TEMA n.1

Esercizio 1 Dati $\alpha, \beta \in \mathbb{R}$, si consideri il seguente sistema lineare:

$$\begin{cases} x - y + \alpha z = 1 + \beta \\ 2x + (\alpha^2 + 2\alpha)z = 3 + \alpha \\ 3x + y + 5\alpha z = 7 + \beta. \end{cases}$$

- a) Determinare i valori di $\alpha, \beta \in \mathbb{R}$ per i quali il sistema omogeneo associato ammette la soluzione $(\beta, 0, 0)$.
- b) Per quali, tra i valori trovati al punto precedente, il sistema risloubile? Determinare per tali valori le soluzioni del sistema lineare.
- c) In particolare si determinino le soluzioni del sistema per $\alpha = 2$ e $\beta = 0$.

Esercizio 2 In \mathbb{R}^4 si considerino $W=\langle (1,1,1,1), (1,2,1,2), (0,1,0,0) \rangle$ e l'insieme U delle quaterne x,y,z,t tali che

$$\det \left(\begin{array}{cccc} x & y & z & t \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 3 \\ 0 & 1 & 0 & 1 \end{array} \right) = 0.$$

- a) Si verifichi che U è un sottospazio vettoriale di \mathbb{R}^4 .
- b) Si determini una base di $U \cap W$.
- c) Si determini la dimensione di U+W. La somma U+W è diretta?
- d) Se possibile si esprima (1,1,1,1) in due modi diversi come somma di un vettore di U e di uno di W.

Esercizio 3 Si considerino le condizioni

$$f_a(1,2,4) = (1,1,0); f_a(3,2,1) = (0,2,1); f_a(-1,1,4) = (2,0,a); f_a(0,3,8) = (3,1,-a^2).$$

- a) Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $f_a : \mathbb{R}^3 \to \mathbb{R}^3$ che soddisfa le condizioni date? L'applicazione è unica?
- b) Per tali valori, determinare nucleo ed immagine di f_a .
- c) Per i valori trovati, scrivere la matrice di f_a rispetto alle basi canoniche di \mathbb{R}^3 .
- d) Sia $g: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare g(x,y) = (x,x+2y,y). Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $h: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $g \circ h = f_a$?

Corso di Matematica 2

 ${
m I}^a$ prova di accertamento – Padova 4-11-06 TEMA n.2

Esercizio 1 Dati $\alpha, \beta \in \mathbb{R}$, si consideri il seguente sistema lineare:

$$\begin{cases} x + (1 - \alpha)z = 2 + \beta \\ 4x + 2y + (\alpha^2 - 4\alpha + 3)z = 4 - \alpha \\ 7x + 4y + (5 - 5\alpha)z = 6 + \beta. \end{cases}$$

- a) Determinare i valori di $\alpha, \beta \in \mathbb{R}$ per i quali il sistema omogeneo associato ammette la soluzione $(\beta, 0, 0)$.
- b) Per quali, tra i valori trovati al punto precedente, il sistema risloubile? Determinare per tali valori le soluzioni del sistema lineare.
- c) In particolare si determinino le soluzioni del sistema per $\alpha = 2$ e $\beta = 0$.

Esercizio 2 In \mathbb{R}^4 si considerino $W = \langle (1,1,1,1), (2,1,2,1), (1,0,0,1) \rangle$ e l'insieme U delle quaterne x,y,z,t tali che

$$\det \left(\begin{array}{cccc} x & y & z & t \\ 1 & 0 & 0 & -1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \end{array} \right) = 0.$$

- a) Si verifichi che U è un sottospazio vettoriale di \mathbb{R}^4 .
- b) Si determini una base di $U \cap W$.
- c) Si determini la dimensione di U+W. La somma U+W è diretta?
- d) Se possibile si esprima (1,1,1,1) in due modi diversi come somma di un vettore di U e di uno di W.

Esercizio 3 Si considerino le condizioni

$$f_a(1,3,-1) = (1,1,1); f_a(2,2,1) = (0,2,-1); f_a(4,1,4) = (2,4,a); f_a(5,4,3) = (3,5,a^2+a).$$

- a) Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $f_a : \mathbb{R}^3 \to \mathbb{R}^3$ che soddisfa le condizioni date? L'applicazione è unica?
- b) Per tali valori, determinare nucleo ed immagine di f_a .
- c) Per i valori trovati, scrivere la matrice di f_a rispetto alle basi canoniche di \mathbb{R}^3 .
- d) Sia $g: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare g(x,y) = (x,x+2y,x-y). Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $h: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $g \circ h = f_a$?

Corso di Matematica 2 a di accertamento – Padova 4-11-06

 ${
m I}^a$ prova di accertamento – Padova 4-11-06 TEMA n.3

Esercizio 1 Dati $\alpha, \beta \in \mathbb{R}$, si consideri il seguente sistema lineare:

$$\begin{cases} x - \alpha z = \beta - \alpha \\ 4x + 2y + (\alpha^2 - 2\alpha)z = \alpha^2 - 3\alpha - 1 \\ 7x + 4y - 5\alpha z = \beta - 5\alpha. \end{cases}$$

- a) Determinare i valori di $\alpha, \beta \in \mathbb{R}$ per i quali il sistema omogeneo associato ammette la soluzione $(\beta, 0, 0)$.
- b) Per quali, tra i valori trovati al punto precedente, il sistema risloubile? Determinare per tali valori le soluzioni del sistema lineare.
- c) In particolare si determinino le soluzioni del sistema per $\alpha=2$ e $\beta=0$.

Esercizio 2 In \mathbb{R}^4 si considerino $W = \langle (1,1,1,1), (1,2,1,2), (1,0,0,1) \rangle$ e l'insieme U delle quaterne x,y,z,t tali che

$$\det \left(\begin{array}{cccc} x & y & z & t \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 1 \end{array} \right) = 0.$$

- a) Si verifichi che U è un sottospazio vettoriale di \mathbb{R}^4 .
- b) Si determini una base di $U \cap W$.
- c) Si determini la dimensione di U+W. La somma U+W è diretta?
- d) Se possibile si esprima (1,1,1,1) in due modi diversi come somma di un vettore di U e di uno di W.

Esercizio 3 Si considerino le condizioni

$$f_a(1,4,2) = (1,1,0); f_a(-1,4,1) = (0,2,1); f_a(3,1,2) = (2,0,-a); f_a(4,5,4) = (3,1,-a^2).$$

- a) Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $f_a : \mathbb{R}^3 \to \mathbb{R}^3$ che soddisfa le condizioni date? L'applicazione è unica?
- b) Per tali valori, determinare nucleo ed immagine di f_a .
- c) Per i valori trovati, scrivere la matrice di f_a rispetto alle basi canoniche di \mathbb{R}^3 .
- d) Sia $g: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare g(x,y) = (x,x+2y,y). Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $h: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $g \circ h = f_a$?

Corso di Matematica 2 I^a prova di accertamento – Padova 4-11-06

I^a prova di accertamento – Padova 4-11-06 TEMA n.4

Esercizio 1 Dati $\alpha, \beta \in \mathbb{R}$, si consideri il seguente sistema lineare:

$$\begin{cases} x + y + (\alpha + 1)z = \beta + 1 \\ 2x + 4y + (\alpha^2 + 4\alpha + 3)z = \alpha \\ 3x + 7y + (5\alpha + 5)z = \beta - 1. \end{cases}$$

- a) Determinare i valori di $\alpha, \beta \in \mathbb{R}$ per i quali il sistema omogeneo associato ammette la soluzione $(\beta, 0, 0)$.
- b) Per quali, tra i valori trovati al punto precedente, il sistema risloubile? Determinare per tali valori le soluzioni del sistema lineare.
- c) In particolare si determinino le soluzioni del sistema per $\alpha = 2$ e $\beta = 0$.

Esercizio 2 In \mathbb{R}^4 si considerino $W = \langle (1,1,1,1), (2,1,1,0), (0,1,2,1) \rangle$ e l'insieme U delle quaterne x,y,z,t tali che

$$\det \begin{pmatrix} x & y & z & t \\ 1 & -1 & 1 & -1 \\ 2 & 0 & -1 & -1 \\ 1 & 0 & 0 & -1 \end{pmatrix} = 0.$$

- 1. Si verifichi che U è un sottospazio vettoriale di \mathbb{R}^4 .
- 2. Si determini una base di $U \cap W$.
- 3. Si determini la dimensione di U+W. La somma U+W è diretta?
- 4. Se possibile si esprima (1,1,1,1) in due modi diversi come somma di un vettore di U e di uno di W.

Esercizio 3 Si considerino le condizioni

$$f_a(1,-1,3) = (1,1,1); f_a(4,4,1) = (0,2,-1); f_a(2,1,2) = (2,6,a); f_a(3,0,5) = (3,7,a^2+1).$$

- a) Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $f_a : \mathbb{R}^3 \to \mathbb{R}^3$ che soddisfa le condizioni date? L'applicazione è unica?
- b) Per tali valori, determinare nucleo ed immagine di f_a .
- c) Per i valori trovati, scrivere la matrice di f_a rispetto alle basi canoniche di \mathbb{R}^3 .
- d) Sia $g: \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare g(x,y) = (x,x+2y,x-y). Per quali valori di $a \in \mathbb{R}$ esiste un'applicazione lineare $h: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $g \circ h = f_a$?