Equazioni matriciali che dipendono da un parametro: proprietà di decadimento

Beatrice Meini in collaborazione con D. Bini e V. Ramaswami

Dipartimento di Matematica, Università di Pisa

Giornate di algebra lineare numerica, 2007

Outline

- II problema
 - Motivazioni
 - Risultati noti
 - Problemi d'interesse
- Nuovi risultati
 - Idea
 - Caso scalare
 - Caso generale
- 3 Ulteriori sviluppi

Definiti dal kernel

$$\mathcal{K}(x) = \begin{bmatrix} \widetilde{B}_0(x) & \widetilde{B}_1(x) & \widetilde{B}_2(x) & \widetilde{B}_3(x) & \dots \\ \widetilde{A}_{-1}(x) & \widetilde{A}_0(x) & \widetilde{A}_1(x) & \widetilde{A}_2(x) & \dots \\ & \widetilde{A}_{-1}(x) & \widetilde{A}_0(x) & \widetilde{A}_1(x) & \ddots \\ & & \widetilde{A}_{-1}(x) & \widetilde{A}_0(x) & \ddots \\ 0 & & \ddots & \ddots \end{bmatrix}, \quad x \geq 0,$$

con $\widetilde{A}_i(x)$, $\widetilde{B}_i(x)$ distribuzioni di probabilità su $[0,\infty]$. Si definisce

$$\widetilde{G}_i(x) = P\{\text{passare dal livello 1 al livello 0 in } i \text{ passi e in un tempo } \leq x\}$$

Si definiscono

$$\begin{split} A_i(s) &= \int_0^\infty e^{-st} \widetilde{A}_i(ds), \quad i \geq -1, \\ G(w,s) &= \sum_{j=1}^\infty w^j \int_0^\infty e^{-sx} \widetilde{G}_j(dx), \quad 0 \leq w \leq 1, s \geq 0 \end{split}$$

Vale:

$$G(w,s) = w \sum_{i=-1}^{\infty} A_i(s) G(w,s)^{i+1}, \quad |w| \leq 1, s \in \mathbb{C}^+$$

Si definiscono

$$G(w) = G(w,0), |w| \le 1,$$

 $A_i = A_i(0), i \ge -1.$

Proprietà:

- $A_i \ge 0$ per $i \ge -1$, e $\sum_{i=-1}^{\infty} A_i$ è stocastica;
- G(w) è soluzione di:

Equazione matriciale

$$G(w) = w \sum_{i=-1}^{\infty} A_i G(w)^{i+1}$$

Si definiscono

$$G(w) = G(w, 0), |w| \le 1,$$

 $A_i = A_i(0), i \ge -1.$

Proprietà:

- $A_i \ge 0$ per $i \ge -1$, e $\sum_{i=-1}^{\infty} A_i$ è stocastica;
- G(w) è soluzione di:

Equazione matriciale

$$G(w) = w \sum_{i=-1}^{\infty} A_i G(w)^{i+1}$$

 Per ogni 0 ≤ w ≤ 1 la matrice G(w) è la minima soluzione non negativa di

$$X = w \sum_{i=-1}^{\infty} A_i X^{i+1}$$

- $G(w) = \sum_{j=0}^{\infty} w^j G_j$
- $G_i \geq 0$ per ogni
- G(w) è analitica per |w| < 1, convergente per |w| = 1.

Interpretazione probabilistica

• Per ogni $0 \le w \le 1$ la matrice G(w) è la minima soluzione non negativa di

$$X = w \sum_{i=-1}^{\infty} A_i X^{i+1}$$

- $G(w) = \sum_{j=0}^{\infty} w^j G_j$
- $G_i \geq 0$ per ogni j
- G(w) è analitica per |w| < 1, convergente per |w| = 1.

Interpretazione probabilistica

 Per ogni 0 ≤ w ≤ 1 la matrice G(w) è la minima soluzione non negativa di

$$X = w \sum_{i=-1}^{\infty} A_i X^{i+1}$$

- $G(w) = \sum_{j=0}^{\infty} w^j G_j$
- $G_j \ge 0$ per ogni j
- G(w) è analitica per |w| < 1, convergente per |w| = 1.

Interpretazione probabilistica

 Per ogni 0 ≤ w ≤ 1 la matrice G(w) è la minima soluzione non negativa di

$$X = w \sum_{i=-1}^{\infty} A_i X^{i+1}$$

- $G(w) = \sum_{j=0}^{\infty} w^j G_j$
- $G_i \ge 0$ per ogni j
- G(w) è analitica per |w| < 1, convergente per |w| = 1.

Interpretazione probabilistica

 Per ogni 0 ≤ w ≤ 1 la matrice G(w) è la minima soluzione non negativa di

$$X = w \sum_{i=-1}^{\infty} A_i X^{i+1}$$

- $G(w) = \sum_{j=0}^{\infty} w^j G_j$
- $G_j \ge 0$ per ogni j
- G(w) è analitica per |w| < 1, convergente per |w| = 1.

Interpretazione probabilistica

Interesse

Studiare proprietà di decadimento dei coefficienti G_i , ossia:

Determinare
$$\theta$$
 tale che $||G_j|| = O(\theta^j)$ per $j \to \infty$

Si assume:

- $\sum_{i=-1}^{\infty} A_i$ irriducibile;
- il raggio di convergenza di $A(z) = \sum_{i=-1}^{\infty} z^{i+1} A_i$ sia $r_a > 1$.

Interesse

Studiare proprietà di decadimento dei coefficienti G_i , ossia:

Determinare θ tale che $||G_j|| = O(\theta^j)$ per $j \to \infty$

Si assume:

- $\sum_{i=-1}^{\infty} A_i$ irriducibile;
- il raggio di convergenza di $A(z) = \sum_{i=-1}^{\infty} z^{i+1} A_i$ sia $r_a > 1$.

Idea

Utilizzare il:

Teorema (Stima di Cauchy)

Sia R il raggio di convergenza della serie $f(w) = \sum_{j=0}^{\infty} w^j f_j$. Allora per ogni 0 < r < R e per ogni j vale

$$|f_j| \leq \frac{\mu(r)}{r^j}$$

dove
$$\mu(r) = \sup_{|w|=r} |f(w)|$$
.

Problema: determinare il raggio di convergenza di G(w)

Utilizzare il:

Teorema (Stima di Cauchy)

Sia R il raggio di convergenza della serie $f(w) = \sum_{j=0}^{\infty} w^j f_j$. Allora per ogni 0 < r < R e per ogni j vale

$$|f_j| \leq \frac{\mu(r)}{r^j}$$

dove $\mu(r) = \sup_{|w|=r} |f(w)|$.

Problema: determinare il raggio di convergenza di G(w)

Un esempio scalare

Siano

$$A_i = e^{-\lambda} \frac{\lambda^{i+1}}{(i+1)!}, \quad i \ge -1$$

con $\lambda > 0$ fissato. Vale

$$G(w) = \sum_{j=1}^{\infty} w^{j} e^{-j(\lambda - 1)} \lambda^{j-1}$$

II raggio di convergenza è $R = (\lambda e^{-(\lambda-1)})^{-1}$

Come possiamo stimare R senza conoscere G(w)?

Un esempio scalare

Siano

$$A_i = e^{-\lambda} \frac{\lambda^{i+1}}{(i+1)!}, \quad i \ge -1$$

con $\lambda > 0$ fissato. Vale

$$G(w) = \sum_{j=1}^{\infty} w^{j} e^{-j(\lambda - 1)} \lambda^{j-1}$$

Il raggio di convergenza è $R = (\lambda e^{-(\lambda-1)})^{-1}$

Come possiamo stimare R senza conoscere G(w)?

Siano A_i scalari e sia $A(z) = \sum_{i=-1}^{\infty} z^{i+1} A_i$. Si cercano condizioni su w affinché l'equazione

$$z = wA(z) \tag{1}$$

abbia una soluzione in $(0, r_a)$.

Valgono le seguenti propietà:

- La funzione A(z) è convessa e crescente in $(0, r_a)$;
- la funzione $f_w(z) = wA(z) z$ ha un minimo in $\sigma \in (0, r_a)$, dove σ risolve l'equazione $wA'(\sigma) 1 = 0$;
- l'equazione (1) ha una soluzione in $(0, r_a)$ se e solo se $f_W(\sigma) \leq 0$.

Siano A_i scalari e sia $A(z) = \sum_{i=-1}^{\infty} z^{i+1} A_i$. Si cercano condizioni su w affinché l'equazione

$$z = wA(z) \tag{1}$$

abbia una soluzione in $(0, r_a)$. Valgono le seguenti propietà:

- La funzione A(z) è convessa e crescente in $(0, r_a)$;
- la funzione $f_w(z) = wA(z) z$ ha un minimo in $\sigma \in (0, r_a)$, dove σ risolve l'equazione $wA'(\sigma) 1 = 0$;
- l'equazione (1) ha una soluzione in $(0, r_a)$ se e solo se $f_w(\sigma) \leq 0$.

Siano A_i scalari e sia $A(z) = \sum_{i=-1}^{\infty} z^{i+1} A_i$. Si cercano condizioni su w affinché l'equazione

$$z = wA(z) \tag{1}$$

abbia una soluzione in $(0, r_a)$. Valgono le seguenti propietà:

- La funzione A(z) è convessa e crescente in $(0, r_a)$;
- la funzione $f_w(z) = wA(z) z$ ha un minimo in $\sigma \in (0, r_a)$, dove σ risolve l'equazione $wA'(\sigma) 1 = 0$;
- l'equazione (1) ha una soluzione in $(0, r_a)$ se e solo se $f_w(\sigma) \leq 0$.

Siano A_i scalari e sia $A(z) = \sum_{i=-1}^{\infty} z^{i+1} A_i$. Si cercano condizioni su w affinché l'equazione

$$z = wA(z) \tag{1}$$

abbia una soluzione in $(0, r_a)$. Valgono le seguenti propietà:

- La funzione A(z) è convessa e crescente in $(0, r_a)$;
- la funzione $f_w(z) = wA(z) z$ ha un minimo in $\sigma \in (0, r_a)$, dove σ risolve l'equazione $wA'(\sigma) 1 = 0$;
- l'equazione (1) ha una soluzione in $(0, r_a)$ se e solo se $f_w(\sigma) \leq 0$.

Raggio di convergenza nel caso scalare

Il raggio di convergenza di G(w) è

$$R=\frac{1}{A'(\sigma)}$$

dove σ è la soluzione in $(0, r_a)$ dell'equazione

$$A'(z)z = A(z)$$

Posso estendere queste considerazioni al caso a blocchi?

Raggio di convergenza nel caso scalare

Il raggio di convergenza di G(w) è

$$R=\frac{1}{A'(\sigma)}$$

dove σ è la soluzione in $(0, r_a)$ dell'equazione

$$A'(z)z = A(z)$$

Posso estendere queste considerazioni al caso a blocchi?

Premesse

Se μ_W e \mathbf{u}_W sono l'autovalore/autovettore di Perron di G(w), dalla

$$G(w)\boldsymbol{u}_{w}=w\sum_{i=-1}^{\infty}A_{i}G(w)^{i+1}\boldsymbol{u}_{w}$$

segue

$$\mu_{\mathbf{w}}\mathbf{u}_{\mathbf{w}} = \mathbf{w} \left(\sum_{i=-1}^{\infty} A_{i} \mu_{\mathbf{w}}^{i+1} \right) \mathbf{u}_{\mathbf{w}}.$$

Dunque, μ_W risolve l'equazione scalare

$$z = w \rho(A(z)). \tag{2}$$

Intuizione: il raggio di convergenza è l'estremo superiore dei $w \in (0, r_a)$ per cui l'equazione (2) ha soluzione (a, c_a) estremo superiore dei

Premesse

Se μ_W e \mathbf{u}_W sono l'autovalore/autovettore di Perron di G(w), dalla

$$G(w)\boldsymbol{u}_{w} = w \sum_{i=-1}^{\infty} A_{i}G(w)^{i+1}\boldsymbol{u}_{w}$$

segue

$$\mu_{w} \boldsymbol{u}_{w} = w \left(\sum_{i=-1}^{\infty} A_{i} \mu_{w}^{i+1} \right) \boldsymbol{u}_{w}.$$

Dunque, μ_W risolve l'equazione scalare

$$z = w \rho(A(z)). \tag{2}$$

Intuizione: il raggio di convergenza è l'estremo superiore dei $w \in (0, r_a)$ per cui l'equazione (2) ha soluzione

Proprietà

Sia
$$\theta(z) = \rho(A(z))$$
.

È noto che:

- $\theta(z)$ è una funzione reale analitica per $0 < z < r_a$;
- $\theta(z)$ è strettamente crescente per $0 < z < r_a$;
- la funzione $\log \theta(e^t)$ è convessa e crescente per $-\infty < t < \log r_a$.

Risultato principale

Definiamo $\phi_w(z) = w\theta(z)$.

Teorema

Valgono i seguenti risultati:

l'equazione

$$\theta'(z)z = \theta(z) \tag{3}$$

ha un'unica soluzione σ in $(0, r_a)$;

- 2 l'equazione $\phi_W(z) = z$ ha una soluzione in $(0, r_a)$ per ogni $0 < w \le 1/\theta'(\sigma)$;
- **3** il raggio di convergenza di G(w) è $R = 1/\theta'(\sigma)$.

Ulteriori sviluppi

- Algoritmi efficienti per il calcolo di R;
- algoritmi efficienti per il calcolo di un numero arbitrario di coefficienti G_i