ESAME MATEMATICA 2

Docente M. Garuti 28/8/07

TEMA 1

 $\mathbf{EX.1}$. Al variare di k si considerino le matrici

$$A_k = \begin{pmatrix} 3 & 0 & 1\\ 0 & 1 & 0\\ k - 2 & 1 & 3 \end{pmatrix}$$

i) Determinare per quali valori di k la matrice A_k è diagonalizzabile. Per tutti i valori di k, ove vi siano radici multiple del polinomio caratteristico, si determino gli autospazi di A_k .

ii) Per i \overline{k} ove $A_{\overline{k}}$ non è diagonalizzabile e vi siano radici multiple del polinomio caratteristico determinare un cambiamento di base $H \in GL_3(\mathbf{R})$ tale che $H^{-1}A_{\overline{k}}H$ sia una matrice triangolare superiore.

EX.2. Sia dato in \mathbb{R}^3 lo spazio vettoriale

$$U = <(2,1,0),(0,2,1)>$$

i) Determinare la proiezione ortogonale $w_{//}$ di w = (1, 1, 1) su U.

ii) Determinare T sottospazio di \mathbf{R}^3 tale che $U \oplus T = \mathbf{R}^3$, e $T \oplus U^{\perp}$.

iii) Dell'endomorfismo di \mathbb{R}^3 dato da $v \to v_{//}, (v \in \mathbb{R}^3, v_{//} \text{ la proiezione ortogonale di } v \text{ su } U)$ determinare la matrice associata rispetto alla base canonica.

iv) Trovare tutti i vettori $v \in \mathbf{R}^3$ tali che la proiezione ortogonale di v su U coincide con la proiezione ortogonale di (1,1,1) su U.

EX.3.

i) Sia dato, al variare di $a \in \mathbf{R}$, il sistema lineare nelle variabili x_1, x_2, x_3

$$\begin{cases} x_1 + x_2 + (a-1)x_3 = a+1\\ (a+3)x_2 - 2x_3 = 2\\ x_1 + x_2 - x_3 = 1 \end{cases}$$
 Determinare al variare di a le soluzioni del relativo sistema.

ii) In $\mathcal{M}_2(\mathbf{R})$ si consideri $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. Per ogni valore di $s \in \mathbf{R}$ si trovino le matrici $X \in \mathcal{M}_2(\mathbf{R})$ tali che

$$AX = sX$$
.

EX.4. Nello spazio euclideo usuale si considerino le due rette

$$r = \begin{cases} x - y - 1 = 0 \\ y - z - 1 = 0 \end{cases} \qquad s = \begin{cases} y = -t + 1 \\ x = -3t + 1 \\ z = t \end{cases}$$

i) Determinare la loro mutua posizione.

ii)Determinare la loro distanza.

iii) Assieme ad r e s si consideri la retta $\rho = (2,2,1) + < (-2,0,2) >$. Dopo aver determinato la mutua posizione di $s \in \rho$, si determinino tutte le rette che intersecano le 3 rette: $s, \rho \in r$ (equazioni esplicite).

EX.5. Date le matrici

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad e \quad B = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

i) Stabilire se A e B sono simili.

ii) Determinare, se esiste, una matrice H tale che $B = H^{-1}AH$.

ii Esiste una tale matrice H che sia anche ortogonale?