FOGLIO DI ESERCIZI NUMERO 1

Corso di Matematica II - Ingegneria Meccanica

- 1. Considerati in \mathbf{R}^4 i sottoinsiemi $S = \{(x, y, z, w) \mid x + z = 0, 3y w = 0\}$ e $T = \{(x, y, z, w) \mid x + z = 0, y + 2w = 0\}$, verificare che S e T sono sottospazi di \mathbf{R}^4 e determinare $S \cap T$ e S + T.
- 2. Sia V lo spazio vettoriale su \mathbf{R} costituito dalle funzioni di [-1,1] in \mathbf{R} dove, per ogni $x \in [-1,1]$, per ogni $f,g \in V$ e per ogni $\alpha,\beta \in \mathbf{R}$, $(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$. Dire quali dei seguenti sottoinsiemi sono sottospazi di V:
 - $-U = \{ f \in V \mid f(0) = 0 \};$
 - $-W = \{ f \in V \mid f(-1) = -1 \};$
 - $-R = \{ f \in V \mid f(x) = 0 \text{ se } x < 0 \};$
 - $S = \{ f \in V \mid f(x) \le f(y) \text{ se } x \le y \};$
 - $T = \{ f \in V \mid f(-x) = f(x) \ \forall x \in [-1, 1] \}.$
- 3. Verificare che il sottoinsieme $S = \{(x, y, z, w) \in \mathbf{R}^4 \mid x + 3y = 0, z + w = 0\}$ è un sottospazio vettoriale di \mathbf{R}^4 ; verificare inoltre se la somma del sottospazio S e del sottospazio T generato dai vettori (1, 0, 1, 0) e (0, 0, 0, 1) è diretta ed uguale a \mathbf{R}^4 .
- 4. Verificare che il sottoinsieme $W = \{(x, y, z) \mid 2x + y z = 0\}$ dello spazio vettoriale \mathbf{R}^3 è un sottospazio. Determinare la dimensione ed una base di W; determinare inoltre un sottospazio W' di \mathbf{R}^3 tale che $W \cap W' = \{(0, 0, 0)\}$ e $W + W' = \mathbf{R}^3$.
- 5. Determinare i valori di k per cui i tre vettori (1, 2, 0), (2, -1, k), (1, k, -2) formano una base di \mathbb{R}^3 .
- 6. Determinare una base del sottospazio di \mathbf{R}^3 $S = \{(x, y, z) \in \mathbf{R}^3 \mid x + y = z, 2x = y\}$. Estendere una base di S per ottenere una base di \mathbf{R}^3 .
- 7. Sia f l'endomorfismo di ${f R}^4$ definito nel modo seguente:

$$f(x, y, z, w) = (w, x + y, x + z, w).$$

Determinare un sottospazio T di \mathbb{R}^4 tale che $\mathbb{R}^4 = T \oplus Kerf$.

- 8. Sia $f: \mathbf{R}^4 \longrightarrow \mathbf{R}^3$ l'applicazione definita ponendo, per ogni $(x, y, z, w) \in \mathbf{R}^4$, f(x, y, z, w) = (x + z, 3z w, y); verificare che f è lineare e determinare Kerf, Imf e le loro dimensioni.
- 9. Esiste una applicazione lineare $\varphi: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ tale che $\varphi(0,1) = (2,4)$, $\varphi(1,1) = (1,5)$? È unica? In caso di risposta affermativa determinare nucleo e immagine di φ .
- 10. Verificare che l'applicazione $f: \mathbf{R}^4 \longrightarrow \mathbf{R}^3$ tale che

$$f(x, y, z, w) = (x + w, w - z, 2x + 2z)$$

è lineare. Determinare Kerf, Imf ed una base per ciascuno di tali sottospazi. Sia poi S il sottospazio di \mathbf{R}^3 generato dai vettori $v_1 = (0, 1, -2)$ e $v_2 = (1, 0, 2)$; determinare $f^{-1}(S)$.

11. Sia data la matrice

$$A = \begin{pmatrix} 10 & 11 & -4 \\ 15 & 14 & -5 \end{pmatrix}.$$

Determinare il nucleo e l'immagine dell'applicazione lineare $f: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ associata, rispetto alle basi canoniche, alla matrice A. Determinare inoltre $f^{-1}(1,1)$.

- 12. Siano V e V' due spazi vettoriali reali, di dimensione rispettivamente due e tre, e siano $B = \{v_1, v_2\}$ una base di V e $B' = \{u_1, u_2, u_3\}$ una base di V'. Sia poi $f: V \longrightarrow V'$ l'applicazione lineare tale che $f(v_1) = u_1 2u_2 + u_3$, $f(v_2) = u_3 2u_1$. Determinare la matrice A associata ad f rispetto alle basi B e B' e determinare le componenti rispetto a B' del vettore f(v) dove $v = -\frac{1}{2}v_1 + v_2$.
- 13. Sia fl'endomorfismo di ${\bf R}^3$ associato, rispetto alla base canonica, alla matrice

$$A = \begin{pmatrix} 1 & \alpha & 1 \\ 0 & \alpha & 0 \\ 1 & 2\alpha & 1 \end{pmatrix}$$

con $\alpha \in \mathbf{R}$. Determinare Kerf, Imf e le loro dimensioni, esplicitando una base per tali sottospazi, al variare di $\alpha \in \mathbf{R}$.

14. Determinare per quali valori del parametro reale k il seguente sistema ammette infinite soluzioni:

$$\begin{cases} x - ky + z = 1 \\ x + ky - z = 0 \\ 3x - y + z = 2 \end{cases}$$

[Soluzione: k = 1.]

15. Discutere, al variare di $k \in \mathbf{R}$, la risolubilità del sistema:

$$\begin{cases} z + ky = 2 \\ x + y = -1 \\ x + z = 0 \end{cases}$$

[Soluzione: se $k \neq -1$ una sola soluzione: $(-\frac{k+2}{k+1}, \frac{1}{k+1}, \frac{k+2}{k+1})$; k = -1 nessuna soluzione.]

16. Discutere, al variare di $k \in \mathbf{R}$, la risolubilità del sistema omogeneo:

$$\begin{cases} x + (k-2)y + z = 0 \\ -kx + y - z = 0 \\ x - y + kz = 0 \end{cases}.$$

[Soluzione: se $k \neq 0$ e $k \neq 1$ soluzione nulla; se k = 0 l'insieme delle soluzioni è: <(1,1,1)>; se k = 1 l'insieme delle soluzioni è: <(1,1,0),(0,1,1)>.]

17. Risolvere, se possibile, il sistema lineare:

$$\begin{cases} 2x + y - z = 2 \\ x - y + 2z = 2 \\ 2x - 2y + 4z = 4 \end{cases}.$$

[Soluzione: $\langle (-1, 5, 3) \rangle + (\frac{4}{3}, -\frac{2}{3}, 0)$.]