LAUREA IN INGEGNERIA MECCANICA o AEROSPAZIALE

Corso di Matematica 2 Tema del 26-11-2003 (tema n.1)

Esercizio 1. Si considerino le funzioni lineari f_t di \mathbb{R}^3 in se stesso definite, rispetto alla base canonica, dalle matrici $A_t = \begin{pmatrix} 1 & 1 & -t \\ 2 & t & -4 \\ t & -t & t \end{pmatrix}, t \in \mathbb{R}.$

- Esiste qualche f_t suriettiva? Per quali valori di t?
- Per t = -5 si scriva una base di $Im(f_{-5})$ e una di $ker(f_{-5})$.
- A_0 è diagonalizzabile? In caso affermativo si determini una base di \mathbb{R}^3 costituita da autovettori di A_0 .
- Esiste qualche f_t per cui $(3, -1, 0) \in ker(f_t)$? Per quali valori di t?

Esercizio 2. Nello spazio euclideo di dimensione 3:

- 1. determinare la retta s del piano $\pi: x-y+z=0$ passante per O(0,0,0) e ortogonale alla retta $r: \left\{ \begin{array}{ll} x &=& -1+2a \\ y &=& 1 \\ z &=& 2+a. \end{array} \right.$
- 2. Esiste una retta t del piano π passante per il punto P(-1,1,2) parallela a r?
- 3. Quali sono i piani che passano per r ed hanno distanza 1 da O(0,0,0)?
- 4. Si studi la posizione reciproca delle rette r e s e si calcoli lo loro distanza.
- 5. Qual è la retta proiezione ortogonale di r su π ?

Esercizio 3. Si considerino i seguenti sottospazi vettoriali di \mathbb{R}^3 :

$$U_1 = \{(x, y, z) \mid x + y + z = 0, x + 2y = 0\}, U_2 = \langle (1, 0, 1) \rangle.$$

- 1. Trovare una base e la dimensione di U_1 .
- 2. Determinare U_1^{\perp} e U_2^{\perp}
- 3. Dopo aver determinato una base di $U_1 + U_2$ si verifichi che vale l'uguaglianza

$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}.$$

Dopo aver risposto alle domande precedenti giutificare la verità o la falsità delle seguenti affermazioni:

1

- 1. Sia $f:\mathbb{R}^n \to \mathbb{R}^n$ un endomorfismo. Allora
 - se f è iniettivo, allora $f^2 (= f \circ f)$ è suriettivo;
 - \bullet se f è suriettivo f ha tra i suoi autovalori lo zero;
 - se n=3 e il polinomio caratteristico di $f \in (1-T)(T+2)(T+3)$ allora $f \in T$ invertibile.
- 2. Siano $A, B \in M_n(\mathbb{R})$, con A, B matrici simmetriche. Allora
 - AB è simmetrica;
 - 2A + 3B è simmetrica;
 - se inoltre A è invertibile, anche A^{-1} è simmetrica.