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THE GOOGLE MATRICES

Let deg(i) > 0 be the outdegree of the page i, that is the
number of pages it points to.

The Google matrix P = (pij) ∈ Rp×p is defined by

pij =





1/deg(i) if page i links to j,

0 otherwise.

The PageRank vector r is the left eigenvector of P
corresponding to its dominant eigenvalue 1, that is

r = PTr.

We want to compute it by the power method

r(n+1) = PTr(n), n = 0,1, . . . , r(0) = v.
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Unfortunately, the power method has convergence
problems.

Some of these problems are due to dangling pages (pages
without outlink, that is with deg(i) = 0) and, so, the Google
matrix P is not stochastic (some of its rows are 0).
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For avoiding this drawback, the Google matrix is replaced by
another matrix P̃.

P̃ = P + dwT

where w = (w1, . . . ,wp)T is a probability vector (w ≥ 0, and
(w, e) = 1 with e = (1, . . . ,1)T),
and d = (di) with di = 1 if deg(i) = 0 (dangling page) and
di = 0 otherwise.

Now, P̃ is stochastic, with 1 as dominant eigenvalue, and
e = (1, . . . ,1)T as corresponding right eigenvector.
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Another problem arises since P̃ is reducible: it can have
several eigenvalues on the unit circle, thus causing
convergence problems to the power method.

Moreover, P̃ has several left eigenvectors corresponding to
the dominant eigenvalue 1.

Thus, P̃ is replaced by the matrix

Pc = cP̃ + (1− c)E, E = evT

with c ∈ [0,1), and v a probability vector (personalization or
teleportation vector).
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Pc is stochastic and irreducible. It has 1 as its dominant
eigenvalue with e as its corresponding right eigenvector.

The power iterations

r(n+1)
c = PT

c r(n)
c , n = 0,1, . . . , r(0)

c = v,

now converge to the unique vector

rc = PT
c rc

which is chosen as the PageRank vector.
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The power method converges as cn.

Google chooses c = 0.85

n cn

10 1.97e-01

20 3.88e-02

50 2.96e-04

80 2.26e-06

100 8.75e-08

For acceleration of the power method, see
• Kamvar, Haveliwala, Manning, Golub (2003)
• Haveliwala, Kamvar, Klein, Manning, Golub (2003)
• Brezinski, Redivo-Zaglia (2006)
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EXTRAPOLATION

We want to compute rc for a certain value of c (0.85 or closer
to 1).

We choose several (smaller) values ci of the parameter, and
we compute the corresponding vectors rci

.

We interpolate these vectors by some function of the
parameter, and then we extrapolate the results at the
desired c.

This procedure only costs the number of iterations needed for
maxi ci.

Why?
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We set Ã = P̃T and Ac = PT
c . Thus rc = Acrc.

Boldi, Santini, Vigna (2005) proved that

rc = v + c(Ã− I)
∞∑

i=0

ciÃiv,

and that the power method produces the partial sums of this
series, that is

r(n+1)
c = v + c(Ã− I)

n∑

i=0

ciÃiv

= r(n)
c + cn+1(Ã− I)Ãnv, n = 0,1, . . .

with r(0)
c = v. Thus, for any c

(Ã− I)Ãnv =
1

cn+1
(r(n+1)

c − r(n)
c ).
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This relation shows that it is possible to apply the power
method for different values of c at a low additional cost.

Indeed, since the vectors (Ã− I)Ãnv are independent of c,
the vectors r(n)ec corresponding to a different value c̃ of the
parameter can be directly computed by

r(0)ec = v

r(n+1)ec = r(n)ec + c̃n+1 1
cn+1

(r(n+1)
c − r(n)

c ), n = 0,1, . . .
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WHAT IS EXTRAPOLATION?:

Assume that the values of a function f are known at k points
xi, that is

yi = f(xi), i = 1, . . . ,k.

Choose a function Fk belonging to some class of functions,
and depending on k parameters: Fk(a1, . . . , ak, ·)
Compute a∗1, . . . ,a∗k solution of the system of equations

Fk(a∗1, . . . ,a∗k,xi) = yi, i = 1, . . . ,k.

Fk interpolates f at the points xi.

For x∗ /∈[mini xi, maxi xi], compute the extrapolated value

y∗ = Fk(a∗1, . . . ,a∗k,x∗).
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EXAMPLE: ROMBERG’S METHOD:

yi = result obtained by the trapezoidal rule with the step hi.

Set xi = h2
i .

Fk = polynomial of degree k− 1.

Extrapolate at x∗ = 0.

Why is Romberg’s method working so well?

Because, by the Euler-Maclaurin formula, the results of the
trapezoidal rule behave like a polynomial in h2.
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EXTRAPOLATION OF THE PAGERANK VECTORS:

So, for extrapolation to work well (that is for choosing the
class of functions), we have to

analyze the behavior of rc with respect to c.

Let

λ̃1 = 1, λ̃2, . . . , λ̃p the eigenvalues of P̃
e,x2, . . . ,xp its corresponding right eigenvectors and
r̃,y2, . . . ,yp its corresponding left eigenvectors
(r̃ is the Pagerank vector corresponding to c = 1)
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As proved by Serra-Capizzano (2005):

Ü if eP is diagonalizable

rc = er + (1− c)

pX
i=2

αi

1− ceλi

yi, αi = xT
i v

Ü in the general case

rc = er +

pX
i=2

wi(c)yi with

w2(c) = (1− c)α2/(1− ceλ2)

wi(c) = [(1− c)αi + cβi wi−1(c)]/(1− ceλi), i = 3, . . . ,p

with βi equal to 0 or 1.
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In both cases,

rc is a rational function with a vector numerator of degree
p− 1, and a scalar denominator of degree p− 1 in c.

So, the class of functions used for extrapolation will be the
class of rational functions of the same type, but of degree

k << p− 1.

A first account of such extrapolation procedures was given in
Brezinski, Redivo–Zaglia, Serra-Capizzano, (2005).
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VECTOR RATIONAL EXTRAPOLATION:

We interpolate the vectors rc corresponding to several values
of the parameter c by the vector rational function

p(c) =
Pk(c)
Qk(c)

.

The coefficients of Pk and Qk are obtained by solving the
interpolation problem

Qk(ci)pi = Pk(ci), i = 0, . . . , k,

with pi = rci , and the ci’s distinct points in ]0, 1[.
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Pk and Qk are given by Lagrange’s interpolation formula

Pk(c) =
k∑

i=0

Li(c)Pk(ci)

Qk(c) =
k∑

i=0

Li(c)Qk(ci)

with

Li(c) =
k∏

j=0
j 6=i

c− cj

ci − cj
, i = 0, . . . , k.

Thus

Pk(c) =
k∑

i=0

Li(c)Qk(ci)pi.

EXTRAPOLATION 17



How to compute Qk(c0), . . . , Qk(ck)?

Assume that, for c∗ 6= ci, i = 0, . . . , k, the vector rc∗ is known.

Since p(c) = Pk(c)/Qk(c), from the previous result, we will
approximate rc∗ by

p(c∗) =
k∑

i=0

Li(c∗)ai(c∗)pi,

with ai(c∗) = Qk(ci)/Qk(c∗).

Let s0, . . . , sk be k + 1 linearly independent vectors. After
taking their scalar products with the vector p(c∗), and with
the vector rc∗ , we will look for a0(c∗), . . . , ak(c∗) solution of the
system of k + 1 linear equations

k∑

i=0

(pi, sj)Li(c∗)ai(c∗) = (rc∗ , sj), j = 0, . . . , k.
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Instead of a linear system in the unknowns a0(c∗), . . . , ak(c∗),
we can consider it as a system in the unknowns
L0(c∗)a0(c∗), . . . , Lk(c∗)ak(c∗). Since the Li(c∗)’s are know
quantities, the ai(c∗) will be immediately deduced from the
solution.

So, by setting M = [p0, . . . ,pk], S = [s0, . . . , sk], and
u(c∗) = (L0(c∗)a0(c∗), . . . , Lk(c∗)ak(c∗))T , then the system
writes

ST Mu(c∗) = ST rc∗ ,

and it follows

p(c∗) = Mu(c∗) = M(ST M)−1ST rc∗ .
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For the particular choice sj = pj , j = 0, . . . , k, the system has a
symmetric positive definite Gram matrix MT M , and

p(c∗) =
k∑

i=0

Li(c∗)ai(c∗)pi is the best approximation of rc∗ in

span(p0, . . . ,pk).

In that case,

p(c∗) = M(MT M)−1MT rc∗

is the orthogonal projection of rc∗ on span(p0, . . . ,pk).
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Once the ai(c∗)’s have been obtained, the Qk(ci)’s could be
computed. For that, it is necessary to know the value of
Qk(c∗), being ai(c∗) = Qk(ci)/Qk(c∗).

Since a rational function is determined apart a multiplying
factor, it does not restrict the generality to assume that the
polynomial Qk is monic.

So, from Qk(c) =
∑k

i=0 Li(c)Qk(ci), we see that its dominant
coefficient satisfies the relation

1 =
k∑

i=0

Qk(ci)
k∏

j=0
j 6=i

(ci − cj)

= Qk(c∗)
k∑

i=0

ai(c∗)
k∏

j=0
j 6=i

(ci − cj)

,

which gives Qk(c∗). Then,

Qk(ci) = ai(c∗)Qk(c∗), i = 0, . . . , k
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But, it is even unnecessary to know the Qk(ci)’s and Qk(c∗).

Indeed, for an arbitrary value of c, we obtain an
approximation of rc as

p(c) =
Pk(c)
Qk(c)

=

k∑

i=0

Li(c)Qk(ci)pi

k∑

i=0

Li(c)Qk(ci)

.

Dividing the numerator and the denominator by Qk(c∗) finally
leads to the extrapolation formula

p(c) =
∑k

i=0 Li(c)ai(c∗)pi∑k
i=0 Li(c)ai(c∗)

.
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Vector rational extrapolation procedure

1. Choose k + 2 distinct values of c : c0, . . . , ck and c∗.

2. Compute pi = rci for i = 0, . . . , k, and rc∗ (low cost
formula).

3. Choose k + 1 linearly independent vectors s0, . . . , sk, or
take si = pi for i = 0, . . . , k.

4. Compute a0(c∗), . . . , ak(c∗) by solving the system

∑k
i=0(pi, sj)Li(c∗)ai(c∗) = (rc∗ , sj), j = 0, . . . , k,

or
ST Mu(c∗) = ST rc∗ .

5. Compute an approximation of rc by

p(c) =
∑k

i=0 Li(c)ai(c∗)pi∑k
i=0 Li(c)ai(c∗)

.
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A SIMPLER VECTOR RATIONAL EXTRAPOLATION:

Let us construct a vector rational extrapolation method by
truncating the rational expression of rc given by
Serra-Capizzano, after two terms.

So, we consider an extrapolation function of the form

p(c) = y + (1− c)
1

1− cλ
z.

These two unknown vectors and the unknown scalar will be
computed by an interpolation procedure needing only 3
values of c.
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We will compute first the scalar λ, after the vector z and,
finally, the vector y obtained as p(1).

As above, set pi = rci .
We consider the interpolation condition

pi = y +
1− ci

1− ciλ
z.

The difference pi − pj eliminates y, and we have

pi − pj =
(cj − ci)(1− λ)

(1− ciλ)(1− cjλ)
z.

We now need to compute the scalar λ and the vector z.
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Let u be a vector so that the scalar products (pi − pj ,u) and
(pk − pj ,u) are different from zero.

We set

rijk =
(pi − pj ,u)
(pk − pj ,u)

=
cj − ci

cj − ck

1− ckλ

1− ciλ
,

which gives

λ =
rijk(cj − ck)− (cj − ci)

ci rijk(cj − ck)− ck(cj − ci)
.

Then z follows

z =
(1− ciλ)(1− cj λ)
(cj − ci)(1− λ)

(pi − pj).
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Finally, y is given by

y = p(1) = pi − 1− ci

1− ciλ
z.

Thus, from the expressions for λ, z and y we obtain an
approximation of the vector rc, for a chosen c, given by

rc 'p(c) = y + (1− c)
1

1− cλ
z.
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A MINIMIZATION PROCEDURE:

We consider an approximation p(c) of rc of the form

p(c) = (1− α)p0 + αp1 = p0 + α(p1 − p0),

where the parameter α is chosen so that the euclidean norm
of PT

c p(c)− p(c) (a vector which could be considered as a
residual since PT

c rc − rc) is minimum.

It holds

α = − (PT
c (p1 − p0)− (p1 − p0), PT

c p0 − p0)
‖PT

c (p1 − p0)− (p1 − p0)‖2 .

This procedure needs of only 2 values of c. Obviously it could
be extended to a more general form of minimization where

p(c) = α0p0 + · · ·+ αkpk

with α0 + · · ·+ αk = 1.

EXTRAPOLATION 28



NUMERICAL EXPERIMENTS

P = (pij) is randomly constructed. Dimension p.

First we select a random integer q between 1 and p/10.

Then, we generate a random integer vector m of dimension
p with components between 1 and q.

Each row i of our matrix P will contain, at most, m(i) nonzero
elements.

Then, we randomly choose, for each i, an integer vector of
dimension m(i), with components between 1 and p, and we
eliminate its identical components and those equal to i.

The length of the reduced vector is deg(i) ≤ m(i), and its
components give the indexes j of the columns such that
pij = 1/deg(i), all others elements being set to zero.
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Finally, among all rows, we randomly set to zero p/5 of them,
corresponding to the dangling nodes.

Such matrices P (and the corresponding matrices P̃ and Pc)
have the same properties as those coming out from the web.

A very important point to mention, is that we are not
interested in the exact values of the components of the real
and extrapolated PageRank vectors, but in their relative
values, that is the rank of each of them compared with the
other components.

The values and the ranks can be quite sensitive:
• stability of PageRank algorithm (Lempel, Moran, 2005)
• rank-stability (Borodin et al., 2005)
• detailed explanations (Langville, Meyer, 2006)
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Example (Ipsen, ANAW 2006, Pisa) :

rc = ( 0.23 0.24 0.26 0.27 )T

rank(rc) = 4 3 2 1

r1(c) = ( 0.27 0.26 0.24 0.25 )T

rank(r1(c)) = 1 2 4 3

‖rc − r1(c)‖∞ = 0.04 (small error, but incorrect ranking)

r2(c) = ( 0 0.001 0.002 0.997 )T

rank(r2(c)) = 4 3 2 1

‖rc − r2(c)‖∞ = 0.727 (bigger error, but correct ranking)
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Notations for the methods

In all the examples, we choose 9 different values for c:
c0, c1, . . . , c7 and c∗

VREM n −→ Vector rational extrapolation with
c0, c1, . . . , cn−2 and c∗.

SVREM 3 −→ Simpler vector rational extrapolation with
c5, c6, c7 (that is p5,p6,p7), and u = p7 − p5.

VMP 2 −→ Minimization procedure with
c5, c7 (that is p5 and p7).

All results were obtained with w = v.
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Notations for the results

nch −→ total number of changes in the ranking
between the Pagerank vector rc and
the extrapolated vector p(c).

ich −→ rank of the first change occurred
after sorting by descending values rc and p(c).

dmax −→ maximum displacement of a page.
A positive value of dmax means that the
corresponding page went up in the list,
and that it went down if it is negative.

ixmax, iymax −→ The ranks of the page corresponding to dmax

ixmax in the sorted rc
iymax in the sorted p(c).
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First example

p = 5000, nnz = 942806.
Google parameter c = 0.85.
8 iterations with power method for a precision of 10−8.

The highest and the smallest components of the PageRank
vector were 3.84636884 · 10−4 and 1.48826460 · 10−4,
respectively, thus meaning that, when p is large, many
components can differ only in the last digits.
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# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

1 VREM 4 2.43e-6 2.57e-8 4417 18 -47 1553 1600

2 VREM 5 5.13e-8 3.32e-9 1667 29 6 2651 2645

3 VREM 6 6.03e-8 2.34e-9 1254 190 -4 2358 2362

4 VREM 7 2.77e-8 1.24e-9 689 190 2 890 888

5 VREM 8 3.04e-8 1.89e-9 1029 190 -4 2358 2362

6 VREM 9 2.87e-8 1.74e-9 939 190 4 2765 2761

7 VREM 4 6.86e-7 1.04e-8 3479 18 12 2691 2679

8 SVREM 3 1.17e-5 9.68e-8 4863 1 -234 3529 3763

9 VMP 2 1.20e-5 7.88e-8 4865 1 -236 3529 3765

p = 5000, c = 0.85 (8 iterations)
ci = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, c∗ = 0.5 (5 iterations)
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Quality of the results

It seems that the most two important parameters to consider
are dmax and ich.

dmax indicates the size of the largest change in the ranking.
The smallest dmax, the better the ranking.
So, a criterion of good quality is to have a small value of dmax.
But dmax can be large if ich is also large.

In fact, ich indicates the location of the first change in the
ranking. So, a correct ranking has been obtained for the
ich-1 first components of the extrapolated vector.

It is not so important to have many changes (ich large) in the
ranking if they are small, that is if dmax is small.
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Interchanging c3 = 0.25 and c∗ = 0.5 does not change much
the results. Best method for both tests seems to be VREM 7.
Here VREM 5 give comparable results.

# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

1 VREM 4 2.43e-6 2.57e-8 4420 18 -47 1553 1600

2 VREM 5 4.31e-8 2.01e-9 1102 190 -4 2358 2362

3 VREM 6 3.07e-8 1.86e-9 1010 190 -4 2358 2362

4 VREM 7 2.50e-8 1.54e-9 827 190 4 2765 2761

5 VREM 8 3.10e-8 1.90e-9 1033 190 -4 2358 2362

6 VREM 9 9.59e-7 2.71e-8 4520 10 -57 2710 2767

7 VREM 4 3.53e-5 2.25e-6 4808 10 127 2362 2235

8 SVREM 3 1.17e-5 9.68e-8 4863 1 -234 3529 3763

9 VMP 2 1.20e-5 7.88e-8 4865 1 -236 3529 3765
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Same matrix with ci’s closer to 0.85:
ci = 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65 (6 iterations), c∗ = 0.25
c = 0.85 (8 iterations)

# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

1 VREM 4 9.30e-7 1.31e-8 3788 18 -16 2461 2477

2 VREM 5 2.01e-8 1.17e-9 635 207 3 2765 2762

3 VREM 6 1.14e-8 6.92e-10 385 251 2 936 934

4 VREM 7 2.65e-9 1.29e-10 66 272 -1 272 273

5 VREM 8 3.16e-9 2.02e-10 114 272 -1 272 273

6 VREM 9 2.07e-9 1.25e-10 66 272 -1 272 273

7 VREM 4 3.52e-5 2.25e-6 4810 10 128 2362 2234

8 SVREM 3 4.02e-6 4.48e-8 4673 14 -101 3529 3630

9 VMP 2 4.15e-6 4.07e-8 4683 14 -102 3529 3631
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Extrapolation for rc with c = 0.99 (13 iterations) and
ci = 0.55, 0.6, 0.65 (6 iterations), c∗ = 0.25
gives

# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

7 VREM 4 3.52e-5 2.25e-6 4810 10 128 2362 2234

8 SVREM 3 3.08e-5 2.30e-6 4349 29 -40 3529 3569

9 VMP 2 3.03e-5 2.27e-6 4359 29 -40 3529 3569
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Example 2: Stanford web matrix
p = 281903, nnz = 2312497, c = 0.85 (91 iterations)
ci = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, c∗ = 0.5 (22 iterations)

# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

1 VREM 4 1.22e-3 6.26e-7 261573 4 -162408 26841 189249

2 VREM 5 1.78e-3 1.40e-7 261445 4 -105526 19635 125161

3 VREM 6 7.67e-4 1.02e-7 261208 4 -89744 52409 142153

4 VREM 7 4.52e-4 7.50e-8 260291 4 -44139 32553 76692

5 VREM 8 3.00e-4 5.25e-8 260629 4 -52413 116455 168868

6 VREM 9 2.57e-4 6.93e-8 281652 11 -219944 61958 281902

7 VREM 4 2.00e-3 6.74e-7 261353 4 −80743 51569 132312

8 SVREM 3 1.59e-3 8.74e-7 261573 1 −160026 19635 179661

9 VMP 2 1.51e-3 9.27e-7 261574 1 −160620 19635 180255
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Then, we will consider extrapolation with larger values.
p = 281903, nnz = 2312497, c = 0.85 (91 iterations)
ci = 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65 (39 iterations), c∗ = 0.25

# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

1 VREM 4 1.05e-3 4.15e-7 261425 4 -104574 26841 131415

2 VREM 5 5.26e-4 9.61e-8 261240 4 -54793 32553 87346

3 VREM 6 4.02e-4 5.95e-8 260085 7 -37547 32553 70100

4 VREM 7 9.55e-5 1.45e-8 258487 14 -23600 32553 56153

5 VREM 8 3.32e-5 7.33e-9 257896 29 -20639 32553 53192

6 VREM 9 1.03e-5 2.98e-9 254360 14 -13364 38289 51653

7 VREM 4 7.72e-4 2.76e-7 260586 4 -37167 32553 69720

8 SVREM 3 1.59e-3 2.95e-7 261569 1 -79828 51569 131397

9 VMP 2 1.01e-3 4.61e-7 261576 1 -81710 51569 133279
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Example 3: A small matrix
p = 1000, nnz = 18729, c = 0.85 (12 iterations)
ci = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, c∗ = 0.5 (9 iterations)

# Method ‖rc − p‖∞ ‖rc − p‖1/p nch ich dmax ixmax iymax

1 VREM 4 5.14e-5 1.91e-6 913 9 -51 348 399

2 VREM 5 8.29e-6 5.44e-7 603 12 9 398 389

3 VREM 6 1.39e-6 1.15e-7 175 13 4 486 482

4 VREM 7 1.23e-6 1.03e-7 152 62 4 486 482

5 VREM 8 5.38e-7 4.60e-8 81 127 -2 395 397

6 VREM 9 2.66e-7 2.35e-8 46 127 2 145 143

7 VREM 4 5.42e-6 4.46e-7 615 15 -7 467 474

8 SVREM 3 1.17e-4 3.63e-6 969 8 101 425 324

9 VMP 2 1.35e-4 3.77e-6 966 8 101 425 324

NUMERICAL EXPERIMENTS 42



REFERENCE:

C. Brezinski, M. Redivo-Zaglia, Rational extrapolation for the
PageRank vector, submitted

REFERENCE: 43



FUTURE WORKS:

Ü Study other extrapolation algorithms:
• %-algorithm
• restart
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