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© Matrix structures in a global minimization scheme
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Global Optimisation Quasi-Newton(QN) algorithms

Global Optimisation Quasi-Newton(QN) algorithms

Given an approssimation By of V2E(wy), let us define the matrix Lg,:

I£6, = Bellr = min [ X = BellF, || - lr = Frob.norm

where £ = algebra C C"*",
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Global Optimisation Quasi-Newton(QN) algorithms

Global Optimisation Quasi-Newton(QN) algorithms

Given an approssimation By of V2E(wy), let us define the matrix Lpg,:

I£6, = Bellr = min [ X = BellF, || - lr = Frob.norm

where £ = algebra C C"*", one can define descent methods LQN

[DFLZ]:
wo € R", do=—go
For k=0,1,...

Wipr =We+Mde A >0
Bii1=¢( LB, » Wit1 — Wi, 8k+1 — 8k), 8k = VE(wy)
—_———— ———

Sk Yk

1
dii1 = —B, [ 18k+1
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Global Optimisation Quasi-Newton(QN) algorithms

Global Optimisation Quasi-Newton(QN) algorithms

Given an approssimation By of V2E(wy), let us define the matrix Lpg,:

I£6, = Bellr = min [ X = BellF, || - lr = Frob.norm

where £ = algebra C C"*", one can define descent methods LQN
[DFLZ]:

wy € R, dog=—go
For k=0,1,...
Wil =Wi+Ade A >0
Bir1=¢( L, , Wi1 — Wi, Bkr1 — 8k), 8k = VE(wy)
—— Y——
Sk Yk
diy1 = ka_jlng

Remark

The classical BFGS method [NW] and the more recent minimization
methods introduced in [BDFZ], [DFZ2], [DFZ3] are examples of LQN
algorithms, (being L = C™ ", L = {al},{Hartley — type}, L¥)
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Global Optimisation Quasi-Newton(QN) algorithms

The step Ay is determined such that:
Ak | skTyk >0 & E(Wk+1) < E(Wk)

The updating function ¢ in Byy1 = ¢ (Lp,,Sk,Yk) is

1
¢ (O,s,y) =0+ TSny - Oss 0.

y sOs
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Global Optimisation Quasi-Newton(QN) algorithms

The step Ay is determined such that:
Ak | skTyk >0 & E(Wk+1) < E(Wk)
The updating function ¢ in Byy1 = ¢ (Lp,,Sk,Yk) is

Css 'O,

1
Os,y)=0+ —yy’ —
¢ (O,s,y) T T oo

The choice of A\, and the properties of ¢ and Lp, imply:

@ By 1 inherites positive definiteness from By
@ Bii1(Wki1 — W) = 8ks1 — 8k, = LQN secant algorithms
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Global Optimisation Quasi-Newton(QN) algorithms

The step Ay is determined such that:
Ak | skTyk >0 & E(Wk+1) < E(Wk)

The updating function ¢ in Byy1 = ¢ (Lp,,Sk,Yk) is

Css 'O,

1
Os,y)=0+ —yy’ —
¢ (O,s,y) T T oo

The choice of A\, and the properties of ¢ and Lp, imply:

@ By 1 inherites positive definiteness from By

@ Bii1(Wki1 — W) = 8ks1 — 8k, = LQN secant algorithms

The structured space £ = LQN of low complexity

S. Fanelli  Padova, February 2007 Prin2004 e Prin2006, Roma " Tor Vergata”



Global Optimisation Quasi-Newton(QN) algorithms

One can prove the following global convergence theorem [DFZ4]:

Theorem 1
Given E € C?, let E,,j, be the value of its global minimum.
Assume that:

Ve, € BT, e, € RT ¢ [|[VE(wi)|| > €5 apart from k : E(wy) — Epin < €,
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Global Optimisation Quasi-Newton(QN) algorithms

One can prove the following global convergence theorem [DFZ4]:

Theorem 1
Given E € C?, let E,,j, be the value of its global minimum.

Assume that:
Ve, € BT, e, € RT ¢ [|[VE(wi)|| > €5 apart from k : E(wy) — Epin < €,

If in an iterative scheme of BFGS-type Wy = wy — /\kAk_1VE(wk),
(Ak = go(/z\k,h R Vk) the following conditions are satisfied:
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Global Optimisation Quasi-Newton(QN) algorithms

One can prove the following global convergence theorem [DFZ4]:

Theorem 1
Given E € C?, let E,,j, be the value of its global minimum.

Assume that:
Ve, € BT, e, € RT ¢ [|[VE(wi)|| > €5 apart from k : E(wy) — Epin < €,
If in an iterative scheme of BFGS-type Wy = wy — /\kAk_1VE(wk),

(Ak = o(A_1,...), Vk) the following conditions are satisfied:

IVEwi) - VEWDI? _ Iyil? _,,
(VE(wgy1) — VE(wg)) T Aidy yZ—Sk -

S. Fanelli  Padova, February 2007 Prin2004 e Prin2006, Roma " Tor Vergata”



Global Optimisation Quasi-Newton(QN) algorithms

One can prove the following global convergence theorem [DFZ4]:

Theorem 1
Given E € C?, let E,,j, be the value of its global minimum.

Assume that:
Ve, € BT, e, € RT ¢ [|[VE(wi)|| > €5 apart from k : E(wy) — Epin < €,
If in an iterative scheme of BFGS-type Wy = wy — /\kAk_1VE(wk),

(Ak = o(A_1,...), Vk) the following conditions are satisfied:

IVEwi) - VEWDI? _ Iyil? _,,
(VE(wgy1) — VE(wg)) T Aidy yZ—Sk -

IANIA] < N.
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Global Optimisation Quasi-Newton(QN) algorithms

One can prove the following global convergence theorem [DFZ4]:

Theorem 1
Given E € C?, let E,,j, be the value of its global minimum.
Assume that:

Ve, € BT, e, € RT ¢ [|[VE(wi)|| > €5 apart from k : E(wy) — Epin < €,

If in an iterative scheme of BFGS-type Wy = wy — /\kAk_1VE(wk),
(Ak = go(/z\k,h R Vk) the following conditions are satisfied:

IVEwi) - VEWDI? _ Iyil? _,,
(VE(wgy1) — VE(wg)) T Aidy yZ—Sk -

IANIA < N
Then, Ve, € R+, Ik** : Vk > k**:

E(Wk) — Emin < €3
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:

Q Ve, >0, Jeg: ||VE(wg)|| > es during the BFGS-type descent
algorithm, apart for k : E(wy) — Emin<éa;
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:

Q Ve, >0, Jeg: ||VE(wg)|| > es during the BFGS-type descent
algorithm, apart for k : E(wy) — Emin<éa;

@ A <eaf[VE(w)[?
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:

Q Ve, >0, Jeg: ||VE(wg)|| > es during the BFGS-type descent
algorithm, apart for k : E(wy) — Emin<éa;
@ M\ < o/ [[VE(wi)|%

IVE(Wkr1) = VEw)I? el
(VE(wir1) — VE(Wi)) T Akdk y/['sk

O [AlIA <N

o

<M,
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:

Q Ve, >0, Jeg: ||VE(wg)|| > es during the BFGS-type descent
algorithm, apart for k : E(wy) — Emin<éa;
@ M\ < o/ [[VE(wi)|%
IVE(Wkr1) = VEw)I? el
(VE(Wk_H) — VE(Wk))T/\kdk yl—(rSk
Q |AdlllAM <N
N.B.

The second condition derives from terminal attractors theory [DFZ0].

o

<M,
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:

Q Ve, >0, Jeg: ||VE(wg)|| > es during the BFGS-type descent
algorithm, apart for k : E(wy) — Emin<éa;
@ M\ < o/ [[VE(wi)|%
IVE(Wkr1) = VEw)I? el
(VE(Wk_H) — VE(Wk))T/\kdk yl—(rSk
Q |AdlllAM <N
N.B.

The second condition derives from terminal attractors theory [DFZ0].
The third condition is a sort of weak discrete convexity assumption [P].

o

<M,
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Global Optimisation Quasi-Newton(QN) algorithms

Theorem 1 allows the definition of the following
Non-Suspiciousness Conditions for a BFGS-type method:

Q Ve, >0, Jeg: ||VE(wg)|| > es during the BFGS-type descent
algorithm, apart for k : E(wy) — Emin<éa;

@ A <eaf[VE(w)[?

IVE(Wkr1) = VEw)I? el
(VE(wir1) — VE(Wi)) T Akdk y/['sk

O [AlIA <N
N.B.

The second condition derives from terminal attractors theory [DFZ0].
The third condition is a sort of weak discrete convexity assumption [P].

o

<M,

Since every descent direction is associated to a p.d. matrix with a well
defined spectral structure, the fourth condition may be satisfied, by
suitably modifying the matrices A, during the optimization process.
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Matrix structures in a global minimization scheme

Matrix structures in a global minimization scheme

In order to define a global minimization scheme, we must satisfy
Theorem 1 assumptions from an operational point of view.
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Matrix structures in a global minimization scheme

Matrix structures in a global minimization scheme

In order to define a global minimization scheme, we must satisfy
Theorem 1 assumptions from an operational point of view.

This leads to compute a repeller matrix A, for each local minimization.
The basic idea is ([T]) to approximate A,e, by the following expression:

Arep = Arepl + (I/ + R)_l, rank(R) <4
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Matrix structures in a global minimization scheme

Matrix structures in a global minimization scheme

In order to define a global minimization scheme, we must satisfy
Theorem 1 assumptions from an operational point of view.

This leads to compute a repeller matrix A, for each local minimization.
The basic idea is ([T]) to approximate A,e, by the following expression:

Arep = Arepl + (I/ + R)_l, rank(R) <4

being, by Condition (2), A, the maximal scalar repeller, i.e.:

€a

W? IVE(w,)|| << Ve,, E(w,)>> Emin

)\rep -
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Matrix structures in a global minimization scheme

Matrix structures in a global minimization scheme

In order to define a global minimization scheme, we must satisfy
Theorem 1 assumptions from an operational point of view.

This leads to compute a repeller matrix A, for each local minimization.
The basic idea is ([T]) to approximate A,e, by the following expression:

Arep = Arepl + (I/ + R)_l, rank(R) <4

being, by Condition (2), A, the maximal scalar repeller, i.e.:

€a

W? IVE(w,)|| << Ve,, E(w,)>> Emin

)\rep -

and R with the following structure:

R=1pp’ 4 129q" + 13qp” + 1apq’, p e q suitable vectors
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Matrix structures in a global minimization scheme

In the first iterations of every local minimization, it is sufficient to verify
Condition (1) with a “large” €.
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Matrix structures in a global minimization scheme

In the first iterations of every local minimization, it is sufficient to verify
Condition (1) with a “large” €.
Since wy is such that E(wki1) < E(wy),

for €, > E(wy) — Enmin , (1) is satisfied if

1
s = S| VE(wo))
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Matrix structures in a global minimization scheme

In the first iterations of every local minimization, it is sufficient to verify
Condition (1) with a “large” €.
Since wy is such that E(wki1) < E(wy),

for €, > E(wy) — Enmin , (1) is satisfied if

1
s = 5 IVE(wo)|

... for eg > E(W,) — Emin , (1) is satisfied if

min [[VE(wy)|

seeesl

1
2k
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Matrix structures in a global minimization scheme

In the first iterations of every local minimization, it is sufficient to verify
Condition (1) with a “large” €.
Since wy is such that E(wki1) < E(wy),

for €, > E(wy) — Enmin , (1) is satisfied if

1
s = 5 IVE(wo)|

... for eg > E(W,) — Emin , (1) is satisfied if

min [[VE(wy)|

1
2 k ooyl
When ¢, is becoming “small” and w*), then the
sequence is converging to a stationary point w which cannot correspond
to the global minimum
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Matrix structures in a global minimization scheme

Setting

2
M, = max M
k=0,...,r yk Sk

AclllATL
kggf\_frll k1A
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Matrix structures in a global minimization scheme

Setting

Il

k=0,...,r y/z—sk

M,
N, = AclllATL
r kggf\_frll k1A

K = max{M,, N,}. It follows from Condition (3):

lyl?
Vk <'r, Ar > —
Kyk dy

S. Fanelli

Padova, February 2007
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Matrix structures in a global minimization scheme

Setting

2
Ve = max I
k:O ryksk

AclllATL
kggf\_frll k1A

K = max{M,, N,}. It follows from Condition (3):

.71

Vk <, A

Purpose:

Define w, ;1 such that, by using the latter point as the new
starting vector, the algorithm LQN is convergent to a stationary
point w, with E(W)<E(W).
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Matrix structures in a global minimization scheme

SOME PRELIMINARY IDEAS:

Suggestions for a proper tunneling phase.
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Matrix structures in a global minimization scheme

SOME PRELIMINARY IDEAS:

Suggestions for a proper tunneling phase.

(1) i — €a
].) Compute Wr+1 = Wr_)\repVE(Wr); )\rep = m
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Matrix structures in a global minimization scheme

SOME PRELIMINARY IDEAS:

Suggestions for a proper tunneling phase.

(1) i — €a
].) Compute Wr+1 = Wr_)\repVE(Wr); )\rep = m

2) Define R, y1(11) = rank(Ry+1(1t)) =2, >0

T T

a.9 PP

R 99 r
(1) a’p, (/ )pfpr

being: p, = WSL)I —-w, (q,= VE(WE,Bl) — VE(w,)

S. Fanelli  Padova, February 2007 Prin2004 e Prin2006, Roma " Tor Vergata”



Matrix structures in a global minimization scheme

SOME PRELIMINARY IDEAS:

Suggestions for a proper tunneling phase.

(1) i — €a
].) Compute Wr+1 = Wr_)\repVE(Wr); )\rep = m

2) Define R, y1(11) = rank(Ry+1(1t)) =2, >0

T T

a.9 PP

R 99 r
(1) a’p, (/ )pfpr

being: p, = WSL)I —-w, (q,= VE(WE,Bl) — VE(w,)

By applying Sherman-Morrison-Woodbury formula, it follows:
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Matrix structures in a global minimization scheme

SOME PRELIMINARY IDEAS:

Suggestions for a proper tunneling phase.

(1) i — €a
].) Compute Wr+1 = Wr_)\repVE(Wr); )\rep = m

2) Define R, y1(11) = rank(Ry+1(1t)) =2, >0

T T

a.9 PP

R 99 r
(1) a’p, (/ )pfpr

being: p, = WSL)I —-w, (q,= VE(WE,Bl) — VE(w,)

By applying Sherman-Morrison-Woodbury formula, it follows:

—1 T T T T
q. d-\ PP P-4, +q-p
I/ +R, ) — (14 r_ r £y, 1>0
(/ () e are, " ate, )

Thus, we obtain a memoryless updating formula.
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Matrix structures in a global minimization scheme

3) Define wgr)l:

-1
wgr)l = wfﬂl - (// + Rrga( )) VE(w,) :
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Matrix structures in a global minimization scheme

3) Define wgr)l:
-1
Wi =wi = (1104 Reia(i0)) - VE(w,) :

E(wg_)l) = mJn E{ £+1 (I/,u+ Rry1(p ))_IVE(W,)]

Therefore:

W, = we = [l (10 + Rea()) '] VE(w,)
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Matrix structures in a global minimization scheme

3) Define wgr)l:

-1
Wi =wi = (1104 Reia(i0)) - VE(w,) :

E(wg_)l) = mJn E{ £+1 (I/,u+ Rry1(p ))_IVE(W,)]

Therefore:

W, = we = [l (10 + Rea()) '] VE(w,)

4) Evaluate:
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Matrix structures in a global minimization scheme

Ew?),) < E(w,) or

E(wy) = Ew) < c(Ew() — Enn)

being c(.) a suitable function
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Matrix structures in a global minimization scheme

Ew?),) < E(w,) or

Ew) — Ewy) < c(Ew2) — Enin)
being c(.) a suitable function

()

Define w, 1 = w,/

, and start a new local search.

Else

5) Set: p, = wg_)l —w, q,=VE(w £+)1) — VE(w,).
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Matrix structures in a global minimization scheme

E(w) < E(w,) or
E( gi)l) E(Wr)< C(E( £i)1 Emin)

being c(.) a suitable function

Define w, 1 = wgl and start a new local search.
Else

R ) _ () _
5) Set: p, =w,}/; —w, = VE(w,};) — VE(w,).

Solve the new minimum problem associated to the corresponding

(1104 Rea ()™
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Matrix structures in a global minimization scheme

If one of conditions is fulfilled, define:

3)

Wrp1 =W,

and start a new local search.
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Matrix structures in a global minimization scheme

If one of conditions is fulfilled, define:

3)

Wrp1 =W,

and start a new local search.

6) Redefine A, by Condition 3 i.e.:

2
||yl’|| < )\r S €a >
IVE(w,)|

Kyld, —
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Matrix structures in a global minimization scheme

If one of conditions is fulfilled, define:

®3)

Wrp1 =W,

and start a new local search.

6) Redefine A, by Condition 3 i.e.:

lly|? €a
2 <), < —2
Ky/d. = " 7 [IVE(w,)|?
and then assume:
)\r < 673
[VE(w,)]|]?

in the indicated admissible interval, thereby iterating the procedure.
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Matrix structures in a global minimization scheme

Final Remarks:

@ Every application of Shermann-Morrison-Woodbury formula
has in our case a cost O(n)
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Matrix structures in a global minimization scheme

Final Remarks:

@ Every application of Shermann-Morrison-Woodbury formula
has in our case a cost O(n)

@ The one-dimensional optimal search of /iy can be efficiently
performed by applying Armijo-Goldstein method
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Matrix structures in a global minimization scheme

Final Remarks:

@ Every application of Shermann-Morrison-Woodbury formula
has in our case a cost O(n)

@ The one-dimensional optimal search of /iy can be efficiently
performed by applying Armijo-Goldstein method

@ A satisfactory application of Theorem 1 —-
the fulfillment of Non—Suspiciousness Conditions
depending on the operational values M, N and — K
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Matrix structures in a global minimization scheme

Final Remarks:

@ Every application of Shermann-Morrison-Woodbury formula
has in our case a cost O(n)

@ The one-dimensional optimal search of /iy can be efficiently
performed by applying Armijo-Goldstein method

@ A satisfactory application of Theorem 1 —-
the fulfillment of Non—Suspiciousness Conditions
depending on the operational values M, N and — K , i.e.

— the degree of weak discrete convexity of E
— the condition number of repeller matrix approximations
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Matrix structures in a global minimization scheme

FUTURE RESEARCH:.

o Define: R,41, rank(R) = 3,4, with a suitable structure
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Matrix structures in a global minimization scheme

FUTURE RESEARCH:.

o Define: R,41, rank(R) = 3,4, with a suitable structure

° ([0T])
Determine R,;1's rows and columns
(Hints: From a rank-p matrix R, construct the R skeleton
decomposition, by using the black dot meta-arithmetic)
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Matrix structures in a global minimization scheme

FUTURE RESEARCH:.

o Define: R,41, rank(R) = 3,4, with a suitable structure

° ([0T])
Determine R,;1's rows and columns
(Hints: From a rank-p matrix R, construct the R skeleton
decomposition, by using the black dot meta-arithmetic)

-1
@ Use a structured approximation of (I/ + Rrya( ))
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Matrix structures in a global minimization scheme

APPENDIX

Sherman-Morrison-Woodbury Formula in the general case

Given a square nonsingular matrix A € R™" let U and V be
matrices € R™P_ 1 < p < n. Define:

A=A+ UVT

then:

~

A=A AU+ VTATIU) VT AT

Remark

Inversion of (/ + VT A=1U) in inexpensive if p=3,4.
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Matrix structures in a global minimization scheme
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