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ADbstract

The problem of computing the distance in the
Frobenius norm of a given real irreducible tridi-
agonal matrix T" to the set of real normal irre-
ducible tridiagonal matrices is solved. Simple
formulas for evaluating the distance and for
computing the closest real normal irreducible
matrix are presented. The special case of tridi-
agonal Toeplitz matrices is also considered.
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e Matrix nearness problems

(symmetry, positive definiteness, orthogonal-
ity, normality, defectiveness, rank-deficiency, in-
stability) [Henrici 62] [Wilkinson 65, 72, 84a,
84b, 86] [Ruhe 75, 87] [Demmel 87,90] [Higham
89].

e Role played by the structure

[Higham & Higham 92, 98] [Chaitin-Chatelin
et al. 96, 00] [Tisseur 03] [Byers & Kressner
04] [Bini et al. 05] [N. & Pasquini 06, 07]
[Rump 06].

e Distance to normality

[Henrici 62] [Causey 64] [Ruhe 70, 75, 87]
[Gabriel 79, 87] [Elsner & Paardekooper 87]
[Laszl6 94] [Lee 95, 96] [Ipsen 03].

e Structured distance to normality

Irreducible real tridiagonal case. Irreducible
real tridiagonal Toeplitz case.
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e Upper bounds to dx(T,N) and to dp (T, N7)

(A, B) = trace (BT A), A, B € R¥X"™
J
Theorem S and A are orthogonal.
J

. 2
drp(T,N7r) <min{dp(T,S7),dr(T, A7)} < gHTHF

e [ he right-hand side inequality is achieved iff

n n—1
Z(SE—I—Q Y o =0.
1=1 1=1

e Equality dp (T, N7) = @HT”F can be achieved.
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T = (n; 0,8, 7) denotes the real tridiagonal ma-

trix

01

01

T1
0o T2
oo 03

c Ran



e Real normal tridiagonal matrices

Theorem T = (n;o,6,7) is normal iff it is
block diagonal, with each block either a diag-
onal block or an irreducible tridiagonal block
T = (v;0%,6", "), whose entries satisfy one
of the conditions:

i) of = 1,h=1:v-1

ii) op =—71, h=1:v—1;, 6] =05=...=9;.

e Monotype matrices

Definition T is a monotype matrix of type j)
if its off-diagonal entries satisfy

op = Tp, h=1:n-—1.
T is a monotype of type jj) if its entries satisfy

Ol — —Th, h=1:.n—1, 01 =0>=...=0n.

e MU) and MUJ) are closed subsets of N



e Computation of dp(T, M)

dp(T, MUy =

\2.

172,—1

N (o — 1)

=1

dp (T, MUT)) =

1 n—1

=1

n

n no_5\ 2
EZ(UH-T@)Q-I-Z (52'_ =2 ]> :
i i=1

Theorem T he distance in the Frobenius norm
dp(T, M) between T = (n;o,6,7) and M is

dp(T, M) = min {dp(T, MD)), dp(T, MU 1.



e The structured distance
Theorem dp(T,7) = dp (T, M)

Proof. The set of monotype matrices M is
closed, because it is the union of the closed
sets M) and M7,

A real irreducible normal tridiagonal matrix is
a monotype matrix. Thus, Z C M.

In every neighborhood of any matrix 7' in M)
[in MU3] there is a real normal irreducible
tridiagonal matrix T* #= T of type j) [of type
j1)]. Thus, M is the closure of Z.

Note that when o2 # 72, i = 1 : n— 1, the
closest matrix to T in M, T or TU1), is irre-
ducible. Otherwise, at least one of the matri-
ces TU) and TU7) is reducible and the closest
matrix to T in M may be reducible.



e Toeplitz case

Theorem A real tridiagonal Toeplitz matrix is
normal if and only if its entries satisfy o = T or

O — —T.

Theorem Let T be a real tridiagonal Toeplitz
matrix. The closest real tridiagonal Toeplitz
matrix TU) to T in the set M) has diagonal
entries o, and sub- and super-diagonal entries
%(0 + 7). The closest real tridiagonal Toeplitz
matrix TU3) to T in the set MU has sub-
diagonal entries 3(c — T), diagonal entries §,
and super-diagonal entries —%(0 — 7).

n—1

dp(T, M) = min{lo — 7|, o + 7}.

is the 7T -patterned distance of real irreducible
tridiagonal Toeplitz matrix from normality.
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e Example 1

Consider the quasi-Jordan block

A O ... ... 0O
OXp O ... 0O
OO0 X g ... 0O

Jo= 1| : + : . . : | eRM"
000 ... A u O
O 00 ... .... A pu
000 ... ... ... X

Thus, J, is an upper bidiagonal Toeplitz ma-
trix. Assume that u # 0. Then the closest
normal matrix to J, is the circulant matrix

o Ly 00 L0 L0 0
0 A=y 0o ... 0 0
0 0 PR L= TR ¢ 0
0 0 0 ... X ™ 0
0 0 0 Al

=1, 0 0 -



On the other hand the closest matrices to J,
in M) and MUJ) respectively are

A w2 0 ... ... 0 O
/2 AN w/2 0 ... 0 O
O wu/2 X wu/2 0 0
0 0 O w/2 X wu/2 O
0 0 O ... wu/2 X u/2
0 0 o ... ... pu/22 X |
and
TN w2 0 ... ... 0 0]
“u/2 X w/2 0O ... 0 o0
0O —u/2 X u/2 0 0
0 0 0O —u/2 A uw/2 0
0 0 0 cee /2N u/2
0 0 0 —u/2 A

Both the matrices are irreducible.
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dp(Jn, N) _ 1

| nll 7 \/n (1 4on (%)2>

IS a poor indicator of the conditioning of the
eigenvalue problem. It goes to zero when n
increases for any real ratio \/pu.

dp(Jn, N7) _ dp(Jn,T) _ 1
[alle— alle ¢2 (112 (2))
n—1 \u

provides a better measure of the sensitivity of
the eigenvalue problem. It converges to its
maximum value +/2/2, when the ratio |\|/|u]
approaches 0.

11



e Example 2

[ 01 0 O]
| -1 0 ¢ O
I'= 0O g 01
| 0 0 1 0|

with € > 0 a tiny parameter.

I

The normalized distance to Z is close to max-
imal for e > 0 small.

drp(T,NT) o €

Tl =~ Jaye2

The normalized distance to N7 is small in this
situation.
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e Report on the tests

Distance < Eigenvalue Conditioning?

Structured Distance small

Y

Structured Condition numbers small

T-Patterned Distance small

U

T-Patterned Condition numbers small
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