Metodo di Newton veloce per un'equazione di Riccati algebrica

Federico Poloni Lavoro congiunto con D. A. Bini, B. Iannazzo, B. Meini

Scuola Normale Superiore, Pisa

26 Febbraio 2007

Outline

Origine del problema

Equazione del trasporto

Discretizzazione

Equazioni di Riccati

Proprietà

Metodi risolutivi

Il nostro problema

Risultati esistenti

Metodo di Newton veloce

Tecnica di shift

Risultati numerici e linee di ricerca

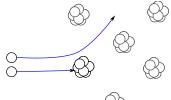
Risultati numerici

Linee di ricerca

Equazione del trasporto one-group per neutroni

$$\left\{ (\mu + \alpha) \frac{\partial}{\partial x} + 1 \right\} \varphi(x, \mu) = \frac{c}{2} \int_{-1}^{1} \varphi(x, \omega) d\omega$$
$$\varphi(0, \mu) = f(\mu), \quad \mu > -\alpha, \quad |\mu| \leqslant 1,$$
$$\lim_{x \to \infty} \varphi(x, \mu) = 0.$$

Propagazione di un fascio di neutroni in un mezzo solido



Equazione del trasporto one-group per neutroni

$$\left\{ (\mu + \frac{\alpha}{\alpha}) \frac{\partial}{\partial x} + 1 \right\} \varphi(x, \mu) = \frac{\mathbf{c}}{2} \int_{-1}^{1} \varphi(x, \omega) d\omega$$

c = % neutroni deflessi (non assorbiti)

 $\alpha = angular shift [Coron, Ganapol]$

$$0 \leqslant c \leqslant 1$$
, $0 \leqslant \alpha < 1$.

Equazione del trasporto one-group per neutroni

$$\left\{ (\mu + \alpha) \frac{\partial}{\partial x} + 1 \right\} \varphi(x, \mu) = \frac{c}{2} \int_{-1}^{1} \varphi(x, \omega) d\omega$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left(\frac{1}{\mu + \alpha} + \frac{1}{\nu - \alpha} \right) X(\mu, \nu) =$$

$$c \left(1 + \frac{1}{2} \int_{-\alpha}^{1} \frac{X(\omega, \nu)}{\omega + \alpha} d\omega \right) \left(1 + \frac{1}{2} \int_{\alpha}^{1} \frac{X(\mu, \omega)}{\omega - \alpha} d\omega \right).$$

 $X(\mu, \nu)$ funzione di scattering (tra gli angoli solidi μ e ν) Quadratura gaussiana:

$$\int_0^1 f(x)dx \approx \sum_{i=1}^n w_i f(x_i)$$

Discretizzazione

Quadratura gaussiana:
$$\int_0^1 f(x)dx \approx \sum_{i=1}^n w_i f(x_i)$$

Equazione da risolvere

$$\Delta X + XD = (Xq + e)(e^T + q^T X)$$

con

$$\begin{split} X &= [X(\mu_i, \nu_j)]_{ij} \\ \Delta &= \operatorname{diag}(\delta_1, \delta_2, \dots, \delta_n) \quad \text{dove} \quad \delta_i = \frac{1}{c x_i (1 + \alpha)}, \\ D &= \operatorname{diag}(d_1, d_2, \dots, d_n) \quad \text{dove} \quad d_i = \frac{1}{c x_i (1 - \alpha)}, \\ e &= (1, 1, \dots, 1)^T, \\ q &= (q_1, q_2, \dots, q_n)^T \quad \text{dove} \quad q_i = \frac{w_i}{2 x_i}. \end{split}$$

Equazione di Riccati algebrica

$$XCX - AX - XE + B = 0$$

 $A, B, C, E, X \in \mathbb{R}^{n \times n}$ Nel nostro caso,

$$A = \Delta - eq^T$$
, $B = ee^T$, $C = qq^T$, $E = D - qe^T$

Diversi algoritmi risolutivi. I migliori hanno costo $O(n^3)$ per passo e convergenza quadratica.

- ► Caso simmetrico: molto studiato, e.g. [Lancaster–Rodman, Algebraic Riccati equations]
- Caso non simmetrico: recente interesse in letteratura

Proprietà delle soluzioni

X soluzione della NARE \Leftrightarrow

$$\begin{pmatrix} E & -C \\ B & -A \end{pmatrix} \begin{pmatrix} I \\ X \end{pmatrix} = \begin{pmatrix} I \\ X \end{pmatrix} (E - CX)$$

Soluzioni legate ai sottospazi invarianti di $H = \begin{pmatrix} E & -C \\ B & -A \end{pmatrix}$.

Nel nostro caso

- H diagonale + rk 1; ha n autovalori positivi (evt. uno nullo), n autovalori negativi (evt. uno nullo)
- ➤ Soluzione minimale non-negativa ⇔ ss. invariante degli autovalori positivi

Metodi risolutivi

Iterazioni funzionali e.g.

$$X_k CX_k - AX_{k+1} - X_k E + B = 0$$

Costo: $O(n^3)$, convergenza lineare

Metodo di Newton

$$(A-X_kC)X_{k+1}+X_{k+1}(D-CX_k)=B-X_kCX_k$$

Costo: $(Tanto) \cdot n^3$, convergenza quadratica

Lento: a ogni passo dobbiamo risolvere un'equazione di Sylvester

$$MX + XN = L$$

Metodi risolutivi: Newton

$$(A - X_k C)X_{k+1} + X_{k+1}(D - CX_k) = B - X_k CX_k$$
 (1)

Teorema (C.-H. Guo, N. Higham, 2006)

Se
$$M:=\begin{pmatrix} E & -C \\ -B & A \end{pmatrix}$$
 è una M-matrice non singolare, e se $X_0=0$,

- ▶ (1) è risolubile a ogni passo
- ➤ X_k / X quadraticamente

(Newton è ben definito e convergente)

Nel nostro caso M è una M-matrice, il teorema vale.

Metodi risolutivi: SDA

[X.-X. Guo, W.-W. Lin, S.-F. Xu, 2005]

Idea: metodo Ir (a blocchi) per gli autovalori

- 1. Trasformazione dello spettro: $H \mapsto (H + \gamma I)^{-1}(H \gamma I)$
- 2. Fattorizzazione UL a blocchi: $H = U_0^{-1}L_0$ con

$$U = \begin{pmatrix} I & * \\ 0 & * \end{pmatrix}, \quad L = \begin{pmatrix} * & 0 \\ * & I \end{pmatrix}$$

- 3. Update (implicito) $H^{2^k} = U_k^{-1} L_k$ (contiene un prodotto LU)
- 4. A convergenza, estraggo X da L_* e U_*

Costo (Non troppo) \cdot n^3 per passo, convergenza quadratica

Nel nostro problema

I coefficienti della Riccati hanno struttura di rango:

$$A = \Delta - eq^T$$
, $B = ee^T$, $C = qq^T$, $E = D - qe^T$

- Come sfruttare la struttura nei metodi generali?
- Algoritmi ad hoc per il problema?

Metodo di Lu

[L.-Z. Lu, 2005-2006]

$$\Delta X + XD = (Xq + e)(e^T + q^T X)$$

cioè X è Cauchy-like.

I generatori u = Xq + e, $v = e + X^Tq$ soddisfano

$$\begin{cases} u = u. * (Pv) + e \\ v = v. * (\widetilde{P}u) + e \end{cases}$$
 (2)

- ▶ iterazione funzionale basata su (2) Costo $O(n^2)$, convergenza lineare ⇒ insoddisfacente nei casi near-singular
- ► metodo di Newton applicato a (2) Costo $O(n^3)$, convergenza quadratica

Metodo di Newton veloce

step di Newton ⇔ soluzione del problema di Sylvester

$$X_{k+1}(E-CX_k)+(A-X_kC)X_{k+1}=\cdots$$

 \Leftrightarrow inversione della matrice $n^2 \times n^2$

$$(E - CX_k)^T \otimes I_n + I_n \otimes (A - X_k C) = \underbrace{(D^T \otimes I_n + I_n \otimes \Delta)}_{\text{diagonale}} - \underbrace{(e + X_k^T q)q^T \otimes I_n}_{\text{rango } n} - \underbrace{I_n \otimes (e + X_k e)q^T}_{\text{rango } n}$$

Metodo di Newton veloce – 2

$$\left[\left(D^{T}\otimes I_{n}+I_{n}\otimes\Delta\right)\right]-\left[\left(e+X_{k}^{T}q\right)q^{T}\otimes I_{n}+I_{n}\otimes\left(e+X_{k}e\right)q^{T}\right]$$

Sherman-Morrison-Woodbury formula

$$(\mathcal{D} - UV)^{-1} = \mathcal{D}^{-1} + \mathcal{D}^{-1}U(I_{2n} - V\mathcal{D}^{-1}U)^{-1}V\mathcal{D}^{-1}$$

Ci riduciamo all'inversione di $R = I_{2n} - V\mathcal{D}^{-1}U$ (matrice $2n \times 2n$) [D. A. Bini, B. Iannazzo, F. Poloni, 2006 (preprint)]

Eliminazione di Gauss veloce

$$R = I_{2n} - V \mathcal{D}^{-1} U$$
 così costruita soddisfa

$$\operatorname{diag}(\Delta, -D)R - R\operatorname{diag}(\Delta, -D) = (rk\ 2)$$

Idea eliminazione di Gauss veloce per struttura displacement [Gohberg–Kailath–Olshevsky, 1995].

Problema le due matrici di *displacement* coincidono \Rightarrow operatore singolare:

La struttura displacement non dà informazioni sulla diagonale di ${\it R}$ Soluzione strategia ibrida:

- ▶ update della diagonale: Gauss standard $O(n^2)$
- ▶ update (implicito) del resto della matrice: GKO $O(n^2)$

Relazione tra i due metodi

R è la stessa matrice che compare nel metodo di Lu/Newton: anche Lu/Newton può essere accelerato a $O(n^2)$ con l'inversione veloce Inoltre.

Teorema

Siano u_k , v_k le iterate del metodo di Lu (partendo da $u_0 = v_0 = 0$); siano X_k le iterate del metodo di Newton (partendo da $X_0 = 0$); allora

$$\begin{cases} u_{k+1} = X_k q + e, \\ v_{k+1} = X_k^T q + e. \end{cases}$$

- Unifica le dimostrazioni di convergenza
- Newton e Lu convergono sempre alla stessa velocità

Caso critico

Quando $c = 1, \alpha = 0$, H ha due autovalori nulli (caso *null recurrent*)

- Jacobiano singolare: Newton converge linearmente
- Problemi numerici: invertiamo matrici near-to-singular
- ▶ Se non usiamo esplicitamente singolarità, l'accuratezza scende a $O(\sqrt{\varepsilon})$ [C.-H. Guo, N. Higham, 2006]

Tecnica di shift

$$H \rightarrow H + \eta v p^T$$

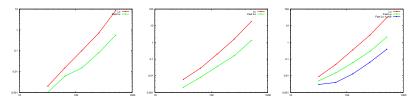
 $con v \in ker H$

$$\begin{pmatrix} \lambda_n & & & & \\ & \ddots & & & & \\ & & \lambda_2 & & & \\ & & & 0 & & \\ & & & -\mu_2 & & \\ & & & \ddots & \\ & & & -\mu_n \end{pmatrix} \rightarrow \begin{pmatrix} \lambda_n & & & & \\ & \ddots & & & \\ & & \eta & & \\ & & & -\mu_2 & & \\ & & & \ddots & \\ & & & & -\mu_n \end{pmatrix}$$

Elimina la doppia singolarità; mantiene:

- Stessa soluzione X
- ▶ Struttura diagonale + rk 1 (scegliendo bene p)
- ▶ Struttura di M–matrice (scegliendo bene η)

Risultati numerici



- $ightharpoonup \alpha = .5$, c = .5 (non critico)
- $\alpha = 10^{-8}$, $c = 1 10^{-6}$ (quasi critico)
- $ightharpoonup \alpha = 0$, c = 1 (critico)

Caso non critico per n=512, 15 volte più veloce Caso critico con shift, 80 volte più veloce Accuratezza nel caso critico, errore relativo in norma $-1 \approx 10^{-15}$ (invece di $\approx 10^{-8}$) grazie allo shift

Linee di ricerca

- ► Fast SDA? Anche le iterate della SDA sono generalized Cauchy-like
- ► Metodi superfast (approssimati) per le Cauchy come gestire l'errore introdotto?