us consider the minimal prime ideals in A (i.e. prime ideals minimal with respect to inclu-
sion). A simple application of Zorn’s lemma shows that every prime ideal contains a minimal
prime (see corollary . Therefore, every non-empty open set U C Spec A contains some
minimal prime. Since ¢*(U) is open, it contains 0, hence some prime q € U maps to 0. If n C g
is a minimal prime, then 0 € ¢~ !(n) C ¢~1(q) = 0. Hence, for every open subset in U C Spec 4,
some of the minimal primes in U map to 0.

We now use the assumption that A is noetherian: it implies that the set of minimal primes in A
is finite (we shall prove this in corollary[6.1.11). Let ny, ..., n, be these minimal primes. The set
U; = Spec A —J;; Z(n;) is open, therefore ¢*(n;) = 0, since n; is the only minimal prime in U;.
Thus every minimal prime maps to 0.

Therefore any prime q; C A mapping to p; contains a minimal prime mapping to 0. 0

Remark 3.2.16 The result holds without the noetherian assumption, but the proof requires
more techniques. If A is a domain, one argues as follows: write Ag, = sg¢q, Ay C Frac A.
Then Spec Aq, = (Ny¢q, Spec Ay. Since Spec Ay C Spec A is open, Spec Ry, C ©*(Spec Ay) for all
f ¢ a1, hence Spec R, € N ¢* (Spec Af) = ¢*(Spec Ag, ). For a general ring A, the same proof
will work by replacing the union of the A, with their direct limit, a notion which we will not
cover in this course (somehow dual to that of inverse limit discussed in §[3.6).

Remark 3.2.17 Let R be noetherian and A a finitely generated R-algebra (hence A is noetherian
too, corollary [4.1.19). In corollary [6.1.38| we will show that if ¢ : R — A has the going down
property, then ¢* : Spec A — Spec R is open. Hence, for noetherian rings,

flat = going down <= open.

A direct proof of flat = open can be found in [10], theorem 1.2.12.

The ring R in example|3.2.14is not integrally closed. A domain integral over an integrally
closed domain has the going down property, as we shall see in theorem [3.2.21|below. We need
some preliminary results.

Definition 3.2.18 Let A be a ring, R C A a subring and I C R an ideal. We say that x € A is
integral over [ if there exists a monic polynomial f (X)= X"+ ap 1 X" 1+ +ag € R[X]
with a; € I such that f(x) = 0. Let I = {x € A |z is integral over I} be the integral closure of 1
in A.

Lemma3.2.19 [ = VIR. In particular, [ is an ideal in R.

Proof. 1t x € I, then 2™ + ap_12™ L + - + ag = 0, with «o; € I. Therefore x € R and 2" =
—(op_12" L + -+ + ag) € IR, hence z € VIR. Conversely, if 2" € IR, write 2" = S, Bz
with 8; € I and z; € R. The R-module M = R[zi,...,zy] is finitely generated and the

multiplication by 2" map p;» : M — M has image in /M. By the Cayley-Hamilton theorem
(and remark|1.2.33), we conclude that 2" is integral over I, hence « is integral over I. O
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Lemma 3.2.20 Let A be a domain, integral over an integrally closed subdomain R and K = Frac R.
Let x € A be integral over an ideal I C R. Thenif g(X) = X" + B, 1 X" 1 + -+ By € K[X] is the
minimal polynomial of x, the coefficients 3; belong to \/I.

Proof. Let L be a splitting field of g, denote x; = z, ..., x, the roots of g in L. For any z;, fixa K-
linear automorphism ¢; : L — L such that z; = ¢;(z). By assumption, x satisfies an equation
2+ apo1z™ 4+ oo+ g = 0, with oy € 1. Applying o;, we see that z; satisfies the same
equation and is thus integral over I. The coefficients 3; are polynomials in z1,...,z,, hence
also integral over I. Since they belong to K and are integral over I C R and R is integrally

closed, we conclude ; € I N R = VIR N R = VI, the last equality being corollary O

Theorem 3.2.21 (Going Down) Let A be a domain, integral over an integrally closed subdomain R.
Then R — A has the going down property.

Proof. Let p; O poin R and q; C A a prime such that q; N R = p;. We may replace R by
R,, and A by A,,. By lemma it suffices to show that ps4,, N R = ps2. The inclusion
p2 € p2Aq, N R being obvious, let z € pa Ay, N R, written as z = Z, with 2 € ppAand s € A —q;.
Then z € paA C /p24, so by lemma it is integral over py. By lemma its minimal
polynomial g(Z) = Z" + B,-12" 1 + - + By € K[Z] has coeffficients j3; € VP, = p2. On the
other hand, » € R,so ™! € K, hence the minimal polynomial ~(S) = 5™ + %an 44 5—2

for s = Z over K is obtained dividing g by z". But s € A — q1, so it is integral over R:

applying lemma 3.2.20/to I = R we get that a;; = xfij € Rforj =0,...,n — 1. Therefore,
:c”_jozj = Bj € pa. If x ¢ po, then o; € py and then s™ = —p_ 18" — o — g € poA C qy,
contadicting s € A — q1. Therfore, any = € po Ay, N R belongs to po. O

§ 3 Norm, trace, discriminant

Let R be a ring and F a free R-module of finite rank. Define the characteristic polynomial,
trace and determinant of an endomorphism F' — F as in linear algebra. If A is an R-algebra,
which is free of finite rank as an R-module, for any x € A, the multiplication by z is an R-linear
endomorphism i, : A — A.

Definition 3.3.1 Let A be an R-algebra, which is free of finite rank as an R-module and z € A.
The trace of z is Tr4/r(2) = Tr(p). The norm of x is Ny /r(z) = det(p.).

The following result lists well-known properties from linear algebra.

Proposition 3.3.2 Let A be an R-algebra, which is free of rank n as an R-module. For any z,y € A
and o, B € R,

Try p(ax + By) = aTrg/r(z) + BTr 4 p(Y);

Na/r(zy) = Na/r()Najr(y); Najr(ax) = a"Nygp(z).
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Proposition 3.3.3 Let A be an R-algebra, free of finite rank as an R-module and B an A-algebra, free
of finite rank as an A-module. Then B is a free R-module and for any x € B,

Trp/r(z) = Tra/r(Trp/a()).

Proof. For any R-basis A = {ai,...,a,} of A and A-basis B = {b1,...,by} of B we have the
R-basis C = {a;b;j |1 <i <n; 1< j <m} for B. Denote (8; ;(x)) € M, (A) be the matrix of s,
in Bie. zb; = Y1, B j(x)b;. Moreover, for y € A, let (o, 4(y)) € My (R) be the matrix of p,, in
A, ie. yag = >0 1 apq(y)ap. Then, applying linearity of the trace,

(32) Tra/p (Trp/a(z)) = Z Tra/r (855 Z Z aii (B
i=17=1
On the other hand
Mm(aibj) = zab; = Z [azﬁqa Z Z Qpi /6117] pbq
=1 p=1q=1

so the matrix of p, in the basis C is (o, (84,i(x))) and its trace coincides with

1<i,p<n; 1<5,q<m

the result of (3.2). O
Example 3.3.4 Let K C L be a finite field extension and = € L. Let f(X) € K[X] be the
minimal polynomial of z over K and =1 = z,...,z, the (possibly repeated) roots of f in a

splitting field. Then Trg(,)/x (z) = 71 + -+ +xp and N/ (z) = 1 - - - 2. Indeed, the matrix
M, of pi, in the basis {1,z,...,2" 1} of K] is just the companion matrix of f(X). It follows
from proposition[3.3.3 that Tr s () = [L : K[x]] - Trpsy/x (x). We can say more: if y1, ..., ym
is a K'[z]-basis of L, then the matrix of 4, : L — L in the basis {z'y; |0 <i<n—1;1 < j <m}
is block diagonal, with blocks all equal to M,. Hence the characteristic polynomial of s, on L
is the m = [L : K[x]]-th power of f(X). In particular, Ny /i (7) = NK[m]/K(:z:)[L:K[””.

The trace defines a bilinear symmetric form

AxA —R
(z,y) > Tra/r(zy)

Definition 3.3.5 If {z1,...,z,} is a basis for the free R-module 4, its discriminant is
Ay (1,0 2n) = det (TrA/R(acixj)> .
If {y1,...,yn} is another basis, let y; = >’ a; jo; and U = (a; j) be the change of basis matrix.
Then (TrA/R(ypyq)> =U (TrA/R(a:imj)) U?, hence
(3.3) Ay/r(yt,- -5 yn) = (det U)QAA/R(l‘l, ceey Tp).

Since U € GL,(R), the two differ by a unit. If A is a free R-module, we can thus define the
discriminant ideal as the principal ideal 9 4/ C R generated by the discriminant of any basis.

We shall be mostly concerned with the following situation. R is an integrally closed domain
with fraction field K. We consider a finite field extension K C L and a subring A C L, integral
over Rand such that L = Frac A. If z € A, let f(X) = X"+, 1 X" '+ +ap € K[X] be the

the minimal polynomial of z. By example Trg(y)/k(7) = an—1, so by lemma 3.2.20| (with
I = R) we get Tr,) k() € R. Hence Tr /i (v) = [L : K[x]] Trgs)/x (z) € R for every x € A.
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Definition 3.3.6 Let R be an integrally closed domain, K its fraction field, L a finite field ex-
tension of K and A C L a subring, integral over R. Assume furthermore that A contains a
K-basis for L. The discriminant ideal is the ideal 94, C R generated by the discriminants
Ap k(z1,...,7y) of all the K-bases {z1,...,z,} of L contained in A.

If A is a free R-module, this definition coincides with the one given above, in view of formula
(3.3), but in general it won’t be a principal ideal. It can be computed by localisation.

Lemma 3.3.7 Let S C R be a multiplicative subset. Then 0g-14/5-1p = S‘le/R.

Proof. Since A C S~!A, any K-basis of L contained in A is in S~! A, hence 04/r C 05-14/5-1R

SO SiloA/R C 0g-1a/5-1p 21,0, € S~1A are a K-basis for L then, for a suitable s €
S we have that sz1,...,s7, € A, hence Ap g (sw1,...,57,) = SQnAL/K({L‘l, oy Tp) € Vg R
Therefore 0g-14/5-1R & Sile/R. O

As usual, the bilinear form allows us to define K-linear (respectively R-linear) maps

L —Homg(L,K) A — Homp(A,R)
xr —> [yHTrL/K(xy)} ’ x —> [yHTrL/K(xy)] '

Definition 3.3.8 Let R be an integrally closed domain, K its fraction field, L a finite field exten-
sion of K and A C L a subring, integral over R and containing a K-basis for L. The codifferent

@A}R {zx € L|Trp k(ry) € RVy € A}

is the largest sub-A-module M C L such that Ty, (M) C R. Notice that A C D A} R

Also the codifferent can be computed by localisation.

Lemma 3.3.9 Let S C R be a multiplicative subset. Then S~ 133A}R - ©§}1A/S*1R and equality
holds if A is finitely generated as an R-module.

Proof. By definition, if = € @A/R then Try, i (zy) € R forall y € A. Then, for s,t € S, we have
Try i (2%) = LTrpk(zy) € ST'R. Thus S~ 1®A}R C lelA/S—lR' For the reverse inclusion,
let y1,...,y, be generators for A. If x € QsilA/SflR' select s € S such that sTry /g (zy;) € R
foralli =1,...,7. Thenforally = ayy1 + -+ + oy € A, with o; € R, we get Trp i (szy) =

Soie1 aisTrp i (7y;) € R, hence sz € @Z}R and therefore z € S~ 1’}3A}R O

Proposition 3.3.10 Let R be an integrally closed domain, K its fraction field, f(X) € R[X] a monic
separable polynomial, L = K[X|/ (f(X)) and A = R[X]/ (f(X)). Let x € A be the class of X. Then
the pairing Try i : L x L — K is non-degenerate and @Af} R I8 the free A-module generated by ﬁ

Proof. Under these assumptlon Ais a free R-module with basis 1, z,...,2" 1, where n = deg f.

Putr;; = TrL/K< e )) fori,j € {0,...,n — 1}. Lemma3.3.12 below shows that r; ; = 0 for
0<i+j<n-—-2andr;; =1fori+j=n— 1. Moreover, for i+ j > n we have,

mi+jfn

m,j:m/K(“'ﬂ(x)> TfL/K<Zﬁ’“ /(@) ) ZB’C L/K<f’(k)> !
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for suitable fy, ..., Bn—1 € R. Therefore the matrix (r; ;) = (Tr L/K ( ))) is in GL,,(R) and

0O ... 0 1
fCZfU] O e 1 k n(n—1)
det (T —— | ) =det = (-1 .
€ ( rL/K(f’(.%’))) € ( ) 2

1 % ... %
Therefore the basis (1,z,...,z"!) admits (ﬁ, el %) (rm-)—l = (y1,...,yn) € L™ as dual
basis with respect to the pairing Try i : L x L — K, which is thus non—degenerate. By defini-
tion, z = >, oyy; € Lisin @Z}R if and only if Try i (z2) = ozi € Rfori =0,...,n;. Since

(ri;) € GLp(R), the R-submodules generated by y1,...,yn and ¢ (x), s ( 3 - coincide. O

rL('rL n(n—1)

Corollary 3.3.11 Ay i (1,z,...,2"" 1) = (-1) Nii (f' (%))

Proof. Let M € GL,(K) be the matrix of the multiplication by f’(x), in the basis 1, ,...,z" 1.
By linearity of the trace, we have (TrL/K (f (x))> (TrL/K (z* atj)) M~!. Thus

A(l,z,..., ) = det (TrL/K (a: x]>)
TrL/K < T l'J >> det(M)
(-1 >”(” ”NL/K (/@) 0

Lemma 3.3.12 (Euler) Try /g (ﬁ;)) =0for0<i<n-—2andTrp Kk ( n( ;) _1

Proof. Let 1 = x, z2, ..., 2, the roots of f in its splitting field. Decompose the rational fraction
ﬁ into simple elements, substitute Y = + and expand the geometric series:

1
f1(@) (X — x5)
Y 1
f'(@;) (1 —2;Y)

g
>

I
-

<
Il
_

I
M=

=1
& Y 2v2 n—1lyn—1

(3.4) =Y A4y +25Y 4+ 42?7y )
= ['(z))

j=

I
1=
=%
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N
~
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(\
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the last equality follows from example On the other hand, if f(X) =ag+ a1 X +---+ X",
we can expand directly

(3.5) L L Y Y? 1+ EOO: y"
. = = = C
fX) atay+-+gs I+ taY 4 agY” ="
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for suitable ¢; € R. The identities in the statement now follow by comparing the coefficients of
Y, Y% ..., Y"in (3.4) and (3.5). O

Theorem 3.3.13 Let K C L be a finite field extension. The following are equivalent:
a) L/K is separable;
b) Trp i : L x L — K is a non-degenerate bilinear form.

Proof. If L/K is separable, we can invoke Abel’s theorem to apply proposition [3.3.10| to con-
clude that the trace pairing is non-degenerate.

On the contrary, if L/K is not separable, one can find an intermediate extension K C F' C L
such that

i) [L: F] =p™ for some m > 1, where p = char K;
ii) 2P € F forall z € L.

Let us show that Try /x(zy) = Oforally € Land all x € L but x ¢ F'. There are two cases. If
xy ¢ F,since a = (zy)? € F, the minimal polynomial of zy over F'is T? — a. The characteristic
polynomial of the multiplication map iz : L — Lis (T? — a)? """ Hence Tr r/r(wy) = 0. On
the other hand, if zy € F', we get Try ) p(2y) = 2yTry /p(1) = zyp™ = 0.

Either way, Try/p(7y) = 0 and by transitivity of the trace (proposition we conclude that
Trr/x(vy) = Trp/ g (Tr p(zy)) = Trp/k(0) = 0. O

Corollary 3.3.14 Let R be an integrally closed domain, K its fraction field, K C L a finite separable
extension, A the integral closure of R in L. Then A is a submodule of a free R-module of rank [L : K].

Proof. Let {x1,...,x,} be abasis for L/K. Each z; is algebraic. If a,z]" +- - - +a12; + a9 = 0 with
a; € K, a,, # 0, then multiplying by a common denominator of the a; we may assume a; € R.
Multiplying by a’~! we get an integral equation (a,z;)" + - - - + a? 2a; (anz;) + atag = 0 for
anI;.

Therefore, there exists a basis {y1,...,y,} be a basis for L/K with y; € A. Let {y},...,y’} be
the dual basis with respect to the trace form. For z € 4, let z = > =1 ozjy;f, with o; € K. Then

n
TTL/K(nyi) = Z ajTrL/K(yiyj) = q;.
j=1
Since zy; € A we conclude that a; = Tr, /x (zy;) € R. Hence A C Ry; @ --- @ Ry;,. d

Corollary 3.3.15 Let R be an PID, K its fraction field, L a finite separable extension of K and A the
integral closure of R in L. Then A'is a free R-module of finite rank [L : K].

Proof. As a submodule of a free R-module, A is torsion-free. Since A is a finitely generated, the
claim follows from the elementary divisors theorem. O

§ 4 Valuation rings

In this section, K is a field and R C K is a subring.
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Definition 3.4.1 R C K is a valuation ring if for every x € K* eitherz € Rorz™! € R. Asa
consequence, K is the fraction field of R.

Example 3.4.2 For any prime number p, the ring Z, is a valuation ring: let § € Q* with
(a,0) = 1. If plb (i.e. ¢ & Z(y)), thenpta, thus 2 € Z .

Example 3.4.3 If k is a field, the ring k[X] x) is a valuation ring: let 5 € k(X)* with (f,g) = 1.
If X|g (ie. £ ¢ k[X](x)), then X { f, hence 4 € k[X](x).

Proposition 3.4.4 Any valuation ring is a local ring, with maximal ideal m = {z € R|z~1 ¢ R}.

Proof. The set m is closed under multiplication: for any € mand y € R, if zy ¢ m C R, then
(xy)~! € R, therefore ! = (zy)~'y € R, which is a contradiction.

It is also closed under addition: if z, 2 € m — {0} then either 227! € Ror 271z € R. Say the first
inclusion occurs, then z 4 z = (zz~! + 1)z € m.

Finally, if u € Rbutu ¢ m then u~! € R. Hence R* = R — m, thus R is a local ring. O

Example 3.4.5 The ring k[X, Y] xy) is local but not a valuation ring: both <X ¢ k[X, Y]ix,y)-

Proposition 3.4.6 Any valuation ring is integrally closed.

Proof. Let © € K be integral over R, say 2" + an 12" '+ +ag=0,witha; € R. Ifz ¢ R,
then z—! € R, hence z'~" € R, therefore

T = xlfnxn _ _xlfn(an_lxnfl NI CLO) = —Qp_1— " — (10:1,‘17” cR
which is a contradiction. O

Valuation rings are intimately related to the integral closure of domains, as we shall see in
theorem below. We need a preliminary result.

Proposition 3.4.7 Let K be a field and ¥ the set of all subdomains A C K which are local, with
maximal ideal m 4 # 0. Order ¥ by (A, m4) < (B,mp)if AC Bandmy = ANmpg.

a) If ¥ is non-empty, it contains maximal elements.
b) Forany subring R C K, R not a field, there exists a maximal element A € 3 such that R C A.

c) The maximal elements in 3 are the non-trivial valuation rings with fraction field K.

Proof. If {(Ay, ma, )}n is a chainin ¥ then A = J,, 4, is a subdomain in K, local with maximal
ideal m4 = J,, m4,. Hence X satisfies the assumptions of Zorn’s lemma and has thus maximal
elements. The same holds for the subset X C ¥ consisting of the A containing R. Notice that
Y g # @: it contains (R, pR,) for any prime p C R.

Let A be a valuation ring with fraction field K. As a local ring, it is belongs to X. Let (B, mp) be
a local subdomain in K containing A; if B properly contains A, for any b € B, b ¢ A we have
b=! € A. Moreover b~! ¢ A* (otherwise b € A* C A),sob~! € my C mp. This means that mp
contains a unit, a contradiction. Valuation rings are thus maximal in X.
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Conversely, let (A, m4) be a maximal element in ¥. Fix 0 # y € K and consider the subrings
Aly] and Afy~!] of K. We shall prove that if both y ¢ A and y~! ¢ A then either Afy] or Aly~]
belongs to ¥, contradicting maximality. So either y € A ory~! € A, hence A is a valuation ring.
Let us thus assume that both y and y~! do not belong to A. We first check that either m 4 A[y] or
m4Aly~1] is a proper ideal. Otherwise, we would have

(3.6) l=ag+ay+-+any", ag, - - -, Ay € Ma;

(3.7) L=bo+biy 4+ +bny™,  bo,...,by € ma.

Since my # A, m,n > 1. Choose m,n minimal. By symmetry, we may assume n > m. From
(3.7) we get (1 — bg)y™ = biy™ ! + - - + bp,. Multiplying (3.6) by 1 — by and substituting gives

1—by= ao(l — bo) —+ o+ an,1(1 — bo)yn_l + an[blym_l —+ -+ bm]yn—m

which is an equation like but of degree strictly smaller than n, contradicting minimality.

So either m4 A[y] or my A[y~!] is a proper ideal. Say m4A[y] C A[y] and pick a maximal ideal n
in Aly] containing m4 A[y]. Notice that nN A DO m4 and the latter is maximal, hence nN A = my4.
Then (Afy]n,n) € ¥ with (4,m4) < (Ay],n) and Afy] properly containing A, contradicting the
maximality of A. O

Example 3.4.8 The prime field F, contains no local subrings.

Theorem 3.4.9 Let K be a field, R C K a subdomain which is not a field. The integral closure of R in
K is the intersection of all the valuation rings of K containing R.

Proof. Let R be the integral closure of Rin K. If R C A C K is a valuation ring, any z € K
integral over R is integral over A, hence z € A because A is integrally closed. Thus R is
contained in every valuation ring.

On the other hand, fory € K, y ¢ R we shall construct a valuation ring A of K withy ¢ A.
Consider R[y~!]. Theideal y ' R[y~!] C R[y~!]is proper, otherwise 1 = ayy~!+---+a,y " for
suitable a; € R and, multiplying by ", we would get y" = ary" ' 4+ ary™ 2 + - - + a,, which
implies y integral over R. Take any prime ideal y ' R[y~!] C p C R[y!]. By propositionm
there exists a valuation ring (A, my4) in K with A D R[y~!], such that pR[y 1], = ma N Ry~ 1],
In particular, y ™! € p Cmy,soy ¢ A. O

Another useful consequence of proposition [3.4.7]is the following existence theorem for ex-
tensions of valuation rings.

Theorem 3.4.10 Let R be a valuation ring, K its fraction field and L a finite extension of K. There
exists a valuation ring A C L such that R C A.

Proof. The statement is obvious if R = K. The non-trivial case follows immediately from
proposition[3.4.7b applied to R C L. O

Remark 3.4.11 Let R be a valuation ring and L a finite extension of K = Frac R. By theo-
rem the integral closure R of R in L is contained in any valuation ring R € A C L. In
general R has more than one maximal ideal, so can’t be a valuation ring itself. We shall see in
theorem that R is a valuation ring if R is complete.
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Definition 3.4.12 For any valuation ring R, denote I' = K*/R*. The projectionv : K* — I’
is called a valuation. The abelian group I' = K*/R* is ordered by the relation v(x) > v(y) if
ry~! € R. Notice that R = {z € K*|v(z) > v(1) = 0} U {0}. We extend v to 0 by setting
v(0) = +o0.

Proposition 3.4.13 The valuation map v : K* — T satisfies

(3.8) o(z +y) > min{o(z),0(y)}  Vr,yec K

(3.9) v(z +y) = min{v(z),v(y)} ifv(z) # v(y).

Proof. Say v(z) > v(y) (i.e. xy~t € R). Then (z + y)y ! = xy~! + 1 € R, which is equivalent to
v(z +y) > v(y). This proves (3.8).

The inequality v(z) > v(y) holds if and only if xy~ € m (since z7'y ¢ R). In this case,
(z+y)y~t € 1+m,s0 (r+y) 'y € R, hence v(y) > v(z +y). Together with we get . O

Remark 3.4.14 If I is an ordered abelian group, K a field and v : K* — I' a group homomor-
phism satisfying (3.8), it is a simple exercise to check that R = {x € K™ |v(z) > 0} U {0} is a
valuation ring.

Example 3.4.15 Any field K is a valuation ring with the trivial valuation v : K* — {0}. Notice
that R = K and m = {0}.

Example 3.4.16 Let p be prime number. Any nonzero integer a € Z can be written uniquely as
a = up*@, with (u,p) = 1. For any ¢ € Q*, set v,(%) = vp(a) — v,(b). Obviously v,(z) > 0 if
and only if # € Z(,). The map v, : Q* — Q*/Z,, ~ Z is called the p-adic valuation on Q.

Example 3.4.17 Let k be a field. Any nonzero polynomial f € k[X] can be written uniquely as

f = Xx"xUh, with vx(f) € Nand (h, X) = 1. Forany £ € k(X)*, set vx (L) = vx(f) — vx(g).
Also in this case, for the valuation group we have k(X)* /k[X] (XX) ~ 7.

In the same vein, any nonzero Laurent series f = Y° a;X* € k((X)), with a,, # 0, setting
vx (f) = n € Z defines a valuation and k((X))* /k[[X]]* ~ Z.

Definition 3.4.18 Valuation rings with valuation group isomorphic to Z are called discrete.

The algebraic properties of discrete valuation rings will be investigated in detail in §
For these, we'll get a much simpler proof of the existence theorem 3.4.10

§ 5 Absolute values

Valuations can also be used to introduce very useful analytic tools. The starting point is to
notice that a real-valued valuation on a field induces a metric (example below). Let us
begin with a more general definition:

Definition 3.5.1 An absolute value on a field K isamap | | : K — R satisfying:
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a) |z| > 0forall x € K and |z| = 0 if and only if z = 0;
b) |zy| = |z||ly| forall z,y € K;
¢) |z +y| < |z| + |y| for all z,y € K (triangle inequality).
We say that | | is non-archimedean if the following stronger condition holds:
) |z +y| < max{|z|, |y|} forall z,y € K.

If (K,||) and (K’,| |') are fields with an absolute value, an embedding ¢ : K — K’ is an
isometric embedding if |z| = |p(z)| forall z € K.

Remark 3.5.2 If | | is non-archimedean and |z| # |y|, then |z + y| = max{|z|, |y|}. Indeed,
suppose |z| < |y|. On the one hand |z + y| < max{|z|, |y|} = |y|. On the other

lyl = |z +y — x| < max{lz +y|, |z} = [z + 9|
(if max{|z + y|, |y|} = |z|, we would get |y| < |z|, a contradiction).

Example 3.5.3 The usual modulus

x x>0
|z| =
—r <0

is an absolute value on Q and R. We shall denote it | |. The complex modulus |z| = v/2Z is an
absolute value on C.

Example 3.5.4 Let v : K* — I" be a valuation with values in a subgroup I' C R (e.g. a discrete
valuation). Choose a real number 0 < ¢ < 1 and put |z|, = ¢*®) for  # 0 and |0], = 0. Then
| |, is a non-archimedean absolute value on K: axioms a) and b) follow because v : K* — I"is
a group homomorphism and the triangle inequality follows from proposition ifv(y) <
v(x) then

z+y)

|z +ylo = e < W = lylo = max{|z|y, [y],}

For example, any field can be given the trivial absolute value, defined by 0] = 0 and |z| = 1
for z # 0. It is attached to the trivial valuation of example
More interesting is the p-adic absolute value on Q, attached to the p-adic valuation, given by
0], =0and |z|, = p~ (@) for z # 0 (i.e. we have chosen ¢ = %).

We have used here a lax notation: the absolute value attached to the valuation v also de-
pends on the choice of the constant ¢, so we should rather write | |.,. Changing the constant
will raise the absolute value to an exponent:

) 1

v(x 1
|zlp = ') = clmre = |g|FE

The absolute values | |, and | |, are thus equivalent in the sense of the next definition.

Definition 3.5.5 Two absolute values | |; and | |2 on a field K are equivalent if there exists a
real number v > 0 such that |z|y = |z|{ forall z € K.
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It is trivial to check that this notion defines an equivalence relation on the set of all possible
absolute values on K. In the literature, an equivalence class of absolute values on a field is
called a place, and sometimes also a valuation. The latter term is justified by the following

Proposition 3.5.6 Let | | be a non-trivial non-archimedean absolute value on a field K. Then
R={zeK||z| <1}

is a valuation ring with maximal ideal m = {x € K | |z| < 1} and units R* = {z € K | |z| = 1}. Two
equivalent non-archimedean absolute values on K define the same ring.

Proof. It follows immediately from the axioms in definition[3.5.1|that R is closed under addition
and multiplication. Notice that |1| = |1|%, hence |1| = 1, since | | is nontrivial (if 1| = 0 then
|z| = |1||x| = 0 for all z € K). Therefore 1 € R. This also implies that | — 1|> = 1, thus | — 1| =1
and then | —z| = |z| for all z € K, which implies that R is an abelian group and thus a ring. For
r € KX, from |zz~!| = [1] = 1 it follows that |x~1| = |z|7}, so R is a valuation ring: if |z| > 1,
then |z7!| < 1. The statement on equivalent absolute values is also obvious. O

Example 3.5.7 Let k be a field, | | the absolute value on k((X)) induced by the valuation vx of
exampleBZ17} Then K{[X]] = {f € k(X)) | |f] < 1} and XK[[X]] = {f € k((X))] If] < 1}.

There is a simple test to check whether an absolute value on a field K is archimedean or
not. Recall from example|1.1.15/that there is a canonical ring homomorphism ¢ : Z — K given

by p(n) =n-1.

Lemma 3.5.8 An absolute value | | on a field K is non-archimedean if and only if {|o(n)|},cz, C R is
a bounded set.

Proof. If | | is non-archimedean, it follows from ¢’) that [p(n)| = [1+---+1| < max{1,...,1} =1,
so the set is bounded. Conversely, suppose |¢(n)| < B foralln € Z and let z,y € K. For all

n € N we have
- n n— n
< 132 (3) et < o+ B sl
k=0

|z +y|" =

En: <Z> T

k=0

Therefore |z + y| < (n + 1)%3% max{|z|, |y|} for all n € N. Taking the limit for n — co we get
the strict triangle inequality ¢’). O]

Corollary 3.5.9 Any absolute value on a field of positive characteristic is non-archimedean.

Theorem 3.5.10 (Ostrowski) Any nontrivial absolute value on Q is equivalent to | |« or to | |, for
some prime number p.

Proof. Let m > 1 be an integer. Any v € Z can be written uniquely as v = aym* +- - - +aym+ay,
with 0 < a; < mand v < mF. Let M = max{1,|m|}. We have

k k
(3.10) lv] < Z la;||m|" < Z ]a,i]Mk.
i=0 i=0
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O

Since a; < m, we have |a;| = |1+ 1+ -+ 1] < a;|1] < m. Since k < log” , from ( ) we get:

1 ogr
(3.11) | < (k+ DymM* < (k‘:gg” + 1) ML

Applying (3.11) to v = n' and taking ¢-roots on both sides we get

1
In| < ( llogn +1) mt Misem
ogm

for every integer n € Z and every ¢t € N. Taking the limit for ¢ — co we get

logn logn
(3.12) In| < Mosm = max {1,|m|}*sm  VneZ

There are now two cases. If |m| > 1 for all integers m > 1, inequality (3 y1elds In| Ten <

\m|logm for all n,m > 1, hence by symmetry |n|lsn = \m|10g1m Writing ¢ = |n|10g” € R for the
constant value of these expressions, we get |n| = c!°¢™ for all n > 1. Since | | is multiplicative,
we get || = g for all positive rational numbers and, since | — x| = |x| we conclude that
|z| = dogl*l~ for all z € Q*. Therefore |z| = |z|2, for all z € Q, with a = log c.

On the contrary, suppose that there exists an integer m > 1 such that |m| < 1. Then inequality
(.12) yields |n| < 1 for all integers, so | | is non-archimedean by lemma [3.5.8 By proposi-
tion[3.5.6) R = {x € Q| |z| < 1} is a subring of Q containing Z and {z € Q| \x\ <1}NZ=pZ
is a prime ideal in Z. It can’t be the zero ideal, otherwise |m| = 1 for all m € Z — {0} and, by
multiplicativity of | | this would imply that |z| = 1 for all z € Q*, contrary to the assumption

that | | is nontrivial. Now every z € Q can be written uniquely as x = up®®), with u € Z(Xp).

Therefore |z| = [p»(®)| = |p|*»(*), hence |z| = |z[$, with a = —log, |p|. =
§ 6 Completion

Definition 3.6.1 Let K be a field with an absolute value | |. A sequence {ay, }nen in K

a) converges to a € K if for every ¢ > 0 there exists N. € N such that |a, — a| < ¢ for all
n > Ne.

b) is a Cauchy sequence if for every ¢ > 0 there exists an N € N such that |a,, — a,,| < € for
all n,m > N..

It is elementary to check that a convergent sequence is Cauchy. The field (X, | |) is complete if
every Cauchy sequence converges.

It is well known from calculus that R and C are complete fields. The field of Laurent series is
complete: since checking this directly is quite messy, we shall rather get it as a byproduct of the
technique of completion (corollary [3.6.19|below). The classical construction of R from (Q, | |)
by adjoining all the limits of Cauchy sequences can be carried out in the general setting.
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Theorem 3.6.2 Let K be a field with an absolute value | |. There exists a field K, complete with respect
to an absolute value also denoted | | and an isometric embedding v : K — K such that for every complete
field K' and isometric embedding ¢ : K — K', there exists an isometric embedding ¢ : K — K’ such
that p = Qo

K-—*, K
s
K

The pair (K, 1) is unique up to unique isomorphism and called the completion of K with respect to | |.

Proof. The unicity is clear from the universal property. Let C'S(K) the set of all Cauchy se-
quences in K and NS(K) the subset of null sequences, i.e sequences {a,} € C'S(K) such that
Jim la,| = 0. Using standard calculus techniques, one can show (exercise that C'S(K) is

a ring with termwise addition and multiplication and NS(K) is a maximal ideal. Let K =
CS(K)/NS(K) and denote [a,] the class of {a,}. Define |[a,]| = Jim lan|. This is clearly

well defined and provides an absolute value on K. Embedding K C CS(K) as the constant
sequences and projecting onto & we get an isometric embedding ¢ : K < K. The univer-
sal property is also clear: if ¢ : K — K’ is an isometric embedding and {a,} is a Cauchy
sequence in K then |a, — an| = |p(an — am)|]" = |p(an) — ¢(am)|’, so {y(a,)} is Cauchy
and we can define ¢ : CS(K) — K' by ¢ ({an}) = nli_)ngogo(an). If {a,} € NS(K), then
o ({an}) | = JE&WWTLW = nlgrgolaﬂ = 0,50 ¢ ({an}) = 0, hence NS(K) C ker¢ and this
defines the map ¢. As a nonzero field homomorphism preserving absolute values, ¢ is an
isometric embedding.

The tricky bit is to show that K is complete. Let {a,},en be a Cauchy sequence in K i.e. for
each n € N, a,, is the class of a Cauchy sequence {a, , },en in K. To say that {a,,} is Cauchy in
K means that for every ¢ > 0 there exists N. such that

(3.13) loan — am| = |[an,] — [O‘m,u” = Vh_{gomn,v —amy| <e

for n,m > N.. Fix n € N. Since {a,, },en is a Cauchy sequence, there exists an integer M,
such that |oy,, — an | < 2 forall v, > M,. Put a, = an . This defines a sequence {a,} in
K such that |y, — a,| < L. Let us check that {a, } € CS(K): for every ¢ > 0 we have

13 13 13
|an_am| = |an_an+an_am+am_am| < |an_an|+|an_am|+|am_am‘ < §+§+§ =&

for all n,m > max{Ns, 3}. We are done if we show that {a,,} converges to o = [a,] in K. But
for every € > 0 we have

: e €
lay, — al = |an —ap + an — o] < |ayp —an| + |an, — o] = |an—an\—i—yh_>rgo\an—ayl < 5—1—5:5
forall n > max{Ne, 8y. O

Corollary 3.6.3 If | | is a non-archimedean absolute value on K, then K is also non-archimedean.

Proof. Follows from lemma since the canonical map ¢ : Z — K factors through K. O
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Corollary 3.6.4 If | | is an absolute value on K induced by a discrete valuation, then |K| = |K| C R.

Proof. Indeed, representing any a € K as a = [a,], we have |a| = nlgg() lan| and the values |ay,|

range in the discrete group ¢ C R, so |ay| is constant for large n. O

Remark 3.6.5 If K is a discrete valuation field, we may in fact represent every o € K by a
sequence {ay }nen with |a,| = |af for all n € N: we know that there exists an N such that
lan| = |a| for n > N and we may replace {a,} by the sequence {a],} defined as a], = ay for
n < N and a), = a,, for n > N without changing the class mod NS(K).

Example 3.6.6 The completion Q, of Q with respect to the p-adic absolute value | |, is the field
of p-adic numbers. Elements in the ring Z, = {z € Q, | |z| < 1} are called p-adic integers.

In order to investigate finite extensions of complete fields, it is convenient to discuss vector
spaces over such fields.

Definition 3.6.7 Let K be a field with an absolute value | | and V' a K-vector space. A norm on
V' compatible with | | is a function || || : V' — R such that

a) ||[v||>0forallv e Vand ||v|| = 0if and only if v = 0;
b) ||zv| = |z|||v] forallz € K and v € V;
o) |[v+w| <|v|+|w]| forall v,w € V (triangle inequality).

Two norms || ||; and || ||2 on V' compatible with | | are equivalent if there exist ¢, c2 € R such
that ¢1]|v][1 < ||v]l2 < e2|v|; forall v e V.

Definition 3.6.8 Let K be a field with an absolute value | | and V' a K-vector space with a
compatible norm || ||. A sequence {vy }penin V'

a) converges to v € V if for every ¢ > 0 there exists N. € N such that ||v,, — v|| < ¢ for all
n > N;.

b) is a Cauchy sequence if for every ¢ > 0 there exists an N. € N such that ||v,, — vp,|| < ¢
for all n,m > N..

We say that V' is complete if every Cauchy sequence converges.

Example 3.6.9 If V = K% then ||(x1, ..., 24)|lmax = max{|z1],...,|z4|} is a compatible norm. If
K is complete, K¢ is clearly complete, since taking coordinates in a Cauchy sequence of vectors
yields a Cauchy sequence in K.

Proposition 3.6.10 Let K be a field complete with respect to a nontrivial absolute value and V' a finite
dimensional vector space. Any two compatible norms on V' are equivalent and V' is complete.
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Proof. Choose a basis {ej,...,eq} of V and write each vector as v = z1(v)e; + --- + z4(v)eq.
This gives an isomorphism V ~ K% and a norm || ||max on V for which V' is complete. Let || ||
be any other norm on V: we are done if we prove that || || and || ||max are equivalent. Clearly

d

d
Vi< S ww)llesl < max fleill+ 3 [2i(v)] < callVlhmas
i=1 T i=1

where ¢ = dmax{||e;||}. To prove inequality ci||V|jmax < ||V||, replacing v by a non-zero
multiple, we may assume that ||v|| < 1. We proceed by induction on d. If d = 1 the claim is
trivial: v = 21(v)e; hence ¢; = ||e||. So assume that every (d — 1)-dimensional K-vector space
is complete and all norms on it are equivalent. Let us first assume that for each i = 1,...,d
there exists b; € R such that

(3.14) |zi(v)] < b; V v such that ||v] < 1.

Fix 7 € K such that 0 < || < 1. For 0 # v € V, let m € N such that |7™T!| < ||v|| < |7#™|. Then

_ , _ |.m
HVHmaX_iE?,}fdul(v)‘ | |Z.£I%ax

=1,...

v )‘ < [x™) max b; < (o[~ max b) V]
Tm i=1,....d i=1,...,d

=1,..,

hence ¢1||V||max < ||[V|| forall v € V, with ¢; = |7|(max{b;})~L.
We now use the induction assumption to prove bound (3.14) for the coordinate x; (the general
case follows by permutation). Suppose that the values |z;(v)| are unbounded: for every n € N,

there exists a vector v,, with ||v,|| < 1and |z1(v,)| > n. Forn > 1, letu,, = ﬁvn. Then

ol _ 1
||l =——< -

so the sequence {u,,} converges to 0 in V. By construction, u,, = e; +x2(u,)ez +- - -+ z4(uy,)eq,
so the sequence {z2(u,)es + - - + z4(u,)eq} converges to —e;. But the latter is a sequence of
vectors in the subspace V' =< e, ..., €4 > which has dimension d — 1 and is thus complete by
inductive assumption. Hence e; € V’, contradicting the fact that {e1,es,...,es} isabasis. O

Theorem 3.6.11 Let K be a field, complete with respect to a nontrivial non-archimedean absolute value
| | and L a finite extension of K. There exists a unique absolute value on L, also denoted | |, such that
K C L is an isometric embedding. L is complete for this absolute value. The valuation ring of L is the
integral closure of the valuation ring of K.

Proof of uniqueness. Two extensions | |; and | |2 of | | to L define two compatible norms on the
finite dimensional vector space L, so by proposition 3.6.10 they are equivalent in the sense of
definition3.6.7} Let 0 # y € L such that |y|; < 1. Then the sequence {y"} converges to 0 in L

for the norm | |; and thus also for the equivalent norm | |3: this forces |yl < 1. Now fix x € K

log |yl log |y|1

with 0 < |z| < 1 and consider the positive real number Tog o] ° Tog 7]

For any rational * >
m

n n . . .
we have [z|" < [y[1", hence |7 <L thus |77 | < 1 and therefore |z|" < [y[3", which implies
1 o . . 1 . e 1
no> loelylz 1 5 similar way, one proves that any rational % < 08Ul gatisfies 2 < loslylz
m log || m log |z m log |z|

Taking sequences or rational numbers approaching from above and from below, we conclude
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that ' gg'fﬂf = 1ﬁ)gg\‘z,;||2’ hence |y|; = |y|2 for all y € L such that |y|; < 1. It suffices now to remark

that for any y € L thereis a z € K such that |zy|; < 1 and then compute

= 2 vEe
T '

Proof of existence. Let R = {x € K| |z| < 1} and recall from theorem [3.4.10| that we have a
valuation ring R C A C L. To get an absolute value on L, we need to show that the valuation
group L*/A* is a subgroup of R, as in example We have a commutative diagram

K* —%— K*/RX

J J

L* —2— LX/AX

where the horizontal maps are the valuations and the vertical ones are induced by the inclusion
K C L. Any y € L* is algebraic over K: take a minimal equation a,y" + --- + a1y +ap = 0
with a; € K and n < [L : K]. If there exists j < n such that a; # 0 and w(a;y’) > w(a;y?) for
all other i < n such that a; # 0, then by condition (3.9) in proposition we get w(a;y’) =
w(any™ + -+ + a1y + ap) = w(0) = 400, which is absurd. Therefore there exist i # j such that
w(ay') = wla;y’). Hence w(y™™7) = w(aja; ') = v(aja; ') € K*/R*. Therefore

o:L*/A* — L*]JAX
y — y[L:K]!
maps L*/A* to K*/R*. The map o is injective: if y* = 1 then y € A because A is integrally

o

closed. We thus get the injection L* /A* — K*/R* — R we were looking for.

Finally, by theorem the integral closure in L of the valuation ring R of K is the intersection
of all the valuation rings of L containing R. In the proof of existence, we have shown that any
such valuation ring corresponds to an absolute value on L and we know that there is only one
of those. O

Now that we know that an extension exists, we can give a formula for it:

Corollary 3.6.12 Let K be a field, complete with respect to a nontrivial non-archimedean absolute value
| | and L a finite extension of K. Forany y € L

_1
L:K]

(3.15) [yl = |Np/x(y)|'

is the unigue absolute value on L such that K C L is an isometric embedding.

Proof. Pick a finite normal extension K C L C E. Then there is also a unique extension of | |
to E. For any K-linear automorphism o : £ — E define | |, by |2|, = |0(2)|. This is clearly an
absolute value and |z|, = |z| for all z € K. By uniqueness | |, = | |, s0 |z] = |o(z)|forall z € E.
For z € E'we have Nk (z) = [, 0(z) where o ranges among all K-linear automorphisms of
E (see example[3.3.4). Then forall y € L

‘NL/K(?J)‘ = ‘NE/K(Z/)‘[EI:L] = ’H a(y)

1
[E:L

] [E:K]
= |y| = = Jy|IFKD,
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Remark 3.6.13 We could try to define an absolute value directly by formula (3.15), bypassing
the existence part of theorem[3.6.11} Clearly (3.15) satifies conditions a) and b) in definition[3.5.1]
and coincides with | | on K, but checking condition c) is subtler. See exercise

Remark 3.6.14 Theorem [3.6.11] also holds for fields with an archimedean absolute value. In
fact, a much stronger result holds: any field complete with respect to an archimedean absolute
value is isometrically isomorphic to either R or C. See [3]. theorem II.4.1. Formula (3.15) also

fits: if z = x + iy then Ng r(2) = 2% +y? and |z| = /2% + 42,

Let us now discuss in more detail completions of fields with a nontrivial discrete valuation.

Lemma 3.6.15 Let K be a field with a nontrivial discrete valuation v and K its completion. Then the
maximal ideals m = {x € K | |z| < 1} and m = {{ € K | |§| < 1} are principal and any generator of
m also generates m.

Proof. The ideal m is generated by any element 7 € K such that v(7) =1 € Z = K*/R*, since
for any z € m we can write z = 7y and v(u) = 0 so u € R*. By corollary forany £ € m,
there is an = € m such that |¢| = |z[; then |é77?(*)| = 1, so it is a unit and £ = 577_”(1’)) @), 0

If K is a field with a non-archimedean absolute value and {o,} is a Cauchy sequence in
R= {a € K | || < 1}, its limit o is also in R, because la] < 1+eforalle > 0, as can be seen by
writing |a| = |a — o, + | < | — | + 1. For an arbitrary absolute value, we can’t reasonably
expect a sequence in m to converge in m, as a sequence of real numbers strictly smaller than 1
may very well converge to 1. But if the valuation is discrete, then th = {a € K| || < |r|}, and
so the limit of any Cauchy sequence in m belongs to m. Of course, the same property holds for
the ideals " = {a € K | |a| < |n|"}, generated by 7"*. We can be more precise:

Proposition 3.6.16 Let K be a field with a nontrivial discrete valuation and K its completion. Then
for every n € N the inclusion R C R induces an isomorphism R/m™ = R/m".

Proof. Let a € R — 1, represented by a sequence {a,},cn. By remark we may assume
lan| = 1 = |a] for all n. Since {a,} is Cauchy, there exists N € N such that |a,, — a;,| < |7| for
alln > N (as before, ™ denotes a generator of m). Replacing {a,} by a sequence whose first NV
terms are equal to a = ay as in remark we may assume that a,, = a mod m for all n € N.
Therefore a € a + m. We conclude that R = R + m. We can refine further: take £ € R, write it
asé =z +mn, withz € Randn e R; then 17 = y mod 1 for some y € R, hence ¢ € z + 7y + w2
Repeating, we conclude that R = R + w” for all n. Since m" = 7" R, we have " N R = m"
Thus

R/m" = (R+w") /" = R/ (RN@") = R/m"
where the isomorphism is provided by proposition|1.2.21 O
The proposition suggest an alternative representation for elements in K. Fix a generator 7

for m and a subset S C R consisting of one representative for each element in the field R/m.
We assume that 0 € S has been chosen.
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Lemma 3.6.17 Every element o € K can be written uniquely as a formal power series
a=1"(sg+s1m+ - Fspmt+...)
where m € Z is defined by || = |7|™ and s; € S with so # 0.

Proof. Tt clearly suffices to check the case m = 0, i.e. @ € R*. By definition, there exists a unique
0 # sg € S representing o mod m. Moreover a — 59 = ma; for a unique oy € R. If oy € m™,

sets; =--- =s,,-1 = 0and let s,, € S be the umque representative of oy~ mod m. Then
— (80 + -+ + 8p, ™) = 7™ lay for a unique ay € R. Repeating the process, we obtain the
power series expansion of a. a

Notice that the series 3222 s, converges in K. Indeed the sequence a,, = 2%, s;7' is a
Cauchy sequence: form < n

ap — Q| = < ,max |si]|m|" < _max 1Tt = |7|™ < e Vm,n > log . €.

Myeney -1

Corollary 3.6.18 Let R be a discrete valuation ring, m the maximal ideal, = € wm a generator and
k = R/m. If Ris a k-algebra, there exists a k-algebra isomorphism ¢ : R ~ k[[X]] such that p(7) = X.

Proof. Indeed, we may take S = k in lemma O
Corollary 3.6.19 k((X)) is the completion of k(X) with respect to the valuation vx.

Example 3.6.20 p-adic numbers are usually expanded as z = p™(sop + s1p+ -+ + $pp" +...)
with s; € S = {0,...,p— 1}. Sometimes, it is more convenient to choose S = {0,1,¢, ..., (P72},
where ¢ € Zy, is a p — 1-th root of unity (see example 3.6.34] below), since an expansion with a
multiplicative set of representatives S is preserved under multiplication of power series.

Corollary 3.6.21 Let R be a complete discrete valuation ring, L a finite extension of K = Frac R and
A the integral closure of R in L. Then A is a discrete valuation ring, free of rank [L : K| as R-module.

Proof. With notation as in the existential part of the proof of theorem[3.6.11} we have an injection
L* /A% 25 KX /R* ~ 7, so the valuation group of L is a subgroup of Z, hence cyclic of infinite
order. Therefore A is a discrete valuation ring.

Let m C R be the maximal ideal, 7 € m a generator and £ = R/m. Let zy,...,2, € A and
a1ry + -+ - + opx, = 0 a K-linear relation in L. Multiplying by a suitable power of 7, we may
assume that a; € R for all < and at least one of the «; is a unit. Reducing mod m we get that the
x; are k-linearly dependent. Hence dim; A/mA < [L : K].

Suppose now that the reduction mod m of xy,...,2, € Ais a basis of A/mAandlet A’ C A
be the R-submodule generated by the x;. Let y € A. There exist zp € A’ and y; € A such
that y = zo + my1. Apply the same argument to y; and repeat to construct a sequence y,, =
20+ 721 -+ 7"z, in A’ such that |y —y/,| < |7|"™! for all n. Therefore nlggoyg = y. On the other
hand, let V' C L be the K-subspace generated by 1, ..., z,. The absolute value on L restricts
toanormon V and A’ = V N A. By proposition[3.6.10, V is complete, soy € VN A = A'.

We have thus that A is a finitely generated module over the PID R. It is torsion-free, hence
free by the elementary divisors’ theorem, of rank r = dimy A/mA. Hence r = dimg A ®r K =
dimg L = [L : K]. O
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Remark 3.6.22 The proof of corollary presents a typical situation where one is tempted
to apply Nakayama’s lemma wrongly: conclude right away that the inclusion A" C A is an
identity because the two R-modules coincide mod m. We can’t do that, because we don’t know
yet that A is finitely generated.

Proposition [3.6.16| is also a bridge towards another type of completion, valid for general
rings, that plays a major role in Algebraic Geometry and Number theory. It is based on the
notion of inverse, or projective, limit.

Definition 3.6.23 Let I be a partially ordered set. We say that I is directed if for every i,j € I
there exists k € I such thati < kand j < k.

For instance, a totally ordered set is directed: this is in fact the case we shall restrict to most
of the time. Example [3.6.26illustrates the interest of the more general notion.

Definition 3.6.24 An inverse system of groups (rings, modules) {(G;, ; ;) }icr is a collection
of groups (rings, modules) indexed by a directed set and homomorphisms ¢; ; : G; — G for
every i < jin I such that ¢; j 0 p; = ¢; 1 for every i < j < k. The inverse limit of the system
is a group (ring, module) lim G;, equipped with a homomorphism ¢; : lim G; — G; such that
i = @;j o ; for every i < j and such that for every group (ring, module) I' with morphisms
j : I' = G; such that ¢; = ¢; j o9, for all ¢ < j, there exists a unique morphism ~ : I' — lim G;

such that 1; = p; 0. o
J

The universal property in the definition makes the inverse limit unique up to unique iso-
morphism. It can be constructed as the subset of the direct product []; G; consisting of coherent
sequences i.e. elements (...,x;,...) such that ¢; j(x;) = z;. One checks immediately that the
set of coherent sequences forms a subgroup (ring, module) of []; G;. The map ¢; is just the
restriction of the projection onto the i-th factor. As for the universal property, given I' as above,

define y(y) = (..., %i(y),...).

Example 3.6.25 Let {(G),,tn)} be a chain of subgroups of a group G, with ¢, : G, 41 — Gy, the
inclusion maps. Then lim Gy, = Npen G, as one easily checks from the universal property.

Example 3.6.26 Let K be a field and K*° its separable closure. The collection of all inter-
mediate extensions K C L C K°%¢P such that L is finite and Galois over K is a directed
set. If K C E C L is an intermediate extension, the Galois correspondence yields a map
Gal(L/K) — Gal(F/K). We obtain thus an inverse system and the absolute Galois group of K
is defined as Gal(K*P/K) = 1(121 Gal(L/K).
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Example 3.6.27 If R is a discrete valuation ring with maximal ideal m then R = lim R/m™. In-

deed, proposmonm gives rise to a sequence of maps R — R/m™, so by the umversal prop-
erty we get a morphism v : R — lim R /m™. For the inverse map, notice that if (..., zp,...)
is coherent sequence, for all n,m e N we have 2,4, = 2z, mod m". Choosing arbitrary
representatives z, € R, we get a sequence {Z,} in R which is Cauchy: |Zram — Tl < |7|™
One checks immediately that Jim 7, € R does not depend on the choice of the liftings, hence
(o Ty ) nh_)ngo Iy, defines an inverse map to .

This prompts the following

Definition 3.6.28 Let R be aring, a C R anideal and M an R-module. The ring Ra = lgn R/a™
(resp. the module M, = l(i@ M /a" M) is called the a-adic completion of R (resp. M).

When the ideal a is understood, we shall often drop it from the notation. The universal
property provides a map R — R, (whichisjustz — (..., z,...)) whose kernel is ,, a”. Notice
that a” = ker[R — R,/a"], so R/a™ < R/a": itis an 1somorphlsm because R, — R/a" — R/a"™
is surjective. Hence the d-adic completion of R, is again R,. This justifies the definition:

Definition 3.6.29 Let R be aring, a C R an ideal. We say that R is a-adically complete if the
natural map R — R, is an isomorphism.

Remark 3.6.30 If R is a-adically complete, then a is in the Jacobson radical fig: indeed for any
r € 1+ athe sequence (..., Y 7_,(—1)*z¥ ...) is coherent and thus defines an element y € R
(we could rephrase this by saying that the geometric series 5% ,(—1)¥z* converges in R) such
that (1+ 2)y = 1+ z with z = (..., (=1)"z"},...). Since ¢, (2) = (=1)"2"*! = 0in R/a™, we
conclude that z = 0, hence 1 + z € R*. From proposition[1.1.56 we conclude a C Rp.

The remark explains why the completions most often considered are with respect to maxi-
mal ideals. Nevertheless, general adic completions can be useful, as in the following example.

Example 3.6.31 Let R be aring, A = R[X1,...,X;»] and a = (Xy,...,X,,). The a-adic com-
pletion of A is formal power series ring R[[X}, ..., X,,]]. Indeed for all n we have an obvious
map R[[X1,...,X]] = R[X1,...,X;]/a" , whence a map R[[X1,..., Xn]] = A, by universal
property. Any coherent sequence can be represented as (..., fy,...) where the f,, € A and
fn+1 — fn € a®TL. Whence an inverse map (..., fn,...) — fi + Son>1(far1 — fn)-

The following classical result well illustrates the usefulness of completions.

Proposition 3.6.32 (Hensel’s Lemma) Let R be a local ring, m its maximal ideal and k = R/m.
Let F € R[X] be a polynomial whose reduction F € k[X] mod m is not identically 0. Suppose that
g,h € k[X] are coprime polynomials such that gh = F. If R is m-adically complete, there exist
G, H € R[X] such that G = g, deg G = degg, H = h,deg H < deg F' — deggand F = GH.

Proof. Starting from arbitrary polynomials G| = g and H; = h mod m, with deg G; = degg > 0,
we shall construct inductively polynomials G,,, H,, € R[X] such that

(3.16) Gpi1 = G, modm™; H, .1 = H, modm"; F =G, H, modm"
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with deg H,, < deg F' — deg g and such that G,+1 and G, have the same leading coefficient. If
we manage that, then writing G,, = >, b, , X and H,, = Y, ¢, XY, for every p,q we obtain
sequences (...,bpp,...)and (...,cqn,...) which are coherent by the first two congruences in
(3.16), hence converge to elements b,,c, € R, and we define G = Y, b,X? and H = >, c, X
Since the sequence of leading coefficients is constant, deg G = deg g. Moreover, if F' = ", a, X",
the last congruence in (3.16) shows that a, = 3, ,,—, byc, because their difference is in m" for
all n. Hence F' = GH.

Suppose G,, H,, have been constructed, so F' — G, H,, = Y, t;L; with t; € m", L; € R[X] and
deg L; < deg F. Since (g,h) = 1 we can find u;,v; € k[X] such that L; = u;g + v;h mod m.
Without loss of generality, we may assume degv; < degg and degu; < deg F' — degg. Indeed
writing v; = v/'g + v with deg v} < deg g and setting u; = u; + v}, we have L; = u,g + v/h and
deguig = deg(L; — vih) < deg F, hence deg u} < deg F — deg g.

Now choose U;, V; € R[X] such that U; = u; and V; = v; mod m with degV; = degv; < degg
and degU; = degu; < degF — degg. Then Gp41 = G, + > ;t:Viand H, 1 = Hy + >, 6:U;
satisfy and

F = GpiiHpi1 =) ti(Li — GoUs — HyVi) — Y titU;V; = 0 mod m”™ .
i ij O

Corollary 3.6.33 Let R be a complete local ring with residue filed k. Let F' € R[X| be a monic polyno-
mial whose reduction F € k[X] factors as the product of two coprime monic polynomials g, h € k[X].
Then there exist G, H € R[X] monic such that G = g, deg G = degg, H = h, deg H = deg h and
F=GH.

Proof. Follows from the proof of Hensel’s lemma: we can impose the sequence of leading
coefficients in H,, to be constant as that of the G,,. Indeed, since F, G,,, H,, are monic, from the
expression F' — G, H,, = > ;t;L; we get deg L; < deg F' and all the inequalities derived from
this one are strict. O

Example 3.6.34 Z, contains the p — 1-th roots of unity, since X?~! — 1 = [[?_} (X — i) mod p.

We conclude by discussing exactness properties of inverse limits and completions. Given
three inverse systems of R-modules {(M,, ¢n)}, {(M],¢))} and {(M], ")} indexed by the
integers, an exact sequence of inverse systems will be a compatible system of exact sequences

fn+1 In
0 —— M\, — Myy — M,y —— 0

(3.17) %l tpnl Lp;;l

0 —— M Iy M, Oy M 0.

Proposition 3.6.35 Any exact sequence of inverse systems induces an exact sequence

0 —— §mM, —— limM, —%— lim M".
= e =

If the maps ), are surjective for all n € N, then g is surjective.
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Proof. The system defines a commutative diagram of exact sequences

0 —— [, M, —L— 11, M, —2— [, M" —— 0

I

0 —— [, M, —L— 1, My, —2— [, M —— 0

where 6(...,my,...) = (..., pn(Mpt1) —My, ...) and the two other maps are defined similarly.
Since ker§ = 1<iLn M, the first claim is a consequence of the snake lemma. The second claim

follows as well if we show that ¢’ is surjective. Given (..., xp,...) € [[, M,, we have to solve
the system

v =¢i(Yo) =1
Ty = ¢h(Y3) — Y

and this can be done by the surjectivity of the maps ¢/,: take y; = 0, choose y» € M, such that
©h(y2) = o1, then y3 € My such that ), (y3) = x2 + y2 and so on. O

Let R be aring, a C R an ideal. Write M for the a-adic completion of an R-module M and
consider the functor Modg — Mod  taking M to M. Tt follows easily from proposition
that this functor is additive, but its exactness properties are more delicate. It is certainly not left
exact: 0 — Z — Q is an exact sequence of Z-modules but for any prime p, since Q/p"Q = 0,
taking p-adic completion we get 0 — Z,, — 0 which is most definitely not exact. The only
positive result that holds in general is the following:

Lemma 3.6.36 With notation as above, if M —s M" — 0 is exact, then M — M" — 0 is exact.
Proof. Let M" = ker[M — M"]. For every n > 1 we have an exact sequence
0 —— M'/(M'Na"M) —— M/a" —— M"/a"M" —— 0.

These build up to an exact sequence of inverse systems. We can conclude by proposition3.6.35
since the maps M'/(M' N a™ M) — M'/(M’ N a™M) are surjective. O

A better behaved functor Modg — Mod, is M — R ® M. As a tensor product, it is right-
exact and it is exact for noetherian rings (corollaryﬂbelow) To compare the two functors,
notice that the R-linear map M — M given by the universal property induces R-linear maps

(3.18) R®RM—>R®RM—>R®RM%M.
In general, the composite is neither injective nor surjective (and the middle module quite nasty).
Proposition 3.6.37 For any finitely generated R-module M, the map R @ M — M is surjective.

Proof. Choose a presentation 0 — N —s R™ 5 M — 0 and tensor with R to get

kg 7l®
RopN L RepR MO pel M s

o1 | e |

0 —— mN/(NNa"R") —— R" —" M ——0
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where Ap» and A are the maps in and v is induced by the universal property of inverse
limits. The top row is exact because tensor products are right-exact and the bottom row is exact
by proposition Since Ag» is an isomorpism (the functor M — M is additive), it follows
from the snake lemma that A,/ is surjective. O

This is as far as the theory for general rings may go. Sharper results are obtained assuming
that the ring R is noetherian, a condition that will be investigated in the next chapter.

Proposition 3.6.38 Let R be a noetherian ring, a C R and ideal and 0 — M' — M — M" — 0
an exact sequence of finitely generated R-modules. Then 0 — M, — My — M} — 0 is exact. X

Remark 3.6.39 Unlike other situations, where we can remove the noetherian assumption by
taking finitely presented instead of just finitely generated modules, this result requires a finer
analysis. For the (same) proof, see [1]], proposition 10.12, [2], lemma 7.15 or [8] theorem 54.

Corollary 3.6.40 Let R be a noetherian ring, a an ideal. Then for any finitely generated R-module M,
the map Ry ®r M — M, is an isomorphism.

Proof. Every finitely generated module over a noetherian ring is finitely presented (corol-

lary £.1.9), so, with notation as in the proof of proposition in diagram (3.19) we may
replace lim N /(N Na”R") by N and v by Ay. Then Ay is surjective too and, since Ar» is an

isomorpism, the snake tells us that ker Ay; = 0. O

Corollary 3.6.41 If R is a noetherian ring and a an ideal, then & = aR,,.

Proof. a is finitely generated by proposition so we can apply corollary 3.6.40 0

Corollary 3.6.42 If R is a noetherian ring and a an ideal, then R, is a flat R-algebra.

§ 7 Exercises

Exercise 3.1 Let R be a integrally closed domain with fraction field K and p a prime ideal. Let
f(X)=X"+a, 1 X" 1+ .-+ a1 X + ap € R[X] be an Eisenstein polynomial with respect to
p,ie.a; €pfori=0,...,n—1and ag ¢ p°.

a) Check that if g,h € K[X] are monic polynomials such that f = g - h then g,h € R[X].
[Hint: consider a splitting field of f]

b) Show that f is irreducible.

Exercise 3.2 Let k be a field of characteristic different from 2. Show that k[X,Y]/(X? +Y? —1)
is an integrally closed domain. What if the characteristic of k is 2?

Exercise 3.3 Let R be aring, ¢ : R — R[X] the natural map.

a) Does ¢ have the Going Down property?
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b) Let k be a field. Does k[X| C k[X, Y] have the Going Up property? [Hint: take p; = {0} C
p2 = (X)and q; = (XY —1)]

Exercise 3.4 Let A be a valuation ring, L = Frac A. Let K C L be a subfieldand R = AN K.
a) Show that R is a valuation ring.

b) Show that if A is a discrete valuation ring, then so is R.

Exercise 3.5 Let k be a field of characteristic 2 and k[[X]] the formal power series. Let f €
k[[X]], f # 0and put K = k(X)(f?), L = k(X)(f), subfields of k((X)). Set R = k[[X]] N K and
A=FK[[X]]NnL.

a) Show that [L : K] < 2, with equality if f transcendental over k(X).

b) Show that R and A are discrete valuation rings.

c) Show that A is the integral closure of Rin L.

d) Suppose that A is finite over R. Show that X™A C R + Rf for a suitable m € N.

e) Write f = Y20, X" € k[[X]]and let g = >7° .1 0, X" € k[[X]], with m as in d).
Show that g € A.

f) Assume now [L : K| = 2, consider X™g € R+ Rf and compute the coefficient of f.
Conclude that A is not finite over R.

Exercise 3.6 Let K be a field, | | : K — R a map satisfying conditions a) and b) in defini-
tion and furthermore

¢”) |z +1| <1forall z € K such that |z| <1

Show that | | is a non-archimedean absolute value on K.

Exercise 3.7 Let k be a field and ¢ a real number with 0 < ¢ < 1. Let f(X), u(X),v(X) € k[X]
be polynomials, with f irreducible and not dividing u nor v. Define

w(X)
v(X)

fFx)”

=c¢ " (forn € Z),

U(X) ’ _ Cdegvfdegu.

; W(X)|, "~

a) Check that | | and | | define non-archimedean absolute values on the field £(X) of
rational functions in the variable X.

b) Let Y = X~!. Show that the absolute value | |, on k(X) = k(Y) concides with the
absolute value | |y defined by the irreducible polynomial Y € k[Y].

c) Let | | be a nontrivial absolute value on k(X ) such that |a| = 1 for each 0 # a € k. Show
that | | is equivalent to | | or to | |; for some f € k[X].

Exercise 3.8 Let K be a field with an absolute value | |. Let C'S(K) the set of all Cauchy se-
quences in K and NS(K) the subset of null sequences, i.e sequences {a,} € C'S(K) such that
lim |a,| = 0.

n—oo
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a) Show that every Cauchy sequence {a,} in K is bounded: there exists A € R such that
lan| < Aforalln € N.

b) Show if {a,} and {b,} are Cauchy sequences, then {a, + b,} and {a,b,} are a Cauchy
sequences.

¢) Show that C'S(K) is a ring and N S(K) is an ideal.
d) Let {a,} € CS(K)— NS(K). Show that a,, # 0 for n sufficiently large.
e) For {a,} as in d), construct a sequence {u, } € CS(K)* such that {a,} — {u,} € NS(K).

f) Conclude that NS(K) is a maximal ideal.

Exercise 3.9 Let R be a ring, a C R an ideal and assume that R is a-adically complete. Let

F(X) € R[X] and zy € R such that F(z9) € a and F'(z9) € R*. Show that the sequence

Tpal = Tp — 5,(("’; ’;)) converges to an element x € R such that F'(x) = 0 and z = 29 mod a.

Exercise 3.10 Let R be a ring, a and b ideals such that a® C b C a for some integer e > 1. Let
{a™/b™, ,,)} be the inverse system with ¢,, induced by the inclusions a"*! C a”. Show that
lim a™ /6" = 0.

%

Exercise 3.11 Show that theorem B.6.11lalso holds for the trivial valuation.

Exercise 3.12 Let F(X) = ap+ a1 X + -+ + a, X" € K[X], where K is a complete field with a
discrete valuation v. Show that if F is irreducible, min{v(a;) | i = 0, ...,n} = min{v(aog), v(an)}.
[Hint: reduce to min{v(a;)| i = 0,...,n} = 0, suppose v(ap),v(an) > 0 and apply Hensel’s

lemma.]

Exercise 3.13 Let K be a field, complete with respect to a discrete valuation, L a finite extension

of K. Show (without using theorem 3.6.11) that | Ny, /x(—)| K defines an absolute value on L.
[Hint: use exercises[3.6land [3.12]]
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Noetherian rings and modules

§ 1 Chain conditions

Recall that a set X is partially ordered if it admits a reflexive and transitive relation < such that

TSY L p=
y<ux R

Lemma 4.1.1 Let (X, <) be a partially ordered set. The following conditions are equivalent:
a) Every non-empty subset S C X contains a maximal element;

b) Every sequence x1 < xo < ... in X is stationary (i.e. 3 ng € N such that x,, = xp41 V1 > ng).

Proof. Suppose that every @ # S C X contains a maximal element and let x; < 29 < ... bea
sequence in ¥. Put S = {z,, | Vn € N} and get ny € N such that z,,, is a maximal element in S.
Conversely, assume every sequence in ¥ is stationary and suppose @ # S C ¥ has no maximal
element. Start from any z; € S and construct a sequence inductively: given z; < --- <z, let
Sy, ={x € S, x > x,}. This set is non-empty (otherwise z,, € S is maximal), so pick 2,41 € Sy,
Repeat to obtain a non-stationary sequence, a contradiction. 0

Definition 4.1.2 Let R be a ring and M an R-module. Let X be the set of all submodules of M.
a) M is noetherian if (X, C) satisfies the equivalent conditions of lemma
b) M is artinian if (3, D) satisfies the equivalent conditions of lemma[4.1.1}
¢) Risnoetherian if R is a noetherian R-module.

d) Ris artinian if R is an artinian R-module.

Example 4.1.3 a) A finite-dimensional vector space over a field is both artinian and noetherian.

b) It follows easily from the elementary divisors theorem that a finitely generated module
over a PID is noetherian. If it is a torsion module, it is also artinian.
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¢) A field is both noetherian and artinian as a ring.
d) A PID is not artinian: if z # 0 is not a unit, thenzR 2 2?R D --- D 2"R D ...

d) If k is a field, the ring k[ X1, Xo, ..., X, ...] is neither artinian nor noetherian, as we have
the chains (Xl) (XlXQ) (XngXg) ... and (Xl) (X1 Xg) (X1, Xo, Xg)

Remark 4.1.4 Every artinian ring is noetherian. A proof is given in the Introduction to Ring
Theory course. A self-contained proof can be found in [2], theorem 2.14.

Noetherian rings are the most useful class in Algebraic Geometry and in Number Theory.
Artinian rings play a minor role. They will be characterised at the beginning of chapter

Proposition 4.1.5 Let R be a ring and M an R-module. The following conditions are equivalent:

a) M is noetherian;
b) Every submodule N C M is finitely generated.

Proof. Suppose M noetherian, N C M a submodule and let X be the set of all finitely generated
submodules of N. This set is non-empty, as it contains {0}. Let thus N’ C N be a maximal
finitely generated submodule. For any m € N, the submodule N’ +mR C N is finitely gener-
ated and contains N’. By maximality N’ = N’ +mR, hence m € N’ forallm € Nie. N'= N.
Conversely, assume that every submodule N C M is finitely generated and let My C M> C

be a chain of submodules of M. Put N = | J;2; M,,. Itis a submodule because any two elements
of N belong to M,, for n large enough, hence the1r sum is in M,,. By assumption, NV is finitely
generated. For some ny > 1 all the generators belong to M,,,, hence N = M,,, = M,,,41 = ...O

Corollary 4.1.6 A PID is noetherian.

Proof. Indeed, any ideal is generated by one element. O

Proposition 4.1.7 Let R be a ring and 0 — M’ - M Iy M" — 0 an exact sequence of R-modules.

a) M is noetherian <= M' and M" are noetherian.
b) M is artinian <= M’ and M" are artinian.

Proof. We only prove statement a), the proof of b) is similar, reversing inclusions. Suppose M is

noetherian. Any submodule of M’ is in M and thus finitely genereated, hence M’ is noetherian.

For any chain M{ C MY C ... in M" we get a chain 7~ }(M{) C 7~ 1(M}) C ... in M. Thus
_1(M”) = 7 (M]/,,) for all n > ng for a suitable ng € N. Hence M| = = (7~ *(M]))) =
m(r Y (M), ) = M)/, forall n > ny.

Suppose M’ and M" noetherian and let M; C M, C ... be a chain of submodules in M. Then

there exists ng, 0 € N such that M’ N M,, = M' N M, for all n > n{, and 7(M,,) = m(M,+1)

for all n > ng For any n > ng = max{ng, ng} we have a commutative diagram

0 —— M’ﬂM — M, —)7‘1’ — 0

| l i

0 —— M'NMyy —— My —— 7(Myy) —— 0

and by the snake lemma we conclude that M,, = M, for n > ny. O
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Corollary 4.1.8 If My, ..., M, are noetherian (resp. artinian) modules, then @j_, M; is noetherian
(resp. artinian).

Proof. Induction on n using the sequence 0 — M,, — @7, M; — @~ M; — 0. O

Corollary 4.1.9 Let R be a noetherian ring. Every finitely generated R-module is noetherian and
finitely presented.

Proof. Choose a presentation 7 : R™ — M. Since R" is noetherian, ker 7 and M are noetherian,
and ker 7 is finintely generated by proposition O

Corollary 4.1.10 Let R be a noetherian ring. Any finite R-algebra is also a noetherian ring.

Proof. Let I C A an ideal. As an R-submodule of A it is finitely generated, because A is a
noetherian module. Then I is also finitely generated as an A-module. 0

Corollary 4.1.11 Let R be a noetherian integrally closed ring, K its fraction field, L a finite separable
extension of K and A the integral closure of R in L. Then A is finite over R and thus noetherian.

Proof. By corollary (3.3.14} A is a submodule of a free R-module of finite rank [L : K]. So it is
finitely generated as an R-module and noetherian by corollary O

Remark 4.1.12 Let R be an integrally closed domain, K its fraction field, L a finite extension
of K and A the integral closure of R in L. In general, it is not true that A is a finitely gener-
ated R-module: see exercise 3.5 for an example in which both R and A are discrete valuation
rings. A domain R whose integral closure in any finite extension of Frac R is a finite over R is
called a japanese ring. Examples of japanese rings are domains of finite type over a field (corol-
lary[4.3.8) and complete discrete valuation rings (corollary[3.6.21). More generally, a noetherian
complete local ring is japanese, [8]], corollary 2 to theorem 69.

Corollary 4.1.13 Let R be a noetherian (resp. artinian) ring, I C R an ideal. Then R/I is also
noetherian (resp. artinian).

Proof. It follows from proposition [.1.7)that R/I is noetherian (resp. artinian) as an R-module.
Therefore it is noetherian (resp. artinian) as an R/I-module. O

Remark 4.1.14 A subring of a noetherian (resp. artinian) ring is not necessarily noetherian
(resp. artinian). For instance in example £.1.3/d we have seen that k[X1, Xs,..., X,,...] is
neither artinian nor noetherian. Since it is a domain, it is a subring of its fraction field, and a
field is both artinian and noetherian.

Proposition 4.1.15 Let R be a noetherian ring, S C R a multiplicative subset. Then SR is also
noetherian.

Proof. Let J; C Jy C ... be a chain of ideals in S~1R. By proposition [2.1.10| there is a chain
I, C I, C ... in Rsuch that J, = S~!I,, for all n. Fix ng such that I,, = I, for all n > ng, we
get J,, = Jy41 forall n > nyg. O
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Corollary 4.1.16 If R is a noetherian ring then Ry, is a noetherian ring for every prime p.
Theorem 4.1.17 (Hilbert’s Basis Theorem) If R is a noetherian ring then R[X] is also noetherian.

Proof. Let I C R[X] be an ideal and F' = {f,} an arbitrary family of generators of /. Let
J C R be the ideal generated by the leading coefficients of the f,. Since R is noetherian,
J = (c1,...,cp). Let fi = ¢; X% + g; € F, with degg; < d;, be the generator corresponding to
ci,fori=1,....,n. LetI' = (f1,..., fn), set d = max{ds,...,d,} and put I = I N @’} RX".
We shall prove that I = I’ + I". Since @¢_; RX" is finitely generated, it is a noetherian R-
module, so the submodule I” is also finitely generated, say I” = (hi,...,hy), Hence I =
(fi,---y fashi,..., hyy) is finitely generated. Since every ideal is finitely generated, R[X] is
noetherian.

Forevery f = ¢X"+ g € I, withdegg < r,wehavece J. Ifr <d—1then f € I". Ifr > d,
write ¢ = ajc1 + - - + apcy, with a; € R. Then f — Y7 a; X"~% f; € I and has degree strictly
smaller than r. Repeating if necessary, we obtain the announced equality I = I’ + I". O

Corollary 4.1.18 If R is a noetherian ring then R[ X1, ..., X,] is noetherian.

Corollary 4.1.19 If R is a noetherian ring then any R-algebra of finite type is noetherian and finitely
presented as an R-algebra.

Proof. Combine corollaries4.1.19jand [4.1.13] O

Remark 4.1.20 Hilbet’s basis theorem is also a crucial ingredient inAthe proof of the following
fact: if R is a noetherian ring and a an ideal, the a-adic completion R, is a noetherian ring. See
for instance [[1]], theorem 10.26.

§ 2 Composition series

Let R be aring and M an R-module.
Definition 4.2.1 An R-module M is simple if its only submodules are 0 and M.

Notice that if 0 # m € M, then 0 # Rm C M, thus if M is simple, M = Rm. The map
¢ : R — M defined by ¢(1) = m induces an isomorphism M ~ R/Ann (m). Again, since M is
simple, we get that Ann (m) is a maximal ideal in R.

Definition 4.2.2 Let M be an R-module. A chain M = My 2 M; 2 --- 2 M,, = 0 of submod-
ules is said to be of length n. A composition series or Jordan-Holder sequence is a chain such
that M;_;/M; is simple for 1 <i < n.

The following result gathers some information we shall need later on. For a proof we refer
to the Introduction to Ring Theory course. Alternatively, see [2], theorem 2.13.
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Theorem 4.2.3 Let M be an R-module.
a) M has a composition series if and only if it is both artinian and noetherian.

b) If M has a composition series, then all composition series have the same length, called the length
of the module and denoted by ¢(M).

c) If M has a composition series, then any descending chain of submodules can be refined into a
composition series.

d) If 0 — M' — M — M"” — 0 is short exact, then {(M) = ((M') + ((M").

e) If M has a composition series, then M ~ @y M. Only maximal ideals annihilating some quo-
tient in some composition series appear in the sum. For a fixed maximal ideal m C R, the number
of quotients M;_, /M, arising from any composition series and such that Ann (M;_1/M;) = mis
equal to the length of My as an Ry-module (and is the same for all series).

We shall write /(M) < +oo to say that M has a composition series.

§ 3 Normalisation Lemma and Nullstellensatz

In this section, k is a field and R a k-algebra of finite type.

Lemma 4.3.1 (Noether’s Normalisation) Let R = k[X, ..., X,]/I. There exists an integer d < n
and an injection k[T, ..., T,] C k[X1, ..., Xy] such that:

a) k[Xq,...,X,] is finite over k[T, ..., Ty);
b) INk[T,...,T,]is theideal in k[Th, ..., T,] generated by Ty, ..., Ty,

¢) R is finite over k[T, ..., Ty).

Proof. c) follows directly from a) and b). If n = 0 or if I = 0, a) and b) are trivial. Suppose first
that I = (F), with F =Y, a, X{* ... X*. Form = (my,...,mp_1,1) € N*, letY; = X; — X7,
for1 <i<n-—1. Clearly k[X1,...,X,] =k[Y1,..., Y1, X,]. If we can find m € N” such that

4.1) F(Y1,..., Y1, Xp) = aXE—I—Ge_ngil—F' 4Gy, ack*, e>1, Gj € k[Yl, e ,Yn_l],

statement a) will follow by setting 7; = Y; for 1 < i < n —1and 7, = F, since gives
the integral equation X¢ + a 1Ge1 XS + -+ a Gy — Ty,) = 0 for X,, over k[Ty,...,T,].
Moreover, for any P € I, write P = T,,Q, with Q € k[Xy,...,X,]. f P € I Nk[T1,...,T,]
then Q = % belongs to the fraction field of k[T7, ..., T,] and, as an element in k[ X1, ..., X}, is
integral over k[T, ..., T,]. The latter being integrally closed, we have @) € k[T7,...,T,], hence
INk[Ty,...,T,] = T,k[T1,...,T,]. That settles b).
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Denote (v, w) the standard euclidean scalar product in R". Substituting Y; = X; — X" in the
monomial a, X" ... X" we get

ay XV XU =ay (V) — X)L (Vg — X[Pmot)Vnet X

4.2 A
(4.2) =a, <X£V7m> + Z Hj(YL--'aYnl)X:ryz)

js{v,m)

By lemma below, it is possible to find m such that the values (v, m) € N are all distinct
for all the v € N" such that a,, # 0. Formula (4.1) now follows from by taking v to be the
unique multi-index such that (v, m) = max,,.o{(v,m)} and setting o = a,,, and e = (g, m).

Now proceed by induction on n. The case n = 1 is settled (k[X;] is a PID). Pick any 0 # F € I.
Proceeding as above, find Y1,...,Y,—1 € k[X;,...,X,] such that k[X;,...,X,)] is finite over
k[Yl,... ,Yn_l,F] and F]{?[Xl,...,Xn] ﬂk[Yl,...,Yn_l,F] = Fk[Yl, . ,Yn_l,F].
fINkY:,....,Y, 1] =0,putT; =Y;forl <i <n—1and 7, = F as above to get claim a)
in the statement. Clearly T,,k[T},...,T,] C I Nk[T1,...,T,]. To check equality, and thus getb),
localise w.r.t. k[TY,...,T,—1]—{0}. Wehave T,,k(Th, ..., Tn—1)[Ts]) C INk(TY,...,Th—1)[T,]) and
the first is a maximal ideal, so the inclusion is an equality. Hence, for any P € I N k[T, ..., T}]
there exists 0 # S € k[T, ...,T,—1] suchthat SP € T, k[T1,...,T,]. But T,k[T1, ..., T,] is prime
and S doesn’t belong to it, so P € T,,k[T1, ..., T,].

If, on the contrary, I N k[Y1,...,Y,—1] # 0, by inductive assumption there exist an injection
k[Ty,...,Th—1] C k[Y1,...,Y,_1] such that k[Y3,...,Y,,_1] is finite over k[T},...,T,,—1] and an
integer d < n — 1 such that I N k[T1,...,T,—1] is the ideal in k[T1,...,T,,—1] generated by
Tat1,-..,Tn—1. Put again 7,, = F. Then k[T1,...,T,] C k[Xi,...,X,] is a finite injection,
whence claim a). The ideal I Nk[T7, ..., T,] clearly contains the ideal generated by T;1,...,T),
and we must show that they coincide.

The ideal T),k[T1, . .., T,] is the kernel of the natural projection k[T, ...,T,| — k[Ti, ..., Th—1].
The inclusion k[T7, ..., T,—1] C k[T, ..., T,] gives a splitting, whence a decomposition

]{)[Tl, e ,Tn] = k[Tl, .. ,Tn_ﬂ @Tnk‘[TI, c. ,Tn]

as k[T1,...,T,—1]-modules. Any P € k[T},...,T},] can be written as P = Py + (P — F) for a
unique Py € k[Tl, e ,Tn_l]. IfPeln k[Tl, e 7Tn]/ since Tnk[Tl, - 7Tn] C (I N k[Tl, - ,TnD,

Py = (PO —P) + P € (Iﬁk‘[Tl,,Tn]) ﬂk‘[Tl,...,Tn,ﬂ
:Iﬂk[Tl,...,Tnfl]
:Td+1k[T1,...,Tn_1] +~'-+Tn_1k[T1,...,Tn_1].

Finally, since P — Py € T,k[T1,...,T,], we have shown that P = Py + (P — F) belongs to the
ideal generated by 141, ..., T. O

Lemma 4.3.2 Let N C N" be a finite set. There exists a vector m = (mq,...,my_1,1) € N" such
that the values (v, m) € N are all distinct for all thev € N.

Proof. For v = (v1,...,v,) € N", define |v| = max{v;}, select b > max,en{|v|} and put
m = ("1 p"=2 ... b, 1). By the uniqueness of the expansion of an integer in base b, an identity

(vm) =vb" Pty bty =0 Y b, = (U m)

with 0 < y;, 1/5- < bimpliesv; = v, forall 1 <i < n. O
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Corollary 4.3.3 Let R be a k-algebra of finite type, m C R a maximal ideal. Then R/m is a finite
extension of k

Proof. Let 7 : k[ X1, ..., X,] » Rand m = 7~ !(m), a maximal ideal in k[ X1, ..., X,] by proposi-
tion[1.1.49 By the Normalisation lemma applied to k[X1, ..., X,]/m = R/m, this ring is finite
over k[T, ..., Ty for asuitable d € N. But R/m s a field, integral over the domain k[T7, ..., Ty].
By proposition[3.2.1] the latter must be a field, which is possible only for d = 0. O

Corollary 4.3.4 In a k-algebra of finite type, the Jacobson radical is equal to the nilradical.

Proof. Recall that Mg (resp. Rg) is the intersection of all prime (resp. maximal) ideals. Let
[ € Rg. If f were not nilpotent, the ring Ry = R[%] being still finitely generated over % and is
not the zero ring, would contain a maximal ideal m. Let ¢ : R — Ry be the natural map and
consider k C R/p~!(m) C Ry/m. Since Ry/m is finite over F, it is finite over R/p~!(m). The
first is a field and the latter a domain. It follows that R/¢~!(m) is a field and ¢~!(m) is thus

maximal. But f ¢ ¢! (m), contradicting f € Rg. O
Corollary 4.3.5 (Weak Nullstellensatz) If k is an algebraically closed field and m C k[X1, ..., X,]
is a maximal ideal, then there exists a unique (o, . . ., o) € k™ such thatm = (X1 —aq,..., Xy —ay).
Proof. If m is maximal, k[X7, ..., X,]/m is a finite field extension of the algebraically closed k.
Hence k[ X1, ..., X,]/m ~ k. If o; = X; mod m then (X7 — a1,...,X,, — a,) € mand the first is
obviously maximal, so they coincide. Uniqueness is trivial. O

Corollary 4.3.6 Let k be algebraically closed, I C k[X1,..., X, ] an ideal and R = k[X,..., X,]/1.
There is a bijection between closed points in Spec R and the zero-locus of I

Z(I) ={(a1,...,an) €E"|F(ai,...,an) =0V F €1}.

Proof. Closed points in Spec R are in bijection with maximal ideals in R which are in bijection
with maximal ideals in k[ X1, ..., X,] containing I. So if F' € I then

FelCm=(X1—a1,...,Xn—ay) =kerfe: k[Xy1,...,Xp] — K]

where ¢(P) = P(aq,...,ap). Hence e(F) = F(a,...,a,) = 0. Conversely, if ¢(F) = 0 for all
F € Ithen I C ker(e) = m. O

Corollary 4.3.7 (Hilbert’s Nullstellensatz) Let k be algebraically closed and I C k[X,...,X,]|an
ideal. If F € k[X1,..., X,] satisfies F(a1,...,an) = 0forall (ay,...,0a,) € Z(I) then F € \/I.

Proof. Let R = k[X1, ..., X,]/I and denote F the class of F' mod I. Then

Flai,...,an)=0Y(aq,...,ap) € Z(I) <= Fem VYmDI[ maximalink[X,...,X,]
Fem Vm maximalin R

F € Rp =N (by corollary[4.3.4)
FeVT. O

111

We conclude this section with another beautiful application of the Normalisation Lemma.
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Corollary 4.3.8 Let k be a field and R a k-algebra of finite type. Assume that R is a domain and let
K = Frac R. Let L be a finite extension of K and A the integral closure of R in L. Then A is a finitely
generated R-module and, in particular, a k-algebra of finite type.

Proof. By the Normalisation Lemma, R is a finitely generated module over a polynomial subal-
gebra k[ X1, ..., X,] C R. Clearly, if A is a finitely generated k[ X7, ..., X,]-module, it is finitely
generated as R-module, so we may assume that R = k[X}, ..., X,,]. Moreover, let L C M be a
finite field extension which is normal over K and denote by B the integral closure of A in M.
Again, if B is a finitely generated R-module, so is its submodule A, since R is noetherian. So we
may assume that L = M is normal over K. Furthermore, let £ C L be the subset of elements
which are fixed by every K-linear field automorphism of L. We know from Galois theory that
K C E C Lisatower of field extensions, the first purely inseparable and the second separable.
Let C be the integral closure of K in E. We know from corollary that A is finite over C,
so we may assume that L = E is purely inseparable over K.

We are now reduced to the case where L is generated over K by the ¢-th roots of some
elements f1,...,f, € K = k(Xy,...,X,) (Where ¢ is a power of the characteristic of k). Let
k' be the finite extension of k generated by the ¢-th roots of the coefficients of the f;. For
the compositum extension we have k'L C k'(Y1,...,Y,) = L', where Y;! = X;. Then A’ =
K'[Y1,...,Y,]is an integrally closed domain with field of fractions L’ finite over R: it is thus the
integral closure of R in L'. Its R-submodule A must then be finitely generated as well. O

§ 4 Exercises

Exercise 4.1 Let R be a noetherian ring. Show that every open subset U C Spec R is the union
of a finite number of subsets of the form Spec R — Z(f) = Spec Ry.

Exercise 4.2 Let R be a noetherian ring. Show that the nilradical of R is nilpotent, i.e. that 9%
is the zero ideal for some integer n > 1. Show that any ideal / contains a power of its radical:
(vVT)* C I for some n > 1.

Exercise 4.3 Let R be a noetherian ring. Recall that an ideal / C Ris radicalif 2" € [ = z € I.

a) Let X be the set of all radical ideals in R which are not intersection of finitely many prime
ideals. Suppose ¥ # @ and show that it contains a maximal element /.

b) Suppose that I # R. Show that there exist z,y ¢ I such that zy € I. Show that I + (z) #
R# 1+ (y).

¢) Show that /I + (z) =p1 N---Np, and /I + (y) = q1 N - - - N g, for suitable prime ideals
p; and q; of R.

d) Show that I =p; N---Np,Ngi N---Ngqs. Conclude that every radical ideal in R is the
intersection of finitely many prime ideals.

e) Let J be aradical ideal, writtenas J =p;N---Np, and J = q; N--- N qs. Suppose p; §Z I
and q; ¢ q; for i # j. Show that r = s and that V4 3! j such that p; = g;.
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Exercise 4.4 This exercise gives an alternative proof of Hilbert’s Basis Theorem. Let R be a
noetherian ring. For an ideal I C R[X], denote a/,(I) C R the set of all leading coefficients of
polynomials of degree d in I and let a4(I) = a/,(I) U {0}.

a) Show that ay(7) is an ideal for every d > 0.
b) Show that a;(I) C ag41(1).
c) Show thatif I C J then ay(I) C aq(J) forall d > 0.
d) Prove, by induction on d, thatif I C J and a4(I) = a4(J) foralld > 0 then I = J.
Let Iy CI; C--- C I C ... beasequence of ideals in R[X].
e) Show that the set {a;(/;), Vi, j} of ideals in R has a maximal element. Denote it a, (/).

f) Fix d > 0 and consider the sequence a4(ly) C a4(f1) C .... Show that there exists an
integer j; be such that a;(I;) = a4(I;,) forall j > jg.

g) Putm = max{jo,...,jp—1,¢}. Show that, if d < p — 1, then a4(I,,) = a4(I;,) foralln > m.
h) Use b) and c) to show that a,(1,;) C a4(I,), foralld > pand n > m.
i) Conclude that a4(1,,) = a4(I,,) for all d, provided n > m.

j) Conclude that R[X] is noetherian.

Exercise 4.5 Suppose that R is a noetherian domain. Show that any nonzero ideal contains a
product of nonzero prime ideals.

Exercise 4.6 Let R be a noetherian domain which is not a field. Show that R is a UFD if and
only if every ideal generated by an irreducible element is prime.
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Chapter V

Dedekind domains

§ 1 Discrete Valuation Rings

For the reader’s convenience, we begin by recalling the:

Definition 3.4.18| A valuation ring R with fraction field K is a discrete valuation ring (DVR for
short) if K* /R* ~ Z. Any element m € R such that v(w) = 1 is called a uniformiser or uniformising
parameter of R.

Proposition 5.1.1 Let R be a domain. The following conditions are equivalent:
a) Risa DVR;
b) Ris a local PID.

Proof. If Ris a DVR, we know that it is a local ring. If 7 € R is a uniformiser, for any 0 # = € R,

let n = v(r) € Nand u = 5. Since v(u) = v(z) — n = 0, we have u € R* and every element
can be written uniquely as z = un™. If I C Ris an ideal, {v(z)|x € I} is a subset of N and
has thus a minimum m. Then for any x € I, we can write z = 7" and 7 € R because
v (%) = v(x) —m > 0. Hence I = (7). Therefore R is a PID.

Conversely, let m = (7) C R be the maximal ideal of a local PID. Up to a unit factor, = is the
unique irreducible element in R. Thus for every 0 # x € R, we can write x = un™ for a unique
n € Nand v € R*. It is now immediate to check that

v: KX —Z, %»—H}(a)—v(b)

is a discrete valuation on K. O

Example 5.1.2 From the proposition above it is immediate to see that Z, is a DVR for every
prime number p. If k is a field, k[X] x) and k[[X]] are DVRs.

To prepare for another characterisation of DVRs, we need a special case of the following
lemma. The general statement will be used later.
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Lemma 5.1.3 Let R be a local noetherian ring with maximal ideal m. Suppose that there exists ng € N
and a non-nilpotent element ™ € m such that m" C () for all n > ng. Then (>0 m" = 0.

Proof. Leta = {z € R|3m € N, zr™ = 0}. Itis an ideal, finitely generated since R is
noetherian. There is thus an integer mg such that z7"° = 0 for all z € a.

Let now y € ,>om". In particular, for all n > 0 we have y ¢ m™ C (7™). Hence we can
write y = z,n" for all n > ng and therefore (z,, — 72 41)7" = 0, thus x,, — Tz,4+1 € a. Whence
an increasing sequence of ideals {a + (z,) }», which must be stationary: for n sufficiently large
Tp+1 € a+ (zy,). Write 2,41 = a + bz, for some a € a. On the other hand, z,, = 7,11 + d/,
for some o’ € a. substituting, we get (1 — bm)z,41 € a. Since 7 € m, then 1 — br is a unit and
Tpn+1 € a for n large enough. Taking n > mg and sufficiently large, we gety = 7"z, = 0.0

Remark 5.1.4 More generally, Krull’s intersection theorem states that if R is any local noethe-
rian ring with maximal ideal m, then (0,,>o m" = 0. The (same) proof can be found alternatively
in [1], corollary 10.19, [2], corollary 5.4, [8], corollary 11.2 or [9], theorem 8.10.

Proposition 5.1.5 Let R be a ring. The following conditions are equivalent:
a) Risa DVR;

b) R is noetherian, local, with maximal ideal m generated by a non-nilpotent element.

Proof. Recalling that a PID is noetherian, the implication a) = b) is clear.

For the converse, let 7 € R be a non-nilpotent element generating m. From lemma5.1.3|(applied
to m = (7)) we infer that for any 0 # x € R there is an n € N such that z € m" but z ¢ m™*L.
We have thus a unique expression x = urn™, with u = = € R*. Therefore R is a domain and,
setting n = v(x) and K = Frac R, we can define a discrete valuation v : K* — Z by the usual
formula v ($) = v(a) — v(b). O

This criterion allows us to generalise example

Example 5.1.6 Let R be a noetherian UFD, f € R an irreducible element. The localisation of R
at the ideal generated by f is a DVR. A typical case in Algebraic Geometry is the localisation of
k[X1,...,X,] at an irreducible polynomial.

Example 5.1.7 Let R = C[X,Y]/(X3 4+ X2 —Y?). Since Y? — (X3 + X?) € C[X][Y] is Eisenstein
with respect to (X + 1) C C[X], it is irreducible, hence R is a domain. As usual, write z and y
for the images of X and Y in R. Since x ¢ m; = (x4 1,y), we see thatm1 Ry, = (z+1,y) = (y),
since z + 1 = g—z € (y?). Hence Ry, is a DVR by proposition On the other hand, for
mo = (z,y), we have that mg Ry, is not principal. Indeed, if mo = (X,Y’) C C[X,Y]x y), then
[f=X>+X2-Y? em}, thusmo/m3 = (mo/(f))/ (mMZ/(f)) £ mp/m3=C-XC-Y.Butifmy
were principal, by Nakayama’s lemma we should have dim¢ mp/m3 = 1.

This translates the fact that the plane cubic curve X3 + X? — Y2 = 0 has a singularity in (0, 0)
while (—1,0) is nonsingular.

Proposition 5.1.8 Let R be a noetherian domain. Then R is a DVR if and only if the following two
conditions hold:

i) R is integrally closed;
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ii) R has only one nonzero prime ideal.

Proof. All valuation rings are integrally closed (proposition and every ideal in a DVR is
principal, generated by a power of the uniformiser, so there is only one prime ideal.
Conversely, let R be a local noetherian domain with maximal ideal m and fraction field K. By
proposition [5.1.5} it suffices to show that m is principal. Let

m'={zeK|zye RVyem}.

Obviously, m’ is an R-module and R C w'. Taking any 0 # y € m, the “multiplication by y”
map g, : ' — R, given by p1,(z) = yz injects m’ into R. Hence m’ is isomorphic to an ideal of
the noetherian ring R and is thus finitely generated as R-module. Consider then the subset

mm' = {Zl‘@yz € K, T; € m’, Yi € m} C R.

Since R C m/, we have m C mm’ C R. Thus mm’ is an ideal sitting between the maximal ideal
and R. One of these two inclusions must be an equality. We will establish the following facts:

Claim 1. If mm’ = R then wm is principal.
Claim 2. If mm’ = mand R is integrally closed, then m" = R.
Claim 3. If m is the only nonzero prime ideal in R, then m’ # R.

Therefore, if we assume that our ring R satisfies coinditions i) and ii), Claims 2 and 3 tell us
that mm’ # m and then Claim 1 implies that m is principal and thus R is a DVR. 0

Proof of Claim 1. By assumption, there are elements z; € w/, y; € m such that >°/_, z;y; = 1. By
definition z;y; € R for 1 < i < r. If all z;y; € m, we would get 1 € m, which is absurd. Say
u = x1y1 ¢ m, hence uw € R*. Put m = u~'y; € m. Then z;7 = 1. Now, for all z € m we have
z = z(xym) = (zx1)7 € (7). Thus m = () is principal. O

Proof of Claim 2. Suppose that mm’ = m and take any z € m’. Then zm C m. Iterating,
we get z"m C 2" 'm C ... C 2m C m, hence 2" € m'’ for all n € N. The R-submodules
M, = (1,z,...,2™) C m’ build up to an increasing chain M; C My C --- C M,, € M,,1; C ...
of submodules of the finitely generated R-module m’. By noetherian assumption, M,, = M,,_;
for n large enough. Thus 2" € M,,_,ie. 2" =ap+ a1z + --- + an_12" 1 for suitable a; € R.
Therefore any € m’ C K is integral over R. Since R is integrally closed, = € R. O

Proof of Claim 3. Select 0 # y € m and consider R, = R[%] Since m is the only nonzero prime

ideal in R, the ring R, has no nonzero primes, hence R, = K. Fix 0 # z € R and write = S

for suitable « € R and n € N. Hence y" = az € (z). Therefore, if y1,...,y, are generators of
m, there is an integer ng € N such that y;° € (z) for 1 < i < r. Therefore m"” C (z) for all
n > rng. Suppose furthermore that z € m and let mo € N be the smallest nonzero integer such
that m™0 C (z). Choose t € m™~1, ¢ ¢ (z). Then tm C (z), thus £ € m/,but £ ¢ R. O

A final characterisation of DVRs (corollary 5.2.20) will be given in the next section.
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§ 2 Invertible modules, fractional ideals, divisors

Throughout this section, R is a domain, K its field of fractions.

Definition 5.2.1 A finitely generated R-module L is invertible if for every prime ideal p of R there is
an isomorphism Ly, ~ Ry, .

In other words, L is locally free of rank 1. In particular, a free rank 1 module is invertible,
e.g. any principal ideal in R.

Remark 5.2.2 It suffices to check the condition at maximal ideals: every prime p is contained
in a maximal ideal m and Ly = (L)p.

Example 5.2.3 Let R be a DVR with maximal ideal m = (). Let k be a field and suppose that
R is a k-algebra and that R/m = k. Then if Q}, /i is a finitely generated R-module (e.g. if R is
a localisation of a finitely generated k-algebra) then it is free, generated by dr, and thus is an
invertible module. To prove this, it suffices to show that Q}Q k= Rdr + WQ}% Ik and Nakayama’s
lemma will imply that 7, i = Rdm. Since R = k © m, write any z € R as 2 = a + ym, then
dz = d(ym) = ydr + wdy. The claim now follows, since Q}, /i, 1s generated by Im(d).

Example 5.2.4 Let k be a field and R a finitely generated k-algebra such that k is algebraically
closed in R. Assume that R, is a DVR for every nonzero prime ideal p. Then Q}, /) s an in-

vertible R-module. If k is the algebraic closure of k, R = R ®y, k is a faithfully flat R-algebra
and Qlﬁ = Qr /& OR R, so we may assume that k is algebraically closed. Under these as-
sumptions, the residue field at every nonzero prime is equal to £ and we are in the situation of

example|5.2.3, We shall write Qé}k = Homp(Q} I R) for the dual module. This is consistent
with proposition below.

Example 5.2.5 Let M = )", %Z C Q (sum over all prime numbers). Using Bezout’s identity, it is
easy to check that M is the subgroup of all rational numbers that, in reduced form, have square-
free denominator. For a fixed prime number p, clearly 3", %Z C Z), thus M, = %Z(p) is
locally free of rank 1, but M is not finitely generated, so it is not an invertible module.

If L and M are invertible modules, L @z M and LY = Hompg(L, R) are invertible too. This
follows from the canonical isomorphisms

(L®@r M)y = Ly ®r, My and Hompg(L, R), = Homg,(Ly, Ry),
given respectively in corollary [2.1.22]and exercise 2.1] (or proposition[1.2.84 if R is noetherian).
Proposition 5.2.6 An R-module L is invertible if and only if the evaluation map
e:LerLlY — R  z®)X— \z)

is an isomorphism.
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Proof. If L is invertible, for every prime p the evaluation ¢, : Ly ®r, L, ~ Ry, ®g, Ry — Ry isan
isomorphism, so ¢ is an isomorphism.

Conversely, suppose that ¢ is an isomorphism and let y1,...,y, € Land \y,...,\, € LY such
that 7 A\i(y;) = 1. If pis a prime and \;(y;) € p fori =1,...,n then 1 € p, which is absurd.
We may assume thus \;(y1) € p, hence A\i(y1) is a unit in Ry. Put z = A\;(y1) 'y1 € Ly. The
map A : L, — R, is surjective (since A\i(z) = 1) and thus splits (R, being free), whence a
decomposition Ly, ~ zR, @ ker()\;). Similarly, viewing z as a map Ly, — Ry, A — A(z), we
obtain a decomposition L, = A\ R, @ ker(2). Since ¢ is an isomorphism, ¢, : Ly ®r, Ly — R, is
an isomorphism. But

Ly ®R, Lg ~ [zRp, ® M Ry] @ [ker(A1) ® MRy] @ [2Rp ® ker(z)] @ [ker(A1) ® ker(2)]

and ¢, is already an isomorphism on the first summand, thus ker(A;) = ker(z) = 0 (because
they become zero after tensorisation by a free module), hence L, ~ zR;, (and L, ~ A\ Ry).

Moreover, let M C L be the submodule generated by y1,...,y, and ¢« : M — L the inclusion.
Since ¢, is an isomorphism for all p, M = L so L is finitely generated. 0

Definition 5.2.7 The Picard group Pic(R) of R is the set of isomorphism classes of invertible modules,
with [L1] + [La] = [L1 ®g Lo, inverse [L]~1 = [LY] and unit element [R)]. In number theory it is
usually called the ideal class group.

Before we compute some Picard groups, it is better to present an intimately related class of
objects, as they will make these computation much simpler.

Definition 5.2.8 A nonzero R-submodule I C K is a fractional ideal if there exists 0 # = € R such
that xI C R.

Example 5.2.9 Any ideal of R is a fractional ideal. These are called integral fractional ideals.
Any 0 # y € K defines a fractional ideal y R. These are called principal fractional ideals.

Example 5.2.10 Any invertible module is isomorphic to a fractional ideal:
L=L®rR—>L®rK=L,®r, K~ Ry, ®r, K=K,

for any choice of a prime p. The existence of € R such that L C R follows from the assump-
tion that L is finitely generated, as detailed in the following remark.

Example 5.2.11 Let R be integrally closed, L a finite separable extension of K and A C L
integral over R with L as fraction field. Recall that in definition we have introduced the
codifferent as the A-module @Z} r =17 € L|Try/k(zy) € RVy € A}. Itis a fractional ideal
of A: let {y1,...,yn} be a K-basis for L such that y; € A and let {y],...,y}} the dual basis
with respect to the trace bilinear form. For any z = ", a;y; € ”}32} R with q; € K, we have
Tr x(ry;) = Yiailrr k(yiy;) = aj € R. Thusif z € A is a common denominator of the y;,
we get z’DZ}R C A.

Remark 5.2.12 Any finitely generated R-module I C K is a fractional ideal: a common de-
nominator z of a finite set y1,...,y, of generators of I will give I C R. Conversely, if R is
noetherian, any fractional ideal I is finitely generated as R-module, since xI is an ideal of R.
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Example 5.2.13 If the R-module I C K is a fractional ideal then, for any multiplicative set
S C R, the S~ R-module S~!7 is a fractional ideal.

For I and J fractional ideals, define I.J as the set of all finite sums " z;y;, with z; € I and
y; € J. This is again a fractional ideal (if a/ C R and bJ C R then ablJ C R). Notice that
IR =1.1f S C Risamultiplicative set, S~1(1.J) = (S~1I)(S~1J).

If I is a fractional ideal, put I’ = {z € K|zl C R}. This is also a fractional ideal, since
yI' C Rforally € I. If S C R is a multiplicative set, S~1(I") C (S71I)". Indeed, if » € K is
such that 2y € R forally € I’, then 2% ¢ S—IR forall s,t € S. Moreover:

Lemma 5.2.14 If I is a finitely generated fractional ideal, then S—1(I") = (S~1I)".

Proof. If y1, ...,y generate I and z € K* is such that zy; = ¢ € S~ IRfori=1,...,n, taking
s =11 sZ we have szy; € R for all ¢ and therefore szy € R for ally € I. Hence sz € I, thus
ze STYI). O

Lemma 5.2.15 For any fractional ideal I, the map I' — Hompg(I,R) = I sending x € I' to p, :
I — R, with py(y) = wy, is an isomorphism.

Proof. This map is clearly injective (K is a domain) and R-linear. Pick a nonzero element z € R
such that zI C R. Let A € I". For any yi,y2 € I, since zy; € R and ) is R-linear, we have
21 A (y2) = Mzy1y2) = zy2A(y1). Therefore y1A(y2) = y2A(y1). Fix y1 and put z = % We get
Ay2) = xys for all yo € R, therefore A = . O

Definition 5.2.16 A fractional ideal I is invertible if II' = R.

Notice that if I and J are fractional ideals with I.J = R then I is invertible and J = I’. Indeed,
onehas R=1J C II' C R,so II'’ = R and multiplying IJ = Rby I’ we get J = I'.

Remark 5.2.17 An invertible fractional ideal is finitely generated as an R-module: since I’ =
R there exist y1,...,y, € I and z1,...,z, € I' such that 1 = zy; + -+ - + z,y,. Thenany y € I
can be written as a linear combination y = y - 1 = Y (z;y)y; of the y; with coefficients z;y that
are in R by definition.

Example 5.2.18 Under the assumptions and notation as in example 5.2.11} let us suppose fur-
thermore that, for every maximal ideal m C R, Ay, = Rn[X]/(f), with f a monic polynomial
such that f'(z) # 0. From proposition(3.3.10jwe know that © A} R =1 ()71 Ap. In this case the

codifferent is invertible and we write © 4 for (D, / R) Notice that, since obv1ously ACD, / R
then © 4 /R < A is an integral ideal, called the different ideal.

Proposition 5.2.19 Ouer a local ring, every invertible fractional ideal is principal.

Proof. By remark I is finitely generated, say by y1, ..., y,. We can thus repeat the argu-
ment used in the proof of Claim 1, proposition Since II' = R, there exist z1,...,2z, € I
such that 3" x;y; = 1. If all products z;y; belong to the maximal ideal m of R, then 1 € m, which
is absurd. We may assume u = z1y; ¢ m, thus invertible. Put z = w1y, s0 z12 = 1. Now for
ally € I we have y = (yx1)z, with yz1 € R. g
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Corollary 5.2.20 Let R be a local domain. Then R is a DVR if and only if every nonzero fractional
ideal is invertible.

Proof. If R is a DVR and 7 a uniformiser, every nonzero fractional ideal is of the form (7"), for
some n € Z, hence invertible with inverse (77 ").
Conversely, if every ideal is invertible, by proposition 5.2.19| R is a PID and we conclude by

proposition O
Theorem 5.2.21 Let I be a fractional ideal. The following conditions are equivalent:

a) 1 is an invertible fractional ideal.

b) I is an invertible module.

c) I is a projective module.

Proof. a) = b) follows from remark |5.2.17|and proposition 5.2.19, b) = c) because I is locally
free.

c) = a)Letyp: F = ®,Re, — I be a surjection from a (possibly infinitely generated) free mod-
ule and o : I — F a splitting. Write o(y) = >, 0a(y)eq and consider o, € IV. Lemma5.2.15
provides us with an element z, € I’ C K such that o,(y) = 2oy forally € I. Fora given y # 0,
0a(y) = 0 for all but finitely many o’s. Hence z, # 0 for only finitely many «’s. Renumbering

the indices if necessary, let x1, . .. , z,, be the non-zero values and put y, = ¢(e,). Forally € I
we have . . .
y=p(o(y) = (Z(%M%) = (Ta¥)Ya =y (Z xaya> :
a=1 a=1 a=1
Hence > z,yo = 1 € II’, which is an ideal in R. Thus II’ = R. O

Definition 5.2.22 The group of Cartier divisors Div(R) is the set of all invertible fractional ideals,
with the product 111, defined as above, 1 —L = I’ and unit element R.

By theorem[5.2.21|we have a map (of sets) Div(R) — Pic(R) sending an invertible fractional
ideal to its isomorphism class as invertible module. Example |5.2.10] tells us that this map is
surjective.

Proposition 5.2.23 The map Div(R) — Pic(R) is a group homomorphism. Specifically, for any two
invertible fractional ideals the multiplication map p : I ® J — 1J, given by p(x @ y) = xy, is an
isomorphism.

Proof. Indeed, 11, is an isomorphism for every prime ideal p in R. 0

A principal fractional ideal is, as a module, isomorphic to R. If f,g € K*, the principal
ideals I = fR and J = gR coincide if and only if IJ' = fg~!R = Ri.e. if and only if f = ug
with u a unit in R. We can thus identify the subgroup of principal fractional ideals with the
image of the map K* — Div(R) taking f to fR and we have:

Corollary 5.2.24 The following sequence of abelian groups is exact:

1 —— RX K Div(R) —— Pic(R) —— 0.
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Proof. Exactness in Div(R): if ¢ : I — R is an isomorphism, let e € I such that ¢(e) = 1; for any
x € I we have z = p(z)e, because = — ¢(x)e € ker p = 0. So I = eR.

Exactness in K*: forx € K*,if tR = Rthenz = z -1 € R. Moreover there exists y € R such
thatl = xy € zR,sox € R*. O

Corollary 5.2.25 If R is a PID then Pic(R) = 0.

Proof. If I is any fractional ideal, z/ C R is an integral ideal for as suitable non-zero = € R.
Then xI = yR for some y € R, hence I = YR, i.e. every fractional ideal is principal. O

We shall see later (corollary [6.1.16) that the Picard group of a UFD is trivial. Therefore, to
see an example of a ring with a non-zero Picard group we have to go beyond UFD.

Example 5.2.26 Let [ = (2,1 + +/=5) C Z[v/—5] = R. This ring is integrally closed (it’s the
integral closure of Z in Q(y/—5)) and we have seen in example that I is not principal
but is a projective R-module, hence an invertible ideal by theorem We can also check
this directly: if p is any prime such that I ¢ p then I, ~ R,; on the other hand, if I C p then
2=6-4=—(1++vV=5)?+2(1++/-5) —4 € p? therefore (1 + /=5)R, + pI, = I, and
Nakayama’s lemma implies (1 + /=5)R,, = I,,. Thus Pic(Z[v/—5]) # 0.

Remark 5.2.27 A basic result, proven in any number theory course worth its name, is that the
Picard group of the ring of integers of a number field is finite.

Definition 5.2.28 Let I and J be fractional ideals. We say that I divides J if there exists an integral
ideal a C R such that J = al.

Notice that, if I divides J then J = al C RI = I. Conversely, if I is an invertible fractional
ideal then I O J implies I divides J because JI' C II' = R is an integral ideal and J = (JI')I.

Proposition 5.2.29 Let I C R be an integral invertible ideal. Suppose that there exists prime ideals
P, .., ppand qi, ..., qmof Rsuchthat I = py---p, = q1 - Q. Then the p; and the q; are invertible,
n = m and each y; is equal to one of the q;. In other words, any such factorisation is unique, up to
permutation of the factors.

Proof. Since p1(p2 - pn)I’ = R, the ideal p; is invertible. Since p; divides I, we have p; O I =
q1 - - qm. Since p; is prime, it contains one of the factors, say q; C p;. Since p; is invertible, by
the remark above there exists an integral ideal a C R such that q; = ap;. Hence a divides q;
too, thus a O ;. Going back to the factorisation q; = apy, since q; is also prime, either p; C q,
and therefore p; = q; or a C qi, and therefore a = q;.

Let’s show that this second case leads to a contradiction. Indeed, it means that a = q; = apy;
since q; is invertible, we would have ap;q} = R, so a would be invertible. But then we can
“simplify” a = ap; and get p; = R, contrary to our assumption. Hence a = q; is impossible,
and thus p; = q; must hold.

Multiplying on both sides the identity p;---p, = q1---qm by p] we get p2---pp = g2+ -
If n = 1, this means q2--- q,, = R, thus R C q; for j = 2,...,m and, since these are integral
ideals, q; = R and thus m = 1. If n > 1, we can repeat the procedure. O

We can rephrase the proposition as follows. Let Z}, (R) be the free abelian group generated
by all invertible integral prime ideals in R. The map Z}, (R) — Div(R), taking a prime p to
itself, is an injective group homomorphism. If R is noetherian, this is in fact a split injection. In
order to discuss this, it is better to involve a larger class of primes.
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Definition 5.2.30 A prime ideal p C R is of height 1 if the only prime ideals in Ry, are 0 and pR,,.

If R is noetherian, every invertible prime ideal p is of height 1: indeed pR,, is principal and
thus R, is a DVR. Notice that if R is noetherian and integrally closed, then R, is a DVR for
every p of height 1. Still, there are height 1 primes that are not invertible:

Example 5.2.31 Let k be a field, R = k[X,Y,Z]/(Z? — XY). The polynomial Z? — XY ¢
k[X,Y][Z] is Eisenstein with respect to the ideal X, hence irreducible, so R is a domain. We
leave it as an exercise to check that R is the integral closure of k[ X, Y]in k(X,Y)[Z]/(Z* - XY),
and thus integrally closed. Denote as usual by z, y, z the images of the variables in R and let
p = (y,2). Since z ¢ p, we have y = % € zRp so Ry ~ k(X)[Z](z) is a DVR and p is of
height 1. But if m = (z,v, 2), since Z? — XY € (X,Y, Z)?, we have m/m? = kz @ ky @ kz and
p/(p Nm?) = ky ® kz, so pRy can’t be generated by only one element, thus p is not invertible.
Geometrically, Spec R is a cone with vertex in m and Z(p) is a line through the vertex. The fact
that p is not invertible translates the fact that such a line can’t be obtained as the intersection of
the cone with a single hypersurface.

Remark 5.2.32 If R is a UFD, any prime ideal of height 1 is principal. Indeed, if p is such
a prime and 0 # = € p then for every irreducible factor y of z, the ideal (y) is prime and
0 # (y) C p, hence p = (y). Therefore if R has the property that R, is a UFD for every prime
q (a ring with this property is called locally factorial) then every prime ideal of height 1 is
invertible. Notice that a locally factorial domain is integrally closed, by corollary and

example

In corollary|6.1.14jwe will see that in a noetherian domain every invertible ideal is contained
in a prime ideal of height 1. Moreover, we have the following finiteness result:

Lemma 5.2.33 Let a C R be an ideal in a noetherian domain. Only finitely many height 1 prime ideals
of R may contain a.

Proof. Since a C +/a and the latter is the intersection of all prime ideals containing a we may
assume that a is radical. By exercise every radical ideal is the intersection of finitely many
non-zero prime ideals, say a = p; N ...p,. Suppose that g O a is a height 1 prime ideal. Then
pr--pn € p1N...p, € q. Since q is prime, q O p; for some i. By definition, the only prime
ideals contained in q are 0 and ¢, hence 0 # p; = q. g

Definition 5.2.34 Let R be a noetherian domain. The group of Weil divisors Z'(R) is the free abelian
group generated by all height 1 prime ideals in R.

In particular, the group Z}, (R) defined above is a subgroup of the group of Weil divisors.
Remark|5.2.32|tells us that Z}  (R) = Z'(R) if R is locally factorial.

muv

We shall now define the map splitting the homomorphism Z}, (R) — Div(R) above under
the assumption that R is integrally closed. See theorem below for the definition in the
general case.

Let R be an integrally closed noetherian domain, a C R an invertible integral ideal and p a
prime ideal of height 1. Then R, is a DVR, hence aR, = (7%(%)), where 7 is any uniformiser. If
I is a fractional ideal and 0 # « € R is such that I C R, define v,(I) = vy(2I) — vp(x). Itis an

easy exercise to check that this does not depend on x.
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Theorem 5.2.35 Let R be an integrally closed noetherian domain. The cycle map

Div(R) — ZY(R)
I — HP p’UP(I)

is a group homomorphism.

Proof. Notice first that if a C R is an invertible integral ideal, if a ¢ p then aR, = R,. Therefore
vp(a) > 0if and only if a C p. Lemmal5.2.33|ensures that the product is finite and the definition
makes sense. To show that the cycle map is well defined and is a group homomorphism, we
need to check that relations are preserved: if a; - - - a,, = by - - - by, the two must map to the same
Weil divisor. This follows from the general properties of valuations: v, (ab) = vy(a) 4+ vy(b). O

Proposition 5.2.36 In a locally factorial noetherian domain, every invertible fractional ideal is a prod-
uct of finitely many invertible primes.

Proof. It suffices to prove the statement for an integral invertible ideal / C R. Let p be a height
1 prime ideal containing I: we shall see in corollary that such a prime always exists. By
remark[5.2.32} in a locally factorial domain every prime of of height 1 is invertible. As remarked
right after definition since p is invertible I C p is equivalent to saying that p divides I.
Thus I = pI; for some I; C R. Being a product of invertible ideals I; = p’[ is also invertible,
so we can iterate. Any prime containing I; also contains I, so the number of primes involved
is finite by lemma Moreover, if I C py then IR,, = p*R,,, since Ry, is a DVR. Thus
I ¢ p**, so0 a prime can only appear a finite number of times in a factorisation of I. O

In view of lemma 5.2.33|and propositions|5.2.29/and [5.2.36|we have established:

Theorem 5.2.37 Let R be a locally factorial noetherian domain.
a) The cycle map is an isomorphism between the groups of Cartier and Weil divisors.

b) Every invertible fractional ideal may be uniquely expressed as a finite product [T, p™*, where the
p’s are prime ideals of height 1 and ny, € Z.

Let us also define the cycle map for an arbitrary noetherian domain R. We proceed in an ad
hoc manner, as a clean definition requires the notion of length which we haven’t developed suf-
ficiently. If a C R an invertible integral ideal and p a prime ideal of height 1, proposition
tells us that aR, is principal, say aR, = (a). In corollary we shall see that there exists an
element 7 € p such thatp” C () C p for all n sufficiently large. We can thus invoke lemma[5.1.3]
to conclude that (,,>¢ p™ = 0. Therefore, there exists an integer n > 0 such that a € p" R, but
a ¢ p"t'R,: denote this integer by £,(a). If I is an invertible fractional ideal and 0 # = € R
is such that I C R, define ¢,(I) = {,(zI) — {y(xR). It can be shown, using theorem and
related techniques, that this definition is independent on all these choices.

Theorem 5.2.38 Let R be a noetherian domain. The cycle map

Div(R) — Z'(R)
I —s I, po®

is a group homomorphism. X
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Example 5.2.39 Let k be a perfect field and k its algebraic closure. Let F(X,Y) € k[X,Y] be an
irreducible polynomial and R = k[X,Y]/(F). Assume that k is algebraically closed in R and

that the plane curve Z(F) is nonsingular, i.e. for every (xo,y0) € %’ such that F (zo,y0) = 0
then (2% (z0, %), 35 (20, %0)) # (0,0).

Denote R = k ®;, R. Let us first check that the localisation Ry, is a DVR for every maximal ideal
m C R. Since 7 : k[X,Y] — R is surjective, 7~!(m) is a maximal ideal in k[X, Y] and thus of
the form (X —x0,Y —yo) (weak Nullstellensatz). A linear change of variables reduces us to the
case (xg,y0) = (0,0). Then F(X,Y) € aX +bY + (X,Y)? and by assumption (a,b) # (0,0). If,
say, a # 0 then = € 2y + m?, so mRy, is principal. Since the localisations of R at maximal ideals
are all DVRs, we deduce that every nonzero prime ideal in R is maximal (take 0 # p C m: since
RnisaDVR, pRy = mRy, so p = m).

Thus R is a Dedekind domain: every prime ideal is of height 1 and invertible (see defini-
tion[5.3.2]below). Let us then show that R is a Dedekind domain too. It is a domain and finitely
generated over a field, thus noetherian. Every prime ideal p C R is maximal: indeed, decom-
pose k @ p = [[/_; m{’ as a finite product in R. Since 7~ !}(m;) = m; = (X —2;,Y — y;), taking
kK = k(z1,...,2zr,y1,...,yr) (a finite extension), by the Chinese Remainder Theorem we get
that R/p is contained in the finite-dimensional k’-vector space k' @y R/pR ~ [[;—; K'[X,Y]/m;*,
hence dimy R/p < 4o00. Thus R/p is a domain, finite, hence integral, over a field: it is a field
and therefore p is maximal. To conclude that R is a Dedekind domain, we have to show that it
is integrally closed. Let z € K = Frac R be integral over R, then it belongs to R, since the latter
is integrally closed, and is in R because o(z) = z for every o € Gal(k/k), as z € K.

A divisor on R (Cartier and Weil agree in this case) is a fractional ideal D = T[], p"*, with the
ny € Z. Geometrically this is a finite formal sum }" p np P of points on the curve Z(F).

To a divisor D one associates the invertible module £(D) = {f € K |vy,(f) +np, > 0}. This is
nothing but the fractional ideal we denoted D’. Indeed, if f € £(D) and y € D then v,(fy) > 0
for all primes p, thus fy € R, for all p. This is equivalent to saying fy € R. Indeed, if T € K
and vp(%) = vp(r) — vp(s) > 0 for all p, then (r) = ], pur() I, pU(8) = (s), thus r € (s), so
r = st forsomet € Rand £ =t € R.

Since R is finitely generated as k-algebra, for every non-zero prime ideal p C R, the field R/p
is a finite extension of k. We may thus define the degree of a divisor

o (I1) - St o
p p

§ 3 Dedekind domains

Proposition 5.3.1 Let R be a noetherian domain. The following conditions are equivalent:
a) Ry isa DVR for every nonzero prime ideal p C R.

b) R is integrally closed and every non-zero prime ideal is maximal.
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Proof. Recall that R is integrally closed if R, is integrally closed for every prime ideal p. If a)
holds and p is a prime, let m O p be a maximal ideal containing it. Then pR,, is a prime in a
DVR, thus either p = 0 or p = m.

Conversely, if every non-zero prime ideal p C R is maximal, the only primes in R,, being in
bijection with primes in R contained in p, are 0 and pR,. Thus R, is local, noetherian, integrally
closed and has only one nonzero prime: it is a DVR by proposition[5.1.8| O

Definition 5.3.2 A Dedekind domain is a ring satisfying the equivalent conditions of propos-

tion5.3.71

Example 5.3.3 A DVR is a Dedekind domain. More generally, a PID is a Dedekind domain.
See corollary |5.3.10|below for a partial converse.

Proposition 5.3.4 Let R be a Dedekind domain and A a noetherian integrally closed domain integral
over R. Then Ais also a Dedekind domain.

Proof. If ¢ C A is a nonzero prime, p = q N R is maximal; then A/q is integral over the field R/p
and is therefore a field, so q is maximal. O

Corollary 5.3.5 Let R be a Dedekind domain, K its fraction field, L a finite separable extension of K
and A the integral closure of R in L. Then A is a Dedekind domain

Proof. Put together corollaries4.1.11 O

Remark 5.3.6 The separability assumption is unnecessary, see exercise
Example 5.3.7 The ring of integers O in a number field K is a Dedekind domain.

Example 5.3.8 C[X,Y]/(X?+Y?2—1) is the integral closure of C[X] in C(X)[Y]/(Y?+ X2 —1),
and is thus a Dedekind domain. On the other hand, C[X,Y]/(X3+ X2 — Y?) is not a Dedekind
domain, since its localisation at my = (,y) is not a DVR (see example [5.1.7).

Since its localisations at every nonzero prime are PIDs, a Dedekind domain is locally facto-
rial. Moreover, every nonzero prime ideal being maximal, it is of height 1. We can thus apply
theorem to conclude:

Theorem 5.3.9 Every fractional ideal in a Dedekind domain is invertible and can be written uniquely
as a product of integral powers of prime ideals.

Corollary 5.3.10 A semi-local Dedekind domain is a PID.

Proof. Let p1,...,p, be all the nonzero prime ideals in R. The map ¢ : R — [[;_; R/p; is
surjective by the Chinese remainder theorem. Fix i and pick z; € p;, x; ¢ p% (notice that
pi # p?: otherwise multiplying p; = p? by p; we get R = p;, absurd). Take 7; € R such that
(p(ﬂ'z) = (1, el 1) Then p1|(7TZ) but p? J[ (7‘(’1) and p; 'f (71'1) for i 7& J- Thus (771) = P;. O

If I is a fractional ideal in a Dedekind domain, written as I = [, p"*, set v,(/) = n,. The
following lemma is often useful in computations.
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Lemma 5.3.11 Let I, J be fractional ideals in a Dedekind domain R and p a nonzero prime ideal.

J) = vp(I) + vy(J).
I)>0Vp+=ICR.

a) vy
b) v,
c) vp(I +J) =min{v,(1),v,(J)}.

(I
(
(
d) vy(I N J) = max{vy(I),vp(J)}.

Proof. The first two are obvious. Since I, J C I + J, we have v, (I + J) < min{v, (1), v,(J)}. On
the other hand, for every fractional ideal H containing both I and J, from H D I + J it follows
that v,(H) < vy(I 4 J). Therefore, from

[+ J = oD T g € prindesDan(D} T gqna
qa7p qa7p

we get min{wv, (1), v,(J)} < vp(L + J).
Since I,J D I N J, we have v,(I N J) > max{vy(I),v,(J)}. On the other hand, for every
fractional ideal H contained both I and J, since H C I N J it follows that v,(H) > v,(I N J),
hence from
INnJ= pvp(lﬁJ) H q”q D pmax{vp(l),vp(J)} H qnq
qa7p qa7p
we get max{vp(1),vp(J)} > vp(INJ). O

Let now R be a Dedekind domain, K its fraction field, L be a finite extension of K and A the
integral closure of R in K. We will assume that A is noetherian and then, as seen in proposi-
tion[5.3.4} A is again Dedekind. In corollary5.3.5, we have shown that this is indeed the case if
L/K is separable, but it is true in general by exercise Beware that if ./ K is not separable, A
is not necessarily a finitely generated R-module: exercise 3.5 provides a counterexample with
both R and A discrete valuation rings..

Let p C R be a nonzero prime and pA = [[}_, q;' the decomposition of the ideal pA, with g;
primes in A. Notice that q; N R is a prime ideal containing the maximal ideal p. Thus q; N R = p
forl1 <i<r.

Definition 5.3.12 The exponent e; = e(q;/p) = vq,(pA) is called the ramification index of g;
over p. The number f; = f(q;/p) = [4/q; : R/p] is the residue (or inertia) degree of q; over p.

The residue degree is a finite number in view of the following result.
Lemma 5.3.13 Let a C A be an ideal such that a N R = p. Then dimp/,(A/a) < [L: K].

Proof. Since Ay /a, = A/a, we may localise in p and thus assume that R is a DVR, with maximal
ideal p = (7). Let z1,..., 2z, be elements in A such that the classes Z; € A/a are R/p-linearly
independent. The claim follows if we show that z1, ..., z, are K-linearly independent. Indeed,
if > oyx; = 0 and some «; # 0, taking m = min{vy(a;)} and multiplying by 7= we may
assume that all the a; € R and that at least one of the coefficients is in R — p. Reducing
modulo p, we obtain an R/p-linear combination of the Z; with some nonzero coefficients, a
contradiction. O
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Theorem 5.3.14 Let R C A be an extension of Dedekind domains, A the integral closure of R in the
finite extension L of K = Frac R. Let p C R be a nonzero prime, pA = [/, q;'. Then

a) Yy eif; = dimpg), A/pA < [L: K].
b) If A, is finite over Ry (e.g. if L/ K is separable or if Ry, is complete), then Y ";_, e; fi = [L : K].

Proof. The inequality in a) is given in lemma [5.3.13] For the first equality, by the Chinese
remainder theorem A/pA = @i_, A/q;. From the sequence

qCa T G CacA

we obtain an isomorphism A/q;* ~ @ Bl qz / q] 1 as R/p-vector spaces. If 7 is a uniformiser of

Ag, then qlAq = (77), hence dimy /q, 9; /ql = 1 and therefore dimp/, qg/qgJrl = fi.

Assume now that A, is finitely generated as an R, module. Since the latter is a PID we can
apply the elementary divisors theorem. Since A is a domain, so is A, which is then torsion
free and thus free. Its rank can be computed as rk A, = dimg (A4, ®g, K) = [L : K], but also
rk Ap = dimp/,(Ap ®p, R/p) = dimpg/,(A/pA). O

Remark 5.3.15 Fixing a prime q above p = q N R, the valuations give a commutative diagram

v

K* — 5 7

Lx 2“7
where ¢ : K C L is the inclusion and the vertical arrow to the right is multiplication by the

ramification index e = e(q/p). Indeed, if 7 € pR, is a uniformiser, since pA; = q°A,, we have
vq(m) = e and then vq(x) = evy(x) for all x € K*.

Definition 5.3.16 Let R be a Dedekind domain, K its fraction field, L/K a finite separable
extension and A the integral closure of R in L. Let 0 # p C R be a prime, pA = [[I_, q;'. We
say that

a) L/K is unramified at q; if e; = 1 and A/q; is separable over R/p.
b) L/K is totally ramified above p if e; = [L : K].

c) pisinertin Lif f; = [L: K].

d) p splits completely in L if r = [L : K].

In order to investigate the behaviour of a nonzero prime p C R in a a finite separable exten-
sion, an extremely useful tool is the technique of completion, as it allows one to assume that
there is only one prime above p. Indeed, by theorem the integral closure of a complete
DVR in a finite extension of its fraction field is also a complete DVR. Notice by the way that we
only need the uniqueness part in this case, as we know that a prime above p exists. By proposi-
tion [3.6.10} the extension is automatically complete. Moreover, if L/K is also normal, we may
replace the Galois group by a smaller, and much simpler, subgroup (see remark 5.3.19).
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Proposition 5.3.17 Let R be a Dedekind domain, K its fraction field, L/K a ﬁnite extension and A
the integral closure of Rin L. Let 0 # p C R be a prime ideal, pA = [[;_; qi' its decomposition,
fi = f(qi/p) the inertia degrees. Let K (resp. L;) be the completion of K (resp. L) with respect to v,
(resp. vy, ). Let Rand A; be the valuation rings, p C Rand §; C A; their maximal ideals. Then

a) R (resp. A;) is the completion of R, (resp. Ay,); p = pRand §; = q;A;;
b) ei(di/p) = e and fi(d:/p) = fi;
¢) L; is an extension of K of degree e; f;;

d) The natural map ¢ : Rop A — [[i, A; is injective and induces K @ L = [[i—, L;. Moreover
@ is an isomorphism if A is finite over R.

Proof. a) the first part follows immediately from the definitions, for the second notice that by
lemma 3.6.15{the maximal ideal of R (resp 4;) is generated by a uniformizer of R, (resp. Ay,).
b) The equality of the ramification indices follows from what we just said about umformlzers

By proposition 3. 6 16/and corollary m R/p = Rp/pR, = R/p and similarly 4;/3; = A/q;,
hence f;(d:/p) =
¢) follows from b) and theorem 5.3.14]

d) The second claim follows from the first, which gives an injection between K-vector spaces
of the same dimension. For every i # j and n;,n; € N, the ideals q;" and q}” are coprime:

indeed, if g + q;’ # A, there is a maximal ideal m C A containing it, which implies i C m
and q;-” C m, whence q; = m = q;. For every n > 1, by the Chinese Remainder Theorem, we
have an exact sequence

(5.1) 0 —— [[i=1 97/ [l 0 —— A/[li=1 97" — [li=1 A/a} —— 0.

Notice that A/ [/, q;“ = R/p" ®g A (just tensor 0 — p" — R — R/p"™ — 0 by A). The
sequences (5.1) build up to an exact sequence of inverse systems, so by proposition [3.6.35| we
get an exact sequence

0 —— lm ([T a7/ Ty af) —— RerAd —— Tl A

A priori we do not get a zero on the right as the maps for the left hand side system are not
surjective. By exercise(3.10, we have lim (TTj—, g/ [Ti=1 9;') = 0, hence Rop A — [[i=; Aiisan

injection of R-modules. Let C be its cokernel. Tensoring 0 — ROpA — [[imy A — C — 0
by R/p we get the isomorphism A/pA ~ [[i_, A/q;", hence C/pC = 0. Assuming finiteness of
A over R, we can apply Nakayama’s lemma to conclude that C' = 0. O

Remark 5.3.18 One can also prove the second claim in d) using a little functional analysis: L
is dense in L; so K ®x L — [[i—, L; has a dense image. It is a linear continuous map between
Banach K-algebras, so its image is closed, hence the map surjective. Both sides have the same
finite dimension, so the map is an isomorphism.

Remark 5.3.19 With notation and assumptions as in proposition [5. suppose furthermore
that L/ K is a Galois extension. The subset D(q;) = {g € Gal(L/K)] g( ) €4; YV € q;} is easily
seen to be a subgroup, called the decomposition group of q;. One can then show that L;/K is a
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Galois extension with Gal(L;/K) = D(qg;): see [3] theorem IIL.1.2 or [17], corollaire I.4. Such
decomposition groups are either cyclic or (if char(R/p) = p > 0) semi-direct product of a cyclic
group of order prime to p by a p-group: see [17]], corollaire IV.2 and corollaire IV.4 respectively.

Proposition 5.3.20 Let R be a Dedekind domain, K its fraction field, L/ K a finite separable extension
and A the integral closure of Rin L. Let 0 # p C R be a prime. The following are equivalent:

a) L/K is unramified at every prime q C A above p.

b) The discriminant 0 4,5 € .

Proof. Without loss of generality, we may assume that R is a DVR. Since e(q/p) = e(q/p) for
every prime q above p and R/p = R/p, we may replace R by R and A by its completion at g.
Then A is also a complete DVR, free of rank n = [L : K] as an R-module and q is the unique
prime above p. Choose z1,...,z, € A such that {zZ,...,%,} is an R/p-basis of A/pA. Then
{1,...,x,} is an R-basis for A: they are generators by corollary[1.2.41]and they are K-linearly
independent, as seen in the proof of lemma[5.3.13] Putd = A(zy,...,z,) = det (Tr(zz;) € R
and letd = A(x1,...,z,) = det (Tr(Z;7;) € R/p. Recall that d4/r = dR. Write pA = ¢°. Then
q is unramified if and only if A/q° is a field (i.e. e = 1), separable over R/p. In particular, the
bilinear form Tr : A/q x A/q — R/p is non-degenerate, i.e. d # 0, hence d ¢ p.

Conversely, if d # 0, lemma below implies that A/q° has no nilpotents and thus e = 1.
Therefore A/p is a field, separable over R/p since d # 0. O

Lemma 5.3.21 Let k be a field and B a finite k-algebra. If 0 ), # 0 then B is reduced (i.e. N = 0).

Proof. Let 0 # = € Np. Let {z1 = z,z9,...,2,} be a k-basis of B. We can use it to compute
the discriminant. Since x; = x is nilpotent, x;x; is nilpotent for 1 < j < n. Since the trace of
any nilpotent endomorphism is 0, the first row of the matrix (Tr(z;z;)) is the zero vector, hence
Ok = A(21, ..., z,) = det (Tr(z;25)) = 0, a contradiction. O

The next result is very useful for computations, both in Number Theory and Algebraic
Geometry, where the residue fields are perfect (finite in the first case, algebraically closed in the
second).

Proposition 5.3.22 Let R be a DVR with maximal ideal p and fraction field K. Let L/K be a finite
separable extension and A the integral closure of R in L. Suppose that A is a DVR, with maximal ideal
q. Assume that A/q is separable over R/p. There exists an element x € A such that {1,z,..., 2"} is
a basis for A over R.

Proof. Let e and f be the ramification index and residue degree, with n = [L : K| = ef by
proposition|5.3.141 By Abel’s theorem, A/q ~ R/p(Z) = R/p[X]/F(X), for suitableZ € A/qand

F(X) € R/p[X] monic. Choose y € A such that y = Z mod q and F(X) € R[X] monic lifting
F(X). Denoting w = v, the valuation on A, we have w(F(y)) > 1. If w(F(y)) = 1, putz = y.
Otherwise, take h € q with w(h) = 1 and put z = y + h. We have F(z) = F(y) + hF'(y) + h%a
for some a € A and w(F'(y)) = 0 because F(X) is separable. Since w is non-archimedean and

w(F(y) + h?a) > min{w(F(y)), w(h?a)} > 2 we get

w(F(z)) = min {w (RF'(y)),w (F(y) - h2a>} =w(hF'(y)) = 1.
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Choose 7 = F(z) as a uniformiser for A and let B = {7727, 0<i<e—-1,0<j< f—1}. It
suffices to show that B is a basis for A over R, because then R[zx] C A contains a basis (recall
7t = F(x)"), so R[z] = A. Since |B| = n, it suffices to show that its elements are generators
(they will be independent over K and thus over R). Since pA = (7¢), by Nakayama’s lemma
it suffices to show that B generates A/pA = A/(7¢). By induction, it suffices to show that if B
generates A/(7™) then it generates A/(7™*1), for m < e. This follows from the sequence

0 —— 7mA/T™ A —— A/ A — 5 A/fTmA —— 0
since 7 A/t A ~ (A/TA) T = (A/q) T™. -

Corollary 5.3.23 Let R be a Dedekind domain, K its fraction field, L/ K a finite separable extension
and A the integral closure of Rin L. Let 0 # p C R be a prime and q C A a prime above p. Assume
that A/q is separable over R/p. Then L/K is unramified at q if and only if the different © 4/ € q.

Proof. As in the proof of proposition we may replace R and A by their completions at p
and q respectively. Then, by proposition [5.3.22] we may write A = R[z] with 2 root of a monic
F(X) € R[X]. From proposition we get ® 4/ = (F'(x)) and by corollary we have
Qa/R = (NL/K(F’(Q:))). Clearly vy (F'(z)) > 0 if and only if v, (NL/K(F’(x)) > 0. We can now
apply proposition O

Remark 5.3.24 In corollary[5.3.23| the condition on the separability of the residue extension can
in fact be removed, see corollary |5.4.12|below.

Corollary 5.3.25 Let R be a Dedekind domain, K its fraction field, L/ K a finite separable extension
and A the integral closure of R in L. Assume that A/q is a separable extension of R/q N R for every
prime ideal ideal q C A. Then® 4/p = Ann 4(Q) /).

Proof. © 4/ and Ann (Q /) are ideals in the Dedekind domain A. To show they are equal, we
need to check that they have the same factorisation. To compute the exponent of a prime q C A4,
we may replace A by its completion at q (and R by its completion at g N R). We can now apply
proposition and write A = R[z] with x root of a monic polynomial f(X) € R[X]. Then
A= Rz], D4/ = (f'(r)) and Qi/R:Adx/f’(x)Adw. O

Example 5.3.26 With notation as in example let K C L be a finite separable extension
of K = Frac R and A the integral closure of R in L. Assume furthermore that & is algebraically
closed in A as well. The formula )", e(q) f(q) = [L : K] tells us that if D is a divisor on R then
deg(A®p D) = [L : K]deg(D).

Consider now the first fundamental sequence of differentials:
(5.2) A®RQ};€/,€ — Q}q/k — Qh/R —— 0.

By example Qp Ik and Q! )1, are invertible modules. Since L is finite separable over K, we
have Q; ;- = 0. The map id;, ® v : L ®k Q) — Qp ;. is a surjection between 1-dimensional
vector spaces, hence an isomorphism. Therefore ker v is a torsion A-module, hence kerv = 0
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since A is a domain. We can thus complete sequence 1b by a zero on the left. Q! /i, being an
invertible A-module, we obtain a new sequence

-1 —1
0o —— QA/k®RQ}%/k A QA/k®AQix/R — 0.

Hence Qg}k QR Q}% Ik is an ideal in A, the annihilator of the torsion module Q;‘}k XA (2114 /R
Let us now remark that Ann (M) = Ann (A ®4 M) for any A-module M and invertible A-
module A: indeed, if am = 0 for all m € M then a(z ® m) = v ® am = z ® 0 = 0 hence
Ann (M) C Ann (A ® M). For the same reason Ann (A ® M) C Ann (AY ® A ® M) = Ann (M).

Hence, by corollary [5.3.25
(5.3) Qg}k Or Q}%/k = Ann (Q}4/R) =Da/R:

We now use some input from algebraic geometry. Realise QF, /i as a fractional ideal (exam-
ple and pick any w € K* init: the set {f € K : v(fw) > 0 Vv valuation of K'} is
a finite-dimensional k-vector space. Its dimension gk is called the genus of K. The degree
of the left-hand side of can be computed by means of the Riemann-Roch formula: it is
291, —2 — [L : K](29x — 2) — oo, Where 0 is a contribution from the points at infinity (in
algebraic terms: the valuations on L whose valuation ring does not contain A). If we assume
that K C L is unramified at infinity (i.e. doc = 0), taking degrees in (5.3) we obtain the famous
Riemann-Hurwitz formula

2gr, —2 = [L : K}(2gK — 2) —|—deg®A/R.

§ 4 Modules over Dedekind domains

Throughout this section, R is a Dedekind domain, K its fraction field. We begin the discus-
sion with finitely generated projective R-modules.

Lemma 5.4.1 Let M be a finitely generated projective R-module. There exist ideals ay,...,a, of R
suchthat M ~ a1 ® --- @ a,.

Proof. Choose an embedding A/ C R™ and compose with the projection onto the first factor to
getp: M — R" — R. Puta; = Im(p), an ideal in R. Since ideals in Dedekind domains are
locally principal, they are locally free hence projective, as R-modules. Choose a splitting of ¢
and write M = a; @ ker(y). Proceed by induction on the rank. O

Lemma 5.4.2 Let ay,...,a, and by,...,bs beidealsof R. Then a; & --- @ a, ~ by & --- @ b, if and
onlyifr =sanday---a, ~by--- b

Proof. Letp : a1 @ --- @ a, >~ by @ --- @ bs. Clearly r = s as this is the rank of these locally
module. Recall that Hompg(a;, R) ~ {z € K|za; C R}. Let ¢;; € K be the element corre-
spondingtoa; — a1 @ --- Pa, ~ by & --- @b, - b;. Thus, if Q = (¢;5) € GL,(K) and
vlay,...,ar) = (b1,...,b,) then b; = >_j=14ija;. Therefore for each (a1,...,a;) €Ea1 D --- D ay
we have det(Q)a; - - - a, = det (Q diag(aq,...,a,)) €b1 & - D b,.
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Thus det(Q)a; @ -+ @ a, C by @ -+ @ b,.. Symetrically det(Q) by ®--- Db, Ca;®--- D a,

therefore det(Q)a; & --- @ a, = b; & --- & b,. The map a — T Q) is thus an isomorphism
al"'ar%bl"'b'r'

To establish the converse, it suffices to show that a @ b ~ R @ ab for any two ideals a,b C R.
This is easy if a and b are coprime, in view of the exact sequence

(5.4) 0 —— anb — a®b —— R 0

where 6(a,b) = a — b is surjective because a + b = R. Since for coprime ideals a N b = ab, we
just have to take a splitting of the sequence (5.4).

Let’s now show we can always reduce to this case. Fix 0 # a € a and write aR = ac for some
ideal ¢ C R. Consider the prime factorisations ¢b = [/, p?" CIIZ i pit = cwith0 < e; < d;
fori = 1,...,m. Choose m; € R uniformiser of p; R,, and use the Chinese remainder theorem
to find ¢ € R such that ¢ = 7f mod p&*! for i = 1,...,m. Localising at all primes, one checks
that cR + bc C cis an equality: indeed cRy, = c¢Ry, and beRy = cRq = Ry forq & {p1,...,pm}.

Multiplying by a the equation ¢ = cR + ¢b and substituting aR = ac we get aR = ca + ab.
Dividing now by a we get R = “a+bin K. Hence a; = Sa C R is an ideal coprime with b and
x — £ is an isomorphism a — a; as R-modules. O

Corollary 5.4.3 For any finitely generated projective module M of rank r there exists an ideal a C R
such that M ~ R™ ! & a.

Proof. Put together lemmas and andwrite M ~a1 &+ ®a, ~R 1 ®a-a. O
Let now M be an arbitrary finitely generated R-module. Since R is a domain, the subset

of torsion elements M;o,s = {m € M |30 # x € R, xm = 0} is a submodule (lemma [1.2.19).
Consider then the exact sequence

(55) 0 —— Mtors M M/Mtors — 0

Lemma 5.4.4 M /M is a projective R-module and M ~ Miors & M /Miors.

Proof. The second statement follows from the first by taking any splitting of (5.5). The module
M [Mioys is torsion-free: if m € M /M;ors and = # 0 such that #m. Choose any m € M projecting
to m, then am € M. Taking y # 0 such that yzm = 0, se see that m € M, thus m = 0. For
every prime p C R, as a torsion free finitely generated module over a PID, (M /M), is free,
hence M /Mo is projective. O

If M is a torsion module, Ann (m) C R is a nonzero ideal for all m € M; taking generators
mi,...,my of M we see that Ann (M) = Ni_; Ann (m;) is a non-zero ideal. Hence M is an
R/Ann (M)-module and as such it has finite length.

Definition 5.4.5 The Grothendieck group Ky (R) is the quotient of the free abelian group on all
finitely generated R-modules modulo the subgroup generated by the elements M — M’ — M"
for each short exact sequence 0 — M’ — M — M" — 0.
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Notice that if M ~ N then [M] = [N]in Ky(R) (consider 0 — M — N — 0 — 0), so
we could have used isomorphism classes of modules as generators of K(R).

By lemma for each finitely generated R-module [M] = [Mios| + [M/Miors], with
M /Moy projective, hence isomorphic to a module of R™~!@a for some a C Rby corollary
Because of the exact sequence 0 — a — R — R/a — 0, we have [a] = [R] — [R/a]. There-
fore [M/Mios] = (r — 1)[R] + [a] = r[R] — [R/a] in Ko(R). We can thus say that Ky(R) is
generated by [R] and the isomorphism classes of torsion modules.

We can now define a map x : Ko(R) — Z & Pic(R) by setting x([R]) = (1,0) and

X(M) = (072%(1\4) [P]>
p

for each torsion R-module, where /(M) is the lenght of the R,-module M,. Notice that by
the preceding remarks x (a; & --- @ a,) = (r,—[a1--- a,]). From Jordan-Holder theory (theo-
rem [4.2.3) we now obtain:

Theorem 5.4.6 x : Ko(R) — Z & Pic(R) is a group isomorphism.

Example 5.4.7 Letn : R" — R" be an endomorphism with det(n) # 0. Then 7, is an isomor-
phism for every prime p C R such that det(n) ¢ p, hence coker(n) is a torsion R-module. Then
x(coker(n)) = (0, [det(n)R]). This is clear if n = 1. Localising at all primes, the general case
follows by induction from the elementary divisors theorem.

We now wish to investigate functoriality. Let X' C L be a finite separable extension and A
the integral closure of R in L. For Picard groups, there are two natural maps associated with
this situation, which it suffices to give on prime ideals

i:Pic(R) — Pic(A); N : Pic(A) — Pic(R)
o] — [p4] [q] ~— [qnRI@

where as usual f(q) = [A/q: R/qN R]. In view of the formula Y, f(q)e(q) = [L : K] we have
N(i(a)) = al“K] for every ideal a C R (and thus for every invertible module).
On Grothendieck groups there are two maps as well

QD* : Ko(R) — KQ(A); P©x - K()(A) — KO(R)
M +— AQr M M +— (M)

where ¢ : R — A is the inclusion map and ¢, (M) is the A-module M seen as an R-module.

The isomorphisms xr : Ko(R) — Z & Pic(R) and xa : Ko(A) — Z & Pic(A) of theo-
rem are compatible with the above maps.

Proposition 5.4.8 For finitely generated torsion modules P € Modpg and QQ € Mod 4

Xr(p+(Q)) = (0,N(xa(@Q)));  xale™(P)) = (0,i(xr(P))) -
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Proof. By additivity, it suffices to treat only the cases P = R/p and Q@ = A/q, forp C A and
q € A prime ideals. If ¢ C A is prime and p = q N R then by definition ¢,(A/q) = f(q) so
Xr(p«(A/q)) = N(q). Since we assumed K C L separable, A is a locally free R module, hence
flat. Thus the multiplication map A ®g p — pA is an isomorphism and tensoring by A the
sequence 0 — p — R — R/p — Owe get0 — pA — A — ¢©"(R/p) — 0 hence

" (R/p) = A/pA and thus xa(¢"(R/p)) = (0,i([p]))- D
Corollary 5.4.9 Forany a € A we have N(aA) = Ny, i (a)R.

Proof. Let p, : A — A be the multiplication map. By definition Ny x(a) = det(u,) and
N(aA) = xr(A/aA) = coker(f,). We can conclude by example O

Theorem only describes the functoriality for torsion modules. To get the complete
picture, we should also understand what happens to free modules. Since A ®r R = A, clearly
xA(¢*(R)) = (1,0). On the other hand, A is a locally free R module of rank [L : K], thus the
first component of xr(ps«(A)) is [L : K]. But, unless R is a DVR, A is not necessarily a free
R-module, so the second component is more complicated.

A is free if the discriminant ideal 4/ = R: forany z1,...,x, € Awith A(zy,...,2,) € R*, the
composite map P, Rx; — A — @i, Rz (where {z7,...,z;} is the dual basis with respect
to the trace bilinear form) is an isomorphism because its matrix (Tr g (7;7;) is invertible.

By exercise if there exists o € A such that vy(A(a)) = vy(A(1, ..., a" 1)) < 1 for each
prime p C R, then A = R[a] is free. But even this is not a necessary condition: if { = exp QPT eC

the ring of integers of Q(() is Z[¢] but A({) = tpp" (npn—1),

Remark 5.4.10 If L is a Galois extension with Gal(L/K) = G a much more delicate question is
to establish whether A is a free R[G]-module. This means that A has an integral normal basis,
i.e. a basis of the form {g(a) }4ec for some a € A. Again this is possible when 0 4/ = R. Emmy
Noether has shown that if A is a DVR, it has an integral normal basis if and only if K C L is
tamely ramified i.e., in the notation of exercise5.7, w(D 4/r) = ¢ — 1 (i.e. minimum).

Recall that the codifferent of R C A is the A-module ’DZ} r=1r € L|Try/k(zy) € RVy € A},
a fractional ideal of A. Clearly, A C @Z} R SO @Z} r/A is a torsion module. As noticed in

corollary we have Ann (@Af}R/A) = Ann (A/D 4 ) =D /R, thus
(5.6) xa (D3)p/4) = (0,[D.a/8])

On the other hand, to compute x R(gp*(Dg} r/A)) we may localise at primes p C R and so
assume that A is a free R-module, with basis {z1,...,z,}. The dual basis {7}, ..., z}} with
respect to the trace bilinear form is then a basis of @Af} g Theinclusionn : R" ~ A — @Af} R

R" is given on bases by 1)(z;) = 7, Try /i (zi7;)x, hence by example[5.4.7 we have

(5.7) xr (D3] /A)) = (0, [det(Trp (i) R]) = (0,[04/r))
where 0 4/ is the discriminant.

Corollary 5.4.11 04,5 = N(D4/R).
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Proof. Combine (5.6), and proposition[5.4.8| O

Corollary 5.4.12 Let R be a Dedekind domain, K its fraction field, L/K a finite separable extension
and A the integral closure of Rin L. Then L/ K is unramified at a prime ¢ C Aifand only if D o/ € q.

Proof. By proposition we may replace A and R by their completions atgand p = qN R

respectively. Then ® 4 /g C qifand only if 04/ = N(D4/r) € N(q) € gN R = p and we know
from proposition |5.3.20| that p is unramified if and only if 04,5 £ p. O

§ 5 Exercises

Exercise 5.1 Let Rbea DVR, v : K* — Z the valuation. Show thatifa; +---+a, = 0in R then
31 < i< j < rsuchthatv(a;) = v(aj).

Exercise 5.2 Let R be a domain which is not a field.

a) Show that R = N, Rm (intersection of all localisations at all maximal ideals).

b) Let b C a C R be ideals. Show that if bR, = aR,, for all maximal ideals, then a = b.
Suppose from now on that Ry, is a DVR for each maximal ideal m C R.

c) Use a) to show that R is integrally closed.

d) Let a C R anideal, 0 # a € a. Suppose that a is contained in only finitely many prime
ideals my, ..., m, of R. Write aRy, = % Ry, with a; € a, s ¢ m; for all i. Show that a is
generated by a, aq, ..., a,.

e) Let Rbe a domain which is not a field. Show that the following conditions are equivalent:

i) Ris a Dedekind domain.

1) Ry is a DVR for each maximal ideal m C R and each 0 # a € R is contained in only
finitely many prime ideals of R.

Exercise 5.3 Let R be a Dedekind domain of characteristic p > 0, K = Frac R, K C L a finite
purely inseparable field extension, A the integral closure of Rin L. Let ¢ = p™ such that z¢ € K
forallz € L.

a) Show that A = {z € L|z% € R}.

b) Let0 # q C Abe a prime ideal, p = qN R. Show that q = {x € L |29 € p}.

c) Show that Spec A — Spec R is bijective.

d) Show that each 0 # a € A is contained in only finitely many prime ideals of A.
e) Letq # Obe aprimeidealin A, p =qnN Rand S = R — p. Show that S™1A = A,.

f) Let 7 be a uniformiser of pRy. For every y € qA4,, write y? = ur", where u € R;‘. Choose
y € qAq such that n is minimal. Show that q A, is principal, generated by y.
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g) Conclude that A4 is a DVR.

h) Show that A isnoetherian. [Hint: let I C Abeanideal, 0 # a € I and q1, ..., q, the primes
containing a; choose x; € I such that I, = z;A,, and show that I = (a,z1,...,2;).]

i) Show that A is a Dedekind domain.

Exercise 5.4 Let R be a Dedekind domain, X = Frac R, K C L a finite field extension, A the
integral closure of R in L. Use exercise|5.3|to show that A is a Dedekind domain.

Exercise 5.5 Let R be a Dedekind domain, p1,...,p, distinct prime ideals and denote v; = vy,
the associated discrete valuationon K. Let 1, ...,2, € K and nq,...,n, € Z. We want to show
that the system of inequalities

vilr—x) >n; i=1,...,m; vg(x) >0 Vg & {p1,...,pr}

always has a solution € K (approximation lemma).

a) Show that if the system has a solution for all (z1,...,z,) € R" then it has a solution for
all (z1,...,z,) € K". From now on, assume (z1,...,2,) € R".
b) Show that if the system has a solution for all (ny,...,n,) € N" then it has a solution for

all (ny,...,n,) €Z".
¢) Show that it suffices to solve the system for the vectors (0...,0,z;,0,...,0).

d) Show that the system with (21,0, ...,0) has a solution z € R. [Hint: consider the ideal
prt+pp?ep]

Exercise 5.6 Show that a semi-local Dedekind domain is a PID. [Hint: approximation lemma]

Exercise 5.7 Let R be a DVR, K = Frac R, L a finite separable extension of K of degree e and
A the integral closure of R in L. We assume that A is a DVR and that if ¢ C A is the maximal
ideal, p = q N R then pA = g° (i.e. the extension is totally ramified). Let € q be a uniformiser.

a) Let w = v, be the valuation of A. Show that w(t) = 0mod eVt € R.

b) Let f € K[X] be the characteristic polynomial of y1; : L — L, p1,(y) = zy. Show that
f € RIX].

¢) Show that f is an Eisenstein polynomial and that A = R[X]/(f).

d) Compute the different D 4, g.
e) Show thate —1 < w(Dy/p) < e—1+w(e), withw (@A/R) = e —1if and only if w(e) = 0.

Exercise 5.8 Let R be a Dedekind domain, K = Frac R, L a finite separable extension of K
of degree n and A the integral closure of R in L. Let & € A be such that L = K(«) and
Aa) = A(L,a,...,a" ). If p is a nonzero prime ideal in R and {z1,...,,} is a basis of A,
over Ry, write o/t = 3" myz;, put M = (my;) € GLn(K) (with m;; € R,) and let d = det M.

a) Show that A(a) = d?A(x1, ..., 7,).
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b) Show thatd -y € Ry[a] forally € A,.
c) Show that A(«) -y € Rp[a] forall y € A,.
d) Show that A(a)A C Ra].

e) Show thatif A(a) ¢ p? then A, = Ry[al.
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Dimension theory

§1 Height and dimension

Definition 6.1.1 The (Krull) dimension of a ring R is the supremum of the lengths of chains of prime
ideals in R:
dim R =sup{n|po 2 p1 2 - 2 Pn, pi € SpecR}.

The height of a prime ideal p C Ris htp = dim R,,.
Hence ht p is the supremum of the lengths of chains of prime ideals contained in p.

Remark 6.1.2 If p C g are prime ideals with htp = htq = h < +oo then p = q. Indeed, take
p=7po 2 P12 - 2 pp, then the first inclusion in q 2 py 2 p; 2 --- 2 pp can’t be strict,
otherwise ht q > h.

Remark 6.1.3 For any prime ideal p C R we have dim R/p + htp < dim R. This is immediate
from the bijections between primes in R/p and primes in R containing p and that between
primes in R contained in p and primes in R,.

Example 6.1.4 A field is of dimension zero. A Dedekind domain is of dimension 1, since every
nonzero prime ideal is maximal.

We shall see later (theorem that if R is a noetherian ring of dimension d < +oo then
dim R[X]| = d + 1. In particular, if k is a field, dim k[ X1, ..., X,,] = n, as we should expect from
any reasonable notion of dimension, as Spec k[X1,..., X,,] = A} is the affine n-dimensional
space. We shall also prove that finitely generated algebras over fields have finite dimension.

A noetherian ring may have infinite dimension (exercise , but we shall see in corol-
lary[6.1.20| that the dimension of a local noetherian ring is always finite.

We begin our investigation with rings of dimension zero, i.e. in which every prime is maximal.

Proposition 6.1.5 An artinian domain is a field. In an artinian ring, every prime ideal is maximal.
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Proof. Let R be an artinian domain. Let 0 # « € R and consider the chain

()2 (z*)D---D(z")D...

By the artinian assumption, (") = (z"*!) = ... for n large enough. Then 2" = ya"*! for a
suitable y € R, hence (1 — yx)z™ = 0. Since R is a domain, we have zy = 1 so z € R*.

If R is any artinian ring and p is prime, R/p is again artinian and is a domain, thus a field, hence
p is maximal. O

A remarked, proposition means that an artinian ring has dimension zero. In fact the
converse holds for noetherian rings. We first need the following characterisation:

Lemma 6.1.6 Let R be a ring, my,...,m, C R (not necessarily distinct) maximal ideals such that
my ---m, = 0. Then R is noetherian if and only if it is artinian.

Proof. Each quotient my ---m;_;/my---m;inthechain R DO my; Dmmy D --- Dmy---m, =0.1s
an R/m;-vector space, so each of these quotients satisfies the ascending chain condition if and
only if it satisfies the descending chain condition. The result now follows by dévissage i.e. by
considering the exact sequences

0 —— ml---mi_l/ml---mi E— R/mlmz B R/ml---mi_l — 0

and remembering that the middle term of a short exact sequence satisfies a chain condition if
and only if the first and last term have the same property (proposition[4.1.7). O

Corollary 6.1.7 A noetherian ring of dimension zero is artinian.

Proof. If dimR = 0, every prime ideal is maximal, hence the Jacobson and nilradical of R
coincide. If R is noetherian, by exercise VO = M = my N --- N m, is the intersection of
finitely many maximal ideals. Moreover, by exercise the nilradical noetherian of ring is
nilpotent. Therefore m? ---m» C (myN---Nm;)"” = N% = 0 for a suitable n > 0 and applying
lemma [6.1.6lwe conclude that R is artinian. O

Remark 6.1.8 In fact a ring R is artinian if and only if it is noetherian of dimension zero. To
prove it, in view of proposition we only need to know that every artinian ring is noethe-

rian, see remark

By definition, a prime ideal of height 0 is a minimal prime. Let us investigate these first.
Lemma 6.1.9 Any ring R # 0 contains minimal prime ideals.

Proof. Let ¥ be the set of all prime ideals in R, partially ordered by p < q <= p O q. The claim
will follow from Zorn’s lemma once we show that any chainp; <ps < ... (i.e. p1 Dp2 2 ...)
has an upper bound in . The obvious candidate is (,, p,: let us show that it is indeed a prime
ideal. Let zy € N, pn and suppose = & (), Pn- So there exists ng € N such that = ¢ p,, for all
n > ng. Since xy € p, for all n € N and the p,, are primes, this means y € p,, for all n > ny.
Moreover y € puy C Pug—1 C -+~ € P1, 50 € Mo . O

Corollary 6.1.10 Any prime ideal contains a minimal prime.
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Proof. Apply the lemma to R,. O

Corollary 6.1.11 A noetherian ring has a finite number of minimal prime ideals. The nilradical of a
noetherian ring is the intersection of all the prime ideals of height 0.

Proof. By exercise 4.3
(6.1) VO=Ng=piN---Np,

is the intersection of finitely many prime ideals. If q is any prime ideal, 91z C q, hencep; ---p, C
p1N---Np, Cqand thus p; C qfor some 1 < i < r. If q is minimal, this must be an equality.

Thus every prime of height 0 appears (6.I). Suppose one of the primes in (6.I), say p;, is not
minimal: by corollary it contains a minimal prime, i.e. a prime in the set {p2,...,p,}.

Hence Mr =p1 NpaN---Np. =paN---Np, and we can remove p. O

Theorem 6.1.12 (Krull’s Hauptidealsatz) Let R be a noetherian ring, x € R, not invertible. If
p C R is a prime ideal, minimal among those containing x, then htp < 1.

Proof. Let p be a prime, minimal among those containing = and let p 2 q; 2 qo be primes
contained in p. By minimality of p, ¢ q;. We want to show that q; = qo. Since we are only
interested in primes between p and g, we may replace R by R, /qoR,. We may thus assume that
R is alocal domain with maximal ideal p, with = € p not contained in any other prime ideal and
we want to show that if g C p is a prime ideal then q = 0. The ring R/x R is noetherian and its
only prime ideal, p/x R, is minimal by assumption: it is thus an artinian ring by corollary
Consider, for all n € N, the symbolic powers

™ ={ye R|3z ¢ qsuchthatyz € q"}.

q™ is an ideal: it is obviously closed under multiplication by elements in R and if y1,y2 € q(™)
and 21,22 ¢ q satisfy zjy; € q" then z122(y1 + y2) € q" and 2122 ¢ q because q is prime.
Clearly g™ C q(”). Moreover q(”) ) q(”“), so we have a descending chain of ideals, whence a
descending chain ...q"™ +2R D q"*V4+zR. ... Since R/xRis artinian, ¢ + 2R = ¢V +-zR
for n sufficiently large. This in turn implies that

(6.2) q = g™ 4 gL,

Indeed, trivially g™ D 2q™ 4q"*D and for any y € q™ we have y = rz+¢ for some r € Rand
q € ¢t C ¢, So raz € q™ and, by definition, there exists z ¢ q such that rzz € q* C q™.
But z, 2z ¢ q and the latter is prime, thus zz ¢ q. Hence r € q(), which proves .

From , by Nakayama'’s lemma we deduce that ¢ = q"*1). Let now S = R — q. Clearly
571g(M = (§71q)" and S~1q(" D) = (§71q)"*". Therefore (5~1q)" = (S~'q)"*". Since S~1q is
the maximal ideal of the local ring S™'R = R, Nakayama again implies (S~1q)" = 0. But R is
a domain, hence S~'q = 0 and therefore q = 0. g

The Principal Ideal’s Theorem’s name is justified by the following application:

Corollary 6.1.13 Let R be a noetherian domain. We suppose that R is not a field. Then R is a UFD if
and only if every prime ideal of height 1 is principal.
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Proof. If R is a UFD and p is a prime of height 1, choose any 0 # x € p. At least one irreducible
factor y of = belongs to p. Then 0 C (y) C p: since (y) is prime and ht p = 1, it follows p = (y).

Conversely, suppose that every prime of height 1 is principal. Let 0 # = € R, ¢ R*. Suppose
that = can’t be written as a finite product of irreducibles. Let p be a minimal prime containing
z. Then htp < 1 by theorem but 0 is the only prime of height 0 in a domain, thus
ht p = 1. By assumption, p = (y1), hence x = z1y; for a suitable z; € R. We have z; # 0 (since
x # 0)and z1 ¢ R* otherwise x would be irreducible, because associated to the irreducible
element y;. Moreover x; can’t be written as a finite product of irreducibles, because otherwise
the same would hold for z, contrary to our assumptions. So x1 has the same properties as  and
() € (z1). We can repeat the process to get an infinite ascending chain (z) C (z1) € (22) € ...
contradicting the assumption that R is noetherian. 0

Corollary 6.1.14 Let R be a noetherian domain, I C R an integral invertible ideal. Then I C p for
some prime ideal p C R of height 1.

Proof. Let m : R — R/I and q C R/I a minimal prime ideal. Then p = 7~1(q) is minimal among
primes containing /. By assumption, /R, = (z) for some z € R,. Therefore pR, is minimal
among the primes in R, containing z: by the Principal Ideal theorem, ht pR, = htp < 1, and in
fact ht p = 1 since R is a domain. O

Remark 6.1.15 In the course of the proof, we have also reproved lemma [5.2.33| for invertible
ideals: an invertible ideal in a noetherian domain is contained in only finitely many height 1
primes: they are in bijection with the minimal primes in R/I.

Corollary 6.1.16 If R is a noetherian UFD, then Pic(R) = 0.

Proof. The Picard group is generated by the invertible prime ideals and every invertible prime
is of height 1, thus principal, hence free as an R-module. O]

We now prepare for a generalisation of theorem 6.1.12)

Lemma 6.1.17 Let R be a noetherian ring, p C R a prime ideal and x € p. For any chain of primes
p=po 2 P12 2D Py, descending from p, there exists a chain of primesp = qo 2 q1 2 - -+ 2 qy, Such
that x € On—1-

Proof. Suppose x € p;—1 but = ¢ p; for some i < n. In the domain R/p;+1 we have the chain
of primes p;_1/pi+1 2 pi/Pi+1 2 0 of length 2, so theorem implies that p;_1/pit1 is
not minimal among the primes in R/p;;; containing = mod p; ;. Hence p;_; is not minimal
among the primes in R containing x + p;41: there is then a prime g; such that x € q; and
Pi—1 2 qi 2 T+ Piy1 2 pi+1. Replace p; by q; in the sequence to get a chain such that x € q,. We

can repeat this process if necessary until we get a chain as required. O
Corollary 6.1.18 Let R be a local noetherian ring and x ¢ R*. Then dim(R/xR) > dim R — 1.

Proof. Let m C R be the maximal ideal. Necessarily z € m. By lemma for any chain of
length n descending from m there isa chainm =q9 2 q1 2 --- 2 g, with z € g,,_1, whence a
chainm/zR D qi/zR 2 -+ D qp—1/zR of length n — 1in R/xR. O
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Theorem 6.1.19 Let R be a noetherian ring, I C R an ideal generated by n elements x1,...,xp. If p
is a prime ideal of R, minimal among those containing I, then htp < n.

Proof. For n = 1, this is theorem[6.1.12] Assume that the statement holds for all ideals generated
by at most n — 1 elements and let p be a prime ideal containing I. Choose an integer k£ < ht p
and achainp =pg 2 p1 2 -+ 2 pi. By lemma we may assume that 1 € p;_;. Denoting
by h the height in R/x R of the prime ideal p/z1 R we have h > k — 1 (because of the bijection
between primes in R and primes in R/x R, the p;/z1 R are all distinct for 0 < i < k —1). If p
is minimal among the primes of R containing I, then p/x; R is minimal among the primes of
R/z1 R containing I /x1 R and, by inductive assumption, h <n — 1. Hence k —1 < h <n —1
and thus k& < n. Therefore any strictly decreasing chain of prime ideals descending from p has
length at most n. This means precisely that ht p < n. O

Corollary 6.1.20 In a noetherian ring, the height of any prime ideal is finite. The dimension of any
local noetherian ring is finite.

Proof. A prime ideal p in a noetherian ring is finitely generated and obviously minimal among
the primes containing p, so has finite height by theorem [6.1.19, The second statement is a
rephrasement of the first, since dim R, = ht p. O

Corollary 6.1.21 Let R be a local noetherian ring, wm its maximal ideal and k its residue field. Then
dim R < dimy, m/m?.

Proof. By Nakayama’s lemma, m can be generated by dimj m/m? elements, and an ideal is
clearly minimal among those containing its generators. O

Theorem|6.1.19|admits a converse, proposition|6.1.23|below. Its proof requires a useful trick.

Lemma 6.1.22 (prime avoidance) Let R be a ring, I C R an ideal and ay,az, ..., as be ideals with
az,...,as primes. If I CJi_; aj, then I is contained in one of the a;.

Proof. The claim is trivial if s = 1. By induction, assume that the claim holds for unions of at
most s — 1 ideals, suppose I ¢ Uji aj, for 1 <@ < s and let’s derive a contradiction. Let thus
x; € I'Na;suchthatz; ¢ a; Vj # 4. Then x5 + z1--- 2,1 € I, but is neither in a, (because

Z1,...,%s—1 ¢ asand a, is prime), nor in any of the ay, ..., a,_1, because z, ¢ a; forall j < s—1.
This contradicts the assumption I C J;_; a;. Hence I is contained in a union of s — 1 of these
ideals and we can conclude by induction. O

Proposition 6.1.23 Let R be a noetherian ring and p C R a prime ideal of height h. There exist
Z1,...,Tn € Rsuch that p is one of the minimal primes containing x1, . .., xp,.

Proof. An ideal of height 0 is a minimal prime of R, which we can view as a minimal prime
containing the empty set. By induction on £ < h, we want to construct a sequence z1,...,x; € p
such that every minimal prime ideal containing 1, ..., z) has height k. For k¥ = h we end up
with primes in p, minimal among those containing a sequence of / elements and with the same
height as p, so by remark[6.1.2] they all coincide with p.

For0 < k < h,letxy,...,z, € p, write a = (z1,...,x) and let q1,q2, ..., qs be the minimal
prime ideals containing 1, ..., xy: there is a finite number of them, since they are in bijection
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with the minimal primes of R/a, and we can apply corollary We assume that ht q; = k
for all j. Applying lemma we see that p ¢ |J3_, q;, otherwise p C q; for some j, which
is impossible since htp > htq;. Therefore, we may select x5 € p but z54; ¢ q; for 1 <
i < 5. Now if v is any minimal prime ideal containing z1,..., 2y, x+1, then httv < k£ + 1 by
theorem On the other hand, r contains one of the q;, because

/6 2 Npje = (q1/a)N---N(qs/a) 2 (q1/a) - (45/a)
and t/a, being prime in R/a, contains one of the factors. Thus ht v = k + 1, by remark O

Corollary 6.1.24 The dimension of a local noetherian ring with maximal ideal w is the smallest number

d € N such that there exist x1,...,xq € mand ng € N such that
m" C (z1,...,24) Cm Y n > ng.
Proof. If z1,...,x24 and n are as in the statement, m™ C p for any prime p containing the z;,

hence m C p and p = m by maximality of m. Thus m is minimal among ideals containing
Z1,...,24, hence htm < d by theorem On the other hand, by proposition for
h = htm = dim R we may find z1,...,2; € m such that m is minimal among the primes
containing x1,...,z,. Consider a = (z1,...,2z5). The minimality property of m implies that
m/a is the only prime in R/a. Thus m/a = Mg/, and, since R/a is noetherian, its nilradical is
nilpotent. Therefore (m/a)" = 0 for some n € N, hence m"” C a = (z1,...,z;) C m. O

Example 6.1.25 Let k be a field. Recall from example that in R =k[X,Y,Z]/(Z? - XY)
the prime ideal p = (y, 2) is of height 1 but not principal. If ¢ C R is any prime such that
y € q then z € g, because 22 = zy € q and q is prime. Thus p is minimal among prime ideals
containing y and p? = (y2,yz, 2%) = (y2, yz,2y) C (y).

The following result expresses semi-continuity for the dimension of the fibres of a mor-
phism and highlights one of the fundamental properties of flat morphisms: continuous varia-
tion of the fibres.

Theorem 6.1.26 Let ¢ : R — A be a morphism of noetherian rings, ¢ C A a prime ideal and p =
0~ Y(q). Then
dim Ay < dim R, 4 dim (44 ®g R/p)

with equality if ¢ : R — A satisfies the Going Down property.
Proof. Let d = dim R, and h the dimension of A @, R/p = A/pA. By proposition[6.1.23] there

exist x1,...,x4 € p such that p” C (z1,...,24) C pand y1,...,yn € qA4 such that q" A, C
(Y1, --,yn) + pAq for m,n € N sufficiently large. Therefore

q""Aq € ((y1,--->Yn) JFpAq)n C WY1y yn) +P"Ag C (1, -, Zd, Y1, - -, Yn)Aq € qAq

hence q is a minimal prime containing z1,...,2q,y1,...,ys, thus dimA; = htq < d + h by
theorem [6.1.19

Now suppose that ¢ : R — A satisfies the Going Down property. By definition, there is a chain
of primes q = qo 2 -+ 2 qj such that pA C gj. Since p C ¢ (qn) € ¢ (q) = p we have
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¢~ 1(q;) = p for 0 < i < h. Since d = dim R, = htp, there is a chain of primesp =py 2 --- 2 p4
in R. By the going down property, there is a chain of primes q;, = to 2 --- 2 t4 in A such that
¢ 1(v;) = p;. Whenceachaing=qo2 -2 qs =1t 2 - 2 tqof length d + h in A;. Thus
dim Aq > d + h. We conclude that dim Ay = d + h. O

Corollary 6.1.27 Let R be a local noetherian ring and R its completion. Then dim R = dim R.

Proof. Follows from corollary [3.6.42|and remark X

Theorem 6.1.28 If R is a noetherian ring, then dim R[X| = dim R + 1.

Proof. If I C R is any ideal, reducing mod I the coefficients yields a surjective homomorphism
R[X] — (R/I)[X] whose kernel is clearly I R[X]. In particular, if I is prime, R/ is a domain
and so is (R/I) [X], hence I R[X] is prime. Then IR[X] + (X) D IR[X] is also a prime, since
R[X]/(IR[X]+ (X)) = (R/I)[X]/(X) = R/I. If I C J C R are arbitrary ideals, supposing
IR[X]| = JR[X]| we would have that any y € J could be written y = ag+a; X +- - - +a, X" with
a; € I, thus (—y + ap) + a1 X + -+ + a, X™ = 0in R[X], hence y = ag € I, contradicting J ¢ I.
These computations show that any chain of primes py 2 p1 2 --- 2 p,, in R gives rise to a chain
poR[X] + (X) 2 poR[X]| 2 p1R[X] D - -+ 2 ppR[X] in R[X]. Therefore dim R[X]| > dim R + 1.
Let p C R be a prime ideal and q C R[X] be a prime ideal, maximal among those containing
pR[X] and such that g N R = p. We shall prove that

(6.3) dim R[X]q = dim R, + 1.

Granting this, for any prime ¢t C R[X], putp = vt N R and let q O t be a prime ideal, maximal
among those containing pR[X| and such that ¢ N R = p. From (6.3) we get

htv <htq=dimR[X]; <dim R, +1 < dim R + 1.

Therefore if the dimension of R is finite, so is that of R[X] and, choosing t such that htt =
dim R[X], we conclude that dim R[X] = dim R + 1.

If Risa field, dim R = 0 and R[X] is a Dedekind domain, so follows from example[6.1.4} In
the general case, we may replace R by R, and assume that p is maximal in R, with residue field
k = R/p. As above, if p = pg D p1 2 --- 2 pgis a chain in R, with d = dim R, we get the chain
q 2 pR[X]| 2 p1R[X] 2 --- 2 pgR[X] in R[X] and q # pR[X] because the latter is not maximal
among those containing pR[X] and such that g N R = p (it is contained in pR[X] + (X)). Thus
dim R[X]q > dim R, + 1. On the other hand, from theorem|[6.1.26] we get

dim R[X]q < dim R, + dim (R[X]q ®g k) = dim R, + dim k[X]| = dim R, + 1. O

Corollary 6.1.29 If kis a field, dim k[ X, ..., X,,] = n.

Example 6.1.30 Let k be a field. For h < n, letp = (Xi,...,Xn) C R = k[Xy,..., Xy
Then R/p = k[Xpt1,...,Xp] and Ry, = k(Xp41,...,X5)[X1,..., Xp]. Hence htp = h and
dim R/p = n — h. In particular, the inequality in remark is sharp. We shall generalise this

in proposition|6.1.35/below.
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Example 6.1.31 Theorem says that dimZ[X] = dimZ + 1 = 2. This may come as a
surprise, given that Spec Z[X] = A}, is the affine line over Z. Let us check its points. Being
a domain, the only minimal prime in Z[X] is 0. Its residue field is FracZ[X| = Q(X). If
0 # p C Z[X], then p N Z = pZ is a prime ideal in Z. Notice that pZ[X| C p is a prime ideal,
since Z[X|/pZ[X] is equal to F,,[X] (if p is a prime number) or Z[X] (if p = 0). If htp = 1 and
p is a prime, necessarily 0 C pZ[X]| = p, while for p = 0, since p N (Z — {0}) = &, we have
p C Q[X], generated by an irreducible polynomial. If ht p = 2, since dim Q[X] = 1, necessarily
p contains a prime number p > 0. Then 0 C pZ[X]| C p = (p, F(X)), where F(X) € Z[X] is an
irreducible polynomial such that ' mod pZ[X| generates the (maximal) ideal p/pZ[X| C F,[X].
These are all the closed points of Al. The best way to picture this is shown in figure 6.1. One
should regard A} as an (affine) arithmetic surface, fibered over Spec Z (the inclusion Z C Z[X]|
corresponding to the projection Spec A}, — SpecZ). Above each prime number p € Z lies the
affine line Ay = SpecF,[X] — Aj (corresponding to Z[X] — F,[X]) and similarly Ag — Ay
(corresponding to Z[X| C Q[X]) lies above 0 € Z. Points corresponding to primes of height < 1
shown as squiggles. These include all the points on the ”generic fibre” A(b: taking their closure
gives rise to the horizontal curves. The minimal prime 0 doesn’t contain any proper ideal in
Z[X] and so belongs to every open set. It is thus called the “generic point”.

Notice that the way the closure of the point (f(X)) C Q[X] meets the fibre Arle is prescribed
by the splitting of the prime p in the field extension Q C Q[X]/(f(X)). There can be one or
more points, defined over F,, or some finite extension, and ramification is shown as tangency
between the horizontal curve and the vertical fibre.

| | I
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Figure 6.1: The affine line A}, (taken from [12]).

Now that we have some examples of finite-dimensional rings, we can get more by means
of the following result.



Chapter VI 127

Proposition 6.1.32 Let R C A be rings, with A integral over R. Then dim R = dim A (and in
particular, one is finite if and only if the other is finite). If ¢ C A is a prime and p = q N R, then
htp = htgq.

Proof. If dim R = d, there exists a chain py 2 p1 2 --- D pg of primes in R. By Going Up there is
achainqyp 2 q1 2 -+ 2 qq¢in Awith ;N R = p;, thus dim A > dim R. Moreover, if q; 2 q 2 ¢i+1
then p; O q N R D p;41 and, since there are no primes between p;,; and p;, either N R = p; 41
or g N R = p;, which, by corollary [3.2.3] implies either g = ;11 or § = g;. Hence the sequence
{g;} can’t be refined, thus dim A = dim R.

Conversely, taking a chain of length dim A in A and intersecting with R we get dim R > dim 4,
and such a chain in R can’t be refined because otherwise we would get a chain of length strictly
bigger than dim A in A. Therefore dim R = dim A. 0

Corollary 6.1.33 If R is an algebra of finite type over a field, then dim R < +4oc.

Proof. By Noether’s Normalisation lemma R is integral over a subalgebra k[Y7,..., Y]
Combining corollary|6.1.29|and proposition|6.1.32f we conclude dim R = d. 0

Corollary 6.1.34 If R is a domain, of finite type over a field k and K = Frac R then dim R equals the
transcendence degree of K over k.

Proof. The transcendence degree of k(X1,...,X,) over kis n = dim k[ X1, ..., X,]. The general
case follows from the Normalisation lemma as in the proof of corollary|6.1.33 O

Proposition 6.1.35 If R is a domain, of finite type over a field, dim R/p + ht p = dim R for any prime
p C R

Proof. Let R = k[X;,...,X,]/I (where I is prime since R is a domain) and q O I the prime
ideal in k[ X1, ..., X,] such that q/I = p. We shall prove that there exist integers e < d < n and
an injection k[Z1, ..., Z,| C k[X1, ..., X,] such that:

a) k[Xi,...,X,]is finite over k[Z1, ..., Z,];
b) Iﬂk[Zl,...,Zn] = (Zd+1,...,Zn);
Q) qu:[Zl,...,Zn] = (Z€+1,...,Zn).

It follows immediately that R is finite over k[Z, ..., Z4], hence dim R = d, by corollary
and propostion that R/p is finite over k[Z1,..., Z.], thus dim R/p = e, for the same
reasons; and that p N k[Z1,...,Z4] = (qNk[Z1,...,Z,]) /(I NEk[Z,...,Z,)) is the ideal in
k[Z1,...,Zq) generated by Zc, 1, ..., Zq. Example[6.1.30now tells us ht (pNk[Z1, ..., Z4]) = d—e
and by propostionthis is also the height of p, since R is finite over k[Z1, .. ., Z4]. Therefore
htp =d — e = dim R — dim R/p as contended.

By the Normalisation lemma, there exists a finite injection A = k[T1,...,T,] C k[X1,..., X,
and an integer d < n such that

i) Ris finite over k[T, ..., Ty);

i) INA=Ty 1A+ +T,A.
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We can also apply the Normalisation lemma to k[T4,...,Ty]/(q N k[T4,...,Ty]): there exists a
finite injection B = k[Z1,...,Z4) C k[T, ...,Ty] and an integer e < d such that

iii) k[Th,...,T4)/(qNE[TY,...,Ty]) is finite over k[Z1, ..., Z.];
iv) (qNk[Ty,...,Ty) "B =Z. 1B+ -+ ZyB.

PutZ; =T;ford+1<i<n.Clearly C = k[Z1,...,Z,) CA=k[Th,...,T,) Ck[Xy,...,X,]is
a finite injection. This establishes a). Moreover

INC=INANC=(Ty41A+ - +T,AANCCTy1C+ - +T1,C=2Z441C+---+ Z,C.

This inclusion is an equality by remark [6.1.2]because both ideals have the same height: by ex-
ample[6.1.30} in A we have ht (T;y11,...,7,) = n—d, and this is also the height of (I N A)NC by
proposition[6.1.32} since A is integral over C'. Again example[6.1.30yields ht (Zg41, ..., Z,) =
n — d in C. This proves b).

Notice that I N C' = (Z441, - - . , Zy) is the kernel of the natural projection C' — B. The inclusion
B C C gives a splitting, whence a decomposition C' = B & (I N C) (as B-modules). Thus any
F € C can be written as F' = Fy + (F — Fp) for a unique Fy € B. Since I C g, forall F' € C we
have FF — Fp e INC C qNC. Thus F € gN C'if and only if

e (@NC)NB=(qNA)NB=Zey 1B+ 4 ZyB C Zey,C + -+ Zy4C.
Therefore qNC' = Z.1C + - - - + Z,C. This settles c) and concludes the proof. O

We conclude with an important structure theorem for the image of a morphism between
the spectra of noetherian rings.

Definition 6.1.36 A subset of a topological space is locally closed if it is the intersection of
an open subset with a closed subset. A finite union of locally closed subsets is called a con-
structible subset.

Theorem 6.1.37 (Chevalley) Let R be a noetherian ring, A an R-algebra of finite type, ¢ : R — A
the natural map. The image of p* : Spec A — Spec R is a constructible set.

Proof. We prove the theorem under the assumption that dim R < +oo, for the general case we
refer to exercise Let py,..., p, be the minimal primes of R. Since every prime contains
a minimal prime, Spec R = Z(p;) U --- U Z(p,,) is a union of finitely many closed subsets
Z(p;) = Spec R/p;. From the proof of proposition[1.1.75 we get (%)~ ((Z(p;)) = Z(p(pi)A) =
Spec A/p(p;)A. Since a finite union of constructible sets is constructible, we may replace R by
R/p; and Aby A/p(p;)A. In particular, we may assume that R is a domain.

We proceed by induction on dim R. If dim R = 0, the claim is trivial, as R is now a field and
¢~ 1(q) = 0 for any prime q C A, so imy* = Spec R. For dimR = d > 0, let us compute

im ¢*, the closure of the image. As a closed subset, im ¢f = Z(.J), where J is the smallest ideal
contained in every prime of the form ¢~!(q) for q C Ai.e.

J= sol(q)=901< N q)zwl(m).

qESpec A qESpec A
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If im ¢! C SpecR, then J # 0 = Mg and ¢ factors as R — R/J — A. SincedmR/J < d —1
(any chain of primes in R/J lifts to a chain in R which can be extended by sticking the zero
ideal at the bottom), we conclude by induction. If, on the contrary, im # = Spec R then

ker p = <p_1(0) C g0_1 Ma) =T =Nr=0

s0 ¢ is injective: we may apply corollary[3.2.7)to conclude that im ¢ contains a non-empty open
subset U C Spec R. If U = Spec R, we are done. Otherwise, write Z = Spec R — U. There
exists then an ideal 0 # I C R such that Z = Z(I) = Spec R/I. As above, (¢*)~ ((Z(I)) =
Z(p(I)A) = Spec A/p(I)A and the image of ¢! is the disjoint union of U and im %", where
®:R/I — A/p(I)A. Again, dim R/I < dim R, since I # 0, and we conclude by induction. O

Corollary 6.1.38 Let R be a noetherian ring, A an R-algebra of finite type, ¢ : R — A the natural
map. If o has the Going Down property, then ¢ : Spec A — Spec R is an open map.

Proof. Let U = Spec A — Z(J) be an open subset. Since A is noetherian, J = (fi,..., fm)
is finitely generated. Thus U = Spec A — ("%, Z(fi)) = Ui%; (Spec A — Z(f;)). Therefore, to
show that ¢*(U) is an open subset, it suffices to do so for U of the form Spec A—Z(f) = Spec Ay.
Replacing Aby Ay = A[X]/(X f — 1), we are reduced to show that the image of ¢* is open. By
Chevalley’s theorem, im ¢* is a constructible subset. Since ¢ has the Going Down property, for
every p € im ¢ any p’ C p is also in the image. We conclude by lemma below. 0

Lemma 6.1.39 A constructible subset S C Spec R is an open subset if and only if for every p € S all
the primes p’ C p belong to S.

Proof. We may assume that S = U N T is the intersection of an open subset U and a closed
subset 7. It suffices to show that 7" is also open. Write Spec R = Z(p;) U --- U Z(p,,) as the
union of the closures of the minimal primes of R. The intersection 7' N Z(p;) is either empty or
equal to Z(p;): if thereis a q € T'N Z(p;) then q D p;, so by hypothesis p; € U N T C T, hence
the closure {p;} = Z(p;) is contained in the closed set 7. Possibly renumbering the minimal
primes, we have T' = Z(p1) U --- U Z(p,) and T'N Z(p;) = @ for m < i < n. Therefore T is the
complement in Spec R of the closed set | J;"_,,, . ; Z(p;), and thus open.

Conversely, if S is open Spec R — S = Z(I) for a suitable ideal I C R. Thus p € S'iff p ¢ Z(I)
i.e. I ¢ p. Therefore any prime p’ C p cannot contain I, i.e. p’ ¢ Z(I)sop’ € S. O

§ 2 Regular rings

Let R be a local noetherian ring, m its maximal ideal and k its residue field. Recall that, by

corollary|6.1.21}, dim R < dimy m/m?.

Definition 6.2.1 Let R be a local noetherian ring, m its maximal ideal and £ its residue field.
We say that a noetherian ring R is regular if dim R = dimj m/m?. We say that a ring R is regular
if R, is a regular local ring for every prime ideal p.
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If (R, m) is a local k-algebra such that R/m = k, in remark|1.3.17jwe have defined its tangent
space as the dual vector space to m/m?. Therefore R is regular if it has the same dimension as
its tangent space.

Example 6.2.2 Z[X] is a regular ring. Indeed, from example 6.1.31, we know that its ideals of
height 1 are principal and those of height 2 are generated by two elements.

Proposition 6.2.3 Let R be a local noetherian ring with maximal ideal m.
a) If dim R = O then R is regular if and only if R is a field;
b) If dim R = 1 then R is regular if and only if R is a DVR.

Proof. Clearly, a field is regular. Conversely, if R is regular of dimension zero then m = m?, so

by Nakayama m = 0 and thus R is a field.

A DVR is regular, since it is 1-dimensional and, if 7 is a uniformiser, m/m? = (7)/(n?) is also
1-dimensional. Conversely, if R is regular dimm/m? = 1, so m is principal, generated by any
element in m\ m%. Then R is a DVR by proposition and the next result which ensures that
the generator is not nilpotent. 0

Proposition 6.2.4 A regular noetherian local ring is a domain.

Proof. Let m C R be the maximal ideal and d = dim R. The proof is by induction on d = dim R.
By proposition[6.2.3]a, we may assume d > 1.

Let p1,...,p, be the minimal prime ideals of R (there are finitely many of them, by corol-
lary . By lemma if m were contained in the union of m? and the p;’s, then either
m C m?, which is impossible because dim m/ m? =d > 0, orm C p; for some i, which is impos-
sible because ht m = d > 0 = ht p;. Therefore, there is an element = € m not contained in m? or
any of the minimal primes.

Letm : R - R = R/zR and m = m/zR. Notice that ¢ = dimR < dim R: take a chain
mM2q 2 20 inR,setq, = 7 1(q;) and get a chainm 2 g1 2 -+ 2 q.. Since z € q., we
have ht q. > 0 and we can nest more primes inside q.. On the other hand dim R > dim R — 1,
by corollary Thus dim R = d — 1. From the exact sequence of k = R/m-vector spaces

0 —— (zR+m?)/m? —— m/m? —— m/(m? +2R) =m/m?> —— 0

we deduce that d — 1 = dim R < dimym/m? < dimm/m? = d. Thus the first is an equality
and R is regular, of dimension d — 1, thus a domain by inductive assumption. Therefore zR
is a prime ideal. By construction, it is not minimal, so it contains properly one of the minimal
primes. Say p; C zR. If y € p;, then y = ax for some a € R. Since x ¢ py, then a € p;. Thus
p1 C ap;. Hence py = zpy € mp; C py. Therefore mp; = p; and by Nakayama we conclude
p1 = 0. So 0 is a minimal prime, i.e. R is a domain. O

The following theorem is a fundamental result on regular local rings. The proof ([18], chap.
IV, proposition 23; see also [2] corollary 19.14, [8] corollary 18 G) is based on Serre’s characteri-
sation of regularity in terms of homological algebra.

Theorem 6.2.5 If R is a regular local ring then R, is regular for every prime ideal p C R. X
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Theorem 6.2.6 (Auslander-Buchsbaum) A regular local ring is factorial.
Remark 6.2.7 Thus: PID = regular = locally factorial = integrally closed = domain.

Example 6.2.8 Let k be a field, @ = (a1,...,a,) € k" and m = (X7 — aq,..., X, — ) €
k[Xi,...,Xy]. Define a k-linear map

9 kX1, ..., Xn] — k"
P (H(a),..., (o).

Clearly ¥(X; — ;) = e;. By Leibnitz rule BILQ = Py 86’2 +Q (%I; , thus ¥(m?) = 0. Hence
9 : m/m? ~ k". Therefore k[X1,..., X,]is regular atm (hence by weak Nullstellensatz, at all
closed points, if k algebraically closed).

Let now I = (Fi,...,Fy) and R = k[Xi,...,X,]|/I. Assume that Fj(a) = 0 for < j < m,
so I C mand let m = m/I be the corresponding maximal ideal in R. In example we
have computed Q}% e R™/Im Jt, where J = ( g)};; ) is the jacobian matrix. Hence, from
corollary[1.3.16|we deduce dimj m/m? = n—1k J (). It is easy to obtain the same result directly:
clearly dimy, ¥(I) = rk J(a), therefore

(6.4) dimy, (I +m?)/m?) = dimy, (1) = 1k J (o).
On the other hand, since m?> = (m/I)? = m?/(I + m?), we have
(6.5) m/m? = (m/I)/ (Wm*/(I +m?)) = m/(I +m).

We have an exact sequence of k-vector spaces
0 —— (I+m?))/m? —— m/m?> —— m/(I +m?) —— 0

from which, by and (6.5), we conclude that dimy(m/m?) = n — rtk J(a).

Therefore dim Ry < dimgm/m? = n — rk J(a) and by definition R is regular at m if and only
if this is an equality. Moreover, the set of points a € A"™(k) at which rk J(a) < n — dim R is
Zariski closed (vanishing locus of all the minors of size < n — dim R). Thus the set of singular
(i.e. non-regular) points in Z([) is Zariski closed.

A priori, the singular locus could be the whole of Z(I) (example: R = k[X]/(X?)). In the case
m < n, a simple sufficient condition for a point to be regular is to impose that rk J(a) = n —m.
This fits nicely with the theory of differentiable manifolds.

Assume now that I is a prime ideal, i.e. that R is a domain (in geometric language, Z(I) is a
variety). Then, by corollary[6.1.34, d = dim R equals the transcendence degree of K = FracR
over k. Assume furthermore that also dimg QK/k = d. Then Q}. Kk = K ®r QR/k ~ K" /Im Jt.
There is thus an (n — d) x (n — d) minor M of the matrix J such that det M # 0. Therefore, for
every m such that det M ¢ m, we have rk J(a) > n—d and thus d = dim Ry, < n—rkJ(a) <,
so all these are regular points.

The assumption that dimy Q% /i 1s equal to the trascendence degree of K/k is satisfied if k
is perfect, see [8], §27. If the characteristic of k is 0, we can check this directly, using the
Normalisation lemma: K is a finite extension of k(T1,...,T;). We know that QO KTy, Ty) e =

k(Th, ..., Ta) ®@umy,..1] Q}g[Th_ 7, k is a vector space of dlmensmn d. If K is separable over
k(Ty,...,Ts) C K, by corollary Q}{/k = K ®pny, 7Td)Q,1€(Thm7Td)/k, hence dim g Q}{/k =d.
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§ 3 Exercises

Exercise 6.1 Let R be a ring. Show that Spec R can be written as a union |J; Z; of irreducible
subsets such that Z; ¢ Z; if i # j, called the irreducible components of Spec R. [Hint: consider
the subsets Z(p) defined by the minimal primes of R.]

Exercise 6.2 Let I be an integrally closed noetherian domain and q C R a prime ideal. Recall
that we defined the n-th symbolic power q™ = {y € R|32 ¢ qand yz € q"}. Suppose that
ht q = 1 and let v be the discrete valuation of R,. Show that (") = {z € R |v(z) > n}.

Exercise 6.3 Let k be a field, R = k[Xi,j}izl; 1<5<q+ Let p; = (Xz‘71, R ,Xm‘) and S = R — U;.il Pi.
Put A = S™!'R. This ring has been studied in exercise Show that A is noetherian and
dim A = +o0.

Exercise 6.4 Let X be a topological space and S C X a subset. Say that S satisfies (x) if for
every irreducible closed subset T C X such that S N T is dense in 7" then S N T contains a
non-empty open subset of T'. Let R be a noetherian ring.

a) Show that if S C Spec R is constructible then S satisfies (x). [Hint: for 7" irreducible
closed, show that SNT is constructible; compute the closure of SNT" and use exercise ]

Conversely, let S C Spec R be a subset satisfying (x). We’ll show that S is constructible. Since &
is constructible, assume S # @ and that for every S’ C S such that S’ satisfying (x) and whose
closure S’ is properly contained in the closure S, then S’ is constructible.

b) Write S = Z1 U Z U - - U Z, as the union of its irreducible components. Show that S N Z;
is dense in Z;. Conclude that there exists a closed subset Z; C Z; such that Z; — Z] C S.

c) PutY =Z{UZyU---UZ,. and notice that S = (Z; — Z{) U (SNY). Show that Z; — Z] is
locally closed in Spec R and that S NY satisfies ().

d) Show that S NY is constructible and conclude that S is constructible too.

Exercise 6.5 Use the characterisation of constructible sets in exercise [6.4| to prove Chevalley’s
theorem without the assumption dim R < +o0.

Exercise 6.6 Let A be a noetherian ring, S C Spec A a constructible subset. Then there exists
an A-algebra of finite type 1 : A — B such that S = im«*. [Hint: do first the case S =
[Spec A — Z(f)|NZ, for f € Aand Z a closed subset.]

Exercise 6.7 Use exercise [6.6| to prove the following form of Chevalley’s theorem: let R be a
noetherian ring and A an R-algebra of finite type, ¢ : R — A the natural map. Then ¢f maps
constructible subsets of Spec A to constructible subsets of Spec R.

Exercise 6.8 Let p be a prime number. Show that p = (pX — 1) C Z[X] is a prime ideal with
ht p = 1. Can you place it in figure 6.1? How would you draw its closure?

Exercise 6.9 Show that every prime of height 1 in Z[X] is contained in infinitely many primes
of height 2. Let R be Dedekind domain: is it true that every prime of height 1 in R[X] is
contained in a prime of height 2?
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Categories and functors

Definition A.1 A category € is the datum of a collection Ob(€) of objects and for any two
objects X,Y a set Hom¢(X,Y) whose elements are called morphisms. Furthermore, for any
three objects X, Y, Z there is an associative (i.e. ho (go f) = (ho g) o f) composition rule

Homg(X,Y) x Home(Y,Z) — Home(X, Z)
(f:9) —golf.

Finally, attached to every object X there is a distinguished element idx € Homge(X, X) such
thatidy og =gand foidx = f,forany f € Home(X,Y) and g € Home(Y, X).

Example A.2 The category Sets (objects are sets, morphisms are maps). The category Top
(objects are topological spaces, morphisms are continuous maps). The category Groups (resp.
Rings) (objects are groups (resp. rings), morphisms are homomorphisms). For any ring R, the
category Modp of R-modules (see definition[1.2.2).

Example A.3 If ¢ is a category, the opposite category €°P is obtained from € by “reversing the
arrows” i.e Ob(€°P) = Ob(€) and Homgor (X,Y) = Home(Y, X) for any two objects X, Y.

Definition A.4 If € and © are categories, a functor F' : € — © is the datum of an object (resp.
morphism) F(X) in © (resp. F(f) € Homgp(F(X), F(Y)) for every object X in € (resp. every
[ € Home(X,Y)) such that F(go f) = F(g) o F(f) and F(idx) = idp(x)-

A functor F' : € — ® is called faithful (resp. full, resp. fully faithful) if the map

Homg(X,Y) — Homgp(F(X),F(Y))
fo—F(f)

is injective (resp. surjective, resp. bijective) for al pair of objects X,Y in €.

Example A.5 The forgetful functor Top — Sets sends a topological space to its underlying
set. Similarly, there are forgetful functors Rings — Groups — Sets. Forgetful functors are
faithful.

Example A.6 Any object T of a category € defines a functor hy : € — Sets defined by hp(X) =
Home(T, X) for any object X in &; if f : X — Y is a morphism in € then

hr(f): Home(T,X) — Home(T,Y).

(A.1) g — fog
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Viewing 7" as an object in €°P, it also defines a contravariant functor Home¢(—,T) : € — Sets.

Example A.7 If R is a ring, any R-module M defines functors Hompg (M, —) : Modr — Modpgr
and Hompg(—, M) : Mod}} — Modp: see example

Example A.8 Any ring homomorphism ¢ : R — A defines a functor ¢, : Mods — Modpg
where ¢, (M) is M seen as an R-module: see example The tensor product N — A ®r N
defines a functor Modgr — Mody4.

Example A.9 Let R be aring and Freep, be the category whose objects are free R-modules, with
linear maps as morphisms. The inclusion functor Freep — Modp, is a fully faithful functor. If
I C Risanideal, the rule M +— (R/I) ®r M is a full functor Freer — Freep;.

Example A.10 Proposition tells us that Spec : Rings®® — Top is a functor. It is not
faithful: the complex conjugation o : C — C is a ring homomorphism, ¢ # id yet obviously
of = id* since SpecC is just a point. The functor Spec is not full: if p is a prime number,
from proposition we easily see that 7 : Z/p*Z — Z/pZ induces an homeomorphism
7t . Spec Z/pZ — Spec Z/p*Z. But (7*)~! : SpecZ/p*Z — SpecZ/pZ is not induced by some
Z/pZ — 7./p*Z, as there are no such maps which are ring homomorphism.

Definition A.11 Let £ : € — © and F': € — D be two functors. A natural transformation or
morphism 7 : E — F is the datum of a morphism 7y : E(X) — F(X) in ® for every object X
in ¢, such that for every morphism f : X — Y in € there is a commutative diagram in ©

(A.2) E(f)l lF(f)
EY) 2= F(Y).

7 is called a natural isomorphism (written 7 : £/ = F) if 7x is an isomorphism for all X in €.

Definition A.12 A functor F' : € — © is an equivalence of categories if there exists a functor
E :® — ¢ and natural isomorphisms E o F' = idg and F' o E = idyp.

Notice that an equivalence is necessarily a fully faithful functor. An interesting example of
an equivalence is given in theorem 2.2.13

Proposition A.13 Let F' : € — Sets be a functor and T an object in €. There is a canonical bijection
between F(T') and the set of all natural transformations T : hy — F sending u € F(T) to the
“evaluation” morphism t, whose value at an object X of € is

Tux : Home(T,X) — F(X).

(A-3) fo— F(f)u)

The inverse map takes a natural transformation T : hp — F to the element u, = 7r(idr) € F(T).
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Proof. F being a functor, 7, is a natural transformation: diagram (A.2)) boils down to the condi-
tion F'(g) o F(f) = F(go f). Let’s check the composition of the two maps. For v € F(T),

Ur, = TU7T(’L'dT) = F(ZdT)(U) = idF(T) (U) = .

Conversely, if o : hy — F is a natural transformation, for any morphism f : ' — X in €, then

Tue, x (f) = F(f) (or(idr))

= 0Xx (hT(f)(ZdT)) by A2
= UX(f o idT) by A.1
=ox(f).
Hence 7,, = 0. Therefore the maps u — 7, and 7 — u, are inverse to each other. O

Applying the proposition to the functor F' = hy/, we get

Corollary A.14 For any two objects T,T" in &, the map u — 7, is a canonical bijection between
Homg(T',T) and the set of all natural transformations T : hp — hyp,. Moreover u : T — T is an
isomorphism in € if and only if 7, : hy — hqv is a natural isomorphism.

Proof. Only the second claim needs to be justified. If u : 77 — T is an isomorphism then for
every object X of €and f : T'— X, we have 7, x(f) = hr(f)(u) = fou, so

Tux : Home(T,X) — Home(T', X).

(A4) ’
f — fou

is a bijection (with inverse g — g o u™!). Conversely, suppose 7 : hr — hg is a natural

isomorphism and let u, = 77(idr) € Home(T',T). From proposition we know that

T = Ty,, hence for every X the map (A.4), with u = u,, is bijective: taking X = T”, there exists

v : T — T’ such that v o u, = id.. Consider the associated transformation 7, : h7» — h7 and

Home(T',Y) 2% Home(T,Y) X Home(T',Y).
g —>gov fo— four

For all Y of €, the composition of these two maps is the identity (since v o u, = idz) and 7y is
bijective by assumption. Therefore 7, y is a bijection too: taking Y = T, we get w : ' — T" such
that wov = idy. Since w = wo (vou,) = (wowv)our = ury, we conclude that u, is invertible. [J

Definition A.15 A functor F' : € — Sets is representable if there exists an object 7" of ¢ and a
natural isomorphism 7 : hy — F.

It follows from corollary that an object T" representing a given functor F' : € — Sets is
unique up to unique isomorphism: if 7 : hy — F and 7’ : hy» — F are natural isomorphism,
the natural isomorphism (7/) ! o 7 : hy — hgv determines a unique isomorphism 77 = T in €.

Remark A.16 According to proposition a natural isomorphism 7 : hy — F'is equiva-
lent to the datum of a universal element v, € F(T). Notice that, since 7 = 7,_ is a natural
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isomorphism, for every object X of €, the map (A.3) is bijective. This translates into the fol-
lowing universal property: for every object X in € and every x € F(X), there exists a unique
morphism £ : ' — X in € such that

(A.5) F(§)(ur) = .

The universal property implies that ., is unique up to unique isomorphism. Viceversa, again
by proposition the pair (7, u,) determines the natural isomorphism 7 : hy — F. We then
say that (7, u,) represents F.

Example A.17 If R is a ring and M, N are R-modules, Bilgr(M x N,—) : Modr — Modp is
represented by the tensor product M ®r N: see theorem[1.2.61] The universal element is the
bilinear map b: M x N — M ®g N given by b(z,y) =z ® y.

Example A.18 If R is a ring and A an R-algebra, the functor Derr(A, —) : Mods — Mod4 is
represented by the module of differentials (Q /r>da/R): see propositionm

The language of representable functors is widely used in Algebraic Geometry. It allows to
transport to arbitrary categories (e.g. varieties, or schemes) familiar notions from set (group,
ring,...) theory.

Example A.19 An inverse system in a category € is a collection {(Xj, ¢; j)}icr of objects of
¢ indexed by a directed set and morphisms ¢; ; : X; — X; for every ¢ < j in I such that
©ij ok = @i forevery i < j < k. For any object Y of ¢, this gives rise to an inverse system
of sets {(Home (Y, X;), ¢i j) bicr, where ¢; ;(f) = @i o f. Inverse limits in Sets are defined as
in definition [3.6.24] Then we say that the inverse limit exists in ¢ if the functor

&P — Sets
Y — lgnHomg(Y,Xz)

is representable, and we call the representing object lim X;.
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Solutions to selected exercises

§1 ChapterI

Exercise[1.7] Let a = (J{2, a;. Itis an ideal, by the argument used in the proof of corollary[1.1.51]
Let x € a be a generator. By construction, = € a, for some n € N. For any m > n, let x,, be
a generator of a,,. On the one hand z|z,,, because = € a,, C a,,; on the other z,,|z, because
a,, C a. Therefore z and z,,, are associates, and a = a,,, for all m > n.

. a 0 a O a 0\ (a O 1 d
Exerc1se a) We transform (0 ) ~s (ar d) ~ (ar—i—ds d> = (1 d) ~ (a 0) ~s
1 d — 1 d - 1 0
0 —ad 0 ad 0 ad)’

b) We compute det (f ya) = L(—ar —cy) = —1.

€1

€1 €1

bx + d bx +d
¢) Multiplying we get 514 = (f _ya> (CCL Z) = (a:vg—cy %c%—ady) = (601 fj—ady)

e1 el €1 €1

d) Applying step c) to (S1A)" we find T4 € GL2(R) such that T}(S1A4)! = <602 :), with ey =

ged(er, bx + dy). Its transpose S; AT» has thus the desired shape.
€1 b1
0 dy

er e 1 —m — (@ 0 and we are done. Otherwise, take e; = ged(eq, by) (notice
0 dq 0 1 0 d;

e)+f) Starting from A, from c) we get S; € GLy(R) such that S1A = < ) .If by = eymy, then

=

1 0 < e 0\ [(e2 O
—19 1 €219 dg o 0 d2
(hence (e1) € (e2) € (e3)) and repeat step c). Iterating, either the process terminates and we get
that SAT is of the desired form for suitable S,T" € GLy(R) or we produce an infinite increasing
sequence (e1) C -+ C (en) S (éns1) S - ... But the latter option is impossible by exercise[1.7}

=

that (e;) € (e2)) and as in d) find T, € GLa(R) such that S1 ATy = <62 0 ) If co = eamy

c2 da

then ) and we are done. Otherwise, take e3 = ged(eg, ¢2)
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g) First apply f) to transform A into the diagonal matrix with entries ¢, g. Set h = ged(e, g) and
write h = er 4 gs. We conclude by a variation on the process in a):

e 0 e 0 e 0 e 0 h g h g h O
~ ~ = ~ s ~ .
0 g er g er+gs g h g e 0 0 —7y9 0 —79
6 12 24)

11 —-14/\66 12 108

h) From 6 = gcd(84,66) and 6 = 84-4—66-5 we get(4 _5> (84 18 141) = (0 30 39

1 -2 4
6 12 24 6 0 O .
Moreover (0 20 39> 8 (1) (1) = (0 30 39>. Now 3= —-6-6+39s0,asin g),

6 0 0 6 0 O 6 0 O 3 30 39 3 30 39
> ~ ~y ~y .
0 30 39 —-36 30 39 3 30 39 6 0 0 0 —60 -—78

1 -10 -13
Now we do step d) again: (3 5039 > 0 1 0 = (3 0 0 > We clean

0 —60 -—78 0 0 1 0 —60 -—78
up the last row by repeating the step in d): gcd(60,78) = 6and 6 =4 -60 — 3 - 78, so
(3 0 0) (1)_04 103 _(300)
0 —-60 -—78 0 3 —10 0 6 0
i) Permuting rows and columns of A, we may assume that a; ; # 0. We generalise steps c) and
d): lete; = ged(ai,1,a2,1,...,am,1) and write e; = a1,12 + a2 1y. Then it is easy to check that
T Y 0 0
a a:
Si=|""% 0 1 0] € GLn(R)
—fml 00 1

€1

and that S; A has the desired shape.

j) As in e), applying step i) to (S1A)" we find 7> € GL,(R) such that S; AT has the desired
shape.

k)+1) The proof in f)+g) carries over verbatim to establish k). We conclude by induction.

Exercise If 1 : R[X1,...,X,] — Ay and w2 : R[Y1,...,Y,] — Ag are two presentations,
define 7 : R[X1,...,Xpn, Y1,..., Y] = A1 X Ap by 7(X;) = (m1(X;),0) and 7(Y;) = (0, m2(Y3)).

Exercise The ideals m; are maximal because A/m; = k[X]/g; is a field. Letn C A be
a maximal ideal. Necessarily mA C n, since otherwise n + mA = A and, A being a finitely
generated R-module, Nakayama’s lemma would imply n = A. Then n/mA is a prime ideal in
A/mA = k[X]/f, and these are precisely the ideals generated by the g;’s. Thus n contains one
of the m;’s, and they are equal by maximality.
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Exercise Tensoring the exact sequence
0 —— INnJ R R/I®R/J —— 0

by the flat R-algebra A gives rise to the exact sequence
0 —— p(INJ)A A AlpI)® A/p(J) —— 0

from which the concluson is immediate.

Exercise It is elementary to check that g — [m — g(m®1)]is a B-linear map. If g(m®1) =
0 for allm € M then g(m ® b) = bg(m ® 1) = 0 for allb € B and m € M, hence g = 0, so the
map is injective. To an A-linear f : M — N we may associate the map

h:MxB — N
(m,b) — bf(m)

which is immediately seen to be A-bilinear, whence a B-linear g : M ® 4 B — N by the universal
property. By construction, g(m ® 1) = f(m), so the map Homp(M @4 B,N) — Homs(M,N)
is surjective.

Exercise Since the projections m; : Ry x Ry — R; are ring homomorphisms, we have the
natural continuous map h : Spec R; [[ Spec Ry — Spec (R; x Ry) whose restriction to Spec R;
is 77?. Explicitely, if p; C R; is a prime ideal, then h(p;) = p1 X Rz and h(p2) = Ry X p2. The map
h is clearly injective. To prove surjectivity, consider the elements e; = (1,0) and ez = (0, 1):
they are orthogonal idempotents:

2
e; = e;; eres = 0; e1 + ey =1.

Let ¢ C R be a prime ideal. If e; ¢ q then ex € q because eje; = 0 € q. On the other hand,
if e; € qthen ex ¢ q because otherwise 1 = e + e3 € q and we assume q # R; x Re. Thus
precisely one of these two elements belongs to q. Say e € q and let

p=mi(q) ={r € Ri|Fy € R, (x,9) €q}.

This is clearly an ideal in R;. Even better, it is a prime ideal: if z,2’ € R; are such that there
exists z € Ry with (xz2/,z) € q then, because (za2/,2) = (x,1)(2,2) € q, either (z,1) € q or
(«',z) € q, so either z or 2’ is in p.

I claim q = h(p) = W?(p) = 77 (m1(q)). Trivially ¢ € n; ' (m1(q)). If = € p, take y € Ry such
that (z,y) € q. For any t € Ry, we have (0,t) = (1,t)ez € qbecause ez € q. So for every u € Ry
we have (z,u) = (z,y) + (0,u —y) € qforall z € p and all u € Ry. This means precisely that

w1 (m(a)) € a.

Exercise The closure Z; = U N Z is a closed subset of Z. Let T' = X — U, a closed subset
of X, and put Zo =T'N Z, also closed. Then Z = Z; U Z3 and by irreducibility either Z = Z; or
Z = Zy. But Z contains at least one point z € U N Z C Z; such that x ¢ Z,. Therefore Z = Z;
as contended.

Any closed subset of Spec R can be expressed as Z = Z(I) with I = N,z p. Suppose f,g € R\I
but fg e I. ThenZ C Z(f)and Z C Z(g)but Z C Z(f)UZ(g9) = Z(fg). Whence an expression
of Z=(ZnNZ(f))U(ZnN Z(g)) as the union of two proper closed subsets, a contradiction.



140 Solutions to selected exercises

Conversely, let p be a prime. If Z(p) = Z(I)UZ(J) = Z(IJ), then I.J C p. Since p is prime, this
implies either I C por J C p.

Exercise The closure of the image of ¢* is

Imef = Z(I) with I= (] o Ha)=¢ '( [] a)=¢ " (MNa).
qESpec A qE€Spec A

Hence Tm o# = Spec R = Z(Mp) implies ker ¢ = ¢~ 1(0) C ¢~ (MNa) C Ng.

Conversely, suppose ker ¢ C MMg. For z € R, to say p(x) € M4 means p(z)" = ¢(z") = 0
for some n > 1. Hence 2" € kerp C Mg, thus x € Ni. Therefore ¢! (914) C Ng, hence
Spec R = Z(My) C Im ¢# C Spec R.

Exercise We leave to the reader to check that the map f — f o7 is A-linear. It is injective
because 7 is surjective: if f(7(z)) = 0 for all z € J, necessarily for all z = () € J/J? we have
f(z)=0,s0 f =0.1fg: J — N is A-linear, for z,y € J we have g(zy) = zg(y) = 0 because
N is an A/J-module. It follows immediately that .J? C ker g, hence g factors through .J/.J? and
thus Homp(J/J? N) — Hom(J, N) is surjective.

§ 2 Chapter II

Exercise Tosay 15 1f(2) = ! (ST) = 0 for every 7 € S~'M means that there existsau € S
such that uf(m) = 0 for every m € M, i.e. that (f,s) ~ (0, s). Hence ¥ is injective.
Let myq,...,m, be generators for M. Il A : S™'M — SN is an S™!R-linear map, consider
M) = Z—; and take s = s;---s,. For every m € M, writing m = zymy + --- + x,m, with
x; € R we see that
,

m i ' S Ny . —1
Hence, composing the natural map M — S~'M with s\ defines an R-linear map f : M — N
such that A = %S ~1f. Therefore 9 is surjective.

Exercise If f,g € S,ie. f,g ¢ p; for all i, then fg ¢ p; for all i because the p; are prime.
Therefore S is multiplicative.

a) Straightforward from the definitions. Notice that Ag-1,, = Ry,. b) Any f € R is a polyno-
mial, hence involves only finitely many variables.

¢) By proposition it suffices to check that Spec ¢ : [[2; Spec R,, — Spec A is surjective.
Since Ris adomain, A — Ag-1, = Ry, is injective and the inverse image of the zero ideal is the
zero ideal. By proposition the prime ideals of A are in bijection with the primes q C R
suchthat qN (R — U2, pi) = @ie q C U2 pi. If 0 # q C U2, py, it follows from c) that q is
contained in only finitely many of the p;. By lemma we conclude that q C p; for some i.
By proposition[2.1.10]again, q is in the image of Spec R,, — Spec A.

d) Taking 0 # y € I, we have that ¥ € IAg-1,, is a unitin Ag-1,, for almost all i.

e) Consider the exact sequence 0 — J — I — I/J — 0 and tensor it by [[{2; Ry,: since ¢ is
tully faithful, it suffices to show that the inclusion JAg-1,, C IAg-1,, is an equality for all i.
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For i > n, we have JAg-1,, = [Ag-1,, = Ag-1,,, because ¥ is a unit. For i < n, the subideal

1
JAg-1,, contains the generators %11 ey % of [ Ag-1,,, and thus they coincide.
7 s 17701. K3

s

§ 3 Chapter III

Exercise a) The roots of f (in a splitting field) are integral over R, hence so are the roots of
g and h. The coefficients of g and h are algebraic expressions in the roots, so they are integral
over R. They are also in K hence, since R is integrally closed, in R.

b) Let f = g - h a factorisation in K[X], and therefore in R[X] by a), with g and h monic. Let f,
g and h be the reduction of these polynomials in R/p[X]. Since f is Eisenstein, f = X™. Hence
g=X"and h = X™ ™, for some 0 < m < n. Therefore

G=X" by 1 X" b 01 X +by; h=X"""4Cp 1 X"+ X+ bi,c; € p.
If m > 0, one gets ag = boco € p?, a contradiction.

Exercise R = k[X] is a PID, hence an integrally closed domain. The polynomial Y? +
X? —1 € R[Y] is Eisenstein with respect to p = (X — 1). By exerciseit is irreducible, hence
A=k[X,)Y]/(X2+Y?%2—-1)=R[Y]/(Y?+ X%~ 1) is a domain. Let K = k(X) = Frac R and
L = K[Y]/(Y? + X? — 1) = Frac A. We’ll show that A is the integral closure of R in L. Write
y for the image of Y in Aand let z = f + yg € L = K ® yK be integral over R. Clearly z is a
solution to the integral equation

72— 2fZ + (f*+ (X? - 1)g*) = 0.

Thus —2f € R, hence f € R and (X2 — 1)g? € R, therefore X + 1 divides ¢g2. Since X + 1 is
irreducible, it must divide g. Therefore g € R and z € A.

If the characteristic of k is 2, then (X? + Y2 —1) = (X +Y — 1)2. Writing 7T = X + Y — 1, we
get A = R[T]/T?, which is not even a domain.

Exercise R[X] is a free R-module, so ¢ is flat and therefore has the Going Down property
(corollary 3.2.12).

Clearly q; N k[X] = 0 = py, since XY — 11is of degree 1 in Y and no nonzero multiple can have
degree 0. Any ideal containing q; and lying over p» must contain the polynomials XY — 1 and
X, is thus the whole ring because it contains (—1)(XY — 1) + Y (X) = 1. So the Going Down
property does not hold.

Exercise If v € K* eitherz € ANK = Rorz~! € ANK = R. Hence R is a valuation ring.
Ifr € KXisalsoin A* thenz~! € ANK = Rsoz € R*. Hence K*/R* injects into L* /AX ~ 7,
and is thus cyclic of infinite order, so isomorphic to Z.

Exercise Clearly L ~ K[T|/(T? — f) so [L : K] < 2. Clearly, if f is not algebraic over K,
then f2¢ Kso[L: K] > 1.

It follows from exercise [3.4| that R and A as valuation subrings of the discrete valuation ring
k[[X]] are discrete valuation rings.



142 Solutions to selected exercises

Forany A = ¢ + ¢ f € L, with ¢, € K, we have \? = ¢? + ? f? (since the characteristic is 2),
thus A2 € K. If moreover A € 4, then A\ € AN K = R, so A is integral over R. It is integrally
closed, so it must be the integral closure of R in L.

Suppose that A is generated by y1, ..., y, as an R-module and let y; = g; + h; f, with g;, h; € K.
So gi, h; are Laurent power series in X and thus X™ig;, X" h; € k[[X]] for suitable n;, m; € N.
Therefore, taking m = max{n;,m;, 1 < i,j < r} (this is where we use that A is a finitely
generated R-module), we get X™y; € k[[X]]N K = Rfori =1,...,r, hence for any element
a=py1+---+pryr € Awehave X™a =51, pi X"y; € R+ Rf.

Letp = 37y, X" € k[X]. Theng = X ™ 1(f —p) € K(X)(f) = L. Since g € k[[X]] by
definition, g € k[[X]] N L = A.

If [L : K] = 2, every element in L can be written uniquely as ¢ + ¢ f, with ¢, € K. By
construction, X™g = —X ~!p+ X1 f. This should be in R+ Rf but X! ¢ k[[X]],so X! ¢ R.
We have found a contradiction, so A can’t be finitely generated as an R-module.

Exercise We just have to check condition ¢’) in definition Let z,y € K and. say,
|z| < ly|. Theny = 0 implies x = 0 and |0 + 0| = |0]. If y # 0 then \§| < 1, hence

T
o+ 91 = Iyl | +1| < lyl = max{a, Iy}

Exercise a) By definition, there exists an N; € N such that |a,, — a,,| < 1 for all n,m > Njy.
Then |a,| = |an—an, +an, | < 1+]an, | foralln > Nj. Take then A = max{|ag|,. .., |an, -1, |an, |+

1}.
b) Let {a,}, {bn} € CS(K). For every ¢ > 0let N. € Nsuch that |a,, — ap,| < eand |b, —by,| < e
for all n,m > N.. Then

|an, + b — am — by| < an — am| + [bp — bin| < e Vn,mzN%;

|anbn — ambm| = |anby — ambn + amby — @by, < |an — ap|B + |by —bp|A <e Vn,m > ]\726W

where |a,| < A, |b,| < Bforalln € Nand M = max{A, B}.

c) It follows easily from b) that C'S(K) is a ring, with unit the constant sequence {1,1,...}.
On CS(K) we define a relation {a, } ~ {b,} if nlgrOlO |a, — by| = 0. This is clearly reflexive and
symmetric. Let {a,} ~ {b,} ~ {¢,}. For every ¢ > 0let N. € N such that |a, — b,| < € and
|by, — cn| < € forall n > N.. Then

lan, — cn| = |an —bn + b — cn| <lap —bp| + |bn —cn| < e Vn,m = Ne
so ~ is also transitive. Therefore the subset V.S(K) of null sequences {a,} € C'S(K) such that
Jim |an| = 01s an ideal.
d) Let {a,} € CS(K) — NS(K): there exists € > 0 such that for all N € N there existsann > N

with |a,| > €. For this choice of ¢, fix N e such that |a,, — a,,| < § foralln,m > N B and select
m > N such that |a;,| > €. Then for all n > N: we have

13
e < |am| = |am — an + an| < |an — am| + |an| < 5T |an|

hence |a,| > § > 0.
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e) With notation as in d), define two sequences {u,,} and {v, } by setting

an if |ay| >
Up, = ‘
if |a,| <

: Uy = —.
Unp

INI[UNNSIT)

£
2

The sequence {u, } is Cauchy, because it coincides with {a, } at least for n > N<. Moreover for
every 0 > 0 we have

_ fun — um|
[on = V| = —F———

4
< < lup —upm| <6
|t U | g2

for all n,m > N;.2. Thus {v,} € CS(K), hence {u,} is a unit. By construction, the sequence
4

{an} —{un} € NS(K).

f) It follows from d) and e) that for any {a,} € CS(K) — NS(K) we have ({a,}, NS(K)) =

CS(K). Therefore NS(K) is a maximal ideal in C'S(K).

Exercise By definition, (..., zy,...) € lgn a”/b" means x, = Tp41 = - = Tyt Mmod b"
for all m. Taking m = (e — 1)n we get x,, = x., = 0 because z.,, € a®* C b".

Exercise[3.12] Let 7 € R such thatv(r) = 1. If m = min{v(a;) | = 0,...,n}, then 7 ™F € R[X]
and at least one of its coefficients is a unit. Let r < n be the largest integer such that v(a;) = 0.
If r <nandwv(ag) >0,letg =3y +---+a@X"and h = 1. Then F(X) = gh mod m. Applying
Hensel’s lemma, we get that F is reducible, which is a contradiction.

Exercise By exercise it suffices to show that for any = € L such that [Ny g (z)| < 1
then [Ny x(z+1)] < 1. Let F(X) = ag + - - - + an—1 X" ' + X" be the minimal polynomial of =

over K. Then Ny /i (r) = ia(@ s0 |ag| < 1. The minimal polynomial of z 4+ 1is F(X — 1), so

Ny (@ +1) = (F(=1)FR = + (a9 — ar + -+ + (1) ap_y + (~1)7) EX

and |ag—ay+- -+ (=1)""Lta,_1 + (—1)"| < max{|a;]i = 0,...,n} = max{|ag|, 1} = 1 where for

the one but last equality we have used exercise This method in fact suffices to prove that
1

|Np/ i (—)| %] defines an absolute value on a finite extension of any complete field with respect

to a non-archimedean absolute value, not only a discrete one. The only missing ingredient is a

suitable generalisation of Hensel’s lemma. For a proof, see B. Dwork, G. Gerotto and F. Sullivan,

An introduction to G-functions, Annals of Mathematics Studies No. 133, Princeton University
Press, 1994, theorem 5.1.

§ 4 Chapter IV

Exercise Let Z = Spec R — U. It is a closed subset, so Z = Z(I) for a suitable ideal I C R.
Since R is noetherian, I = (f1,..., fm) is finitely generated. Thus U = Spec R — (N2, Z(fi)) =
UiZ1 (Spec R — Z(fi)).

Exercise Since R is noetherian, any chain in ¥ is stationary. By Zorn’s Lemma, X has
maximal elements. Let I be such a maximal element and suppose I # R. Since I can’t be
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written as the intersection of finitely many prime ideals, it is not prime itself: pick z,y € R,
x,y ¢ Iwithzy € I. If I + (x) = R, there wouldbe a z € I and a € R such that 1 = z + axz.
Theny = 1.y = zy + axy € I, which is a contradiction. Therefore I + () and I + (y) are
proper ideals strictly bigger than I. Hence /I + (z) and /I + (y) are proper radical ideals
strictly bigger than I and thus not in X: we can write them as intersection of finitely many
prime ideals.

Clearly I C \/I+(x)ﬂ\/l+(y) CpiN---Np, N1 N---Ngs. ft€prN---Np.NgLN---Nygs
thent" € I 4+ (x) and t™ € I + (y) for suitable n, m € N. Therefore

" e (I+(2) (I +(y) S+ (zy) = 1.

Since [ is radical, this implies ¢t € I. We conclude that I =p; N ---Np, Ngy N---Nqs which is
a contradiction.

Suppose J = p1N---Np, = q1N---Nqs. Fixj € {1,...,s}. Thenpy ---p, CpiN---Np, = J C qj.
Since q; is prime, it contains at least one of the p;, hence r < s. Symmetrically, every p; contains
one of the q;, thus r = s and from the assumption p; ¢ p; and q; € q; for i # j we conclude
also that the decomposition is unique.

§ 5 Chapter V

Exercise[5.1|Without loss of generality, we may assume v(a;) = mini<;<, v(a;) and, multiplying
by afl, that a; = 1. If v(a;) > Ofori > 2, then 1+ (ag + -+ a,) € 1 +q C A*, while we
asumed 1+ ag + - - - + a, = 0. Thus v(a;) = v(a1) for some ¢ > 2.

Exercise If z € L satisfies an equation z? — ap = 0 with a¢ € R, it is integral over R, hence
x € A. Conversely, for every x € A we have 29 € AN K: since R is integrally closed, 27 € R.

If x € gthen 27 € gN K = p. Conversely, if z¢ € p C R, then z € A by what we have just seen.
Moreover 27 € p C q implies = € q, because q is prime.

It follows from b) that the map q — q N R is injective. It is surjective by proposition[3.2.4]

If 0 # a € Athen 0 # a? € R. Decomposing (a?) as a product of prime ideals in R we see that
a? is contained in finitely many of these, and they correspond to finitely many prime ideals in
A containing a.

The inclusion S™1A C A, is obvious. If g € A, with a ¢ q, then g = “qa;qlb Now a? € R and
al ¢ p, therefore a? € S.

Fix y € qAq, with y? = ur”, u € Ry and n minimal. For z € q4,, write 27 = vr™, with v € R;.
Set 2 = xzy~! € L. Then 27 = vu~ 7" € Ry, since m > n by assumption. Therefore z belongs
to the integral closure of R, which by Corollaryis S™1A = Ay Thus z = yz € yA, and
therefore qA; = yA,.

Any ideal I C A, is contained in qA,. If {z,} generate I, writing z, = u,y"* we see imme-
diately that I id generated by y" for m = min,{n.}. So A, is a local PID and thus a DVR by
proposition[5.1.1]

Let I C Aisanideal, 0 # a € I and qy, ..., g, the finitely many primes containing a. Since the
Ay, are DVRs, we know that I, = z;A,,, for a suitable x; € A;,. Replacing z; by a multiple
(by an element in A — ¢;), we may assume that z; € I. Let J = (a,z1,...,2,). We have
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J C I (because every generator of J is in I). We have x;4,, C J;, C I;, = z;Ay, hence
Jg = Iy, fori =1,...,7. On the other hand, if m C A is a maximal ideal, m ¢ {q1,...,q,}, by
assumption a ¢ m so Jy = Iy, = An. Therefore (I/J),, = 0 for every maximal ideal m C A. By
proposition[2.1.24, we conclude that I = J. Thus every ideal in A is finitely generated, hence A
is noetherian.

A is a noetherian domain and A, is a DVR for every prime: it follows from proposition [5.3.1]
that it is a Dedekind domain.

Exercise Let K’ be the largest intermediate extension K C K’ C L which is separable over
K and R’ the integral closure of R in K'. By corollary R’ is a Dedekind domain and by
corollary [3.1.14) A is the integral closure of R’ in L. We may thus assume that K C L is purely
inseparable and conclude by exercise

Exercise Let 7 be a uniformiser for p. Every element in R can be written as ¢ = un” for
some u € R* and n € N. Since 7 generates q°, we have w(m) = e and w(u) = 0 for every
u € R* C A%, hence w(t) = ne.

By corollary [3.3.15 A is a free R-module of finite rank e = [L : K] and i, : A — Ais R-linear:
in an R-basis of A the matrix of u, has coefficients in R.

Since S (A) C pA, the reduction of p, mod p is nilpotent. The characteristic polynomial of i,
is thus congruent to X mod p. Its constant term is by definition Ny, /i (z) and by Corollary
this element is a uniformiser of p. The map R[X] — A sending X to x defines an injection
A" = R[X]/(f(X)) C A. Since f(X) = X° mod p, exercise [1.12]implies that A’ is a local ring
with maximal ideal q’ = (p, z). Writing f(X) = X¢ 4+ a,—1 X! + -+ + ay, since f(z) = 0, we
have —ag = ¢ + ae_12 ' + -+ - + a1 2. Recalling that ag = Ny, (x) is a uniformiser of p, we
conclude that pA’ C (z), hence q' = (). From proposition we then get that A’ is a DVR.
But A’ C A and Frac A’ = Frac A = L, hence A’ = A.

From proposition 3.3.10|we get that D 4 is generated by

flx) =ext + (e = Dae_12°2 +--- +ay.

By a) we get that w(a;) = 0 mod e and also w(n) = 0 mod e for every integer n, since the map
Z — A factors through R. Therefore w ((e — i)a;2°"""!) = —i — 1 mod e. Since all the terms in
/' (z) have different valuations, we get

w(f'(z)) = Osrlngig_lw ((e —i)ax 1) .

-1 w(e) +e—1and w((e —i)a;x® 1) > w(a;) > eforl <i < e—1, thus

We have w (ex™ ') =
<e—1+4w(e)and w(f'(z)) = e — 1if and only if w(e) = 0.

e—1<w(f'(z))

Exercise The relation A(a) = d?A(zy,...,,) has already been established in formula
(3.3). Let then C' = (c;;) be the cofactor matrix, so ¢;; € R,. For any y € A,, we can write
y = > a;x; with a; € Ry and, since M-'=d1C,

dy—dZa@xl—dZalzd cwoﬂ Z (Zalcm) ol € Rplal.

i=1 7=0 j=0

Since A(z1,...,z,) € Ry, we see immediately that A(a)y = (dA(x1,...,2,)) dy € Rplal.
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Consider now the composite map of R-modules ¢ : A 294 — A /R]a], where the first
map is multiplication by A(a) and second is the projection and let Q = im ¢. We have just
shown that ¢, is the zero map for all p, hence (), = 0 for all maximal ideals in R. From
proposition[2.1.24 we conclude that Q = 0,i.e. ¢ = 0 and thus A(a)A C R|o].

Let pg : Ay — A, be the multiplication by d. We have established in b) that im piy C Ry[a]. If
d € pRy, then v, (A()) > 2 by a). Therefore, if A(a) ¢ p? then d ¢ pRy, hence d is a unit in Ry,
s0 14 is an isomorphim. We are done: R,[a] C A, = im pg C Rylal.

§ 6 Chapter VI

Exercise Let {p;}; be all the minimal primes of R and put Z; = Z(p;). By exercise a,
the Z; are irreducible subsets and, since every prime contains a minimal prime, Spec R = J; Z;.
If Z(p;) € Z(p;), then p; O p; and by minimality p; = p;.

Exercise In view of exercise[2.2p), from corollary [6.1.29 we have dim Ag-1,, = dim Ry, = i.
Hence dim A = 4o00. A is noetherian, since, by exercise 2.2¢), every ideal is finitely generated.

Exercise If S is constructible, for any irreducible closed subset T' C Spec R, expressing S as
a union of locally closed subsets and intersecting with 7" we may write SNT = (Ji(U; N Z;)
with the U; open and the Z; closed. Without loss of generality, we may assume that the Z;
are irreducible and that U; N Z; # @. Then the closure U; N Z; equals Z; by exercise a,
hence SNT = |Jj_; Z;. Therefore if S NT is dense in 7" then | J;_; Z; = SNT = T. Since T is
irreducible, T = Z; for some i. Then U; N Z; is an open subset of T' = Z; contained in S.

Clearly Z; NS C Z;. On the other hand, if W is a closed subset containing Z; N S, then
W UZyU--- U Z, is a closed subset containing S, therefore (WU Z,U---UZ,) D S D 73
and thus Z; = (WUZQU---UZT)HZl = (WﬂZl) U (ngZl)U-uU(Z,ﬂZl). Since 77 is
irreducible, either W N Z; = Z;, which means Z; C W or, for some ¢ > 2, Z; N Z1 = Z1, which
means Z; C Z;, forbidden by the definition of irreducible component. Hence Z; is contained in
every closed subset W containing Z; NS and is thus contained in Z; N S. Therefore Z; N S = Z;.
By assumption, S satisfies (x) and so a non-empty open subset Z; — Z in Z; must be contained
inSNzZ, C8S.

Clearly Z, — Z} = Z; N (Spec R — Z1), so it is locally closed. Let ' C Spec R be an irreducible
closed subset and assume that SNY NT = T. Since Y is closed and contains SNY N T, then
TCY,soSNYNT = SNT. By assumption, S satisfies (x) and so a non-empty open subset
of T'must be contained in SNT = SNY NT. Therefore S NY satisfies (%) too.

We have seen that S’ = S NY satisfies (x). Moreover its closure SNY is contained in Y
which is properly contained in S. By our working hypothesis, SNY is constructible. Therefore
S = (Z1— Z1) U (SNY) is the union of constructible subsets and thus constructible.

Exercise We have a noetherian ring R and an R-algebra of finite type ¢ : R — A. We want
to show that im f satisfies condition () of exercise Let T C Spec R be an irreducible closed
subset and assume that 7'M im ¢* is dense in 7. By exercise b, T = Z(p) for some prime
p C R. The map ¢ induces @ : R/p — A/p(p)A. As seen in the proof of Chevalley’s theorem, 7
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identifies with the restriction of ¢ to (¢*)~1(T) = (") ((Z(p)) = Z(w(p)A) = Spec A/p(p;)A.
Thus, by assumption, im %* is dense. By exercise @l we have kerp C Mg/, = 0 (as R/p is
a domain). Again we may apply corollary to conclude that im 3! = im ! N T contains a
non-empty open subset of 7. This is precisely condition (%) for im *.

Exercise[6.6] If S = Spec Ay N Z(I), the A-algebra B = (A/I); = A[X]/J, with J = (X f —1) +
T'A[X] is a finitely generated A-algebra. The points of Spec B are in bijection with the prime
ideals q C Asuch that I C qand f ¢ qi.e. with the points of S.

Let S = U~ (UiN Z;) C Spec A be a constructible subset, with the U; open and the Z; closed.
In view of exercise there is no loss of generality in assuming that U; = Spec A — Z(f;) =
Spec Ay, for a suitable f; € A. We have shown above that there exist finitely generated A-
algebras ¢; : A — B; such that im wg = U; N Z;. The A-algebra B = [[;X; B; is again of finite

type by exercise and Spec ([Ti%, B;) = [}~ Spec B; by exercise so its image in Spec A
isequal to S.

Exercise[6.7} Let S C Spec A be a constructible subset. By exercise[6.6we can find an A-algebra
of finite type ) : A — B such that S = im ¥f. Hence B is also an R-algebra of finite type and
the claim follows from theorem applied to the R-algebra B.

Exercise The polynomial pX — 1 is irreducible (it is of degree 1), so p is a prime. It is
principal, so is of height 1. Clearly p NZ = {0}, so p represents a point on Aj. Let £ € N be
a prime number. If ¢ # p then (pX — 1,/) is a maximal ideal in Z[X]: if m € Z is such that
pm = 1 mod ¢, then Z[X]/(pX — 1,¢) = F/[X]/(X —m) = F,. The closure of p intersects the
line Alng at the point X = m. On the other hand, if / = p then (—1)(pX — 1) + X(p) = 1, so
(pX — 1,p) = Z[X]: the closure of p doesn’t meet the line A . The horizontal curve Z(p) ”goes
to infinity” at p. ’

Exercise From example we know that there are two types of primes of height 1
in Z[X]. Those of the form pZ[X] for some prime number p can obviously be embedded in
the maximal ideals (p, F(X)), where F/(X) € Z[Z] is any polynomial whose reduction mod
p is irreducible. On the other hand we have the height 1 primes generated by an irreducible
polynomial F'(X) € Z[X]. There are infinitely many prime numbers p € Z such that the reduc-
tion of F(X) mod p is not a constant polynomial; for all such primes, (F'(X)) is not coprime
with pZ[X], so (p, F(X)) C Z[X], hence (p, (X)) is contained in some maximal ideal m and
(F(X)) € (p, F(X)) C m.

If R is a DVR with uniformiser 7 then R [%] = R[X]/(nX — 1) = FracR. So (rX —1)isa
maximal ideal and is of height 1 because it is principal.
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Glossary of notations

Ann (M), annihilator[13]

Bilr(M x N, P), bilinear maps[2]|
coker f, cokernel of a linear map
Aa/p(21,. .., xy,), discriminant of a basis
04/R, discriminant ideal

@2} R codifferent

® /g, different ideal [T00]

deg(D), degree of a divisor[105]
Derg(A, M), module of derivations
dim(R), (Krull) dimension of a ring
Div(R), group of Cartier divisors
Exth(Q, N), module extension J

F,, field with g elements 4]

Frac R, fraction field of a domain
hr, representable functor
Hompg(M, N), module homomorphisms
VI, radical of an ideal

I N J, intersection of ideals[§]

I.J, product of ideals

I + J, sum of ideals|g]

ht p, height of a prime

k[e], ring of dual numbers

k((X)), Laurent power series
k(Xi,...,X,), rational functions[3§]
¢(M), length of a module

li£1 G; inverse limit

Ko(R), Grothendieck group

My module of fractions

M,, localisation at a prime ideal

M;ors torsion elements

M N Ms, intesection of submodules
M, + M>, sum of submodules

M & M, direct sum [14]

M ®g N, tensor product[22]

(M : N), index of two submodules 13|
Modp category of R-modules

Mg, nilradical 4

N4 g(z), norm of an element

Ok, integers in a number field
Pic(R), Picard group of a ring[99]

Q,, p-adic numbers

Mg, Jacobson radical[7]

R* units in a ring

R, a-adic completion

R [ﬂ , Ry ring of fractions

R, localisation at a prime ideal [37]
R[[X]] formal power series

S~1M, module of fractions

S~1R, ring of fractions

Spec R, spectrum of a ring
Trar(x), trace of an element 1]

(z), R, principal ideal

|z|, absolute value

Z(y), localisation of Z at p
Zy, p-adic integers[73]

Z(I), zero locus of an ideal[10]
Z1(R), group of Weil divisors (103
Z} .(R), invertible Weil divisors

QL s, module of differentials @




Index

Absolute value

—, equivalent

—, non-archimedean

—, p-adic

—, trivial
Algebra over a ring[12]

—, étale

—, finite

—, flat

—, of finite presentation[I5]

—, of finite type

—, smooth

—, unramified
Amitsur’s complex
Annihilator [13]
Arithmetic surface[126
Bilinear map
Bimodule 22]
Category [I33|

—, equivalence|134

—, opposite[I33]
Cauchy sequence
Cayley—Hamilton Theorem
Characteristic of a ring[3]
Chevalley’s Theorem
Chinese Remainder Theorem 9]
Codifferent[63]
Cokernel 13|

Completion wrt an absolute value

—, adic
Composition series
Constructible subset[128]

Cycle map
Dedekind domain [105]

Degree of a divisor on a curve[105]

—, residue

Dense subset [35]
Derivation
Descent datum [46
Different
Differentials 271

—, first fundamental sequence
—, second fundamental sequence

Dimension of a ring[119]
Direct sum [14]
Directed set[78
Discrete valuation ring
Discriminant
—, of a basis
Divisor, Cartier[101]
—, Weil
Domain /4]
—, factorial [f
—, fraction field of 38]
—, integrally closed
—, principal ideal
-, unique factorisation
Dual numbers 30
DVR
Eisenstein polynomial
Elementary divisors’ theorem32]
Exact sequence[17]
—, split
Extension of two modules[33]
—, Baer sum[34]

—, pullback

—, pushout
Extension of the scalars[22]

Field @

—, complete

—, completion
Formal power series

149
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Functor

—, additive

—, adjoint

—, exact[T9]

- —, left

- —, right

_, faithful

—, full

—, fully faithful [133]

—, representable (135
Genus of a curve[112]
Going Down property 58]

—, Theorem
Going Up Theorem
Grothendieck group [113
Height of a prime ideal [1T9]
Hensel’s Lemma [79]
Hilbert’s Basis Theorem
Hilbert’s Nullstellensatz [97]

—, weak
Ideal 2]

—, coprime|§]

—, fractional

- —, integral

- —, invertible (100

- —, principal

—, generated

—, finitely generated

—, intersection

—, maximal [6]

—, prime/5]

- —, of height 1

- —, inert[108|

- —, minimal

- —, split

—, principal

—, product

—, radical

—, sum
Ideal class group

Index of two submodules[13]
Inertia [107]
Integral closure
—, element
Integral element
Inverse limit[78

—, system[7§|
Irreducible element[5

—, subset
Isometric embedding
Jacobson radical[/]
Jordan-Holder sequences
Krull’s Hauptidealsatz[121]
Kummer’s Lemma
Laurent power series [3§]
Leibnitz rule 26
Local ring homomorphism
Localisation at a prime ideal [38} [40]
Locally closed subset[128]
Locally factorial domain [103]
Length of a module
Module

—, artinian [85]

—, direct product

—, direct sum

—, faithful

—, faithfully flat

—, finitely generated

—, finitely presented

—, flat

—, free

—, injective [20]

—, invertible

—, locally free [47]

—, noetherian

—, projective [20]

—, simple

—, torsion[13|

—, torsion-free
Nakayama’s Lemma
Nilpotent element
Nilradical
Noether’s Normalisation Lemma
Norm (for a ring extension)

—, (on a vector space)

- —, equivalent
Number field 54|
p-adic integers

—, numbers

—, valuation

Picard group
PIDH
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Place[70
Prime avoidance lemma[123|
Radical of an ideal
Ramification index[107]
Rank of a module[17]
Rational functions 3§
Riemann-Hurwitz formula[112]
Ring ]
—, artinian [85]
—, complete
—, direct product[9]
—, finite over another ring
—, integral over another ring [55]
—, integrally closed
—, japanese [87]
—, local[7]

- -, regular[129
—, noetherian

—, of integers

—, semilocal [7]
Smith normal form 31
Snake Lemma [§]
Spectrum of a ring

Splitting

Submodule[12]
—, index
—, intesection [T4]

-, sum[14]

- —, direct
Tangent space [30]
Tensor product

Torsion element[13|

Totally ramified extension[10§]
Trace

Uniformiser 05

UFD

Unit[3]

Universal element [135]

—, property [136]
Unramified extension
Valuation

—, 1ing [66]

—, discrete
Zariski topology
Zero divisor[3]

Zero locus of an ideal [10]
Zorn’s lemma
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