The Grassmannian

Let R be a ring. Recall that an R-module M is locally free if for every prime ideal $\mathfrak{p} \subset R$ the localization $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ module.

Exercise 1. Let M be an R-module. Show that M is locally free if and only if there is an open covering of $\operatorname{Spec} R$ by standard open subsets $D(f)=\operatorname{Spec} R_{f}$ such that M_{f} is a free R_{f} module.

Quick review of exterior products. If M is an R-module and r is an integer, the r-th exterior power $\bigwedge^{r} M$ of M is the quotient of the r-fold product $M \otimes_{R} \ldots \otimes_{R} M$ modulo the submodule generated by the elements $m_{1} \otimes \ldots \otimes m_{r}$ such that $m_{i}=m_{j}$ for at least two different indices.
If M is free of rank p with basis $\left\{m_{1}, \ldots, m_{p}\right\}$ then $\bigwedge^{r} M$ is also free of rank $\binom{p}{r}$ with basis $\left\{m_{i_{1}} \wedge \ldots \wedge m_{i_{r}} \mid 0 \leq i_{1}<\ldots<i_{r} \leq p\right\}$.
A map of R-modules $\varphi: M \rightarrow M^{\prime}$ induces an R-linear map $\wedge^{r} \varphi: \bigwedge^{r} M \rightarrow \bigwedge^{r} M^{\prime}$. If both modules are free with bases $\left\{m_{1}, \ldots, m_{p}\right\}$ and $\left\{m_{1}^{\prime}, \ldots, m_{q}^{\prime}\right\}$ and Φ is the matrix of φ in these bases, then the entry in the matrix of $\wedge^{r} \varphi$ corresponding to the basis elements $m_{i_{1}} \wedge \ldots \wedge m_{i_{r}}$ and $m_{j_{1}}^{\prime} \wedge \ldots \wedge m_{j_{r}}^{\prime}$ is the determinant of the submatrix of Φ corresponding to the columns i_{1}, \ldots, i_{r} and the rows j_{1}, \ldots, j_{r}.

Exercise 2. Let M be a locally free R-module of finite rank and $M^{*}=\operatorname{Hom}_{R}(M, R)$ its dual.

1. Show that the formula $\left(\varphi_{1} \wedge \ldots \wedge \varphi_{r}\right)\left(m_{1} \wedge \ldots \wedge m_{r}\right)=\operatorname{det}\left(\varphi_{i}\left(m_{j}\right)\right)$ establishes a duality between $\bigwedge^{r} M^{*}$ and $\bigwedge^{r} M$.
2. Let $\psi, \varphi_{1}, \ldots, \varphi_{r} \in M^{*}$. Show that for any $m_{1}, \ldots, m_{r+1} \in M$ we have:

$$
\begin{aligned}
& \left(\psi \wedge \varphi_{1} \wedge \ldots \wedge \varphi_{r}\right)\left(m_{1} \wedge \ldots \wedge m_{r+1}\right)= \\
& \quad \sum_{j=1}^{r+1}(-1)^{j} \psi\left(m_{j}\right)\left(\varphi_{1} \wedge \ldots \wedge \varphi_{r}\right)\left(m_{1} \wedge \ldots \wedge \hat{m}_{j} \wedge \ldots \wedge m_{r+1}\right)
\end{aligned}
$$

where \hat{m}_{j} means that the term m_{j} is omitted.

Recall that we have defined the Grassmannian as contavariant functor $S c h^{\circ} \rightarrow$ Sets as follows:

$$
\mathbb{G}_{n, r}(S)=\left\{\left(\mathcal{E} ; s_{0}, \ldots, s_{n}\right) \left\lvert\, \begin{array}{l}
\mathcal{E}=\text { locally free } \mathcal{O}_{S} \text {-module of rank } r \\
s_{0}, \ldots, s_{n} \in \Gamma(S, \mathcal{E}) \text { generating } \mathcal{E} \text { at every point }
\end{array}\right.\right\}_{/ \cong}
$$

In particular $\mathbb{G}_{n, 1}=\mathbb{P}^{n}$ is the projective space. Notice that for $S=\operatorname{Spec} R$ this boils down to:

$$
\mathbb{G}_{n, r}(R)=\left\{\left(E ; s_{0}, \ldots, s_{n}\right) \left\lvert\, \begin{array}{l}
E=\text { locally free } R \text {-module of rank } r \\
s_{0}, \ldots, s_{n} \in E \text { generating } E / \mathfrak{p} E \text { at every prime ideal } \mathfrak{p}
\end{array}\right.\right\}_{/ \cong}
$$

Finally, set $N=\binom{n+1}{r}$ and recall that we have defined the Plücker morphism

$$
\pi: \mathbb{G}_{n, r} \longrightarrow \mathbb{P}^{N-1} ; \quad\left(\mathcal{E} ; s_{0}, \ldots, s_{n}\right) \longmapsto\left(\bigwedge^{r} \mathcal{E} ;\left\{s_{i_{1}} \wedge \ldots \wedge s_{i_{r}}\right\}_{0 \leq i_{1}<\ldots<i_{r} \leq n}\right)
$$

Exercise 3. Let R be a ring, M a free R-module and $f: R^{n+1} \rightarrow M$ a surjective homomorphism. Let $\left\{e_{0}, \ldots, e_{n}\right\}$ be the standard basis of R^{n+1} and set $s_{j}=f\left(e_{j}\right)$. Let $\left\{m_{1}, \ldots, m_{r}\right\}$ be a basis for M, write the matrix of f with respect to the chosen bases and consider its maximal minors:

$$
\left(\begin{array}{cccc}
x_{1,0} & x_{1,1} & \ldots & x_{1, n} \\
\vdots & \vdots & & \vdots \\
x_{r, 0} & x_{r, 1} & \ldots & x_{r, n}
\end{array}\right) ; \quad P_{i_{1}, \ldots, i_{r}}=\operatorname{det}\left(\begin{array}{ccc}
x_{1, i_{1}} & \ldots & x_{1, i_{r}} \\
\vdots & & \vdots \\
x_{r, i_{1}} & \ldots & x_{r, i_{r}}
\end{array}\right)
$$

1. How do the $P_{i_{1}, \ldots, i_{r}}$ change if we change the basis $\left\{m_{1}, \ldots, m_{r}\right\}$?
2. Check that the image under the Plücker morphism of the point $\left(M ; s_{0} \ldots, s_{n}\right) \in \mathbb{G}_{n, r}(R)$ is the point of $\mathbb{P}^{N-1}(R)=\mathbb{P}\left(\bigwedge^{r} R^{n+1}\right)$ whose projective coordinates are the $P_{i_{1}, \ldots, i_{r}}$.
3. Fix two subsets $\left\{s_{i_{1}}, \ldots, s_{i_{r-1}}\right\}$ and $\left\{s_{j_{1}}, \ldots, s_{j_{r+1}}\right\}$. Prove the Plücker relations:

$$
\sum_{k=1}^{r+1}(-1)^{j} P_{i_{1}, \ldots, i_{r-1}, j_{k}} P_{j_{1}, \ldots, \hat{j}_{k}, \ldots, j_{r+1}}=0
$$

[Hint: use exercise 2.2]

April 19, 2010

